JP2007270349A - Steel tube for hollow part, and its manufacturing method - Google Patents
Steel tube for hollow part, and its manufacturing method Download PDFInfo
- Publication number
- JP2007270349A JP2007270349A JP2007051688A JP2007051688A JP2007270349A JP 2007270349 A JP2007270349 A JP 2007270349A JP 2007051688 A JP2007051688 A JP 2007051688A JP 2007051688 A JP2007051688 A JP 2007051688A JP 2007270349 A JP2007270349 A JP 2007270349A
- Authority
- JP
- Japan
- Prior art keywords
- steel pipe
- hollow parts
- balance
- mass
- decarburized layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
Description
本発明は、疲労強度を向上させた中空部品用鋼管及びその製造方法に関する。 The present invention relates to a steel pipe for hollow parts with improved fatigue strength and a method for producing the same.
自動車の燃費向上対策のひとつとして、車体の軽量化が進められている。自動車のコーナーリング時に車体のローリングを緩和し、高速走行時に車体の安定性を確保するスタビライザーやドライブシャフトもその対策として挙げられている。従来、スタビライザーやドライブシャフトは、棒鋼などの中実材を所要の形状に加工して製造されていたが、軽量化を図るため電縫溶接鋼管のような中空部品用鋼管の使用が進められている。 As one of the measures to improve the fuel efficiency of automobiles, weight reduction of the car body is being promoted. Stabilizers and drive shafts that reduce the rolling of the car body when cornering an automobile and ensure the stability of the car body at high speeds are also cited as countermeasures. Conventionally, stabilizers and drive shafts were manufactured by processing solid materials such as steel bars into the required shape, but in order to reduce weight, the use of steel pipes for hollow parts such as ERW welded pipes has been promoted. Yes.
スタビライザーの電縫溶接鋼管として、特許文献1には、組成を規定することにより、電縫溶接部及び母材の金属組織が均一で、電縫溶接部及び母材部の硬度差が小さく、加工性に優れた中空スタビライザー用電縫溶接鋼管が開示されており、また、特許文献2には、Ti、Nの含有量を規定することにより焼入れ性を確保する中空スタビライザー用電縫溶接鋼管が開示されている。 As an electric resistance welded steel pipe of a stabilizer, Patent Document 1 specifies a composition so that the metal structure of the electric resistance welded part and the base metal is uniform, the hardness difference between the electric resistance welded part and the base metal part is small, and processing An electric resistance welded steel pipe for a hollow stabilizer is disclosed, and Patent Document 2 discloses an electric resistance welded steel pipe for a hollow stabilizer that secures hardenability by defining the contents of Ti and N Has been.
例えば、スタビライザーは、電縫溶接鋼管をさらに熱間で縮径圧延し、所要の肉厚とした厚肉電縫溶接鋼管を用いて製造される。熱間で縮径圧延を行った後に、室温まで冷却される途中のα−γ2相域を通過する際に、その厚肉電縫溶接鋼管の表面にはフェライト脱炭層が形成されやすい。このフェライト脱炭層は強度が弱いため、厚肉電縫溶接鋼管の表面に形成されると、そのフェライト脱炭層が疲労破壊の発生する起点となり、その結果、厚肉電縫溶接鋼管の疲労強度を低下させる原因となる。 For example, the stabilizer is manufactured using a thick-walled ERW welded steel pipe having a required thickness by further reducing the diameter of the ERW welded steel pipe. A ferrite decarburized layer is likely to be formed on the surface of the thick-walled ERW welded steel pipe when passing through the α-γ2 phase region that is being cooled to room temperature after being hot-rolled. Since this ferrite decarburized layer is weak, if it is formed on the surface of a thick ERW welded steel pipe, the ferrite decarburized layer will be the starting point for fatigue failure. As a result, the fatigue strength of the thick ERW welded pipe will be reduced. It causes a decrease.
上述したようなフェライト脱炭層が鋼管の表面に形成された場合の対策としては次のような技術がある。
例えば、フェライト脱炭層を25〜500μm研削加工して鋼管表面から除去する。これにより、フェライト脱炭層による疲労強度の低下を抑制することができる(例えば特許文献3参照)。
As a countermeasure when the above-described ferrite decarburized layer is formed on the surface of a steel pipe, there are the following techniques.
For example, the ferrite decarburized layer is ground from 25 to 500 μm and removed from the steel pipe surface. Thereby, the fall of the fatigue strength by a ferrite decarburization layer can be suppressed (for example, refer patent document 3).
また、鋼管表面にショットピーニングを行うことにより鋼管の強度を向上させてフェライト脱炭層による疲労強度の低下を抑制することができる(例えば特許文献4参照)。また、鋼管表面に浸炭層を形成させることにより鋼管の強度を向上させてフェライト脱炭層による疲労強度の低下を抑制することができる(例えば特許文献5参照)。 Further, by performing shot peening on the surface of the steel pipe, it is possible to improve the strength of the steel pipe and suppress a decrease in fatigue strength due to the ferrite decarburized layer (see, for example, Patent Document 4). Moreover, the strength of the steel pipe can be improved by forming a carburized layer on the surface of the steel pipe, and a decrease in fatigue strength due to the ferrite decarburized layer can be suppressed (see, for example, Patent Document 5).
上述したように従来の中空部品用鋼管では、熱間で縮径圧延を行った後に、室温まで冷却される際に、その厚肉電縫溶接鋼管の表面にフェライト脱炭層が形成されやすく、そのフェライト脱炭層が厚肉電縫溶接鋼管の疲労強度を低下させる原因となっている。このため、フェライト脱炭層の発生を抑制した中空部品用鋼管を製造することが望ましい。 As described above, in conventional steel pipes for hollow parts, when the steel pipe is hot-reduced and cooled to room temperature, a ferrite decarburized layer is easily formed on the surface of the thick ERW welded steel pipe. The ferrite decarburized layer is a cause of reducing the fatigue strength of thick-walled ERW welded steel pipe. For this reason, it is desirable to manufacture the steel pipe for hollow parts which suppressed generation | occurrence | production of the ferrite decarburization layer.
また、フェライト脱炭層が鋼管の表面に形成された場合の従来の対策では、研削加工工程などの追加の工程が必要となるため、製造コストが増加することとなり好ましくない。 Further, the conventional countermeasure when the ferrite decarburized layer is formed on the surface of the steel pipe is not preferable because an additional process such as a grinding process is required, which increases the manufacturing cost.
本発明は上記のような事情を考慮してなされたものであり、その目的は、フェライト脱炭層の発生を抑制することにより疲労強度を向上させた中空部品用鋼管及びその製造方法を提供することにある。 The present invention has been made in consideration of the above-described circumstances, and an object thereof is to provide a steel pipe for hollow parts with improved fatigue strength by suppressing the occurrence of a ferrite decarburized layer and a method for manufacturing the same. It is in.
上記課題を解決するため、本発明に係る中空部品用鋼管は、電縫溶接鋼管が熱間で縮径圧延された中空部品用鋼管であって、
肉厚が5mm以上で且つ肉厚tと外径Dの比であるt/Dが0.2以上であり、
管内表面の脱炭層の深さが20μm以下であることを特徴とする。
In order to solve the above problems, a steel pipe for a hollow part according to the present invention is a steel pipe for a hollow part in which an electric resistance welded steel pipe is hot reduced in diameter,
The wall thickness is 5 mm or more, and the ratio of wall thickness t to outer diameter D is t / D is 0.2 or more,
The depth of the decarburized layer on the inner surface of the pipe is 20 μm or less.
上記本発明に係る中空部品用鋼管によれば、肉厚tと外径Dの比であるt/Dを0.2以上にすることにより、同じ外径の棒鋼に近い疲労強度を得ることができる。また、管内表面の脱炭層の深さを20μm以下にすることにより疲労強度を向上させることができる。 According to the steel pipe for hollow parts according to the present invention, the fatigue strength close to that of a steel bar having the same outer diameter can be obtained by setting t / D, which is the ratio of the wall thickness t and the outer diameter D, to 0.2 or more. it can. Further, the fatigue strength can be improved by setting the depth of the decarburized layer on the inner surface of the pipe to 20 μm or less.
また、本発明に係る中空部品用鋼管において、前記電縫溶接鋼管は、質量%で
C:0.15〜0.5%
Si:0.1〜0.4%
Mn:0.3〜2.0%
Ti:0.005〜0.05%
Al:0.005〜0.05%
B:0.0005〜0.0050%
N:0.001〜0.006% を含有し、残部がFeおよび不可避的不純物からなり、且つ下記式を満足することが好ましい。
923−513C−101Mn≦700
Moreover, the steel pipe for hollow parts which concerns on this invention WHEREIN: The said ERW welded steel pipe is the mass%. C: 0.15-0.5%
Si: 0.1 to 0.4%
Mn: 0.3 to 2.0%
Ti: 0.005 to 0.05%
Al: 0.005 to 0.05%
B: 0.0005 to 0.0050%
It is preferable that N: 0.001 to 0.006% is contained, the balance is Fe and inevitable impurities, and the following formula is satisfied.
923-513C-101Mn ≦ 700
また、本発明に係る中空部品用鋼管において、前記電縫溶接鋼管は、質量%で
C:0.15〜0.5%
Si:0.1〜0.4%
Mn:0.3〜2.0%
Ti:0.005〜0.05%
Al:0.005〜0.05%
B:0.0005〜0.0050%
N:0.001〜0.006% を含有し、且つCr:0.05〜1.0% およびNb:0.005〜0.1% の少なくとも一方を含有し、残部がFeおよび不可避的不純物からなり、且つ下記式を満足することが好ましい。
923−513C−101Mn−204Cr−1515Nb≦700
Moreover, the steel pipe for hollow parts which concerns on this invention WHEREIN: The said ERW welded steel pipe is the mass%. C: 0.15-0.5%
Si: 0.1 to 0.4%
Mn: 0.3 to 2.0%
Ti: 0.005 to 0.05%
Al: 0.005 to 0.05%
B: 0.0005 to 0.0050%
N: 0.001 to 0.006%, Cr: 0.05 to 1.0% and Nb: 0.005 to 0.1%, the balance being Fe and inevitable impurities And satisfying the following formula.
923-513C-101Mn-204Cr-1515Nb ≦ 700
また、本発明に係る中空部品用鋼管において、前記電縫溶接鋼管は、質量%で
C:0.15〜0.5%
Si:0.1〜0.4%
Mn:0.3〜2.0%
Ti:0.005〜0.05%
Al:0.005〜0.05%
B:0.0005〜0.0050%
N:0.001〜0.006% を含有し、
さらに、S:0.004〜0.010%およびCa:0.0005〜0.0070%を含有し、残部がFeおよび不可避的不純物からなり、且つ下記式を満足することが好ましい。
923−513C−101Mn≦700
Moreover, the steel pipe for hollow parts which concerns on this invention WHEREIN: The said ERW welded steel pipe is the mass%. C: 0.15-0.5%
Si: 0.1 to 0.4%
Mn: 0.3 to 2.0%
Ti: 0.005 to 0.05%
Al: 0.005 to 0.05%
B: 0.0005 to 0.0050%
N: 0.001 to 0.006% is contained,
Further, it is preferable that S: 0.004 to 0.010% and Ca: 0.0005 to 0.0070% are contained, the balance is Fe and inevitable impurities, and the following formula is satisfied.
923-513C-101Mn ≦ 700
また、本発明に係る中空部品用鋼管において、前記電縫溶接鋼管は、質量%で
C:0.15〜0.5%
Si:0.1〜0.4%
Mn:0.3〜2.0%
Ti:0.005〜0.05%
Al:0.005〜0.05%
B:0.0005〜0.0050%
N:0.001〜0.006% を含有し、
且つCr:0.05〜1.0% およびNb:0.005〜0.1% の少なくとも一方を含有し、
さらに、S:0.004〜0.010%およびCa:0.0005〜0.0070%を含有し、残部がFeおよび不可避的不純物からなり、且つ下記式を満足することが好ましい。
923−513C−101Mn−204Cr−1515Nb≦700
Moreover, the steel pipe for hollow parts which concerns on this invention WHEREIN: The said ERW welded steel pipe is the mass%. C: 0.15-0.5%
Si: 0.1 to 0.4%
Mn: 0.3 to 2.0%
Ti: 0.005 to 0.05%
Al: 0.005 to 0.05%
B: 0.0005 to 0.0050%
N: 0.001 to 0.006% is contained,
And at least one of Cr: 0.05-1.0% and Nb: 0.005-0.1%,
Further, it is preferable that S: 0.004 to 0.010% and Ca: 0.0005 to 0.0070% are contained, the balance is Fe and inevitable impurities, and the following formula is satisfied.
923-513C-101Mn-204Cr-1515Nb ≦ 700
本発明に係る中空部品用鋼管の製造方法は、電縫溶接鋼管を熱間で縮径圧延する第1工程と、
前記第1工程で縮径圧延された鋼管をα−γ2相温度域より低い温度まで冷却する第2工程と、
を具備する中空部品用鋼管の製造方法であって、
前記第1工程によって縮径圧延された鋼管は、その肉厚が5mm以上で且つ肉厚tと外径Dの比であるt/Dが0.2以上であり、
前記第2工程によって前記鋼管の内表面が冷却される過程でα−γ2相温度域を通過する際の冷却速度は5℃/秒以上であり、
前記第2工程によって冷却された前記鋼管の内表面に発生した脱炭層の深さは20μm以下であることを特徴とする。
The method for manufacturing a steel pipe for hollow parts according to the present invention includes a first step of hot rolling a diameter-welded welded steel pipe,
A second step of cooling the steel pipe reduced in diameter in the first step to a temperature lower than the α-γ2 phase temperature range;
A method for producing a steel pipe for hollow parts comprising:
The steel pipe reduced in diameter in the first step has a thickness of 5 mm or more and a ratio t / D which is a ratio of the thickness t to the outer diameter D is 0.2 or more.
The cooling rate when passing through the α-γ2 phase temperature range in the process of cooling the inner surface of the steel pipe by the second step is 5 ° C / second or more,
The depth of the decarburized layer generated on the inner surface of the steel pipe cooled in the second step is 20 μm or less.
上記本発明に係る中空部品用鋼管の製造方法によれば、第2工程によって鋼管の内表面が冷却される過程でα−γ2相温度域を通過する際の冷却速度を5℃/秒以上にすることにより、前記鋼管の内表面に発生するフェライト脱炭層の深さを20μm以下に抑制することができる。 According to the method for manufacturing a steel pipe for hollow parts according to the present invention, the cooling rate when passing through the α-γ2 phase temperature range in the process of cooling the inner surface of the steel pipe in the second step is 5 ° C / second or more. By doing, the depth of the ferrite decarburization layer which generate | occur | produces on the inner surface of the said steel pipe can be suppressed to 20 micrometers or less.
以上説明したように本発明によれば、肉厚tと外径Dの比であるt/Dを0.2以上にすることにより、同じ外径の棒鋼に近い疲労強度を得ることができ、また、管内表面の脱炭層の深さを20μm以下に抑制することにより疲労強度を向上させることができる。従って、フェライト脱炭層の発生を抑制することにより疲労強度を向上させた中空部品用鋼管及びその製造方法を提供することができる。 As described above, according to the present invention, by setting t / D, which is the ratio of the wall thickness t and the outer diameter D, to 0.2 or more, fatigue strength close to that of a steel bar having the same outer diameter can be obtained. Moreover, fatigue strength can be improved by suppressing the depth of the decarburized layer on the inner surface of the pipe to 20 μm or less. Therefore, the steel pipe for hollow parts which improved fatigue strength by suppressing generation | occurrence | production of a ferrite decarburization layer, and its manufacturing method can be provided.
以下、図面を参照して本発明の実施の形態について説明する。
本発明の実施の形態による中空部品用鋼管は、電縫溶接鋼管を母管として熱間で縮径圧延して室温まで冷却した鋼管であって、肉厚が5mm以上(好ましくは7mm以上)で且つ肉厚t(mm)と外径D(mm)の比であるt/Dが0.2以上(好ましくは0.23以上)の鋼管である。この鋼管の内表面のフェライト脱炭層の深さは20μm以下であり、より好ましくは10μm以下である。
Embodiments of the present invention will be described below with reference to the drawings.
The steel pipe for hollow parts according to the embodiment of the present invention is a steel pipe that has been hot-reduced and cooled to room temperature using an ERW welded steel pipe as a mother pipe, and has a wall thickness of 5 mm or more (preferably 7 mm or more). And it is a steel pipe whose t / D which is the ratio of the wall thickness t (mm) and the outer diameter D (mm) is 0.2 or more (preferably 0.23 or more). The depth of the ferrite decarburized layer on the inner surface of this steel pipe is 20 μm or less, more preferably 10 μm or less.
肉厚/外径の比であるt/Dを0.2以上とする理由は次のとおりである。
鋼管の疲労破壊の起点は、肉厚/外径の比であるt/Dが概ね0.2未満の場合には鋼管の内表面側からとなり、0.2以上の場合には鋼管の外表面側からとなる。従って、同じ外径で棒鋼(中実材)並みの疲労強度を得るためには肉厚/外径の比であるt/Dを0.2以上とする必要がある。
The reason why the thickness / outer diameter ratio t / D is 0.2 or more is as follows.
The starting point of fatigue failure of a steel pipe is from the inner surface side of the steel pipe when the thickness / outer diameter ratio t / D is generally less than 0.2, and the outer surface of the steel pipe when the ratio is 0.2 or more. From the side. Therefore, in order to obtain the same fatigue strength as that of a steel bar (solid material), the thickness / outer diameter ratio t / D needs to be 0.2 or more.
また、通常の電縫溶接鋼管の製造プロセスでは、肉厚/外径の比であるt/Dの高い鋼管を製造するのは困難である。このため、本実施の形態による中空部品用鋼管は、母管である電縫溶接鋼管を熱間で縮径圧延することにより製造されるものである。 Moreover, it is difficult to manufacture a steel pipe having a high thickness / outer diameter ratio of t / D in a normal electric resistance welded steel pipe manufacturing process. For this reason, the steel pipe for hollow parts by this Embodiment is manufactured by carrying out hot diameter reduction rolling of the electric resistance welded steel pipe which is a mother pipe.
また、前述したように、母管である電縫溶接鋼管に熱間で縮径圧延を行った後に、室温まで冷却される途中のα−γ2相温度域を通過する際に、その鋼管の表面にはフェライト脱炭層が形成されやすい。鋼管の内表面にフェライト脱炭層が形成されてしまうと、t/Dを0.2以上にして疲労破壊の起点を外表面側からとした鋼管でも、内表面の強度の弱いフェライト脱炭層によって疲労破壊の起点が内表面側に移行してしまう。従って、鋼管の内表面にフェライト脱炭層が発生するのを抑制する必要がある。 As described above, the surface of the steel pipe when passing through the α-γ2 phase temperature range in the course of being cooled to room temperature after hot-reducing the diameter-welded steel pipe as the mother pipe. A ferrite decarburized layer is easily formed. If a ferritic decarburized layer is formed on the inner surface of the steel pipe, even if the steel pipe has a t / D of 0.2 or more and the starting point of fatigue failure is from the outer surface side, the ferritic decarburized layer on the inner surface is weakened. The starting point of destruction shifts to the inner surface side. Therefore, it is necessary to suppress the occurrence of a ferrite decarburized layer on the inner surface of the steel pipe.
フェライト脱炭層はα−γ2相温度域で生じるため、α−γ2相温度域の通過時間を短くすることによりフェライト脱炭層の発生を抑制することができる。α−γ2相温度域の通過時間を短くする方法としては、電縫溶接鋼管を縮径圧延した鋼管の外表面に水を供給して速い速度で冷却することが好ましい。これにより、前記鋼管の内表面が冷却される過程でα−γ2相温度域を通過する際の冷却速度を5℃/秒以上にすることができる。その結果、前記鋼管の内表面に発生するフェライト脱炭層の深さを20μm以下(より好ましくは10μm以下)に抑制することができる。これにより、フェライト脱炭層によって疲労破壊の起点が内表面側に移行するのを抑制できる。よって、フェライト脱炭層による鋼管の疲労強度の低下を抑制することができる。 Since the ferrite decarburized layer is generated in the α-γ2 phase temperature range, the generation of the ferrite decarburized layer can be suppressed by shortening the transit time in the α-γ2 phase temperature range. As a method of shortening the passage time in the α-γ two-phase temperature region, it is preferable to supply water to the outer surface of the steel pipe obtained by reducing the diameter of the ERW welded steel pipe and cool it at a high speed. Thereby, the cooling rate at the time of passing through the α-γ2 phase temperature region in the process of cooling the inner surface of the steel pipe can be set to 5 ° C / second or more. As a result, the depth of the ferrite decarburized layer generated on the inner surface of the steel pipe can be suppressed to 20 μm or less (more preferably 10 μm or less). Thereby, it can suppress that the origin of fatigue failure transfers to an inner surface side by a ferrite decarburization layer. Therefore, the fall of the fatigue strength of the steel pipe by a ferrite decarburization layer can be suppressed.
なお、前記鋼管の外表面に発生するフェライト脱炭層を問題にしていないのは、通常、鋼管は外表面に水を供給して冷却するため、鋼管の外表面の冷却速度が内表面の冷却速度に比べて速くなり、その結果、鋼管の外表面にはフェライト脱炭層が発生しにくいからである。また、鋼管を外表面から冷却した場合でも肉厚の薄い鋼管では、内表面と外表面との冷却速度の差が小さくなるため、外表面にフェライト脱炭層が生じない冷却条件であれば内表面にもフェライト脱炭層が生じにくいことが多い。しかし、本実施の形態のように肉厚が5mm以上の厚肉の鋼管では、外表面から冷却した場合に内表面側が冷却されにくいため、内表面側だけにフェライト脱炭層が発生する可能性がある。従って、肉厚が5mm以上の鋼管では、内表面にフェライト脱炭層の発生を抑制することが重要である。 The reason why the ferrite decarburized layer generated on the outer surface of the steel pipe is not a problem is that the steel pipe is usually cooled by supplying water to the outer surface, so the cooling speed of the outer surface of the steel pipe is the cooling speed of the inner surface. As a result, a ferrite decarburized layer is hardly generated on the outer surface of the steel pipe. In addition, even when the steel pipe is cooled from the outer surface, the difference in cooling rate between the inner surface and the outer surface is small in the thin steel pipe. In many cases, a ferrite decarburized layer is hardly formed. However, in the case of a thick steel pipe having a thickness of 5 mm or more as in the present embodiment, the inner surface side is difficult to be cooled when cooled from the outer surface, so there is a possibility that a ferrite decarburized layer is generated only on the inner surface side. is there. Therefore, in a steel pipe having a wall thickness of 5 mm or more, it is important to suppress generation of a ferrite decarburized layer on the inner surface.
また、本実施の形態では、鋼管の外表面に水を供給して冷却しているが、外表面だけでなく鋼管の内表面にも水を供給して冷却することも可能である。これにより、前記鋼管の内表面の冷却速度をより速めることができ、管内表面に発生するフェライト脱炭層の深さをより浅くすることができる。 Moreover, in this Embodiment, although water is supplied and cooled to the outer surface of a steel pipe, it is also possible to supply and cool not only an outer surface but the inner surface of a steel pipe. Thereby, the cooling rate of the inner surface of the steel pipe can be further increased, and the depth of the ferrite decarburized layer generated on the inner surface of the pipe can be further reduced.
次に、前記電縫溶接鋼管の化学成分について説明する。
(第1の化学成分)
前記電縫溶接鋼管は、質量%で、
C:0.15〜0.5%
Si:0.1〜0.4%
Mn:0.3〜2.0%
Ti:0.005〜0.05%
Al:0.005〜0.05%
B:0.0005〜0.0050%
N:0.001〜0.006% を含有し、残部がFeおよび不可避的不純物からなり、且つ下記式(1)を満足するものである。
923−513C−101Mn≦700 ・・・(1)
Next, chemical components of the electric resistance welded steel pipe will be described.
(First chemical component)
The electric resistance welded steel pipe is in mass%,
C: 0.15-0.5%
Si: 0.1 to 0.4%
Mn: 0.3 to 2.0%
Ti: 0.005 to 0.05%
Al: 0.005 to 0.05%
B: 0.0005 to 0.0050%
N: 0.001 to 0.006% is contained, the balance consists of Fe and inevitable impurities, and satisfies the following formula (1).
923-513C-101Mn ≦ 700 (1)
(第2の化学成分)
前記電縫溶接鋼管は、質量%で、
C:0.15〜0.5%
Si:0.1〜0.4%
Mn:0.3〜2.0%
Ti:0.005〜0.05%
Al:0.005〜0.05%
B:0.0005〜0.0050%
N:0.001〜0.006% を含有し、且つCr:0.05〜1.0% およびNb:0.005〜0.1% の少なくとも一方を含有し、残部がFeおよび不可避的不純物からなり、且つ下記式(2)を満足するものである。
923−513C−101Mn−204Cr−1515Nb≦700 ・・・(2)
(Second chemical component)
The electric resistance welded steel pipe is in mass%,
C: 0.15-0.5%
Si: 0.1 to 0.4%
Mn: 0.3 to 2.0%
Ti: 0.005 to 0.05%
Al: 0.005 to 0.05%
B: 0.0005 to 0.0050%
N: 0.001 to 0.006%, Cr: 0.05 to 1.0% and Nb: 0.005 to 0.1%, the balance being Fe and inevitable impurities And satisfies the following formula (2).
923-513C-101Mn-204Cr-1515Nb ≦ 700 (2)
(第3の化学成分)
前記電縫溶接鋼管は、質量%で、
C:0.15〜0.5%
Si:0.1〜0.4%
Mn:0.3〜2.0%
Ti:0.005〜0.05%
Al:0.005〜0.05%
B:0.0005〜0.0050%
N:0.001〜0.006% を含有し、
さらに、S:0.004〜0.010%およびCa:0.0005〜0.0070%を含有し、残部がFeおよび不可避的不純物からなり、且つ下記式(1)を満足するものである。
923−513C−101Mn≦700 ・・・(1)
(Third chemical component)
The electric resistance welded steel pipe is in mass%,
C: 0.15-0.5%
Si: 0.1 to 0.4%
Mn: 0.3 to 2.0%
Ti: 0.005 to 0.05%
Al: 0.005 to 0.05%
B: 0.0005 to 0.0050%
N: 0.001 to 0.006% is contained,
Furthermore, it contains S: 0.004 to 0.010% and Ca: 0.0005 to 0.0070%, the balance is made of Fe and inevitable impurities, and satisfies the following formula (1).
923-513C-101Mn ≦ 700 (1)
(第4の化学成分)
前記電縫溶接鋼管は、質量%で、
C:0.15〜0.5%
Si:0.1〜0.4%
Mn:0.3〜2.0%
Ti:0.005〜0.05%
Al:0.005〜0.05%
B:0.0005〜0.0050%
N:0.001〜0.006% を含有し、且つCr:0.05〜1.0% およびNb:0.005〜0.1% の少なくとも一方を含有し、
さらに、S:0.004〜0.010%およびCa:0.0005〜0.0070%を含有し、残部がFeおよび不可避的不純物からなり、且つ下記式(2)を満足するものである。
923−513C−101Mn−204Cr−1515Nb≦700 ・・・(2)
(Fourth chemical component)
The electric resistance welded steel pipe is in mass%,
C: 0.15-0.5%
Si: 0.1 to 0.4%
Mn: 0.3 to 2.0%
Ti: 0.005 to 0.05%
Al: 0.005 to 0.05%
B: 0.0005 to 0.0050%
N: 0.001 to 0.006% and Cr: 0.05 to 1.0% and Nb: 0.005 to 0.1%
Furthermore, it contains S: 0.004 to 0.010% and Ca: 0.0005 to 0.0070%, the balance is made of Fe and inevitable impurities, and satisfies the following formula (2).
923-513C-101Mn-204Cr-1515Nb ≦ 700 (2)
第1の化学成分はCrとNbが無添加であり、第2の化学成分はCrとNbの少なくとも一方が添加されるものである。
第3および第4の化学成分は第1または第2の化学成分にSおよびCaが添加されるものである。
The first chemical component has no added Cr and Nb, and the second chemical component has at least one of Cr and Nb added.
The third and fourth chemical components are obtained by adding S and Ca to the first or second chemical component.
(第1の化学成分のより望ましい範囲)
前記電縫溶接鋼管は、質量%で、
C:0.2〜0.4%
Si:0.2〜0.3%
Mn:0.5〜1.5%
Ti:0.01〜0.03%
Al:0.01〜0.05%
B:0.0010〜0.0030%
N:0.002〜0.004% を含有し、残部がFeおよび不可避的不純物からなり、且つ下記式(1)を満足するものである。
923−513C−101Mn≦700 ・・・(1)
(The more desirable range of the first chemical component)
The electric resistance welded steel pipe is in mass%,
C: 0.2 to 0.4%
Si: 0.2-0.3%
Mn: 0.5 to 1.5%
Ti: 0.01-0.03%
Al: 0.01 to 0.05%
B: 0.0010 to 0.0030%
N: 0.002 to 0.004% is contained, the balance consists of Fe and inevitable impurities, and satisfies the following formula (1).
923-513C-101Mn ≦ 700 (1)
(第2の化学成分のより望ましい範囲)
前記電縫溶接鋼管は、質量%で、
C:0.2〜0.4%
Si:0.2〜0.3%
Mn:0.5〜1.5%
Ti:0.01〜0.03%
Al:0.01〜0.05%
B:0.0010〜0.0030%
N:0.002〜0.004% を含有し、且つCr:0.1〜0.5% およびNb:0.01〜0.05% の少なくとも一方を含有し、残部がFeおよび不可避的不純物からなり、且つ下記式(2)を満足するものである。
923−513C−101Mn−204Cr−1515Nb≦700 ・・・(2)
(The more desirable range of the second chemical component)
The electric resistance welded steel pipe is in mass%,
C: 0.2 to 0.4%
Si: 0.2-0.3%
Mn: 0.5 to 1.5%
Ti: 0.01-0.03%
Al: 0.01 to 0.05%
B: 0.0010 to 0.0030%
N: 0.002 to 0.004%, Cr: 0.1 to 0.5% and Nb: 0.01 to 0.05%, the balance being Fe and inevitable impurities And satisfies the following formula (2).
923-513C-101Mn-204Cr-1515Nb ≦ 700 (2)
(第3の化学成分のより望ましい範囲)
前記電縫溶接鋼管は、質量%で、
C:0.2〜0.4%
Si:0.2〜0.3%
Mn:0.5〜1.5%
Ti:0.01〜0.03%
Al:0.01〜0.05%
B:0.0010〜0.0030%
N:0.002〜0.004% を含有し、
さらに、S:0.006〜0.008%およびCa:0.0020〜0.0050%を含有し、残部がFeおよび不可避的不純物からなり、且つ下記式(1)を満足するものである。
923−513C−101Mn≦700 ・・・(1)
(The more desirable range of the third chemical component)
The electric resistance welded steel pipe is in mass%,
C: 0.2 to 0.4%
Si: 0.2-0.3%
Mn: 0.5 to 1.5%
Ti: 0.01-0.03%
Al: 0.01 to 0.05%
B: 0.0010 to 0.0030%
N: 0.002 to 0.004% is contained,
Furthermore, it contains S: 0.006 to 0.008% and Ca: 0.0020 to 0.0050%, the balance is made of Fe and inevitable impurities, and satisfies the following formula (1).
923-513C-101Mn ≦ 700 (1)
(第4の化学成分のより望ましい範囲)
前記電縫溶接鋼管は、質量%で、
C:0.2〜0.4%
Si:0.2〜0.3%
Mn:0.5〜1.5%
Ti:0.01〜0.03%
Al:0.01〜0.05%
B:0.0010〜0.0030%
N:0.002〜0.004% を含有し、且つCr:0.1〜0.5% およびNb:0.01〜0.05%の少なくとも一方を含有し、
さらに、S:0.006〜0.008%およびCa:0.0020〜0.0050%を含有し、残部がFeおよび不可避的不純物からなり、且つ下記式(2)を満足するものである。
923−513C−101Mn−204Cr−1515Nb≦700 ・・・(2)
(The more desirable range of the fourth chemical component)
The electric resistance welded steel pipe is in mass%,
C: 0.2 to 0.4%
Si: 0.2-0.3%
Mn: 0.5 to 1.5%
Ti: 0.01-0.03%
Al: 0.01 to 0.05%
B: 0.0010 to 0.0030%
N: 0.002 to 0.004%, and Cr: 0.1 to 0.5% and Nb: 0.01 to 0.05%,
Furthermore, it contains S: 0.006 to 0.008% and Ca: 0.0020 to 0.0050%, the balance is made of Fe and inevitable impurities, and satisfies the following formula (2).
923-513C-101Mn-204Cr-1515Nb ≦ 700 (2)
フェライト脱炭層の発生はγ相における炭素の拡散速度に律速されるので、α−γ2相域の温度が低いほど炭素の拡散速度を低くすることができるからフェライト脱炭を抑制することができる。従って、焼入れ性を高める元素を調整して5℃/sでのAr3点が700℃以下になるような化学成分にするべく、発明者らが実験を繰り返した。その結果、上記の化学成分及び上記式(1)又は式(2)を満足することにより、Ar3点を700℃以下にすることができることを見出した。なお、上記式(1)又は式(2)は実験を繰り返すことによって得られた回帰式である。 Since the generation of the ferrite decarburized layer is limited by the diffusion rate of carbon in the γ phase, the lower the temperature in the α-γ2 phase region, the lower the carbon diffusion rate, so that the ferrite decarburization can be suppressed. Therefore, the inventors repeated experiments to adjust the elements that enhance the hardenability so that the Ar3 point at 5 ° C./s becomes 700 ° C. or less. As a result, the present inventors have found that the Ar3 point can be set to 700 ° C. or less by satisfying the chemical component and the formula (1) or the formula (2). In addition, the said Formula (1) or Formula (2) is a regression type obtained by repeating experiment.
以下に、前記電縫溶接鋼管に含有する各成分について説明する。なお、各成分の含有量は質量%で記載している。
Cは、基地中に固溶或いは炭化物として析出し、鋼の強度を増加させる元素である。一般的な自動車構造用部材としては少なくとも100kg/mm2の強度が必要であり、それに相当するHv320前後の硬さが90%マルテンサイト組織で得られるのは、C量が0.15%の場合であるから、Cは0.15%以上含有することが必要であるが、0.5%を超えて含有すると、加工性や溶接性が劣化するため、含有量を0.15〜0.5%の範囲とする。なお、好ましくは、0.2〜0.4%である。
Below, each component contained in the said ERW welded steel pipe is demonstrated. In addition, content of each component is described in the mass%.
C is an element that increases the strength of steel by being precipitated as solid solution or carbide in the matrix. A general automobile structural member needs to have a strength of at least 100 kg / mm 2 , and a corresponding hardness of around Hv320 is obtained with a 90% martensite structure when the C content is 0.15%. Therefore, it is necessary that C is contained in an amount of 0.15% or more. However, if it exceeds 0.5%, the workability and weldability deteriorate, so the content is 0.15 to 0.5. % Range. In addition, Preferably, it is 0.2 to 0.4%.
Siは、固溶強化に寄与する合金元素であり、その効果を得るためには0.1%以上含有することが必要であるが、0.4%を超えて含有すると、電縫溶接時の溶接欠陥となるSi−Mn系の介在物を生成しやすくなり、電縫溶接部の健全性に悪影響を及ぼす。このため、Si含有量を0.1〜0.4%の範囲とする。なお、好ましくは、0.2〜0.3%である。 Si is an alloying element that contributes to solid solution strengthening, and in order to obtain its effect, it is necessary to contain 0.1% or more. Si-Mn-based inclusions that become welding defects are easily generated, which adversely affects the soundness of the ERW weld. For this reason, Si content is taken as 0.1 to 0.4% of range. In addition, Preferably, it is 0.2 to 0.3%.
Mnは、焼入れ性を向上させる元素であり、含有量が0.3%未満では焼入れ性の向上効果を十分に確保することができず、また、2%を超えると溶接性及び溶接部の健全性にも悪影響を及ぼすため、Mn含有量を0.3〜2%の範囲とする。なお、好ましくは、0.5〜1.5%である。 Mn is an element that improves the hardenability. If the content is less than 0.3%, the effect of improving the hardenability cannot be sufficiently ensured. In order to adversely affect the properties, the Mn content is set to a range of 0.3 to 2%. In addition, Preferably, it is 0.5 to 1.5%.
Alは、溶鋼の脱酸材として必要な元素であり、また、Nを固定する元素でもあるため、その量は結晶粒径や機械的性質に大きな影響を及ぼす。含有量が0.05%を超えると、結晶粒径が粗大化して靭性が低下したり、非金属介在物が多くなって製品に表面疵が発生しやすくなるため、Al含有量は0.005〜0.05%とする。なお、好ましくは、0.01〜0.05%である。 Since Al is an element necessary as a deoxidizer for molten steel and also an element for fixing N, its amount has a great influence on the crystal grain size and mechanical properties. If the content exceeds 0.05%, the crystal grain size becomes coarse and the toughness is lowered, or nonmetallic inclusions increase and surface defects are likely to occur in the product, so the Al content is 0.005. -0.05%. In addition, Preferably, it is 0.01 to 0.05%.
Bは、微量の添加で鋼材の焼入れ性を大幅に向上させる元素であり、また、粒界強化の効果もある。含有量が0.0005%未満で焼入れ性を向上させる効果が期待できず、一方、0.0050%を超えると粗大なB含有相を生成する傾向があり、また脆化が起こりやすくなる。このため、B含有量は0.0005〜0.0050%とする。なお、好ましくは、0.0010〜0.0030%である。 B is an element that greatly improves the hardenability of the steel material by adding a small amount, and also has an effect of strengthening the grain boundary. If the content is less than 0.0005%, the effect of improving the hardenability cannot be expected. On the other hand, if the content exceeds 0.0050%, a coarse B-containing phase tends to be generated, and embrittlement tends to occur. For this reason, B content shall be 0.0005 to 0.0050%. In addition, Preferably, it is 0.0010 to 0.0030%.
Tiは、鋼中Nを固定してBNの析出を抑制することにより、B添加による焼入れ性を安定的かつ効果的に向上させるために作用するが、含有量が0.005%未満ではその効果が期待できず、一方、0.05%を超えると靭性が劣化する傾向があるため、Ti含有量は0.005〜0.05%の範囲とする。なお、好ましくは、0.01〜0.03%である。 Ti acts to stably and effectively improve the hardenability by adding B by fixing N in steel and suppressing precipitation of BN, but if the content is less than 0.005%, its effect On the other hand, if it exceeds 0.05%, the toughness tends to deteriorate, so the Ti content is in the range of 0.005 to 0.05%. In addition, Preferably, it is 0.01 to 0.03%.
Nは、窒化物または炭窒化物を析出させ、強度を高めるための重要な元素である。その効果は0.001%以上を含有させることにより発揮されるが、含有量が0.006%を超えるとBNの析出による焼入れ性の低下や、窒化物の粗大化および時効硬化により靭性が劣化する傾向が見られる。このため、N含有量は0.001〜0.006%の範囲とする。なお、好ましくは、0.002〜0.004%である。 N is an important element for precipitating nitride or carbonitride and increasing the strength. The effect is exhibited by adding 0.001% or more, but if the content exceeds 0.006%, the toughness deteriorates due to the decrease in hardenability due to precipitation of BN, the coarsening of nitride, and age hardening. The tendency to do is seen. For this reason, N content is taken as 0.001 to 0.006% of range. In addition, Preferably, it is 0.002 to 0.004%.
Crは、焼入れ性を向上させる元素であり、また、焼き戻しによる軟化を抑制する作用を有する。含有量が1%を超えると電縫溶接時に欠陥を発生しやすくなる。このため、Cr含有量は0.05〜1%の範囲とする。なお、好ましくは、0.1〜0.5%である。 Cr is an element that improves hardenability and also has an action of suppressing softening due to tempering. If the content exceeds 1%, defects tend to occur during ERW welding. For this reason, Cr content is taken as 0.05 to 1% of range. In addition, Preferably, it is 0.1 to 0.5%.
Nbは、Nb炭窒化物による析出強化の効果を有するのに加えて、Bとの複合添加効果によりAr3点を大きく下げる効果を有する。
Nb含有量が0.1%を超えると炭化物が増加し、靭性が低下する。このため、Nb含有量は0.005〜0.1%とする。なお、好ましくは、0.01〜0.05%である。
In addition to the effect of precipitation strengthening by Nb carbonitride, Nb has the effect of greatly reducing the Ar3 point due to the combined addition effect with B.
If the Nb content exceeds 0.1%, carbides increase and the toughness decreases. For this reason, Nb content shall be 0.005-0.1%. In addition, Preferably, it is 0.01 to 0.05%.
Sは、電縫溶接性を損なうため、製造上の観点からはコストの上昇を招かない範囲でできる限り低減させた方が望ましい。一方、Sにはフェライト脱炭層が抑制される効果がある。そのため、電縫溶接に格段の注意を払えるのであれば、0.0040%以上、望ましくは0.0060%以上のSを含有することはフェライト脱炭抑制の観点からは望ましい。しかし、その場合、鋼中にMnSが多量に析出し、機械的性質を損なうために、MnSの析出を抑制することを目的として、Sと同時にCaを添加することが必要である。また、Sが0.0100%を越えると、どんなに注意を払ってももはや健全な電縫溶接は困難であり、またCa添加によってもMnの析出を抑制することはできない。このため、S含有量は0.0040〜0.0100%である。 Since S impairs the electroweldability, it is desirable to reduce it as much as possible without causing an increase in cost from the viewpoint of manufacturing. On the other hand, S has an effect of suppressing the ferrite decarburized layer. Therefore, if special attention can be paid to ERW welding, it is desirable from the viewpoint of suppressing ferrite decarburization to contain 0.0040% or more, preferably 0.0060% or more of S. However, in that case, it is necessary to add Ca simultaneously with S for the purpose of suppressing the precipitation of MnS in order to precipitate a large amount of MnS in the steel and impair the mechanical properties. On the other hand, if S exceeds 0.0100%, no matter how much care is taken, it is no longer possible to perform sound electric resistance welding, and the addition of Mn cannot suppress the precipitation of Mn. For this reason, S content is 0.0040 to 0.0100%.
Caはフェライト脱炭抑制の目的でSを0.0040〜0.0100%の範囲で添加させた時に、MnSの析出の抑制のために添加が必要である。その効果を得るためには0.0005%以上の添加が必要であり、また、0.0070%を越えて添加するとCaの介在物が電縫溶接衝合部に集積し、溶接部の健全性が損なわれる。このため、Ca含有量は0.0005〜0.0070%、より好ましくは0.0020〜0.0050である。 Ca needs to be added to suppress precipitation of MnS when S is added in the range of 0.0040 to 0.0100% for the purpose of suppressing ferrite decarburization. In order to obtain the effect, 0.0005% or more of addition is necessary, and if added over 0.0070%, Ca inclusions accumulate in the ERW welding abutment and the soundness of the weld Is damaged. For this reason, Ca content is 0.0005 to 0.0070%, More preferably, it is 0.0020 to 0.0050.
次に、本実施の形態の中空部品用鋼管の製造方法について説明する。
所要の化学組成を有するように溶製した溶鋼を、鋳造して鋳片とするか、或いは一旦鋼塊とした後、熱間圧延して鋼片とし、この鋳片または鋼片を熱間圧延して熱間圧延鋼板とする。
Next, the manufacturing method of the steel pipe for hollow parts of this Embodiment is demonstrated.
Molten steel melted to have the required chemical composition is cast into a slab, or once made into a steel ingot, then hot rolled into a steel slab, and this slab or steel slab is hot rolled Thus, a hot rolled steel sheet is obtained.
この熱間圧延鋼板を通常の電縫溶接鋼管の製造方法、例えば熱間或いは冷間での電気抵抗溶接により電縫溶接鋼管とする。つまり、通常の電縫溶接鋼管の造管機にて肉厚tと外径Dの比であるt/Dが0.15以下の電縫溶接鋼管(これを母管とも称する)を製造し、さらに、これに熱間で縮径圧延を施して、肉厚5mm以上(好ましくは7mm以上)で肉厚tと外径Dの比であるt/Dが0.2以上(好ましくは0.23以上)の厚肉の鋼管を製造し、次いで、この鋼管の外表面に水を供給してα−γ2相温度域より低い温度まで冷却し、前記鋼管の内表面が冷却される過程でα−γ2相温度域を通過する際の冷却速度を5℃/秒以上とするものである。 This hot-rolled steel sheet is made into an ERW welded steel pipe by a conventional method for producing ERW welded pipe, for example, hot or cold electric resistance welding. That is, an electric resistance welded steel pipe having a ratio t / D, which is a ratio of the wall thickness t to the outer diameter D, of 0.15 or less (which is also referred to as a mother pipe) is manufactured by an ordinary electric resistance welded steel pipe making machine. Further, this is subjected to hot reduction rolling, and the thickness t / D which is the ratio of the thickness t to the outer diameter D is 0.2 or more (preferably 0.23) when the thickness is 5 mm or more (preferably 7 mm or more). In the process of supplying the water to the outer surface of the steel pipe to cool it to a temperature lower than the α-γ2 phase temperature range, and cooling the inner surface of the steel pipe. The cooling rate when passing through the γ2 phase temperature range is set to 5 ° C./second or more.
縮径圧延は、ストレッチレデューサーなどを用いて行うことができる。
ストレッチレデューサーは、圧延軸の周りに3ロール或いは4ロールを有する圧延スタンドを複数、圧延軸に直列に備えた圧延装置であり、この圧延装置の各圧延スタンドのロール回転数及び圧下力を調整することにより、鋼管の管軸方向(圧延方向)の張力及び円周方向の圧縮力を制御し、これによって肉厚/外径比を増加させる縮径圧延を行うことができる。
Reduction rolling can be performed using a stretch reducer or the like.
The stretch reducer is a rolling device provided with a plurality of rolling stands having three or four rolls around the rolling shaft and in series with the rolling shaft, and adjusts the roll rotation speed and the rolling force of each rolling stand of this rolling device. By doing this, it is possible to perform reduction rolling that controls the tension in the tube axis direction (rolling direction) and the compressive force in the circumferential direction of the steel pipe, thereby increasing the thickness / outer diameter ratio.
すなわち、縮径圧延においては、鋼管の外径の圧下力により外径が縮小される一方で肉厚は増加するが、他方、鋼管の管軸方向に働く張力により肉厚が減少するので、両者のバランスにより最終の肉厚が決定される。このように縮径圧延した鋼管の肉厚は、上記圧延スタンドの間の張力により主として決定されるので、目標肉厚を得るための圧延スタンド間の張力を圧延理論などから求め、その張力が働くように各圧延スタンドのロール回転数を設定することが必要である。 That is, in reduced diameter rolling, the outer diameter is reduced by the rolling force of the outer diameter of the steel pipe while the wall thickness is increased, but on the other hand, the wall thickness is decreased by the tension acting in the tube axis direction of the steel pipe. The final wall thickness is determined by the balance. Since the thickness of the steel pipe subjected to diameter reduction rolling is mainly determined by the tension between the rolling stands, the tension between the rolling stands for obtaining the target thickness is obtained from the rolling theory, and the tension works. Thus, it is necessary to set the number of roll rotations of each rolling stand.
上述のように、本実施の形態は、上記電縫溶接鋼管(母管)を800〜1200℃に加熱し、断面の減少率40〜80%で熱間での縮径圧延を施した後、その鋼管の外表面に水を供給してα−γ2相温度域より低い温度まで冷却し、その際の冷却速度を5℃/秒以上として、肉厚tと外径Dの比であるt/Dを0.2以上、好ましくは0.23以上とした厚肉の鋼管を製造するものである。ここで、断面の減少率とは、(縮径前の鋼管の外径−縮径後の鋼管の外径)/縮径前の鋼管の外径×100(%)である。 As described above, in the present embodiment, the ERW welded steel pipe (host pipe) is heated to 800 to 1200 ° C. and subjected to hot diameter reduction rolling at a cross-section reduction rate of 40 to 80%. Water is supplied to the outer surface of the steel pipe to cool it to a temperature lower than the α-γ2 phase temperature range, the cooling rate at that time is 5 ° C./second or more, and the ratio of the wall thickness t to the outer diameter D is t / A thick steel pipe having a D of 0.2 or more, preferably 0.23 or more is manufactured. Here, the reduction rate of the cross section is (outer diameter of steel pipe before diameter reduction-outer diameter of steel pipe after diameter reduction) / outer diameter of steel pipe before diameter reduction × 100 (%).
縮径圧延時の電縫溶接鋼管の加熱温度は、800℃未満では変形抵抗が大きく、一方、1200℃を超えると、加熱スケールの発生が著しくなり表面性状が劣化する。このため、加熱温度は、800〜1200℃の範囲が好ましい。 When the heating temperature of the ERW welded steel pipe at the time of diameter reduction rolling is less than 800 ° C., the deformation resistance is large. For this reason, the heating temperature is preferably in the range of 800 to 1200 ° C.
また、縮径圧延時の断面の減少率が40%未満では圧縮力が不十分であり、肉厚/外径比が0.15以下の電縫溶接鋼管(母管)から肉厚/外径比が0.2以上、好ましくは0.23以上の厚肉の鋼管とすることが困難である。一方、断面の減少率が80%を超えると、縮径圧延による鋼管の表面疵の発生が著しくなり、また、均一な形状の確保が困難になる。このため、縮径圧延における断面の減少率は40〜80%とすることが好ましい。 Further, if the reduction rate of the cross section during the diameter reduction rolling is less than 40%, the compressive force is insufficient, and the thickness / outer diameter from an electric resistance welded steel pipe (master pipe) having a wall thickness / outer diameter ratio of 0.15 or less. It is difficult to obtain a thick steel pipe having a ratio of 0.2 or more, preferably 0.23 or more. On the other hand, when the cross-sectional reduction rate exceeds 80%, the generation of surface flaws in the steel pipe due to reduced diameter rolling becomes significant, and it becomes difficult to ensure a uniform shape. For this reason, it is preferable that the reduction rate of the cross section in diameter reduction rolling shall be 40 to 80%.
なお、本実施の形態の中空部品用鋼管が縮径圧延により製造されたものであるか否かは、管軸方向に垂直な断面(C断面)の内面の角張り状態の観察或いは、肉厚測定によって判断することができる。 Whether or not the hollow part steel pipe of the present embodiment is manufactured by diameter reduction rolling is determined by observing the angled state of the inner surface of the cross section (C cross section) perpendicular to the pipe axis direction or by measuring the wall thickness. It can be judged by measurement.
例えば、縮径圧延に用いられるストレッチレデューサーは、上述のように、圧延軸の周りに3ロール或いは4ロールを有する圧延スタンドを複数、圧延軸に直列に備えた圧延装置であり、通常、隣合う圧延スタンド(例えば、NおよびN+1圧延スタンド)のロールは位相がずらされており、3ロール圧延スタンドの場合は60°、4ロール圧延スタンドの場合は45°だけ位相をずらした配置となっている。 For example, as described above, a stretch reducer used for diameter reduction rolling is a rolling device provided with a plurality of rolling stands having three or four rolls around a rolling axis in series with the rolling axis, and is usually adjacent to each other. The rolls of the rolling stands (for example, N and N + 1 rolling stands) are out of phase, and are arranged so as to be out of phase by 60 ° for a 3 roll rolling stand and 45 ° for a 4 roll rolling stand. .
従って、縮径圧延によって製造された中空部品用鋼管の管軸方向に垂直な断面(C断面)の内面形状は、ストレッチレデューサーが3ロールの圧延スタンドを備える場合は六角形、4ロールの圧延スタンドを備える場合は八角形となる。 Therefore, the inner surface shape of the cross section (C cross section) perpendicular to the tube axis direction of the hollow part steel pipe manufactured by the reduced diameter rolling is hexagonal, four roll rolling stand when the stretch reducer is equipped with a three roll rolling stand. When it is provided, it becomes an octagon.
このように、中空部品用鋼管の管軸方向に垂直な断面の内面形状が、上述のような多角形状を形成している場合は、この中空部品用鋼管を縮径圧延により製造されたものであることがわかる。 Thus, when the inner surface shape of the cross section perpendicular to the pipe axis direction of the steel pipe for hollow parts forms the polygonal shape as described above, the steel pipe for hollow parts is manufactured by reduction rolling. I know that there is.
上記のように本実施の形態では、フェライト脱炭層の発生を抑制することにより疲労強度を向上させた中空部品用鋼管及びその製造方法を得ることができる。
また、本実施の形態では、フェライト脱炭層の発生を抑制するため、フェライト脱炭層が形成された場合の従来技術の対策のような研削加工工程、ショットピーニング工程、浸炭処理工程などの追加の工程が不要となり、製造コストの増加を抑制することができる。
As described above, in the present embodiment, it is possible to obtain a steel pipe for a hollow part and a method for manufacturing the same for which fatigue strength is improved by suppressing generation of a ferrite decarburized layer.
Further, in this embodiment, in order to suppress the occurrence of the ferrite decarburized layer, additional processes such as a grinding process, a shot peening process, a carburizing process, etc., as a countermeasure of the prior art when the ferrite decarburized layer is formed. Becomes unnecessary, and an increase in manufacturing cost can be suppressed.
以下、本発明を実施例によりさらに具体的に説明する。
(表1、表2の素材の製造条件、フェライト脱炭層の測定、疲労試験の方法)
表1に示す組成を有する各種鋼を溶製し、鋳片に鋳造した。この鋳片を1150℃に加熱し、圧延仕上げ温度890℃、巻き取り温度630℃で熱間圧延し、板厚6mmの鋼板とした。これらの板から20×20×4mmの試験片を採取し、800℃に加熱後5℃/sで冷却した際の表面の脱炭層厚さを光学顕微鏡により観察・測定した。その結果を表1に示している。
Hereinafter, the present invention will be described more specifically with reference to examples.
(Production conditions of materials in Table 1 and Table 2, measurement of ferrite decarburized layer, fatigue test method)
Various steels having the compositions shown in Table 1 were melted and cast into slabs. This slab was heated to 1150 ° C. and hot-rolled at a rolling finishing temperature of 890 ° C. and a winding temperature of 630 ° C. to obtain a steel plate having a thickness of 6 mm. Test pieces of 20 × 20 × 4 mm were taken from these plates, and the thickness of the decarburized layer on the surface when heated to 800 ° C. and cooled at 5 ° C./s was observed and measured with an optical microscope. The results are shown in Table 1.
また、表1に示すNo.3,4,7,11,13鋼については、この熱間圧延鋼板を所定の幅にスリットし、ロール成形した後、高周波電縫溶接により外径90mmの電縫溶接鋼管(母管)とした。引き続きこれらの鋼管を高周波誘導加熱により980℃に加熱して縮径圧延を施し、外径30mm、肉厚4.0〜6.5mmの厚肉鋼管を製造した。その際、縮径圧延直後に外表面側から水冷することにより、内表面の700℃〜600℃間の冷却速度を1〜8℃/sの範囲で変化させた。このようにして得られた厚肉鋼管を、その後960℃で焼入れし、350℃×1hrの焼き戻しを行った。 No. 1 shown in Table 1 For steels 3, 4, 7, 11 and 13, this hot-rolled steel sheet was slit to a predetermined width, roll-formed, and then made into an electric resistance welded steel pipe (master pipe) having an outer diameter of 90 mm by high-frequency electric resistance welding. . Subsequently, these steel pipes were heated to 980 ° C. by high-frequency induction heating and subjected to reduction rolling to produce thick steel pipes having an outer diameter of 30 mm and a wall thickness of 4.0 to 6.5 mm. In that case, the cooling rate between 700 degreeC-600 degreeC of an inner surface was changed in the range of 1-8 degreeC / s by water-cooling from the outer surface side immediately after diameter reduction rolling. The thick-walled steel pipe thus obtained was subsequently quenched at 960 ° C. and tempered at 350 ° C. × 1 hr.
これらの鋼管から、ばね論文集、28(1983)p.46を参考に、図1に示すような曲げ半径60mmで曲げた疲労試験片を採取し、片側を固定して、同一直径の中実材で第一主応力振幅が600MPaとなるような応力条件で両振りの疲労試験を実施し、破断繰り返し数を求めた。その結果を表2に示している。 From these steel pipes, Spring Papers, 28 (1983) p. 46, a fatigue test piece bent at a bending radius of 60 mm as shown in FIG. 1 is collected, one side is fixed, and the stress condition is such that the first principal stress amplitude is 600 MPa with a solid material having the same diameter. A double-side fatigue test was carried out to determine the number of repeated fractures. The results are shown in Table 2.
また、各々の管からL断面を鏡面研磨した光学顕微鏡観察用試料を採取し、ナイタールでエッチングした後、内表面近傍の組織を観察して脱炭層の厚さを測定した。その結果を表2に示している。 Further, a sample for optical microscope observation in which the L section was mirror-polished from each tube was collected, etched with nital, and then the structure near the inner surface was observed to measure the thickness of the decarburized layer. The results are shown in Table 2.
(比較例の説明)
表1に示した、本発明の化学成分を有するNo.1〜10の鋼は、冷却速度5℃/sにおける耐脱炭性において優れていることがわかる。No.9、10の鋼は、フェライト脱炭層を抑制する効果のあるSを含有するため、冷却速度5℃/sにおける耐脱炭性において特に優れていることがわかる。それに対して、比較例のNo.11〜13の鋼は式(1)を満足しないために耐脱炭性に劣る。
923−513C−101Mn−204Cr−1515Nb≦700 ・・・(1)
(Description of comparative example)
No. 1 having chemical components of the present invention shown in Table 1. It can be seen that the steels 1 to 10 are excellent in decarburization resistance at a cooling rate of 5 ° C./s. No. It can be seen that steels 9 and 10 are particularly excellent in decarburization resistance at a cooling rate of 5 ° C./s because they contain S having an effect of suppressing the ferrite decarburization layer. On the other hand, No. of the comparative example. Steels 11 to 13 are inferior in decarburization resistance because they do not satisfy the formula (1).
923-513C-101Mn-204Cr-1515Nb ≦ 700 (1)
表2に示した、比較例H、Iは本発明の範囲の化学成分を有する鋼管であるが、肉厚が本発明の範囲よりも薄いために、外面側の冷却により内面側で容易に5℃/sを越える冷却速度が達せられ、脱炭を抑制することは困難ではないことを示した例である。また、比較例J、Kの鋼管は本発明の範囲の化学成分、肉厚を有する鋼管であるが、内面の冷却速度が5℃/sに達しなかったために、脱炭が抑制されず、疲労特性が劣った例である。また、比較例L、M、Nの鋼管は式(1)を満足しない鋼管であるために脱炭層が厚く、疲労強度が低かった例である。 Comparative Examples H and I shown in Table 2 are steel pipes having chemical components in the range of the present invention. However, since the wall thickness is thinner than the range of the present invention, the outer surface side is easily cooled on the inner surface side. This is an example showing that it is not difficult to suppress decarburization because a cooling rate exceeding ℃ / s can be achieved. Further, the steel pipes of Comparative Examples J and K are steel pipes having chemical components and wall thicknesses within the scope of the present invention. However, since the cooling rate of the inner surface did not reach 5 ° C./s, decarburization was not suppressed and fatigue was reduced. This is an example of inferior characteristics. Moreover, since the steel pipes of Comparative Examples L, M, and N are steel pipes that do not satisfy the formula (1), the decarburized layer is thick and the fatigue strength is low.
図2は、鋼管内表面のフェライト脱炭層厚さと疲労強度との関係を示す図である。この図には、表2に示した本発明例a,b,c,d,gと比較例J,K,L,M,Nそれぞれのフェライト脱炭層厚さと破断繰り返し数を示したものである。図2によれば、本発明の範囲として鋼管の内表面のフェライト脱炭層厚さを20μm以下としたのが適切であることがわかる。 FIG. 2 is a diagram showing the relationship between the thickness of the ferrite decarburized layer on the inner surface of the steel pipe and the fatigue strength. This figure shows the ferrite decarburized layer thicknesses and the number of repetitions of breakage of each of the inventive examples a, b, c, d, g and comparative examples J, K, L, M, N shown in Table 2. . According to FIG. 2, it can be seen that the thickness of the ferrite decarburized layer on the inner surface of the steel pipe is 20 μm or less as the scope of the present invention.
図3は、鋼管内表面におけるα−γ2相温度域での冷却速度(℃/秒)と鋼管内表面のフェライト脱炭層の厚さとの関係を示す図である。この図には、表2に示した本発明例a,b,c,d,gと比較例H,I,J,Kそれぞれの冷却速度とフェライト脱炭層厚さとを示したものである。図3においても、本発明の範囲として鋼管の内表面のフェライト脱炭層厚さを20μm以下としたのが適切であることがわかる。 FIG. 3 is a diagram showing the relationship between the cooling rate (° C./second) in the α-γ two-phase temperature region on the inner surface of the steel pipe and the thickness of the ferrite decarburized layer on the inner surface of the steel pipe. In this figure, the cooling rates and ferrite decarburized layer thicknesses of the inventive examples a, b, c, d, g and comparative examples H, I, J, K shown in Table 2 are shown. Also in FIG. 3, it is understood that it is appropriate that the thickness of the ferrite decarburized layer on the inner surface of the steel pipe is 20 μm or less as a range of the present invention.
図4は、結晶粒径が30μmでγ域から5℃/秒で冷却した際のAr3変態点とフェライト脱炭層の厚さとの関係を示す図である。この図には、表1に示した本発明例No.1〜10と比較例No.11〜13それぞれの上記式(1)の左辺の値とフェライト脱炭層厚さとを示したものである。図4によれば、本発明の範囲として上記式(1)を満足することとしたのが適切であることがわかる。 FIG. 4 is a diagram showing the relationship between the Ar3 transformation point and the thickness of the ferrite decarburized layer when the crystal grain size is 30 μm and cooling from the γ region at 5 ° C./second. This figure shows an example No. of the present invention shown in Table 1. 1-10 and Comparative Example No. 11 shows the value of the left side of the above formula (1) and the thickness of the ferrite decarburized layer. According to FIG. 4, it is understood that it is appropriate to satisfy the above formula (1) as the scope of the present invention.
図5は、肉厚tと外径Dの比であるt/Dと疲労強度との関係を示す図である。この図2には、表2に示した本発明例a,b,c,d,gと比較例H,Iそれぞれのt/Dと破断繰り返し数とを示したものである。図5によれば、本発明の範囲として肉厚tと外径Dの比であるt/Dを0.2以上とすることとしたのが適切であることがわかる。 FIG. 5 is a graph showing the relationship between the fatigue strength and t / D, which is the ratio of the wall thickness t to the outer diameter D. FIG. 2 shows t / D and the number of repetitions of breakage of each of the inventive examples a, b, c, d, g and comparative examples H, I shown in Table 2. According to FIG. 5, it can be seen that it is appropriate to set t / D, which is the ratio of the wall thickness t and the outer diameter D, to 0.2 or more as a range of the present invention.
図6(a)は、比較例Kの試料管の溶接部から90度の位置の断面を鏡面研磨した光学顕微鏡観察用試料を採取し、ナイタールでエッチングした後、内表面近傍の組織を示すミクロ写真である。図6(b)は、本発明例gの試料管の溶接部から90度の位置の断面を鏡面研磨した光学顕微鏡観察用試料を採取し、ナイタールでエッチングした後、内表面近傍の組織を示すミクロ写真である。 FIG. 6A shows an optical microscope observation sample obtained by mirror-polishing a cross section at a 90 ° position from the welded portion of the sample tube of Comparative Example K, etched with nital, and then showing a structure near the inner surface. It is a photograph. FIG. 6 (b) shows a structure near the inner surface after a sample for optical microscope observation in which the cross section at 90 degrees is mirror-polished from the welded portion of the sample tube of Example g of the present invention and etched with nital. It is a microphotograph.
図6(a)に示す試料では、急冷を行っていないので、フェライト脱炭層の厚さが厚く形成されているのに対し、図6(b)に示す試料では、急冷を行っているので、フェライト脱炭層の厚さを薄く抑えることができている。 In the sample shown in FIG. 6 (a), since quenching is not performed, the thickness of the ferrite decarburized layer is formed thick, whereas in the sample shown in FIG. 6 (b), quenching is performed. The thickness of the ferrite decarburized layer can be kept thin.
尚、本発明は上記実施の形態に限定されず、本発明の主旨を逸脱しない範囲内で種々変更して実施することが可能である。例えば、上記実施の形態の中空部品用鋼管は種々の部品に適用可能であり、例えばスタビライザーに適用することができる。 Note that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention. For example, the steel pipe for hollow parts of the above embodiment can be applied to various parts, and can be applied to, for example, a stabilizer.
Claims (10)
肉厚が5mm以上で且つ肉厚tと外径Dの比であるt/Dが0.2以上であり、
管内表面の脱炭層の深さが20μm以下であることを特徴とする中空部品用鋼管。 ERW welded steel pipe is a steel pipe for hollow parts that has been reduced in diameter hot,
The wall thickness is 5 mm or more, and the ratio of wall thickness t to outer diameter D is t / D is 0.2 or more,
A steel pipe for hollow parts, wherein the depth of the decarburized layer on the inner surface of the pipe is 20 μm or less.
C:0.15〜0.5%
Si:0.1〜0.4%
Mn:0.3〜2.0%
Ti:0.005〜0.05%
Al:0.005〜0.05%
B:0.0005〜0.0050%
N:0.001〜0.006% を含有し、残部がFeおよび不可避的不純物からなり、且つ下記式を満足することを特徴とする中空部品用鋼管。
923−513C−101Mn≦700 In Claim 1, The said ERW welded steel pipe is C: 0.15-0.5% in the mass%.
Si: 0.1 to 0.4%
Mn: 0.3 to 2.0%
Ti: 0.005 to 0.05%
Al: 0.005 to 0.05%
B: 0.0005 to 0.0050%
A steel pipe for hollow parts, containing N: 0.001 to 0.006%, the balance being Fe and inevitable impurities, and satisfying the following formula.
923-513C-101Mn ≦ 700
C:0.15〜0.5%
Si:0.1〜0.4%
Mn:0.3〜2.0%
Ti:0.005〜0.05%
Al:0.005〜0.05%
B:0.0005〜0.0050%
N:0.001〜0.006% を含有し、且つCr:0.05〜1.0% およびNb:0.005〜0.1% の少なくとも一方を含有し、残部がFeおよび不可避的不純物からなり、且つ下記式を満足することを特徴とする中空部品用鋼管。
923−513C−101Mn−204Cr−1515Nb≦700 In Claim 1, The said ERW welded steel pipe is C: 0.15-0.5% in the mass%.
Si: 0.1 to 0.4%
Mn: 0.3 to 2.0%
Ti: 0.005 to 0.05%
Al: 0.005 to 0.05%
B: 0.0005 to 0.0050%
N: 0.001 to 0.006%, Cr: 0.05 to 1.0% and Nb: 0.005 to 0.1%, the balance being Fe and inevitable impurities A steel pipe for hollow parts, characterized by satisfying the following formula:
923-513C-101Mn-204Cr-1515Nb ≦ 700
C:0.15〜0.5%
Si:0.1〜0.4%
Mn:0.3〜2.0%
Ti:0.005〜0.05%
Al:0.005〜0.05%
B:0.0005〜0.0050%
N:0.001〜0.006% を含有し、
さらに、S:0.004〜0.010%およびCa:0.0005〜0.0070%を含有し、残部がFeおよび不可避的不純物からなり、且つ下記式を満足することを特徴とする中空部品用鋼管。
923−513C−101Mn≦700 In Claim 1, The said ERW welded steel pipe is C: 0.15-0.5% in the mass%.
Si: 0.1 to 0.4%
Mn: 0.3 to 2.0%
Ti: 0.005 to 0.05%
Al: 0.005 to 0.05%
B: 0.0005 to 0.0050%
N: 0.001 to 0.006% is contained,
Further, a hollow part containing S: 0.004 to 0.010% and Ca: 0.0005 to 0.0070%, the balance being Fe and inevitable impurities, and satisfying the following formula Steel pipe.
923-513C-101Mn ≦ 700
C:0.15〜0.5%
Si:0.1〜0.4%
Mn:0.3〜2.0%
Ti:0.005〜0.05%
Al:0.005〜0.05%
B:0.0005〜0.0050%
N:0.001〜0.006% を含有し、且つCr:0.05〜1.0% およびNb:0.005〜0.1% の少なくとも一方を含有し、
さらに、S:0.004〜0.010%およびCa:0.0005〜0.0070%を含有し、残部がFeおよび不可避的不純物からなり、且つ下記式を満足することを特徴とする中空部品用鋼管。
923−513C−101Mn−204Cr−1515Nb≦700 In Claim 1, The said ERW welded steel pipe is C: 0.15-0.5% in the mass%.
Si: 0.1 to 0.4%
Mn: 0.3 to 2.0%
Ti: 0.005 to 0.05%
Al: 0.005 to 0.05%
B: 0.0005 to 0.0050%
N: 0.001 to 0.006% and Cr: 0.05 to 1.0% and Nb: 0.005 to 0.1%
Further, a hollow part containing S: 0.004 to 0.010% and Ca: 0.0005 to 0.0070%, the balance being Fe and inevitable impurities, and satisfying the following formula Steel pipe.
923-513C-101Mn-204Cr-1515Nb ≦ 700
前記第1工程で縮径圧延された鋼管をα−γ2相温度域より低い温度まで冷却する第2工程と、
を具備する中空部品用鋼管の製造方法であって、
前記第1工程によって縮径圧延された鋼管は、その肉厚が5mm以上で且つ肉厚tと外径Dの比であるt/Dが0.2以上であり、
前記第2工程によって前記鋼管の内表面が冷却される過程でα−γ2相温度域を通過する際の冷却速度は5℃/秒以上であり、
前記第2工程によって冷却された前記鋼管の内表面に発生した脱炭層の深さは20μm以下であることを特徴とする中空部品用鋼管の製造方法。 A first step of hot rolling the ERW welded steel pipe;
A second step of cooling the steel pipe reduced in diameter in the first step to a temperature lower than the α-γ2 phase temperature range;
A method for producing a steel pipe for hollow parts comprising:
The steel pipe reduced in diameter in the first step has a thickness of 5 mm or more and a ratio t / D which is a ratio of the thickness t to the outer diameter D is 0.2 or more.
The cooling rate when passing through the α-γ2 phase temperature range in the process of cooling the inner surface of the steel pipe by the second step is 5 ° C / second or more,
The depth of the decarburized layer which generate | occur | produced in the inner surface of the said steel pipe cooled by the said 2nd process is 20 micrometers or less, The manufacturing method of the steel pipe for hollow parts characterized by the above-mentioned.
C:0.15〜0.5%
Si:0.1〜0.4%
Mn:0.3〜2.0%
Ti:0.005〜0.05%
Al:0.005〜0.05%
B:0.0005〜0.0050%
N:0.001〜0.006% を含有し、残部がFeおよび不可避的不純物からなり、且つ下記式を満足することを特徴とする中空部品用鋼管の製造方法。
923−513C−101Mn≦700 In Claim 6, the said ERW welded steel pipe is C: 0.15-0.5% in the mass%.
Si: 0.1 to 0.4%
Mn: 0.3 to 2.0%
Ti: 0.005 to 0.05%
Al: 0.005 to 0.05%
B: 0.0005 to 0.0050%
A method for producing a steel pipe for hollow parts, comprising N: 0.001 to 0.006%, the balance being Fe and inevitable impurities, and satisfying the following formula.
923-513C-101Mn ≦ 700
C:0.15〜0.5%
Si:0.1〜0.4%
Mn:0.3〜2.0%
Ti:0.005〜0.05%
Al:0.005〜0.05%
B:0.0005〜0.0050%
N:0.001〜0.006% を含有し、且つCr:0.05〜1.0% およびNb:0.005〜0.1% の少なくとも一方を含有し、残部がFeおよび不可避的不純物からなり、且つ下記式を満足することを特徴とする中空部品用鋼管の製造方法。
923−513C−101Mn−204Cr−1515Nb≦700 In Claim 6, the said ERW welded steel pipe is C: 0.15-0.5% in the mass%.
Si: 0.1 to 0.4%
Mn: 0.3 to 2.0%
Ti: 0.005 to 0.05%
Al: 0.005 to 0.05%
B: 0.0005 to 0.0050%
N: 0.001 to 0.006%, Cr: 0.05 to 1.0% and Nb: 0.005 to 0.1%, the balance being Fe and inevitable impurities A method of manufacturing a steel pipe for hollow parts, characterized by satisfying the following formula:
923-513C-101Mn-204Cr-1515Nb ≦ 700
C:0.15〜0.5%
Si:0.1〜0.4%
Mn:0.3〜2.0%
Ti:0.005〜0.05%
Al:0.005〜0.05%
B:0.0005〜0.0050%
N:0.001〜0.006% を含有し、
さらに、S:0.004〜0.010%およびCa:0.0005〜0.0070%を含有し、残部がFeおよび不可避的不純物からなり、且つ下記式を満足することを特徴とする中空部品用鋼管。
923−513C−101Mn≦700 In Claim 6, the said ERW welded steel pipe is C: 0.15-0.5% in the mass%.
Si: 0.1 to 0.4%
Mn: 0.3 to 2.0%
Ti: 0.005 to 0.05%
Al: 0.005 to 0.05%
B: 0.0005 to 0.0050%
N: 0.001 to 0.006% is contained,
Further, a hollow part containing S: 0.004 to 0.010% and Ca: 0.0005 to 0.0070%, the balance being Fe and inevitable impurities, and satisfying the following formula Steel pipe.
923-513C-101Mn ≦ 700
C:0.15〜0.5%
Si:0.1〜0.4%
Mn:0.3〜2.0%
Ti:0.005〜0.05%
Al:0.005〜0.05%
B:0.0005〜0.0050%
N:0.001〜0.006% を含有し、且つCr:0.05〜1.0% およびNb:0.005〜0.1% の少なくとも一方を含有し、
さらに、S:0.004〜0.010%およびCa:0.0005〜0.0070%を含有し、残部がFeおよび不可避的不純物からなり、且つ下記式を満足することを特徴とする中空部品用鋼管。
923−513C−101Mn−204Cr−1515Nb≦700 In Claim 6, the said ERW welded steel pipe is C: 0.15-0.5% in the mass%.
Si: 0.1 to 0.4%
Mn: 0.3 to 2.0%
Ti: 0.005 to 0.05%
Al: 0.005 to 0.05%
B: 0.0005 to 0.0050%
N: 0.001 to 0.006% and Cr: 0.05 to 1.0% and Nb: 0.005 to 0.1%
Further, a hollow part containing S: 0.004 to 0.010% and Ca: 0.0005 to 0.0070%, the balance being Fe and inevitable impurities, and satisfying the following formula Steel pipe.
923-513C-101Mn-204Cr-1515Nb ≦ 700
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007051688A JP4837601B2 (en) | 2006-03-09 | 2007-03-01 | Steel pipe for hollow parts and manufacturing method thereof |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006064198 | 2006-03-09 | ||
JP2006064198 | 2006-03-09 | ||
JP2007051688A JP4837601B2 (en) | 2006-03-09 | 2007-03-01 | Steel pipe for hollow parts and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007270349A true JP2007270349A (en) | 2007-10-18 |
JP4837601B2 JP4837601B2 (en) | 2011-12-14 |
Family
ID=38673443
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007051688A Active JP4837601B2 (en) | 2006-03-09 | 2007-03-01 | Steel pipe for hollow parts and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4837601B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009093728A1 (en) * | 2008-01-21 | 2009-07-30 | Jfe Steel Corporation | Hollow member and method for manufacturing same |
WO2010131754A1 (en) * | 2009-05-15 | 2010-11-18 | 株式会社神戸製鋼所 | Hollow seamless pipe for high-strength springs |
WO2011149098A1 (en) * | 2010-05-27 | 2011-12-01 | Jfeスチール株式会社 | Electric-resistance-welded steel pipe with excellent torsion fatigue resistance and process for producing same |
WO2013175821A1 (en) | 2012-05-25 | 2013-11-28 | 新日鐵住金株式会社 | Hollow stabilizer, and steel pipe for hollow stabilizers and method for production thereof |
EP3018220A4 (en) * | 2013-09-25 | 2016-09-14 | Jfe Steel Corp | Process for manufacturing high-carbon electric resistance welded steel pipe, and automobile part |
WO2017056384A1 (en) * | 2015-09-29 | 2017-04-06 | Jfeスチール株式会社 | Electric resistance welded steel tube for high-strength hollow stabilizer, method for manufacturing electric resistance welded steel tube for high-strength hollow stabilizer, high-strength hollow stabilizer, and method for manufacturing high-strength hollow stabilizer |
WO2018079398A1 (en) * | 2016-10-24 | 2018-05-03 | Jfeスチール株式会社 | Electric resistance welded steel pipe for high-strength thin hollow stabilizer and manufacturing method therefor |
WO2019188224A1 (en) * | 2018-03-29 | 2019-10-03 | Jfeスチール株式会社 | Electric-welded steel tube for producing hollow stabiliser, hollow stabiliser, and production methods for same |
WO2020129337A1 (en) * | 2018-12-19 | 2020-06-25 | Jfeスチール株式会社 | Electric resistance welded steel pipe |
WO2020189097A1 (en) * | 2019-03-15 | 2020-09-24 | Jfeスチール株式会社 | Electric resistance welded steel pipe for hollow stabilizers, and method for manufacturing same |
WO2020230795A1 (en) * | 2019-05-13 | 2020-11-19 | Jfeスチール株式会社 | Electric-resistance-welded steel pipe for hollow stabilizer |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06145793A (en) * | 1992-10-29 | 1994-05-27 | Sumitomo Metal Ind Ltd | Method for preventing decarburization of seamless steel tube |
JP2003096545A (en) * | 2001-09-25 | 2003-04-03 | Kawasaki Steel Corp | Electric resistance welded tube having high strength and ductility, and production method therefor |
JP2004009126A (en) * | 2002-06-11 | 2004-01-15 | Nippon Steel Corp | Electric welded steel pipe for hollow stabilizer |
JP2004353028A (en) * | 2003-05-28 | 2004-12-16 | Jfe Steel Kk | High carbon steel tube having excellent cold forging workability and rolling workability, and its production method |
JP2005076047A (en) * | 2003-08-28 | 2005-03-24 | Jfe Steel Kk | Method for manufacturing hollow stabilizer superior in fatigue resistance |
-
2007
- 2007-03-01 JP JP2007051688A patent/JP4837601B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06145793A (en) * | 1992-10-29 | 1994-05-27 | Sumitomo Metal Ind Ltd | Method for preventing decarburization of seamless steel tube |
JP2003096545A (en) * | 2001-09-25 | 2003-04-03 | Kawasaki Steel Corp | Electric resistance welded tube having high strength and ductility, and production method therefor |
JP2004009126A (en) * | 2002-06-11 | 2004-01-15 | Nippon Steel Corp | Electric welded steel pipe for hollow stabilizer |
JP2004353028A (en) * | 2003-05-28 | 2004-12-16 | Jfe Steel Kk | High carbon steel tube having excellent cold forging workability and rolling workability, and its production method |
JP2005076047A (en) * | 2003-08-28 | 2005-03-24 | Jfe Steel Kk | Method for manufacturing hollow stabilizer superior in fatigue resistance |
Cited By (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009197327A (en) * | 2008-01-21 | 2009-09-03 | Jfe Steel Corp | Hollow member and method for production thereof |
WO2009093728A1 (en) * | 2008-01-21 | 2009-07-30 | Jfe Steel Corporation | Hollow member and method for manufacturing same |
CN105483519A (en) * | 2009-05-15 | 2016-04-13 | 株式会社神户制钢所 | Kobe Steel Ltd,Shinko Metal Prod,Nhk Spring Co Ltd |
WO2010131754A1 (en) * | 2009-05-15 | 2010-11-18 | 株式会社神戸製鋼所 | Hollow seamless pipe for high-strength springs |
JP2010265523A (en) * | 2009-05-15 | 2010-11-25 | Kobe Steel Ltd | Hollow seamless pipe for high strength spring |
US9689051B2 (en) | 2009-05-15 | 2017-06-27 | Kobe Steel, Ltd. | Hollow seamless pipe for high-strength springs |
JP2012188729A (en) * | 2010-05-27 | 2012-10-04 | Jfe Steel Corp | Electric-resistance-welded steel pipe with excellent torsion fatigue resistance and process for producing the same |
CN102906293A (en) * | 2010-05-27 | 2013-01-30 | 杰富意钢铁株式会社 | Electric-resistance-welded steel pipe with excellent torsion fatigue resistance and process for producing same |
WO2011149098A1 (en) * | 2010-05-27 | 2011-12-01 | Jfeスチール株式会社 | Electric-resistance-welded steel pipe with excellent torsion fatigue resistance and process for producing same |
KR101706839B1 (en) * | 2012-05-25 | 2017-02-14 | 신닛테츠스미킨 카부시키카이샤 | Hollow stabilizer, and steel pipe for hollow stabilizers and method for production thereof |
EP2857537A4 (en) * | 2012-05-25 | 2016-04-13 | Nippon Steel & Sumitomo Metal Corp | Hollow stabilizer, and steel pipe for hollow stabilizers and method for production thereof |
JPWO2013175821A1 (en) * | 2012-05-25 | 2016-01-12 | 新日鐵住金株式会社 | Hollow stabilizer, steel pipe for hollow stabilizer and method for producing the same |
WO2013175821A1 (en) | 2012-05-25 | 2013-11-28 | 新日鐵住金株式会社 | Hollow stabilizer, and steel pipe for hollow stabilizers and method for production thereof |
KR20150013247A (en) | 2012-05-25 | 2015-02-04 | 신닛테츠스미킨 카부시키카이샤 | Hollow stabilizer, and steel pipe for hollow stabilizers and method for production thereof |
EP3018220A4 (en) * | 2013-09-25 | 2016-09-14 | Jfe Steel Corp | Process for manufacturing high-carbon electric resistance welded steel pipe, and automobile part |
WO2017056384A1 (en) * | 2015-09-29 | 2017-04-06 | Jfeスチール株式会社 | Electric resistance welded steel tube for high-strength hollow stabilizer, method for manufacturing electric resistance welded steel tube for high-strength hollow stabilizer, high-strength hollow stabilizer, and method for manufacturing high-strength hollow stabilizer |
US10787720B2 (en) | 2015-09-29 | 2020-09-29 | Jfe Steel Corporation | Electric resistance welded steel pipe for high-strength hollow stabilizer, and method for manufacturing electric resistance welded steel pipe for high-strength hollow stabilizer |
JPWO2017056384A1 (en) * | 2015-09-29 | 2017-10-05 | Jfeスチール株式会社 | High-strength hollow stabilizer ERW steel pipe, high-strength hollow stabilizer ERW steel pipe manufacturing method, high-strength hollow stabilizer, and high-strength hollow stabilizer manufacturing method |
WO2018079398A1 (en) * | 2016-10-24 | 2018-05-03 | Jfeスチール株式会社 | Electric resistance welded steel pipe for high-strength thin hollow stabilizer and manufacturing method therefor |
US11332812B2 (en) | 2016-10-24 | 2022-05-17 | Jfe Steel Corporation | Electric resistance welded steel tubes for high-strength thin hollow stabilizers, and methods for manufacturing the same |
WO2019188224A1 (en) * | 2018-03-29 | 2019-10-03 | Jfeスチール株式会社 | Electric-welded steel tube for producing hollow stabiliser, hollow stabiliser, and production methods for same |
US11440125B2 (en) | 2018-03-29 | 2022-09-13 | Jfe Steel Corporation | Electric resistance welded steel pipe for producing hollow stabilizer, hollow stabilizer, and production methods for same |
WO2020129337A1 (en) * | 2018-12-19 | 2020-06-25 | Jfeスチール株式会社 | Electric resistance welded steel pipe |
JP6747623B1 (en) * | 2018-12-19 | 2020-08-26 | Jfeスチール株式会社 | ERW steel pipe |
US12037655B2 (en) | 2018-12-19 | 2024-07-16 | Jfe Steel Corporation | Electric resistance welded steel pipe or tube |
KR102526496B1 (en) | 2018-12-19 | 2023-04-26 | 제이에프이 스틸 가부시키가이샤 | Electric resistance welded steel pipe or tube |
KR20210091282A (en) * | 2018-12-19 | 2021-07-21 | 제이에프이 스틸 가부시키가이샤 | electric wire pipe |
CN113227423A (en) * | 2018-12-19 | 2021-08-06 | 杰富意钢铁株式会社 | Electric resistance welded steel pipe |
EP3901301A4 (en) * | 2018-12-19 | 2022-01-19 | JFE Steel Corporation | Electric resistance welded steel pipe |
JPWO2020189097A1 (en) * | 2019-03-15 | 2021-04-01 | Jfeスチール株式会社 | Electric resistance sewn steel pipe for hollow stabilizer and its manufacturing method |
WO2020189097A1 (en) * | 2019-03-15 | 2020-09-24 | Jfeスチール株式会社 | Electric resistance welded steel pipe for hollow stabilizers, and method for manufacturing same |
KR20220004758A (en) * | 2019-05-13 | 2022-01-11 | 제이에프이 스틸 가부시키가이샤 | Electric resistance welded steel pipe for hollow stabilizer |
EP3971307A4 (en) * | 2019-05-13 | 2022-03-30 | JFE Steel Corporation | Electric-resistance-welded steel pipe for hollow stabilizer |
JP7070696B2 (en) | 2019-05-13 | 2022-05-18 | Jfeスチール株式会社 | Electric resistance sewn steel pipe for hollow stabilizer |
CN113811625A (en) * | 2019-05-13 | 2021-12-17 | 杰富意钢铁株式会社 | Electric resistance welded steel pipe for hollow stabilizer |
JPWO2020230795A1 (en) * | 2019-05-13 | 2021-05-20 | Jfeスチール株式会社 | Electric resistance sewn steel pipe for hollow stabilizer |
CN113811625B (en) * | 2019-05-13 | 2023-12-15 | 杰富意钢铁株式会社 | Resistance welded steel pipe for hollow stabilizer |
KR102639340B1 (en) | 2019-05-13 | 2024-02-21 | 제이에프이 스틸 가부시키가이샤 | Electric-resistance-welded steel pipe or tube for hollow stabilizer |
WO2020230795A1 (en) * | 2019-05-13 | 2020-11-19 | Jfeスチール株式会社 | Electric-resistance-welded steel pipe for hollow stabilizer |
Also Published As
Publication number | Publication date |
---|---|
JP4837601B2 (en) | 2011-12-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4837601B2 (en) | Steel pipe for hollow parts and manufacturing method thereof | |
JP6465249B2 (en) | ERW steel pipe for high-strength thin-walled hollow stabilizer and method for manufacturing the same | |
US9493865B2 (en) | Thick-walled high-strength hot rolled steel sheet with excellent low-temperature toughness and method of producing same | |
JP5672916B2 (en) | High-strength steel sheet for sour line pipes, method for producing the same, and high-strength steel pipe using high-strength steel sheets for sour line pipes | |
JP5142141B2 (en) | Hot-rolled steel sheets for hydroforming, steel pipes for hydroforming, and methods for producing them | |
JP5900303B2 (en) | High-strength steel sheet for sour-resistant pipes with excellent material uniformity in the steel sheet and its manufacturing method | |
JP4853082B2 (en) | Steel plate for hydroforming, steel pipe for hydroforming, and production method thereof | |
JP5040475B2 (en) | Thick-walled hot-rolled steel sheet with excellent workability and excellent strength and toughness after heat treatment and method for producing the same | |
JP5005543B2 (en) | High-strength thick-walled electric-welded steel pipe excellent in hardenability, hot workability and fatigue strength, and method for producing the same | |
JP4824145B1 (en) | Automotive undercarriage parts excellent in low cycle fatigue characteristics and manufacturing method thereof | |
JP4853075B2 (en) | Hot-rolled steel sheet for hydroforming and its manufacturing method, and electric resistance welded steel pipe for hydroforming | |
JP5991175B2 (en) | High-strength steel sheet for line pipes with excellent material uniformity in the steel sheet and its manufacturing method | |
JP2011202195A (en) | Ultrahigh strength cold rolled steel sheet and method for producing same | |
JP5768603B2 (en) | High-strength welded steel pipe with high uniform elongation characteristics and excellent low-temperature toughness at welds, and method for producing the same | |
JP2004011009A (en) | Electric resistance welded steel tube for hollow stabilizer | |
JP5991174B2 (en) | High-strength steel sheet for sour-resistant pipes with excellent material uniformity in the steel sheet and its manufacturing method | |
JP5499559B2 (en) | High tensile steel material for automobile undercarriage members having excellent formability and torsional fatigue resistance and method for producing the same | |
US20180237879A1 (en) | Stainless steel pipe and method of manufacturing the same | |
JP5640614B2 (en) | High-strength steel pipe for line pipe, its manufacturing method, and high-strength steel pipe using high-strength steel sheet for line pipe | |
JP2007056283A (en) | High-strength thick-wall electric resistance welded steel tube having excellent hardenability and decarburization resistance, and its manufacturing method | |
JP2009191330A (en) | Electric resistance steel tube | |
JP2009275261A (en) | Welded steel-pipe superior in crushing resistance and manufacturing method therefor | |
JP2009235499A (en) | Method for manufacturing hollow stabilizer | |
JP5499560B2 (en) | High tensile steel material for automobile undercarriage members having excellent formability and torsional fatigue resistance and method for producing the same | |
JP2009203492A (en) | High-tensile welded steel pipe for automobile structural member, and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090217 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110616 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110621 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110816 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110920 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110928 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141007 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4837601 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141007 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141007 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141007 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |