JP2007268892A - Manufacturing method for flexible laminate - Google Patents

Manufacturing method for flexible laminate Download PDF

Info

Publication number
JP2007268892A
JP2007268892A JP2006098246A JP2006098246A JP2007268892A JP 2007268892 A JP2007268892 A JP 2007268892A JP 2006098246 A JP2006098246 A JP 2006098246A JP 2006098246 A JP2006098246 A JP 2006098246A JP 2007268892 A JP2007268892 A JP 2007268892A
Authority
JP
Japan
Prior art keywords
polyimide
thermal expansion
resin layer
polyimide resin
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006098246A
Other languages
Japanese (ja)
Other versions
JP4593509B2 (en
Inventor
Tomoyuki Suzuki
智之 鈴木
Masahiko Takeuchi
正彦 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP2006098246A priority Critical patent/JP4593509B2/en
Priority to TW096110936A priority patent/TWI392427B/en
Priority to KR1020070031559A priority patent/KR101366043B1/en
Publication of JP2007268892A publication Critical patent/JP2007268892A/en
Application granted granted Critical
Publication of JP4593509B2 publication Critical patent/JP4593509B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/24Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/24Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
    • B32B2037/243Coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flexible laminate with a small tensile modulus of elasticity, which shortens a treatment time required for a heating step after a polyimide precursor resin solution is applied onto conductive metallic foil, in a manufacturing process for the flexible laminate, and which is excellent in bendability and dimensional stability. <P>SOLUTION: In this manufacturing method for the flexible laminate, the polyimide precursor resin solution is applied onto the conductive metallic foil, and subjected to heating treatment, so as to be dried and cured. Characteristically, the total of heating time at 90°C or higher in the heating treatment is in the range of 5-25 minutes; the ratio between heating time at 90-200°C and heating time at a temperature exceeding 200°C is set to be in the range of 9:1-7:3; and control is performed so that the tensile modulus of elasticity of a polyimide resin layer formed on the conductive metallic foil can be in the range of 3-6 GPa and so that a coefficient of thermal expansion thereof can be in the range of 16-28 ppm/°C. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、金属箔上にポリイミド樹脂からなる絶縁層を設けたフレキシブル積層板の製造方法に関するものである。   The present invention relates to a method for manufacturing a flexible laminate in which an insulating layer made of a polyimide resin is provided on a metal foil.

フレキシブル積層板は、金属層と絶縁層とからなり、可とう性を有することから、柔軟性や屈曲性が要求される部分の配線基板に用いられ、電子機器の小型化、軽量化に貢献している。フレキシブル積層板の中でも、絶縁層にポリイミド樹脂を用いたものは、耐熱性や寸法安定性に優れることから、携帯電話や情報端末機等の配線基板に広く使用されている。フレキシブル積層板を製造する方法としては、金属箔にポリイミド樹脂フィルムをエポキシ樹脂等の接着剤により貼り合わせて製造する方法や金属箔上にポリイミド樹脂またはその前駆体樹脂溶液を直接塗工して製造する方法が挙げられる。特に、後者により得られるものは、接着剤起因の特性低下がなく、ポリイミド系樹脂の特性を生かしたフレキシブル積層板となる。(例えば、特許文献1参照。)   A flexible laminate consists of a metal layer and an insulating layer and has flexibility, so it is used for wiring boards where flexibility and flexibility are required, contributing to the downsizing and weight reduction of electronic devices. ing. Among flexible laminates, those using a polyimide resin as an insulating layer are widely used for wiring boards of cellular phones, information terminals, and the like because of their excellent heat resistance and dimensional stability. As a method of manufacturing a flexible laminate, a method of manufacturing a polyimide foil by bonding a polyimide resin film to a metal foil with an adhesive such as an epoxy resin or a method of manufacturing by directly applying a polyimide resin or its precursor resin solution on a metal foil The method of doing is mentioned. In particular, what is obtained by the latter is a flexible laminate that takes advantage of the characteristics of a polyimide-based resin without causing deterioration in characteristics due to the adhesive. (For example, refer to Patent Document 1.)

近年、携帯電子機器の小型化、軽量化は、益々進行しており、機器内の非常に狭い空間に配線基板を折り曲げて実装しなければならない。そのため、フレキシブル積層板に対しては、より柔軟で折り曲げが容易であることが要求される。フレキシブル積層板の折り曲げ性を向上させる方法としては、金属箔や絶縁層を薄くすること、絶縁層の引張り弾性率を低下させること等が挙げられる。このうち、絶縁層として有用なポリイミド樹脂の引張り弾性率を低下させるには、一般的に、ポリイミドの分子主鎖中に屈曲可能なエーテル結合やメチレン結合などを導入することが考えられる。例えば、4、4´−オキシジアニリン(ODA)を原料モノマーの一種としてポリイミド前駆体樹脂を合成し、それをイミド化することで、引張り弾性率の低いポリイミド樹脂の絶縁層を得ることができる(例えば、特許文献2、3、4参照。)。   In recent years, portable electronic devices are becoming smaller and lighter, and a wiring board must be bent and mounted in a very narrow space in the device. Therefore, the flexible laminate is required to be more flexible and easy to bend. Examples of methods for improving the bendability of the flexible laminate include thinning the metal foil and the insulating layer, and reducing the tensile elastic modulus of the insulating layer. Among these, in order to lower the tensile modulus of the polyimide resin useful as an insulating layer, it is generally considered to introduce a bendable ether bond or methylene bond into the molecular main chain of polyimide. For example, by synthesizing a polyimide precursor resin using 4,4′-oxydianiline (ODA) as a raw material monomer and imidizing it, an insulating layer of a polyimide resin having a low tensile elastic modulus can be obtained. (For example, see Patent Documents 2, 3, and 4.)

しかしながら、これらの特許文献に記載されたポリイミド樹脂の単層フィルムでは、金属箔上に塗布もしくはラミネートしてフレキシブル積層板とした際に、十分なポリイミドと金属層間の接着強度を得ることが困難である。上記の問題を解決する方法としては、ポリイミド樹脂層を多層化し、金属箔に接する側に、金属箔との接着性が良好な熱可塑性のポリイミド系樹脂層を設け、その熱可塑性ポリイミド樹脂層の外側(金属箔とは反対側)に弾性率の低いポリイミド系樹脂層を形成する手法を挙げることができる。
特許3034838号公報 特開2003−109989号公報 特開2003−192788号公報 特許3523952号公報
However, it is difficult to obtain sufficient adhesive strength between the polyimide and the metal layer when the polyimide resin single-layer film described in these patent documents is applied or laminated on a metal foil to form a flexible laminate. is there. As a method for solving the above problem, a polyimide resin layer is multilayered, and a thermoplastic polyimide resin layer having good adhesion to the metal foil is provided on the side in contact with the metal foil. A method of forming a polyimide resin layer having a low elastic modulus on the outer side (the side opposite to the metal foil) can be mentioned.
Japanese Patent No. 3034838 JP 2003-109989 A JP 2003-192788 A Japanese Patent No. 3523952

しかし、このように熱可塑性ポリイミド樹脂を用いて絶縁層を多層化した場合、一般的に、絶縁層全体の熱膨張係数は高くなり、フレキシブル積層板の寸法安定性が悪化する。フレキシブル積層板としての使用に耐えうる、十分な寸法安定性を維持するためには、樹脂溶液を塗布した後の加熱処理時間を長くしなければならず、生産性が低下するといった問題がある。   However, when the insulating layer is multilayered using the thermoplastic polyimide resin as described above, generally, the thermal expansion coefficient of the entire insulating layer is increased, and the dimensional stability of the flexible laminate is deteriorated. In order to maintain sufficient dimensional stability that can withstand use as a flexible laminate, the heat treatment time after application of the resin solution must be lengthened, resulting in reduced productivity.

本発明は、係る問題点を解決すべく検討した結果なされたものであり、フレキシブル積層板の製造工程において、ポリイミド前駆体樹脂溶液を導電性金属箔上に塗布した後の加熱工程で必要となる処理時間が短く、引張り弾性率が低く折り曲げ性に優れ、更に寸法安定性に優れたフレキシブル積層板を提供することを目的とする。   This invention is made | formed as a result of examining in order to solve the problem which concerns, and becomes a heating process after apply | coating a polyimide precursor resin solution on electroconductive metal foil in the manufacturing process of a flexible laminated board. An object is to provide a flexible laminate having a short treatment time, a low tensile elastic modulus, excellent bendability, and excellent dimensional stability.

本発明者等は、上記の課題を解決するため検討を重ねた結果、塗工法によるフレキシブル積層板の製造方法において、ポリイミド前駆体樹脂溶液を塗布した後の加熱処理工程を特定の条件とすることで、絶縁層の特性を制御し得ることを見出し、本発明を完成するに至った。すなわち、本発明は、ポリイミド前駆体樹脂溶液を導電性金属箔上に塗布し、加熱処理することによりポリイミド前駆体樹脂溶液を乾燥及び硬化するフレキシブル積層板の製造方法において、加熱処理における90℃以上の合計加熱時間が5〜25分の範囲であって、90℃以上、200℃以下での加熱時間と200℃を超える温度での加熱時間の割合を9:1〜7:3とし、導電性金属箔上に形成されたポリイミド樹脂層の引張り弾性率を3〜6GPa、熱膨張係数を16〜28ppm/℃の範囲に制御することを特徴とするフレキシブル積層板の製造方法である。   As a result of repeated studies to solve the above-mentioned problems, the present inventors set the heat treatment step after applying the polyimide precursor resin solution as a specific condition in the method for producing a flexible laminate by a coating method. Thus, the inventors have found that the characteristics of the insulating layer can be controlled, and have completed the present invention. That is, the present invention applies a polyimide precursor resin solution onto a conductive metal foil and heat-treats the polyimide precursor resin solution to dry and cure the polyimide laminate resin solution. The ratio of the heating time at 90 ° C. or more and 200 ° C. or less and the heating time at a temperature exceeding 200 ° C. is 9: 1 to 7: 3, and the conductivity is 5 to 25 minutes. It is a method for producing a flexible laminate, wherein the polyimide resin layer formed on the metal foil has a tensile elastic modulus of 3 to 6 GPa and a thermal expansion coefficient of 16 to 28 ppm / ° C.

本発明によれば、折り曲げ性と寸法安定性が優れるフレキシブル積層板を、短い加熱処理時間で製造することができ、このような優れた特性を有するフレキシブル積層板の生産性を高める効果がある。   ADVANTAGE OF THE INVENTION According to this invention, the flexible laminated board which is excellent in a bendability and dimensional stability can be manufactured in short heat processing time, and there exists an effect which improves the productivity of the flexible laminated board which has such an outstanding characteristic.

以下、本発明を詳細に説明する。
本発明で製造されるフレキシブル積層板は、導電性金属箔(以下、単に金属箔ともいう。)上にポリイミド樹脂層を有する。そして、金属箔上へのポリイミド樹脂層の形成は、金属箔上にポリイミド前駆体樹脂溶液を塗布し、乾燥、硬化の加熱処理を行うことで、前記ポリイミド前駆体をポリイミドに変換することで行われる。そして、製造されたフレキシブル積層板のポリイミド樹脂層は、その引張り弾性率が3〜6GPa、熱膨張係数が16〜28ppm/℃の範囲にある。なお、本発明でいうポリイミド樹脂とは、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリシロキサンイミド等の分子構造中にイミド基を有するポリマーからなる樹脂をいう。
Hereinafter, the present invention will be described in detail.
The flexible laminated board manufactured by this invention has a polyimide resin layer on electroconductive metal foil (henceforth only metal foil). And the formation of the polyimide resin layer on the metal foil is performed by applying the polyimide precursor resin solution on the metal foil and performing the drying and curing heat treatment to convert the polyimide precursor to polyimide. Is called. And the polyimide resin layer of the manufactured flexible laminated board has the tensile elasticity modulus in the range of 3-6 GPa, and a thermal expansion coefficient in 16-28 ppm / degreeC. In addition, the polyimide resin as used in the field of this invention means resin which consists of a polymer which has an imide group in molecular structures, such as a polyimide, polyamideimide, polyetherimide, polysiloxaneimide.

本発明で使用される導電性金属箔には、銅、アルミニウム、ステンレス、鉄、銀、パラジウム、ニッケル、コバルト、クロム、モリブデン、タングステンまたはそれらの合金を構成元素とする金属箔を挙げることができる。金属箔の中でも、銅箔または合金銅箔が好ましい。金属箔の厚みは、5〜35μmの範囲が好ましく、9〜18μmの範囲がより好ましい。金属箔が35μmより厚いと、積層板が硬くなり屈曲性や折り曲げ性が悪くなる。金属箔が5μmより薄いと、積層板の製造工程において、張力等の調整が困難となり、皺等の不良が発生し易くなる。また、これらの金属箔は、接着力等の向上を目的として、その表面に化学的あるいは機械的な表面処理を施しても良い。   Examples of the conductive metal foil used in the present invention include metal foils containing copper, aluminum, stainless steel, iron, silver, palladium, nickel, cobalt, chromium, molybdenum, tungsten, or alloys thereof as constituent elements. . Among metal foils, copper foil or alloy copper foil is preferable. The thickness of the metal foil is preferably in the range of 5 to 35 μm, more preferably in the range of 9 to 18 μm. When the metal foil is thicker than 35 μm, the laminated plate becomes hard and the flexibility and bendability deteriorate. When the metal foil is thinner than 5 μm, it is difficult to adjust the tension and the like in the manufacturing process of the laminate, and defects such as wrinkles are likely to occur. In addition, these metal foils may be subjected to chemical or mechanical surface treatment on the surface for the purpose of improving adhesive strength or the like.

本発明で用いられるポリイミド前駆体樹脂溶液は、公知の方法で製造することができる。例えば、テトラカルボン酸二無水物とジアミン化合物をほぼ等モル有機溶媒中に溶解させて、0〜100℃で30分〜24時間攪拌し反応させることにより得られる。重合する際に用いる有機溶媒については、N, N−ジメチルホルムアミド、N, N−ジメチルアセトアミド、N−メチル−N−ピロリドン、ジメチルスルフォキシド、硫酸ジメチル、フェノール、ハロゲン化フェノール、シクロヘキサノン、ジオキサン、テトラヒドロフラン、ジグライム、トリグライム等が挙げられる。これらを2種類以上併用して使用することもできる。ポリイミド前駆体樹脂溶液の粘度は、500cP〜100000cPの範囲であることが好ましい。この範囲を外れると、コーター等による塗工作業の際にフィルムに厚みムラ、スジ等の不良が発生し易くなる。   The polyimide precursor resin solution used in the present invention can be produced by a known method. For example, it can be obtained by dissolving tetracarboxylic dianhydride and diamine compound in an approximately equimolar organic solvent, and stirring and reacting at 0 to 100 ° C. for 30 minutes to 24 hours. As for the organic solvent used for polymerization, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-N-pyrrolidone, dimethyl sulfoxide, dimethyl sulfate, phenol, halogenated phenol, cyclohexanone, dioxane, Tetrahydrofuran, diglyme, triglyme and the like can be mentioned. Two or more of these can be used in combination. The viscosity of the polyimide precursor resin solution is preferably in the range of 500 cP to 100,000 cP. If it is out of this range, defects such as uneven thickness and streaks are likely to occur in the film during coating by a coater or the like.

使用するテトラカルボン酸二無水物とジアミン化合物については、本発明のフレキシブル積層板のポリイミド樹脂層の特性に応じて、それぞれその1種又は2種以上を適宜選択して使用することができる。本発明においては、ポリイミド樹脂層の引張り弾性率を3〜6GPaの範囲にし、かつ、熱膨張係数を16〜28ppm/℃の範囲とすることが必要であるが、フレキシブル積層板とした際の金属箔とポリイミド樹脂層との接着性を良好なものとするためには、ポリイミド樹脂層を複数層とすることが好ましい。   About the tetracarboxylic dianhydride and diamine compound to be used, the 1 type (s) or 2 or more types can each be selected suitably according to the characteristic of the polyimide resin layer of the flexible laminated board of this invention. In the present invention, it is necessary that the tensile modulus of the polyimide resin layer is in the range of 3 to 6 GPa and the thermal expansion coefficient is in the range of 16 to 28 ppm / ° C. In order to improve the adhesiveness between the foil and the polyimide resin layer, the polyimide resin layer is preferably a plurality of layers.

ポリイミド樹脂層を複数層とする場合、金属箔と接する層は、熱膨張係数が30ppm/℃以上の高熱膨張係数ポリイミド樹脂層とすることが好ましい。高熱膨張係数ポリイミド樹脂層としては、一般式(1)で表される構造単位を有することが好ましい。

Figure 2007268892
式中、R1は下記構造式(2)及び(3)で表される基から選択される少なくとも1種の基であり、R2は下記(4)及び(5)で表される基から選択される少なくとも1種の基である。また、下記構造式(4)中、Xは−SO2−、−CO−及び直結合のいずれかである。
Figure 2007268892
In the case where a plurality of polyimide resin layers are used, the layer in contact with the metal foil is preferably a high thermal expansion coefficient polyimide resin layer having a thermal expansion coefficient of 30 ppm / ° C. or higher. The high thermal expansion coefficient polyimide resin layer preferably has a structural unit represented by the general formula (1).
Figure 2007268892
In the formula, R 1 is at least one group selected from the groups represented by the following structural formulas (2) and (3), and R 2 is a group represented by the following (4) and (5). At least one group selected. In the following structural formula (4), X is any of —SO 2 —, —CO—, and a direct bond.
Figure 2007268892

ポリイミド樹脂層を複数層とする場合、上記高熱膨張係数ポリイミド樹脂層の外側(金属箔とは反対側)に隣接して、引張り弾性率が4〜8GPaのベースポリイミド樹脂層を設けることが好ましい。ベースポリイミド樹脂層としては、一般式(6)で表される構造単位を有するものが好ましい。

Figure 2007268892
式中、R3は、−CH3、−C2H5、−OCH3、−OC2H5のいずれかの置換基である。好ましくは、R3は−CH3である。また、式中、x、yは、それぞれの構成単位の構成比率を表し、xは0.4〜0.6の範囲、yは0.6〜0.4の範囲とすることが好ましく、x+y=1である。xとyの割合において、xが0.4より小さくなると、ポリイミド樹脂の熱膨張係数が大きくなり、フレキシブル積層板とした際の寸法安定性が低下したり、積層板のカールが生じやすくなる傾向にある。一方、xが0.6より大きくなると、ポリイミドの引張り弾性率が大きくなり、フレキシブル積層板とした際の折り曲げ性が低下する傾向にある。 When making a polyimide resin layer into multiple layers, it is preferable to provide the base polyimide resin layer whose tensile elasticity modulus is 4-8 GPa adjacent to the outer side (opposite side to metal foil) of the said high thermal expansion coefficient polyimide resin layer. As a base polyimide resin layer, what has a structural unit represented by General formula (6) is preferable.
Figure 2007268892
In the formula, R 3 is a substituent of any of —CH 3 , —C 2 H 5 , —OCH 3 , and —OC 2 H 5 . Preferably R 3 is —CH 3 . In the formula, x and y represent the constituent ratio of each constituent unit, x is preferably in the range of 0.4 to 0.6, and y is preferably in the range of 0.6 to 0.4, x + y = 1. When x is smaller than 0.4 in the ratio of x and y, the thermal expansion coefficient of the polyimide resin increases, and the dimensional stability of the flexible laminated board tends to decrease, or the laminated board tends to curl. It is in. On the other hand, when x is larger than 0.6, the tensile elastic modulus of the polyimide is increased, and the bending property of the flexible laminate tends to be lowered.

ポリイミド樹脂層を複数層とした場合のフレキシブル積層板の層構成としては、金属箔上に高熱膨張係数ポリイミド樹脂層を設け、その上にベースポリイミド樹脂層を順次積層する構成が好ましい。より好ましい層構成は、金属箔/高熱膨張係数ポリイミド樹脂層/ベースポリイミド樹脂層/高熱膨張係数ポリイミド樹脂層である。このようにして、ポリイミド樹脂層の片側に金属箔を有する片面フレキシブル積層板を作製した後、樹脂面側、好ましくは高熱膨張係数ポリイミド樹脂層に対して、金属箔を加熱圧着することで、ポリイミド樹脂層の両面に金属箔を有する両面フレキシブル積層板とすることもできる。   As a layer structure of the flexible laminate in the case where a plurality of polyimide resin layers are used, a structure in which a high thermal expansion coefficient polyimide resin layer is provided on a metal foil and a base polyimide resin layer is sequentially laminated thereon is preferable. A more preferable layer configuration is metal foil / high thermal expansion coefficient polyimide resin layer / base polyimide resin layer / high thermal expansion coefficient polyimide resin layer. Thus, after producing the single-sided flexible laminated board which has metal foil on the one side of a polyimide resin layer, it is polyimide by thermocompression-bonding metal foil with respect to the resin surface side, Preferably it is a high thermal expansion coefficient polyimide resin layer. It can also be set as the double-sided flexible laminated board which has metal foil on both surfaces of a resin layer.

本発明においては、金属箔上へのポリイミド前駆体樹脂溶液を塗布、加熱処理する製造方法を採用するが、その製造工程での乾燥及び硬化工程での90℃以上の合計加熱時間を5〜25分とすることが必要である。ここで、合計加熱時間が5分より短いと、ポリイミド樹脂に発泡等の不良が発生し易くなる。逆に、合計加熱時間が25分を超えると、フレキシブル積層板の生産性が悪くなる。また、乾燥及び硬化工程での合計加熱時間における、90℃以上200℃以下での加熱時間と200℃を超える温度での加熱時間の割合を9:1〜7:3とすることが必要である。90℃以上であって200℃より低い温度での加熱時間の割合が、合計加熱時間の70%に満たないとポリイミド層の熱膨張係数が大きくなり、フレキシブル積層板の寸法安定性が低下したり、積層板がカールしたりする。逆に、200℃より低い温度での加熱時間の割合が、合計加熱時間の90%を越えると、200℃を超える温度での加熱処理の際に昇温速度が大きくなり過ぎ、ポリイミドに発泡等の不良が発生し易くなる。なお、ポリイミド樹脂層を複数層で構成する場合には、各層ごとに塗布したポリイミド前駆体樹脂溶液を乾燥する時間を合計し、更にこれらを硬化させる時間を加算して加熱時間を求めるものとする。また、200℃を超える加熱温度については、ポリイミド樹脂層の劣化が始まるのでその上限は450℃とするがのよい。   In this invention, although the manufacturing method which apply | coats and heat-processes the polyimide precursor resin solution on metal foil is employ | adopted, the total heating time of 90 degreeC or more in the drying and hardening process in the manufacturing process is 5-25. It is necessary to make minutes. Here, if the total heating time is shorter than 5 minutes, defects such as foaming are likely to occur in the polyimide resin. Conversely, when the total heating time exceeds 25 minutes, the productivity of the flexible laminate is deteriorated. Moreover, it is necessary to set the ratio of the heating time at 90 ° C. or more and 200 ° C. or less and the heating time at a temperature exceeding 200 ° C. in the total heating time in the drying and curing steps to 9: 1 to 7: 3. . If the ratio of the heating time at a temperature of 90 ° C. or higher and lower than 200 ° C. is less than 70% of the total heating time, the thermal expansion coefficient of the polyimide layer increases and the dimensional stability of the flexible laminate decreases. The laminated board curls. On the other hand, if the ratio of the heating time at a temperature lower than 200 ° C. exceeds 90% of the total heating time, the rate of temperature increase becomes too high during the heat treatment at a temperature exceeding 200 ° C. It is easy for defects to occur. When the polyimide resin layer is composed of a plurality of layers, the time for drying the polyimide precursor resin solution applied for each layer is totaled, and the time for curing these is added to determine the heating time. . Moreover, about the heating temperature over 200 degreeC, since the deterioration of a polyimide resin layer starts, the upper limit is good to set it as 450 degreeC.

フレキシブル積層板におけるポリイミド樹脂層の厚みは、5〜40μmの範囲が好ましい。より好ましくは、8〜35μmである。ポリイミド樹脂層の厚みが5μmより薄いと、絶縁層としての強度が弱く、フレキシブル積層板の加工時にフィルムの破れ等が起こり易くなる。逆に、厚みが40μmより厚いと、フィルムが折り曲げにくくなり、フレキシブル積層板の折曲げ性が低下する。ポリイミド樹脂層を複数層とした場合の、ベースポリイミド樹脂層と高熱膨張係数ポリイミド樹脂層の好ましい比率は、それぞれの合計厚みを基準として、ベースポリイミド樹脂層/高熱膨張係数ポリイミド樹脂層は、1〜40好ましくは、2〜30である。   The thickness of the polyimide resin layer in the flexible laminate is preferably in the range of 5 to 40 μm. More preferably, it is 8-35 micrometers. When the thickness of the polyimide resin layer is less than 5 μm, the strength as an insulating layer is weak, and film breakage or the like easily occurs during processing of the flexible laminate. On the other hand, if the thickness is greater than 40 μm, the film is difficult to bend and the bendability of the flexible laminate is lowered. The preferred ratio of the base polyimide resin layer and the high thermal expansion coefficient polyimide resin layer when the polyimide resin layer is a plurality of layers is based on the total thickness of each base polyimide resin layer / high thermal expansion coefficient polyimide resin layer, 40 is preferably 2-30.

本発明のフレキシブル積層板の製造方法において、ポリイミド樹脂層の引張り弾性率は3〜6GPaとすることが必要であり、同時に、その熱膨張係数を16〜28ppm/℃とすることが必要である。ポリイミド樹脂層の引張り弾性率の好ましい範囲は、3.5〜5.5GPaである。引張り弾性率が3GPaより低くなるとフレキシブル積層板の加工時において取り扱いが困難となり、6GPaより高くなるとフレキシブル積層板の折り曲げ性が低下する。ポリイミド樹脂層の熱膨張係数の好ましい範囲は、17〜27pm/℃である。ポリイミド樹脂層の熱膨張係数がこの範囲を外れると、銅箔の熱膨張係数との差が大きくなるため、フレキシブル積層板の寸法変化が大きくなり、更に積層板にカールが生じてしまう。ポリイミド樹脂層の引張り弾性率と熱膨張係数を上記範囲に制御するには、ポリイミド樹脂層を構成する構成単位に適したものを選択するとともに、上記加熱処理条件を調整することで、効率的にフレキシブル積層板を製造することが可能である。   In the manufacturing method of the flexible laminated board of this invention, the tensile elasticity modulus of a polyimide resin layer needs to be 3-6 GPa, and it is necessary to make the thermal expansion coefficient into 16-28 ppm / degreeC simultaneously. A preferable range of the tensile elastic modulus of the polyimide resin layer is 3.5 to 5.5 GPa. When the tensile elastic modulus is lower than 3 GPa, handling becomes difficult during processing of the flexible laminate, and when it is higher than 6 GPa, the bendability of the flexible laminate is lowered. A preferable range of the thermal expansion coefficient of the polyimide resin layer is 17 to 27 pm / ° C. When the thermal expansion coefficient of the polyimide resin layer is out of this range, the difference from the thermal expansion coefficient of the copper foil becomes large, so that the dimensional change of the flexible laminated board becomes large, and further, the laminated board is curled. In order to control the tensile elastic modulus and thermal expansion coefficient of the polyimide resin layer within the above ranges, it is possible to efficiently select the unit suitable for the structural unit constituting the polyimide resin layer and adjust the heat treatment conditions. It is possible to manufacture flexible laminates.

以下、本発明を実施例により詳細に説明する。また、実施例中に用いられる略号は、次の通りである。
DMAc: N、N−ジメチルアセトアミド
m−TB: 2,2´−ジメチル−4,4´−ジアミノビフェニル
ODA : 4,4´−ジアミノジフェニルエーテル
BAPP: 2,2´−ビス(4−アミノフェノキシフェニル)プロパン
PMDA: 無水ピロメリット酸
BPDA: 3,3´,4,4´−ビフェニルテトラカルボン酸二無水物
Hereinafter, the present invention will be described in detail with reference to examples. The abbreviations used in the examples are as follows.
DMAc: N, N-dimethylacetamide m-TB: 2,2'-dimethyl-4,4'-diaminobiphenyl
ODA: 4,4'-diaminodiphenyl ether
BAPP: 2,2'-bis (4-aminophenoxyphenyl) propane
PMDA: pyromellitic anhydride
BPDA: 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride

実施例におけるポリイミド樹脂層の引張り弾性率と熱膨張係数の評価は、以下の方法による。
引張り弾性率: 東洋精機(株)製ストログラフR-1を用いて測定した。(IPC-TM-650, 2.4.19に準拠。)
熱膨張係数: セイコーインスツルメンツ(株)製熱分析装置TMA-100を用いて、255℃まで昇温し更にその温度で10分保持した後、5℃/分の速度で冷却して240℃から100℃までの平均熱膨張率(熱膨張係数)を求めた。
Evaluation of the tensile elastic modulus and thermal expansion coefficient of the polyimide resin layer in the examples is based on the following method.
Tensile elastic modulus: Measured using a Strograph R-1 manufactured by Toyo Seiki Co., Ltd. (Conforms to IPC-TM-650, 2.4.19.)
Coefficient of thermal expansion: Using a thermal analyzer TMA-100 manufactured by Seiko Instruments Inc., the temperature was raised to 255 ° C. and held at that temperature for 10 minutes, and then cooled at a rate of 5 ° C./minute and 240 ° C. to 100 ° C. The average thermal expansion coefficient (thermal expansion coefficient) up to ° C. was determined.

[合成例1]
セパラブルフラスコ中のDMAcに、m-TB6当量及びODA4当量を、室温下で攪拌して溶解させた。次に、PMDA9.86当量を加えた。その後、約3時間攪拌を続けて重合反応を行い、ポリイミド前駆体樹脂溶液aを得た。尚、DMAcは、m-TB、ODA及びPMDAの仕込み濃度が16重量%となる量を使用した。調製したポリイミド前駆体樹脂溶液aを銅箔(日鉱マテリアルズ株式会社製銅箔BHY−22B−T、18μm厚み。以下で単に銅箔という場合、この銅箔をいう。)上に260μmの厚みで均一に塗布し、125℃で3分間加熱乾燥し,溶媒を除去した。その後、130℃〜200℃の温度範囲で8分30秒、201℃〜360℃の温度範囲で3分30秒間加熱処理しイミド化反応を進行させ、約28μm厚のポリイミド層が銅箔上に形成された積層体を得た。その積層体の銅箔層をエッチング処理により除去し、ポリイミドフィルムを得た。得られたポリイミドフィルムの引張り弾性率と熱膨張係数を測定したところ、それぞれ6.8GPa、12.6ppm/℃であった。
[Synthesis Example 1]
In DMAc in a separable flask, 6 equivalents of m-TB and 4 equivalents of ODA were dissolved by stirring at room temperature. Next, 9.86 equivalents of PMDA were added. Thereafter, stirring was continued for about 3 hours to carry out a polymerization reaction to obtain a polyimide precursor resin solution a. DMAc was used in such an amount that the charged concentration of m-TB, ODA and PMDA was 16% by weight. The prepared polyimide precursor resin solution a is coated on a copper foil (Nikko Materials Co., Ltd., copper foil BHY-22B-T, 18 μm thickness. In the following, when simply referred to as copper foil, this copper foil is referred to) with a thickness of 260 μm. The solution was uniformly applied and dried by heating at 125 ° C. for 3 minutes to remove the solvent. Then, the heat treatment was carried out at a temperature range of 130 ° C. to 200 ° C. for 8 minutes and 30 seconds, and a temperature range of 201 ° C. to 360 ° C. for 3 minutes and 30 seconds to advance the imidization reaction. A formed laminate was obtained. The copper foil layer of the laminate was removed by etching treatment to obtain a polyimide film. When the tensile modulus and thermal expansion coefficient of the obtained polyimide film were measured, they were 6.8 GPa and 12.6 ppm / ° C., respectively.

[合成例2]
m-TBを5当量、ODAを5当量使用した以外は、合成例1と同様の方法で重合反応を行い、ポリイミド前駆体樹脂溶液bを得た。調製したポリイミド前駆体樹脂溶液bを使用し、合成例1と同様の方法でポリイミドフィルムを得、引張り弾性率と熱膨張係数を測定したところ、それぞれ5.9GPa、17.1ppm/℃であった。
[Synthesis Example 2]
Except for using 5 equivalents of m-TB and 5 equivalents of ODA, a polymerization reaction was performed in the same manner as in Synthesis Example 1 to obtain a polyimide precursor resin solution b. Using the prepared polyimide precursor resin solution b, a polyimide film was obtained in the same manner as in Synthesis Example 1, and the tensile modulus and the thermal expansion coefficient were measured, and were 5.9 GPa and 17.1 ppm / ° C., respectively. .

[合成例3]
m-TBを4当量、ODAを6当量使用した以外は、合成例1と同様の方法で重合反応を行い、ポリイミド前駆体樹脂溶液cを得た。調製したポリイミド前駆体樹脂溶液cを使用し、合成例1と同様の方法でポリイミドフィルムを得、引張り弾性率と熱膨張係数を測定したところ、それぞれ5.1GPa、23.1ppm/℃であった。
[Synthesis Example 3]
Except for using 4 equivalents of m-TB and 6 equivalents of ODA, a polymerization reaction was performed in the same manner as in Synthesis Example 1 to obtain a polyimide precursor resin solution c. Using the prepared polyimide precursor resin solution c, a polyimide film was obtained by the same method as in Synthesis Example 1, and the tensile modulus and the thermal expansion coefficient were measured, and were 5.1 GPa and 23.1 ppm / ° C., respectively. .

[合成例4]
m-TBを10当量、ODAを0当量使用した以外は、合成例1と同様の方法で重合反応を行い、ポリイミド前駆体樹脂溶液dを得た。調製したポリイミド前駆体樹脂溶液dを使用し、合成例1と同様の方法でポリイミドフィルムを得、引張り弾性率と熱膨張係数を測定したところ、それぞれ13.8GPa、−5.1ppm/℃であった。
[Synthesis Example 4]
A polyimide precursor resin solution d was obtained by carrying out a polymerization reaction in the same manner as in Synthesis Example 1 except that 10 equivalents of m-TB and 0 equivalents of ODA were used. Using the prepared polyimide precursor resin solution d, a polyimide film was obtained in the same manner as in Synthesis Example 1 and the tensile modulus and thermal expansion coefficient were measured. The results were 13.8 GPa and −5.1 ppm / ° C., respectively. It was.

[合成例5]
m-TBを0当量、ODAを10当量使用した以外は、合成例1と同様の方法で重合反応を行い、ポリイミド前駆体樹脂溶液eを得た。調製したポリイミド前駆体樹脂溶液eを使用し、合成例1と同様の方法でポリイミドフィルムを得、引張り弾性率と熱膨張係数を測定したところ、それぞれ2.7GPa、43.4ppm/℃であった。
[Synthesis Example 5]
A polyimide precursor resin solution e was obtained by carrying out a polymerization reaction in the same manner as in Synthesis Example 1, except that 0 equivalent of m-TB and 10 equivalents of ODA were used. Using the prepared polyimide precursor resin solution e, a polyimide film was obtained in the same manner as in Synthesis Example 1, and the tensile modulus and the thermal expansion coefficient were measured, and were 2.7 GPa and 43.4 ppm / ° C., respectively. .

[合成例6]
セパラブルフラスコ中のDMAcに、BAPP10当量を、室温下で攪拌して溶解させた。次に、PMDA9.69当量及びBPDA0.51当量を加えた。その後、約3時間攪拌を続けて重合反応を行い、ポリイミド前駆体樹脂溶液fを得た。尚、DMAcは、BAPP、PMDA及びBPDAの仕込み濃度が12重量%となる量を使用した。調製したポリイミド前駆体樹脂溶液fを使用し、塗布厚みを350μmとした以外、合成例1と同様の方法で約28μm厚のポリイミドフィルムを得、引張り弾性率と熱膨張係数を測定したところ、それぞれ2.6GPa、50.7ppm/℃であった。
[Synthesis Example 6]
In DMAc in a separable flask, 10 equivalents of BAPP were dissolved by stirring at room temperature. Next, 9.69 equivalents of PMDA and 0.51 equivalents of BPDA were added. Thereafter, stirring was continued for about 3 hours to carry out a polymerization reaction to obtain a polyimide precursor resin solution f. DMAc was used in such an amount that the charged concentration of BAPP, PMDA and BPDA was 12% by weight. Using the prepared polyimide precursor resin solution f, except that the coating thickness was 350 μm, a polyimide film having a thickness of about 28 μm was obtained in the same manner as in Synthesis Example 1, and the tensile modulus and thermal expansion coefficient were measured. It was 2.6 GPa and 50.7 ppm / ° C.

[実施例1]
銅箔上に、合成例6で調製したポリイミド前駆体樹脂溶液fを50μmの厚みで均一に塗布し、125℃で加熱乾燥し溶媒を除去した。次に、その上に積層するように合成例1で調整したポリイミド前駆体樹脂溶液aを190μmの厚みで均一に塗布し、125℃で加熱乾燥した。更に、その上に再びポリイミド前駆体樹脂溶液fを50μmの厚みで均一に塗布し、125℃で加熱乾燥した。ここまでの加熱乾燥時間の合計は、3分間とした。その後、130℃〜200℃の温度範囲で8分30秒、201℃〜360℃の温度範囲で3分30秒間加熱処理しイミド化反応を進行させ、約28μm厚のポリイミド層が銅箔上に形成された積層体を得た。その積層体の銅箔層をエッチング処理により除去し、ポリイミドフィルムを得た。得られたポリイミドフィルムの引張り弾性率と熱膨張係数を測定し、その結果を表1に示した。
[Example 1]
On the copper foil, the polyimide precursor resin solution f prepared in Synthesis Example 6 was uniformly applied with a thickness of 50 μm, and dried by heating at 125 ° C. to remove the solvent. Next, the polyimide precursor resin solution a prepared in Synthesis Example 1 so as to be laminated thereon was uniformly applied with a thickness of 190 μm, and dried by heating at 125 ° C. Furthermore, the polyimide precursor resin solution f was uniformly applied thereon with a thickness of 50 μm, and dried by heating at 125 ° C. The total heating and drying time so far was 3 minutes. Then, the heat treatment was carried out at a temperature range of 130 ° C. to 200 ° C. for 8 minutes and 30 seconds, and a temperature range of 201 ° C. to 360 ° C. for 3 minutes and 30 seconds to advance the imidization reaction. A formed laminate was obtained. The copper foil layer of the laminate was removed by etching treatment to obtain a polyimide film. The tensile modulus and thermal expansion coefficient of the obtained polyimide film were measured, and the results are shown in Table 1.

[実施例2]
ポリイミド前駆体樹脂溶液aの換わりに溶液bを使用した以外、実施例1と同様の方法でポリイミドフィルムを得、引張り弾性率と熱膨張係数を測定した。その結果を表1に示した。
[Example 2]
A polyimide film was obtained in the same manner as in Example 1 except that the solution b was used in place of the polyimide precursor resin solution a, and the tensile modulus and thermal expansion coefficient were measured. The results are shown in Table 1.

[実施例3]
ポリイミド前駆体樹脂溶液aの換わりに溶液cを使用した以外、実施例1と同様の方法でポリイミドフィルムを得、引張り弾性率と熱膨張係数を測定した。その結果を表1に示した。
[Example 3]
A polyimide film was obtained in the same manner as in Example 1 except that the solution c was used in place of the polyimide precursor resin solution a, and the tensile modulus and thermal expansion coefficient were measured. The results are shown in Table 1.

[比較例1]
ポリイミド前駆体樹脂溶液aの換わりに溶液dを使用した以外、実施例1と同様の方法でポリイミドフィルムを得、引張り弾性率と熱膨張係数を測定した。その結果を表1に示した。
[Comparative Example 1]
A polyimide film was obtained in the same manner as in Example 1 except that the solution d was used in place of the polyimide precursor resin solution a, and the tensile modulus and thermal expansion coefficient were measured. The results are shown in Table 1.

[比較例2]
ポリイミド前駆体樹脂溶液aの換わりに溶液eを使用した以外、実施例1と同様の方法でポリイミドフィルムを得、引張り弾性率と熱膨張係数を測定した。その結果を表1に示した。
[Comparative Example 2]
A polyimide film was obtained in the same manner as in Example 1 except that the solution e was used instead of the polyimide precursor resin solution a, and the tensile modulus and thermal expansion coefficient were measured. The results are shown in Table 1.

[比較例3]
ポリイミド前駆体樹脂溶液の塗布、加熱乾燥(125℃、3分間)までを実施例1と同様の方法で行った。その後、130℃〜200℃の温度範囲で6分、201℃〜360℃の温度範囲で6分間加熱処理しイミド化反応を進行させ、約28μm厚のポリイミド層が銅箔上に形成された積層体を得た。その積層体の銅箔層をエッチング処理により除去し、ポリイミドフィルムを得た。得られたポリイミドフィルムの引張り弾性率と熱膨張係数を測定し、その結果を表1に示した。
[Comparative Example 3]
The application of the polyimide precursor resin solution and heat drying (125 ° C., 3 minutes) were performed in the same manner as in Example 1. Then, the heat treatment is performed for 6 minutes in the temperature range of 130 ° C. to 200 ° C. and for 6 minutes in the temperature range of 201 ° C. to 360 ° C. to advance the imidization reaction, and a laminate in which a polyimide layer having a thickness of about 28 μm is formed on the copper foil Got the body. The copper foil layer of the laminate was removed by etching treatment to obtain a polyimide film. The tensile modulus and thermal expansion coefficient of the obtained polyimide film were measured, and the results are shown in Table 1.

Figure 2007268892
Figure 2007268892

Claims (2)

ポリイミド前駆体樹脂溶液を導電性金属箔上に塗布し、加熱処理することによりポリイミド前駆体樹脂溶液を乾燥及び硬化するフレキシブル積層板の製造方法において、加熱処理における90℃以上の合計加熱時間が5〜25分の範囲であって、90℃以上、200℃以下での加熱時間と200℃を超える温度での加熱時間の割合を9:1〜7:3とし、導電性金属箔上に形成されたポリイミド樹脂層の引張り弾性率を3〜6GPa、熱膨張係数を16〜28ppm/℃の範囲に制御することを特徴とするフレキシブル積層板の製造方法。   In the manufacturing method of the flexible laminated board which dries and hardens a polyimide precursor resin solution by apply | coating a polyimide precursor resin solution on electroconductive metal foil, and heat-processing, the total heating time of 90 degreeC or more in heat processing is 5 The ratio of the heating time at 90 ° C. or more and 200 ° C. or less and the heating time at a temperature exceeding 200 ° C. is 9: 1 to 7: 3, and is formed on the conductive metal foil. A method for producing a flexible laminate, comprising controlling a tensile elastic modulus of the polyimide resin layer in a range of 3 to 6 GPa and a thermal expansion coefficient in a range of 16 to 28 ppm / ° C. ポリイミド樹脂層の厚みが5〜40μmの範囲で、かつ複数層からなり、少なくとも一層の熱膨張係数が30ppm/℃以上の高熱膨張係数ポリイミド樹脂層と、少なくとも一層の引張り弾性率が4〜8GPaのベースポリイミド樹脂層とを有し、導電性金属箔と接する層が高熱膨張係数ポリイミド樹脂層である請求項1記載のフレキシブル積層板の製造方法。   The polyimide resin layer has a thickness in the range of 5 to 40 μm, and is composed of a plurality of layers. At least one layer has a high coefficient of thermal expansion of 30 ppm / ° C. or higher, and at least one layer has a tensile modulus of 4 to 8 GPa. The method for producing a flexible laminate according to claim 1, wherein the layer having a base polyimide resin layer and in contact with the conductive metal foil is a high thermal expansion coefficient polyimide resin layer.
JP2006098246A 2006-03-31 2006-03-31 Method for producing flexible laminate Active JP4593509B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006098246A JP4593509B2 (en) 2006-03-31 2006-03-31 Method for producing flexible laminate
TW096110936A TWI392427B (en) 2006-03-31 2007-03-29 Manufacturing method of flexible laminated plate
KR1020070031559A KR101366043B1 (en) 2006-03-31 2007-03-30 Manufacturing method of flexible laminated plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006098246A JP4593509B2 (en) 2006-03-31 2006-03-31 Method for producing flexible laminate

Publications (2)

Publication Number Publication Date
JP2007268892A true JP2007268892A (en) 2007-10-18
JP4593509B2 JP4593509B2 (en) 2010-12-08

Family

ID=38672178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006098246A Active JP4593509B2 (en) 2006-03-31 2006-03-31 Method for producing flexible laminate

Country Status (3)

Country Link
JP (1) JP4593509B2 (en)
KR (1) KR101366043B1 (en)
TW (1) TWI392427B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014195947A (en) * 2013-03-29 2014-10-16 新日鉄住金化学株式会社 Method of producing double-surface flexible metal-clad laminate sheet
WO2017065319A1 (en) * 2015-10-15 2017-04-20 新日鉄住金化学株式会社 Polyimide laminate and method for producing same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63161023A (en) * 1986-12-25 1988-07-04 Sumitomo Bakelite Co Ltd Production of flexible printed circuit board
JPH03145185A (en) * 1989-10-31 1991-06-20 Sumitomo Bakelite Co Ltd Flexible printed circuit board

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0563322A (en) * 1984-01-27 1993-03-12 Hitachi Ltd Manufacture of flexible printed board
JP4200376B2 (en) 2004-02-17 2008-12-24 信越化学工業株式会社 Flexible metal foil polyimide laminate and method for producing the same
KR100590719B1 (en) * 2004-03-05 2006-06-19 주식회사 엘지화학 The Method of Making 2-Layer Copper Clad Laminate
WO2005087480A1 (en) * 2004-03-15 2005-09-22 Kaneka Corporation Novel polyimide film and use thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63161023A (en) * 1986-12-25 1988-07-04 Sumitomo Bakelite Co Ltd Production of flexible printed circuit board
JPH03145185A (en) * 1989-10-31 1991-06-20 Sumitomo Bakelite Co Ltd Flexible printed circuit board

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014195947A (en) * 2013-03-29 2014-10-16 新日鉄住金化学株式会社 Method of producing double-surface flexible metal-clad laminate sheet
WO2017065319A1 (en) * 2015-10-15 2017-04-20 新日鉄住金化学株式会社 Polyimide laminate and method for producing same
JPWO2017065319A1 (en) * 2015-10-15 2018-08-02 新日鉄住金化学株式会社 Polyimide laminate and method for producing the same

Also Published As

Publication number Publication date
KR20070098720A (en) 2007-10-05
TWI392427B (en) 2013-04-01
KR101366043B1 (en) 2014-02-21
JP4593509B2 (en) 2010-12-08
TW200814892A (en) 2008-03-16

Similar Documents

Publication Publication Date Title
JP5180814B2 (en) Laminated body for flexible wiring board
JP4634439B2 (en) Metal laminate and manufacturing method thereof
TW588089B (en) Resin composition
JP5886027B2 (en) Double-sided metal-clad laminate and method for producing the same
JP5524475B2 (en) Two-layer double-sided flexible metal laminate and its manufacturing method
JP4699261B2 (en) Multilayer laminate and flexible copper-clad laminate
JP5858915B2 (en) Flexible circuit board for repeated bending applications, electronic devices and mobile phones using the same
WO2005063860A1 (en) Polyimide film
JP4544588B2 (en) Laminated body
JP7212515B2 (en) Metal-clad laminates and circuit boards
JP2017165909A (en) Polyimide, resin film, and metal clad laminate
JP2008531334A (en) Metal laminate and manufacturing method thereof
CN101123845B (en) Laminate for wiring board
JP4823953B2 (en) Method for producing flexible laminate
JP4571043B2 (en) Laminated body and method for producing the same
JP2007281361A (en) Polyimide printed circuit board and polyimide printed wiring board
JP4994992B2 (en) Laminate for wiring board and flexible wiring board for COF
JP4593509B2 (en) Method for producing flexible laminate
KR20060129081A (en) Flexible printed wiring board and manufacturing method thereof
JP4936729B2 (en) Flexible printed wiring board substrate and manufacturing method thereof
JP2020015237A (en) Method for manufacturing metal-clad laminate and method for manufacturing circuit board
JP4694142B2 (en) Manufacturing method of substrate for flexible printed wiring board
JP2005329641A (en) Substrate for flexible printed circuit board and its production method
JP5009714B2 (en) Laminated body for flexible wiring board and flexible wiring board for COF
TW202237765A (en) Circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100915

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4593509

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160924

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250