JP2007269606A - Monolithic refractory forming material and monolithic refractory formed body - Google Patents

Monolithic refractory forming material and monolithic refractory formed body Download PDF

Info

Publication number
JP2007269606A
JP2007269606A JP2006100494A JP2006100494A JP2007269606A JP 2007269606 A JP2007269606 A JP 2007269606A JP 2006100494 A JP2006100494 A JP 2006100494A JP 2006100494 A JP2006100494 A JP 2006100494A JP 2007269606 A JP2007269606 A JP 2007269606A
Authority
JP
Japan
Prior art keywords
refractory
mass
molding material
monolithic refractory
forming material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006100494A
Other languages
Japanese (ja)
Other versions
JP4704263B2 (en
Inventor
Akishi Sakamoto
晃史 坂本
Toshiyuki Anji
敏行 安治
Noboru Semizu
昇 瀬水
Kaoru Unno
薫 海野
Kaoru Kanetani
薫 金谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichias Corp
Original Assignee
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichias Corp filed Critical Nichias Corp
Priority to JP2006100494A priority Critical patent/JP4704263B2/en
Publication of JP2007269606A publication Critical patent/JP2007269606A/en
Application granted granted Critical
Publication of JP4704263B2 publication Critical patent/JP4704263B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Ceramic Products (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a monolithic refractory formed body which is excellent in both of thermal shock resistance and corrosion resistance and is also good in heat resistance, mechanical strength, heat insulating property, and mechanical processability, and to provide a forming material for the same. <P>SOLUTION: The monolithic refractory forming material contains alumina cement, diatomaceous earth or iron oxide, and other refractory materials. The monolithic refractory formed body is formed by adding water to the monolithic refractory forming material, kneading the resulting mixture and curing the kneaded material, and has a density of 1.0-2.5 g/cm<SP>3</SP>and a bending strength of 2-10 MPa. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、耐熱性、断熱性、耐熱衝撃性、溶融金属に対する耐食性、電気絶縁性、機械加工性に優れ、耐火材や断熱材として好適な不定形耐火物成形体を与える水硬性の成形材料に関する。また、本発明は、前記成形体からなり、アルミニウム、亜鉛、スズ、鉛、あるいはこれらの合金等のように概ね融点が800℃以下である比較的低融点の金属を鋳造する鋳造装置において、これら低融点金属の溶湯と接触する部位に使用される不定形耐火物成形体に関する。   The present invention is a hydraulic molding material that is excellent in heat resistance, heat insulation, thermal shock resistance, corrosion resistance to molten metal, electrical insulation, machinability, and gives an amorphous refractory molded article suitable as a refractory material or heat insulation material. About. Further, the present invention provides a casting apparatus for casting a relatively low melting point metal having a melting point of 800 ° C. or less, such as aluminum, zinc, tin, lead, or an alloy thereof. The present invention relates to an indeterminate shaped refractory molded body used in a portion in contact with a molten metal of a low melting point metal.

上記に挙げた低融点金属の鋳造装置において、溶湯と接触する部材、例えば樋、溶湯保持炉、取鍋等を製造、構築もしくは補修するための内張材として、キャスタブル耐火物が広く利用されている。キャスタブル耐火物は適量の水と混練してから型枠に流し込んで硬化させ、乾燥後、焼成して、付着水および結晶水を除くことにより、使用中に水蒸気の発生が無く、耐火性も良い内張材を形成させるものである。   Casting refractories are widely used as lining materials for manufacturing, constructing or repairing members that come into contact with molten metal, such as firewood, molten metal holding furnaces, ladles, etc. Yes. Castable refractories are kneaded with an appropriate amount of water, then poured into a mold and cured, dried, baked, and free of water vapor and crystallization water so that no water vapor is generated during use, and fire resistance is good A lining material is formed.

上述のような鋳造装置の内張り用のキャスタブル耐火物として、溶湯に濡れ難く、耐食性も比較的良好なことから、アルミナセメントやワラストナイト系のものが従来使用されている(例えば、特許文献1参照)。   As a castable refractory for the lining of the casting apparatus as described above, alumina cement and wollastonite are conventionally used because they are difficult to wet with molten metal and have relatively good corrosion resistance (for example, Patent Document 1). reference).

特開昭62−265151号公報JP-A-62-265151

しかしながら従来のアルミナセメントやワラストナイト系キャスタブルは、耐食性は優れているものの、急加熱、急冷されたときに発生する応力に対抗する性能、いわゆる耐熱衝撃性が充分でなく、亀裂や割れが発生し易いという問題があり、このため頻繁に交換、補修等を行う必要があった。耐熱衝撃性を改善する手段として、熱膨張率の小さい溶融シリカ(非晶質シリカ)を配合して全体の熱膨張率を下げることも試みられているが、溶融シリカは溶湯と非常に反応し易く、耐熱衝撃性は向上するものの、耐食性は悪化する結果であった。   However, although conventional alumina cement and wollastonite castables have excellent corrosion resistance, they do not have sufficient resistance to stress generated during rapid heating or rapid cooling, so-called thermal shock resistance, and cracks and cracks occur. For this reason, it was necessary to frequently replace and repair. As a means to improve thermal shock resistance, attempts have been made to reduce the overall coefficient of thermal expansion by incorporating fused silica (amorphous silica) with a low coefficient of thermal expansion, but fused silica reacts very much with the molten metal. It was easy and the thermal shock resistance was improved, but the corrosion resistance was deteriorated.

本発明の目的は、耐熱衝撃性及び耐食性の両方に優れ、その他、耐熱性、機械的強度、断熱性、機械加工性も良好な不定形耐火物成形体、並びにその成形材料を提供することにある。   An object of the present invention is to provide an amorphous refractory molded article excellent in both thermal shock resistance and corrosion resistance, heat resistance, mechanical strength, heat insulation, and machinability, and a molding material thereof. is there.

上記目的を達成するために、本発明は以下の不定形耐火物成形材料及び不定形耐火物成形体を提供する。
(1)アルミナセメントと、珪藻土または酸化鉄と、その他の耐火材料を含むことを特徴とする不定形耐火物成形材料。
(2)珪藻土を2〜30質量%または酸化鉄を0.1〜10質量%の割合で含むことを特徴とする上記(1)記載の不定形耐火物成形材料。
(3)アルミナセメントを10〜60質量%、その他の耐火物を10〜88質量%の割合で含むことを特徴とする上記(1)または(2)記載の不定形耐火物用成形材料。
(4)その他の耐火材料は、ワラストナイト(CaSiO)を該耐火材料全量の10〜60質量%の割合で含むことを特徴とする上記(1)〜(3)の何れか1項に記載の不定形耐火物成形材料。
(5)上記(1)〜(4)の何れか1項に記載の不定形耐火物成形材料に水を加えた混練物の成形体を硬化させてなり、かつ、密度が1.0〜2.5g/cmで、曲げ強度が2〜10MPaであることを特徴とする不定形耐火物成形体。
(6)融点が800℃以下の低融点金属の溶湯と接触する部位に使用されることを特徴とする上記(5)記載の不定形耐火物成形体。
In order to achieve the above object, the present invention provides the following amorphous refractory molding material and amorphous refractory molded article.
(1) An amorphous refractory molding material comprising alumina cement, diatomaceous earth or iron oxide, and other refractory materials.
(2) The amorphous refractory molding material as described in (1) above, comprising diatomaceous earth in a proportion of 2 to 30% by mass or iron oxide in a proportion of 0.1 to 10% by mass.
(3) The molding material for an irregular refractory according to the above (1) or (2), comprising 10 to 60% by mass of alumina cement and 10 to 88% by mass of other refractories.
(4) The other refractory material contains wollastonite (CaSiO 3 ) in a proportion of 10 to 60% by mass of the total amount of the refractory material, according to any one of the above (1) to (3) The amorphous refractory molding material described.
(5) A molded product of a kneaded product obtained by adding water to the amorphous refractory molding material described in any one of (1) to (4) above, and having a density of 1.0 to 2 An amorphous refractory molded body having a bending strength of 2 to 10 MPa at 0.5 g / cm 3 .
(6) The amorphous refractory molded article according to the above (5), which is used in a portion that contacts a molten metal of a low melting point metal having a melting point of 800 ° C. or lower.

本発明による不定形耐火物成形体は、優れた耐食性、耐熱衝撃性、断熱性、機械加工性を有し、従来品と比較して、厳しい熱衝撃が発生する箇所で使用した場合でも、亀裂や割れの発生が少なくなり、材料の交換、補修をする頻度は従来と比較して大幅に少なくて済む。また、材料自体のコストも従来品と比較してほぼ同等である。そのため、交換や補修の所要時間と成形体購入コストで、従来と比較してトータル的に非常に安価で低融点金属の鋳造が可能になる。   The amorphous refractory molded body according to the present invention has excellent corrosion resistance, thermal shock resistance, heat insulation, machinability, and cracks even when used in locations where severe thermal shock occurs compared to conventional products. The occurrence of cracks and cracks is reduced, and the frequency of material replacement and repair is significantly lower than in the past. In addition, the cost of the material itself is almost the same as that of the conventional product. Therefore, in terms of the time required for replacement and repair and the cost of purchasing the compact, it is possible to cast a low-melting-point metal at a very low total cost compared to the conventional case.

以下、本発明に関して詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の不定形耐火物成形材料(以下、「成形材料」という)は、アルミナセメントと、珪藻土または酸化鉄と、その他の耐火材料とを含む粉状混合物である。   The amorphous refractory molding material (hereinafter referred to as “molding material”) of the present invention is a powder mixture containing alumina cement, diatomaceous earth or iron oxide, and other refractory materials.

アルミナセメントの種類には制限が無く、従来から耐火物等に使用されているものを使用することができる。中でも、得られる耐熱性成形体の外観に優れることから、Al23成分が55質量%以上を占めるハイアルミナセメントが好ましい。 There is no restriction | limiting in the kind of alumina cement, The thing conventionally used for a refractory etc. can be used. Among them, a high alumina cement in which the Al 2 O 3 component occupies 55% by mass or more is preferable because of the excellent appearance of the resulting heat-resistant molded article.

珪藻土の種類にも制限がなく、従来から塗り壁材や耐火物等に使用されているものを使用することができる。また、珪藻土は、その平均粒径が5〜50μmであることが好ましく、5〜20μmであることがより好ましい。   There is no restriction | limiting also in the kind of diatomaceous earth, and what has been conventionally used for the coating wall material, a refractory, etc. can be used. Moreover, it is preferable that the average particle diameter of diatomaceous earth is 5-50 micrometers, and it is more preferable that it is 5-20 micrometers.

酸化鉄は粉体を用いるが、その平均粒径が1〜10μmであることが好ましく、2〜6μmであることがより好ましい。また、酸化鉄の価数には特に制限はなく、FeO、Fe、Feが挙げられるが、原料が安価で安定している3価のFeが好ましい。 The iron oxide uses powder, but the average particle size is preferably 1 to 10 μm, and more preferably 2 to 6 μm. There is no particular limitation to the valence of iron oxide, FeO, Fe 2 O 3, Fe 3 O 4 but may be mentioned, raw materials are stable trivalent Fe 2 O 3 is preferably inexpensive.

その他の耐火材料としては、本発明ではアルミニウム、亜鉛、スズ、鉛、あるいはこれらの合金等のように概ね融点が800℃以下の低融点金属の溶湯と接触する部材を対象としていることから、融点が800℃以上のものを使用する。具体的には、シリカ、ムライト、ワラストナイト(CaSiO)、ジルコニア、マグネシア、ジルコン等の酸化物系耐火物、窒化ホウ素や窒化珪素、窒化アルミニウム、サイアロン等の窒化物系耐火物、炭化珪素等の炭化物系耐火物、グラファイトや黒鉛等のカーボン系耐火物が挙げられるが、中でもワラストナイトをその他の耐火材料全量の10〜60質量%含むことが好ましい。また、その他の耐火物の平均粒径が0.5〜20μmであることが好ましく、3〜7μmであることがより好ましい。 As other refractory materials, since the present invention is intended for members that are in contact with a molten metal of a low melting point metal having a melting point of 800 ° C. or lower, such as aluminum, zinc, tin, lead, or alloys thereof, the melting point Use 800 degreeC or more. Specifically, oxide refractories such as silica, mullite, wollastonite (CaSiO 3 ), zirconia, magnesia and zircon, nitride refractories such as boron nitride, silicon nitride, aluminum nitride and sialon, silicon carbide Carbide-based refractories such as graphite and carbon-based refractories such as graphite and graphite are mentioned, but it is preferable to include wollastonite in an amount of 10 to 60% by mass based on the total amount of other refractory materials. Moreover, it is preferable that the average particle diameter of other refractories is 0.5-20 micrometers, and it is more preferable that it is 3-7 micrometers.

成形材料におけるアルミナセメント、珪藻土または酸化鉄、その他の耐火材料の配合比率は、アルミナセメントは10〜60質量%、好ましくは20〜50質量%、より好ましくは25〜35質量%である。珪藻土は2〜30質量%、好ましくは6〜15質量%、より好ましくは8〜10質量%である。酸化鉄は0.1〜10質量%、好ましくは0.1〜5質量%、さらに好ましくは0.5〜2質量%である。その他の耐火材料は10〜88質量%、好ましくは40〜80質量%、より好ましくは50〜70質量%である。   The compounding ratio of alumina cement, diatomaceous earth or iron oxide, and other refractory materials in the molding material is 10 to 60% by mass, preferably 20 to 50% by mass, more preferably 25 to 35% by mass for alumina cement. Diatomaceous earth is 2 to 30% by mass, preferably 6 to 15% by mass, and more preferably 8 to 10% by mass. Iron oxide is 0.1 to 10% by mass, preferably 0.1 to 5% by mass, and more preferably 0.5 to 2% by mass. The other refractory material is 10 to 88% by mass, preferably 40 to 80% by mass, and more preferably 50 to 70% by mass.

アルミナセメントは結合材として機能するため、前記下限値よりも少ないと、得られる耐熱性成形体の機械的強度に悪影響が出るおそれがある。珪素土または酸化鉄は耐熱衝撃性及び耐食性を向上させる効果があり、前記下限値よりも少ないと、得られる耐熱性成形体の耐熱衝撃性及び耐食性の改善効果が十分でなくなるおそれがある。尚、珪藻土は、その含有量が多くなると、耐熱衝撃性に劣る傾向があり、前記範囲の中でも少ない方が好ましい。その他の耐火材料は、得られる不定形耐火物成形体の耐熱性や断熱性を担うため、前記下限値よりも少ないと、得られる不定形耐火物成形体が必要な耐熱性や断熱性を示さないおそれがある。尚、何れの成分も、前記上限値を超えると相対的に他成分の含有量が少なくなり、指摘した問題が起こるようになる。   Since alumina cement functions as a binder, if it is less than the lower limit, the mechanical strength of the resulting heat-resistant molded article may be adversely affected. Silicon earth or iron oxide has the effect of improving the thermal shock resistance and corrosion resistance, and if it is less than the lower limit, the effect of improving the thermal shock resistance and corrosion resistance of the resulting heat-resistant molded article may not be sufficient. In addition, when the content of diatomaceous earth increases, the thermal shock resistance tends to be inferior. Other refractory materials are responsible for the heat resistance and heat insulating properties of the resulting amorphous refractory molded body, so if the amount is less than the lower limit, the obtained amorphous refractory molded body exhibits the required heat resistance and heat insulating properties. There is a risk of not. In addition, when any component exceeds the above upper limit value, the content of other components is relatively reduced, and the indicated problem occurs.

成形材料は、水と混合され、得られた混練物を所定形状に成形し、硬化させることにより不定形耐火物成形体となる。   The molding material is mixed with water, and the resulting kneaded product is molded into a predetermined shape and cured to form an amorphous refractory molded body.

また、水には、ヘキサメタ燐酸ナトリウムやトリポリ燐酸ナトリウム、ウルトラポリ燐酸ナトリウム等の分散剤、炭酸リチウムや水酸化カルシウム等の硬化促進剤、ホウ酸やけいフッ化ナトリウム等の硬化遅延剤、あるいは爆裂防止目的でポリプロピレン繊維等の有機繊維を適量配合してもよい。   In addition, for water, dispersants such as sodium hexametaphosphate, sodium tripolyphosphate, and sodium ultrapolyphosphate, curing accelerators such as lithium carbonate and calcium hydroxide, curing retarders such as boric acid and sodium fluorofluoride, or explosion An appropriate amount of organic fiber such as polypropylene fiber may be blended for the purpose of prevention.

成形材料と水との混合比率は、混練物を成形したときに形状を保持できればよく、制限はないが、成形材料100質量部に対し、水を10〜60質量部とすることが好ましい。尚、成形方法は、型枠への流し込みが簡便であり、型枠内で養生、硬化させればよい。養生条件は、特に制限はないが、例えば15〜25℃、湿度50〜95RHで24時間以上行う。   The mixing ratio of the molding material and water is not particularly limited as long as the shape can be maintained when the kneaded product is molded. However, it is preferable that water is 10 to 60 parts by mass with respect to 100 parts by mass of the molding material. The molding method is easy to pour into the mold and may be cured and cured in the mold. The curing conditions are not particularly limited, but for example, the curing is performed at 15 to 25 ° C. and a humidity of 50 to 95 RH for 24 hours or more.

所定形状に成形した後は、乾燥することが好ましく、特に制限はないが、例えば100〜120℃で24時間以上行う。また、不定形耐火物成形体は、乾燥後の成形体中のアルミナセメントの水和物を脱水するために焼成してもよく、特に制限はないが、例えば600〜800℃で、1〜5時間行う。なお、こうした焼成は必ずしも必要はなく、使用する際に加えられる加熱により焼成してもよい。   After forming into a predetermined shape, it is preferable to dry, and there is no particular limitation, but for example, it is performed at 100 to 120 ° C. for 24 hours or more. The amorphous refractory molded body may be fired to dehydrate the hydrated alumina cement in the molded body after drying, and is not particularly limited. Do time. Such firing is not necessarily required, and may be performed by heating applied during use.

このようにして得られる本発明の不定形耐火物成形体は、耐熱衝撃性及び耐食性の両方に優れ、その他、耐熱性、機械的強度、断熱性、機械加工性も良好である。そのため、アルミニウム等の低融点金属を鋳造する鋳造装置の注湯ボックスや樋、保持炉等の内張り材として好適である。   The amorphous refractory molded article of the present invention thus obtained is excellent in both thermal shock resistance and corrosion resistance, and also has good heat resistance, mechanical strength, heat insulation and machinability. Therefore, it is suitable as a lining material for a pouring box, a jar, a holding furnace or the like of a casting apparatus for casting a low melting point metal such as aluminum.

以下に実施例及び比較例を挙げて本発明について更に説明するが、本発明はこれにより制限されるものではない。   EXAMPLES The present invention will be further described below with reference to examples and comparative examples, but the present invention is not limited thereby.

(試験−1:実施例1〜7、比較例1〜2)
表1に示した配合の成形材料と水とをプラネタリーミキサーにて、充分に混練した混練物を、平板用型枠に流し込んで20℃、80%RH、24時間の条件で養生し、脱型後105℃で24時間乾燥し、更に200℃/時間の昇温速度で700℃まで昇温し、この温度に3時間保って焼成することにより、アルミナセメントの水和物の脱水を行い、試験体を作製した。尚、材料の詳細は以下のとおりである。そして、各試験体について下記の物性評価を行った。結果を表1に示す。
(Test-1: Examples 1-7, Comparative Examples 1-2)
The kneaded material that has been sufficiently kneaded with the molding material shown in Table 1 and water in a planetary mixer is poured into a plate mold, cured under conditions of 20 ° C., 80% RH, 24 hours, and removed. The mold is dried at 105 ° C. for 24 hours, further heated to 700 ° C. at a heating rate of 200 ° C./hour, and kept at this temperature for 3 hours to perform dehydration of the alumina cement hydrate, A test specimen was prepared. Details of the materials are as follows. And the following physical-property evaluation was performed about each test body. The results are shown in Table 1.

Figure 2007269606
Figure 2007269606

(1)線変化率の測定
養生した後の成形体と、乾燥した後の成形体及び焼成した後の成形体との寸法変化からJIS R2554に準拠して乾燥した後の成形体及び焼成した後の成形体の線変化率を測定した。
(2)密度の測定
乾燥した後の成形体および焼成した後の成形体の密度をJIS R2655に準拠して測定した。
(3)曲げ強度及び圧縮強度の測定
試験体の曲げ強度及び圧縮強度をJIS R2553に準拠して測定した。
(4)外観評価
試験体の表面を、目視で観察して亀裂や割れの有無、平滑性を評価し、実用上特に問題ないものに「○」を記し、それぞれ合格とした。
(5)熱膨張係数の測定
試験体から切り出した長さ20mm、幅5mm、厚さ5mmの試験片を、理学電機工業株式会社製熱機械分析装置「TMA8310」を用いて、空気中で5℃/minの速度で室温から800℃まで昇温し熱膨張係数を測定した。
(6)耐スポーリング性試験
試験体から114mm×65mm×230mmの大きさに切り出した試験片を用い、JIS R2657に準拠して試験を行った。表には、クラックの発生が無いものに「○」、数本のクラックが発生したものに「△」を記し、それぞれ合格とした。
(7)アルミニウム浸漬試験
試験体から160mm×40mm×40mmの大きさに切り出し試験片とし、その長さ方向の半分の部分を、800℃に維持したアルミニウム合金(AC4C)溶湯に浸漬し、2週間保持した後に取り出し、浸漬部分を切断して断面を観察し、浸食された断面積を測定した。浸食断面積10mm以下を合格とし、表に「○」を記した。
(1) Measurement of linear change rate From a dimensional change between a molded body after curing, a molded body after drying, and a molded body after baking, the molded body after drying according to JIS R2554, and after baking The linear change rate of the molded body was measured.
(2) Measurement of density The density of the molded body after drying and the molded body after firing was measured according to JIS R2655.
(3) Measurement of bending strength and compressive strength The bending strength and compressive strength of the specimen were measured according to JIS R2553.
(4) Appearance evaluation The surface of the test specimen was visually observed to evaluate the presence or absence of cracks, cracks, and smoothness.
(5) Measurement of thermal expansion coefficient A test piece having a length of 20 mm, a width of 5 mm, and a thickness of 5 mm cut out from a specimen was measured at 5 ° C. in the air using a thermomechanical analyzer “TMA8310” manufactured by Rigaku Corporation. The temperature was increased from room temperature to 800 ° C. at a rate of / min, and the thermal expansion coefficient was measured.
(6) Spalling resistance test A test piece cut out from a specimen to a size of 114 mm x 65 mm x 230 mm was used, and a test was performed in accordance with JIS R2657. In the table, “◯” indicates that no crack was generated, and “Δ” indicates that several cracks occurred, and each was regarded as acceptable.
(7) Aluminum immersion test A test piece was cut out to a size of 160 mm × 40 mm × 40 mm from a specimen, and half of the length direction was immersed in a molten aluminum alloy (AC4C) maintained at 800 ° C. for 2 weeks. After being held, it was taken out, the immersed part was cut and the cross section was observed, and the eroded cross sectional area was measured. An erosion cross-sectional area of 10 mm 2 or less was accepted, and “◯” was marked in the table.

Figure 2007269606
Figure 2007269606

表1から、珪藻土を配合することにより、耐熱衝撃性及び耐食性が改善されることがわける。尚、珪藻土の配合量が15〜20質量%と多くなると、低密度で耐食性も良好であるものの、耐スポーリング試験ではクラックが若干発生し、また曲げ強度が低くなる傾向が見られる。これに対し珪藻土が6〜10質量%に少なくなると、密度は若干高くなるものの、外観、強度、耐食性、耐スポーリング性でバランスの良い結果が得られ、特に実施例6及び実施例7の配合が最適である。   From Table 1, the thermal shock resistance and corrosion resistance are improved by blending diatomaceous earth. When the blending amount of diatomaceous earth is increased to 15 to 20% by mass, although low density and corrosion resistance are good, some cracks are generated in the spalling resistance test and the bending strength tends to be lowered. On the other hand, when the diatomaceous earth is reduced to 6 to 10% by mass, the density is slightly increased, but a balanced result is obtained in appearance, strength, corrosion resistance, and spalling resistance. Is the best.

(試験−2:実施例8〜11、比較例3〜4)
表2に示す配合にて試験−1と同様に試験体を作製し、同様の測定及び試験を行った。結果を同表に示す。
(Test-2: Examples 8 to 11 and Comparative Examples 3 to 4)
Test specimens were prepared in the same manner as in Test-1 with the formulation shown in Table 2, and the same measurements and tests were performed. The results are shown in the same table.

Figure 2007269606
Figure 2007269606

表2から、酸化鉄を配合することにより、耐熱衝撃性及び耐食性が改善されることがわける。   From Table 2, the thermal shock resistance and the corrosion resistance are improved by adding iron oxide.

Claims (6)

アルミナセメントと、珪藻土または酸化鉄と、その他の耐火材料を含むことを特徴とする不定形耐火物成形材料。   An amorphous refractory molding material comprising alumina cement, diatomaceous earth or iron oxide, and other refractory materials. 珪藻土を2〜30質量%または酸化鉄を0.1〜10質量%の割合で含むことを特徴とする請求項1記載の不定形耐火物成形材料。   The amorphous refractory molding material according to claim 1, comprising 2 to 30% by mass of diatomaceous earth or 0.1 to 10% by mass of iron oxide. アルミナセメントを10〜60質量%、その他の耐火物を10〜88質量%の割合で含むことを特徴とする請求項1または2記載の不定形耐火物用成形材料。   3. The molding material for an irregular refractory according to claim 1, comprising 10 to 60% by mass of alumina cement and 10 to 88% by mass of other refractories. その他の耐火材料は、ワラストナイト(CaSiO)を該耐火材料全量の10〜60質量%の割合で含むことを特徴とする請求項1〜3の何れか1項に記載の不定形耐火物成形材料。 The other refractory material contains wollastonite (CaSiO 3 ) in a proportion of 10 to 60% by mass of the total amount of the refractory material, according to any one of claims 1 to 3. Molding material. 請求項1〜4の何れか1項に記載の不定形耐火物成形材料に水を加えた混練物の成形体を硬化させてなり、かつ、密度が1.0〜2.5g/cmで、曲げ強度が2〜10MPaであることを特徴とする不定形耐火物成形体。 A molded product of a kneaded product obtained by adding water to the amorphous refractory molding material according to any one of claims 1 to 4, and having a density of 1.0 to 2.5 g / cm 3 . An indeterminate refractory molded body having a bending strength of 2 to 10 MPa. 融点が800℃以下の低融点金属の溶湯と接触する部位に使用されることを特徴とする請求項5記載の不定形耐火物成形体。   6. The amorphous refractory molded article according to claim 5, wherein the molded article is formed in contact with a molten metal of a low melting point metal having a melting point of 800 ° C. or lower.
JP2006100494A 2006-03-31 2006-03-31 Amorphous refractory molding material and Amorphous refractory molding Active JP4704263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006100494A JP4704263B2 (en) 2006-03-31 2006-03-31 Amorphous refractory molding material and Amorphous refractory molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006100494A JP4704263B2 (en) 2006-03-31 2006-03-31 Amorphous refractory molding material and Amorphous refractory molding

Publications (2)

Publication Number Publication Date
JP2007269606A true JP2007269606A (en) 2007-10-18
JP4704263B2 JP4704263B2 (en) 2011-06-15

Family

ID=38672780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006100494A Active JP4704263B2 (en) 2006-03-31 2006-03-31 Amorphous refractory molding material and Amorphous refractory molding

Country Status (1)

Country Link
JP (1) JP4704263B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116589291A (en) * 2023-05-19 2023-08-15 北京海润宏远科技有限公司 Building refractory material and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50151926A (en) * 1974-05-30 1975-12-06
JPS55121945A (en) * 1979-03-06 1980-09-19 Subaankaa Mukaaji Broardly applicable refractory insulating material
JPS60226438A (en) * 1984-04-25 1985-11-11 イソライト工業株式会社 Forming refractory composition
JPS62265151A (en) * 1986-05-12 1987-11-18 ニチアス株式会社 Forming material
JPH0867572A (en) * 1994-08-30 1996-03-12 Harima Ceramic Co Ltd Refractory for casting execution
JP2000203951A (en) * 1999-01-06 2000-07-25 Kawasaki Refract Co Ltd Light weight heat-insulating castable composition
JP2005009882A (en) * 2003-06-16 2005-01-13 Heraeus Electro Nite Japan Ltd Heat-resistant protecting tube and manufacturing method thereof, and apparatus for manufacturing the heat-resistant protecting tube

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50151926A (en) * 1974-05-30 1975-12-06
JPS55121945A (en) * 1979-03-06 1980-09-19 Subaankaa Mukaaji Broardly applicable refractory insulating material
JPS60226438A (en) * 1984-04-25 1985-11-11 イソライト工業株式会社 Forming refractory composition
JPS62265151A (en) * 1986-05-12 1987-11-18 ニチアス株式会社 Forming material
JPH0867572A (en) * 1994-08-30 1996-03-12 Harima Ceramic Co Ltd Refractory for casting execution
JP2000203951A (en) * 1999-01-06 2000-07-25 Kawasaki Refract Co Ltd Light weight heat-insulating castable composition
JP2005009882A (en) * 2003-06-16 2005-01-13 Heraeus Electro Nite Japan Ltd Heat-resistant protecting tube and manufacturing method thereof, and apparatus for manufacturing the heat-resistant protecting tube

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116589291A (en) * 2023-05-19 2023-08-15 北京海润宏远科技有限公司 Building refractory material and preparation method thereof

Also Published As

Publication number Publication date
JP4704263B2 (en) 2011-06-15

Similar Documents

Publication Publication Date Title
BR112015016855B1 (en) magnesia-carbon brick
Silva et al. Effect of alumina and silica on the hydration behavior of magnesia‐based refractory castables
JP5110540B2 (en) FeO resistant coating material
JP2008081360A (en) Monolithic refractory molding material and monolithic refractory molded product
JP5110539B2 (en) FeO resistant coating material
JP2015218078A (en) Light weight thermal insulation alumina and magnesia refractory
JP6259643B2 (en) High chromia castable refractory, precast block using the same, and waste melting furnace lined with one or both of them
JP2010280540A (en) Chromia-enriched castable refractory substance, and precast block using the same
JP6959809B2 (en) Amorphous refractory for pouring work
JP2008247720A (en) Monolithic refractory forming material and monolithic refractory formed body
JP4704263B2 (en) Amorphous refractory molding material and Amorphous refractory molding
JP2014152092A (en) Castable refractory for blast furnace trough
KR101100269B1 (en) General castable for turn-dish using wasted refractory
EP3307695B1 (en) Refractories for applications in combustion chambers intended for producing energy and/or waste disposal
JP2012192430A (en) Alumina carbon-based slide gate plate
JP6441684B2 (en) Castable refractories for lids of molten metal containers
JP6419555B2 (en) Cast refractory
JP6441685B2 (en) Castable refractories for lids of molten metal containers
JP7135691B2 (en) Evaluation Method of Delamination Resistance of Alumina-Magnesia Castable Refractories
JP2020100853A (en) Monolithic refractory for blast furnace runner cover
JP5594406B2 (en) Construction method of irregular refractories
JP4468323B2 (en) Carbon materials for refractories and their uses
JP2014024689A (en) Magnesia monolithic refractory
JP2003171182A (en) Carbon-containing unburned brick
JP5358936B2 (en) Construction method of irregular refractories

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110309

R150 Certificate of patent or registration of utility model

Ref document number: 4704263

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140318

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250