JP2007266167A - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device Download PDF

Info

Publication number
JP2007266167A
JP2007266167A JP2006087155A JP2006087155A JP2007266167A JP 2007266167 A JP2007266167 A JP 2007266167A JP 2006087155 A JP2006087155 A JP 2006087155A JP 2006087155 A JP2006087155 A JP 2006087155A JP 2007266167 A JP2007266167 A JP 2007266167A
Authority
JP
Japan
Prior art keywords
oxide film
silicon nitride
nitride film
trench
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006087155A
Other languages
Japanese (ja)
Inventor
Keiichi Hashimoto
圭市 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Miyagi Oki Electric Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Miyagi Oki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd, Miyagi Oki Electric Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP2006087155A priority Critical patent/JP2007266167A/en
Publication of JP2007266167A publication Critical patent/JP2007266167A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To excellently mitigate electrolysis convergence by allowing an AC edge to be gentle and preventing the generation of a divot in the upper end section of a trench. <P>SOLUTION: A method for manufacturing a semiconductor device includes: a process for forming a first oxide film on a semiconductor substrate; a process for forming a silicon nitride film on the first oxide film; a process for forming an opening part to reach the semiconductor substrate by etching the first oxide film and the silicon nitride film; a process for forming a second oxide film on the semiconductor substrate in the opening part, the surface of the silicon nitride film, and a side surface in the opening of the silicon nitride film by radical oxidation; a process for removing the second oxide film on the semiconductor substrate in the opening part and the surface of the silicon nitride film; a process for forming a groove (the trench) on a silicon substrate by defining the silicon nitride film and the second oxide film of the side wall of the silicon nitride film as a mask; and a process for forming a third oxide film in the groove part. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、半導体装置における素子分離であるSTI(Shallow Trench
Isolation)を形成する方法に関する。
The present invention relates to STI (Shallow Trench) which is element isolation in a semiconductor device.
Isolation).

従来、半導体装置の製造方法工程の中で素子分離領域の形成方法として主にLOCOS(local oxidation of silicon)法が用いられていた。しかしながら、LOCOS法ではバーズビークによる寸法変換差が大きい。このため、素子の微細化が困難であり、素子の高密度化の妨げとなっている。   Conventionally, a LOCOS (local oxidation of silicon) method has been mainly used as a method for forming an element isolation region in a manufacturing process of a semiconductor device. However, the LOCOS method has a large dimensional conversion difference due to bird's beaks. For this reason, it is difficult to miniaturize the element, which hinders high density of the element.

そこで近年では、溝に素子分離用絶縁膜を埋め込むトレンチ分離法が用いられている。この方法によれば、素子間の最小分離幅を0.2μm以下にすることができるため、高密度LSIの製造が可能となる。   In recent years, therefore, a trench isolation method in which an element isolation insulating film is embedded in a trench has been used. According to this method, since the minimum separation width between elements can be reduced to 0.2 μm or less, a high-density LSI can be manufactured.

図6〜図8は従来のトレンチ分離法による半導体装置の製造方法に関する工程を説明するための断面図である。まず、図6(A)に示すように、半導体基板1の表面に保護酸化膜2およびシリコン窒化膜3を成長させる。   6 to 8 are cross-sectional views for explaining steps relating to a method of manufacturing a semiconductor device by a conventional trench isolation method. First, as shown in FIG. 6A, a protective oxide film 2 and a silicon nitride film 3 are grown on the surface of the semiconductor substrate 1.

次に、図6(B)に示すように、リソグラフィー技術によってレジストマスク(不図示)をシリコン窒化膜3上に形成した後、レジストマスクに覆われていない領域のシリコン窒化膜3および保護酸化膜2をエッチングする。   Next, as shown in FIG. 6B, after a resist mask (not shown) is formed on the silicon nitride film 3 by lithography, the silicon nitride film 3 and the protective oxide film in a region not covered with the resist mask are formed. 2 is etched.

次に、図6(C)に示すように、シリコン窒化膜3で覆われていない領域の半導体基板1をエッチングし、トレンチ4を形成する。   Next, as shown in FIG. 6C, the semiconductor substrate 1 in a region not covered with the silicon nitride film 3 is etched to form a trench 4.

次に、図7(D)に示すように、半導体基板1の表面を酸化し、それによって、トレンチ4の側面および底面にトレンチ内保護酸化膜5を形成する。   Next, as shown in FIG. 7D, the surface of the semiconductor substrate 1 is oxidized, thereby forming the in-trench protective oxide film 5 on the side and bottom surfaces of the trench 4.

次に、図7(E)に示すように、高密度プラズマを用いたCVD(chemical vapor deposition)法によって、シリコン酸化膜6を半導体基板1上に堆積する。このとき、シリコン酸化膜6はトレンチ4の内側を完全に埋め込むように形成される。   Next, as shown in FIG. 7E, a silicon oxide film 6 is deposited on the semiconductor substrate 1 by a CVD (chemical vapor deposition) method using high density plasma. At this time, the silicon oxide film 6 is formed so as to completely fill the inside of the trench 4.

次に、図8(F)に示すように、化学的機械的研磨法(CMP)もしくはエッチバック法などを用いて、シリコン酸化膜6の表面を平坦化する。平坦化は、シリコン窒化膜3が完全に露出するまで行う。   Next, as shown in FIG. 8F, the surface of the silicon oxide film 6 is planarized by using a chemical mechanical polishing method (CMP) or an etch back method. The planarization is performed until the silicon nitride film 3 is completely exposed.

次に、図8(G)に示すように、加熱した燐酸水溶液などでシリコン窒化膜3を除去する。   Next, as shown in FIG. 8G, the silicon nitride film 3 is removed with a heated phosphoric acid aqueous solution or the like.

次に、図8(H)に示すように、保護酸化膜2をバッファードフッ酸水溶液などでウエットエッチングすることによって、トレンチ分離構造が完成する。なお、保護酸化膜2のエッチング前に、半導体基板1に不純物拡散層(不図示)を形成することもある。   Next, as shown in FIG. 8H, the protective oxide film 2 is wet-etched with a buffered hydrofluoric acid aqueous solution or the like, thereby completing the trench isolation structure. An impurity diffusion layer (not shown) may be formed in the semiconductor substrate 1 before the protective oxide film 2 is etched.

トレンチ分離構造完成後は、ゲート酸化膜やゲート電極形成など、半導体素子を形成するための公知の工程が実行される。ゲート電極を形成するには、ゲート酸化膜およびゲート電極用ポリシリコンを半導体基板1の表面に成長させる。次に、リソグラフィー技術によってレジストマスク(不図示)をゲート電極用ポリシリコン上に形成した後、レジストマスクに覆われていない領域のゲート電極用ポリシリコンおよびゲート酸化膜をエッチングすることによって、ゲート電極が完成する。   After the trench isolation structure is completed, known processes for forming a semiconductor element such as a gate oxide film and a gate electrode are performed. In order to form the gate electrode, a gate oxide film and gate electrode polysilicon are grown on the surface of the semiconductor substrate 1. Next, after a resist mask (not shown) is formed on the gate electrode polysilicon by lithography, the gate electrode polysilicon and the gate oxide film in a region not covered with the resist mask are etched to form the gate electrode. Is completed.

しかしながら、従来方法で形成したSTIでは、図8(H)に示す様に、ACエッジが急峻でストレスが高く、後の工程で形成されるゲート酸化膜にThinningが発生し、エッジでの耐圧特性が劣化するという問題があった。また、同図に示す様に、熱酸化膜とHDP酸化膜のエッチングレート(HFレート)差に起因するディボット7がSTIエッジで発生し、ゲートポリシリコン電極加工(ドライエッチング)時に、このディボット7に溜まったポリシリコンを除去するのが困難であった。ディボット7にポリシリコンが残っていると、ゲート電極に電圧を印加したときに、ディボット7内のポリシリコンに電界が集中し、ゲート酸化膜に電流が流れやすくなり、ゲート電極が短絡してしまうといった不具合が発生していた。   However, in the STI formed by the conventional method, as shown in FIG. 8 (H), the AC edge is steep and stress is high, and thinning occurs in the gate oxide film formed in a later process, and the breakdown voltage characteristic at the edge There was a problem of deterioration. In addition, as shown in the figure, a divot 7 caused by the difference in the etching rate (HF rate) between the thermal oxide film and the HDP oxide film is generated at the STI edge, and this divot 7 is generated during gate polysilicon electrode processing (dry etching). It was difficult to remove the polysilicon accumulated in the substrate. If polysilicon remains in the divot 7, when a voltage is applied to the gate electrode, the electric field concentrates on the polysilicon in the divot 7, current easily flows through the gate oxide film, and the gate electrode is short-circuited. Such a problem occurred.

そこで、特許文献1及び特許文献2に示されているように、LOCOS酸化膜を形成した後にトレンチを形成する方法が提案されている。
特開2002−76109号公報 特開2002−190514号公報
Therefore, as shown in Patent Document 1 and Patent Document 2, a method of forming a trench after forming a LOCOS oxide film has been proposed.
JP 2002-76109 A JP 2002-190514 A

しかしながら、上述した二つの特許文献1,2に記載された方法によっても、トレンチ上端部における電解集中の緩和が不十分であった。   However, even by the methods described in the two Patent Documents 1 and 2 described above, the relaxation of electrolytic concentration at the upper end of the trench was insufficient.

本発明は上記のような状況に鑑みてなされたものであり、ACエッジ(HDP酸化膜で埋め込んだトレンチの端部)を更に緩やかとし、トレンチ上端部におけるディボットの発生を防ぎ、電解集中を良好に緩和可能な半導体装置の製造方法を提供することを目的とする。   The present invention has been made in view of the above situation, and the AC edge (the end of the trench buried with the HDP oxide film) is further relaxed to prevent the occurrence of a divot at the upper end of the trench, and the electrolytic concentration is good. An object of the present invention is to provide a method of manufacturing a semiconductor device that can be relaxed.

上記課題を解決するために、本発明に係る半導体装置の製造方法は、半導体基板上に第1の酸化膜を形成する工程と;前記第1の酸化膜上にシリコン窒化膜を形成する工程と;前記第1の酸化膜及びシリコン窒化膜をエッチングすることにより、前記半導体基板に達する開口部を形成する工程と;ラジカル酸化により、前記開口部における前記半導体基板上と、前記シリコン窒化膜表面と、前記シリコン窒化膜の前記開口部内の側面とに第2の酸化膜を形成する工程と;前記開口部における前記半導体基板上及び、前記シリコン窒化膜表面上の前記第2の酸化膜を除去する工程と;前記シリコン窒化膜及びその側壁の前記第2の酸化膜をマスクとして、前記シリコン基板に溝(トレンチ)を形成する工程と;前記溝内部に第3の酸化膜を形成する工程とを含むことを特徴とする。   In order to solve the above problems, a method of manufacturing a semiconductor device according to the present invention includes a step of forming a first oxide film on a semiconductor substrate; a step of forming a silicon nitride film on the first oxide film; Etching the first oxide film and the silicon nitride film to form an opening reaching the semiconductor substrate; and radical oxidation to form the opening on the semiconductor substrate in the opening and the surface of the silicon nitride film; Forming a second oxide film on the side surface of the silicon nitride film in the opening; and removing the second oxide film on the semiconductor substrate and on the silicon nitride film in the opening. Forming a trench in the silicon substrate using the silicon nitride film and the second oxide film on the sidewall thereof as a mask; forming a third oxide film inside the trench; Characterized in that it comprises a that step.

前記第2の酸化膜は、前記半導体基板上における厚さに対する、前記シリコン窒化膜上における厚さが50〜70%とすることが好ましい。また、前記半導体基板上における前記第2の酸化膜の厚さは、300〜500Åとすることが好ましい。   The thickness of the second oxide film on the silicon nitride film is preferably 50 to 70% with respect to the thickness on the semiconductor substrate. The thickness of the second oxide film on the semiconductor substrate is preferably 300 to 500 mm.

以上説明したように、本発明の半導体装置の製造方法によれば、半導体基板にトレンチを形成する前にLOCOS酸化膜を形成し、トレンチを形成する際に、LOCOS酸化膜の一部がトレンチ上端部に残存するため、熱酸化膜であるLOCOS酸化膜はCVD酸化膜であるシリコン酸化膜よりエッチングレートが遅く、LOCOS酸化膜がトレンチ上端部のシリコン酸化膜の過度のエッチングを阻止する。このようなLOCOS酸化膜の働きによって、トレンチ上端部にディボットは発生せず、ゲート電極に電圧を印加する際の電界集中を緩和可能となる。   As described above, according to the method for manufacturing a semiconductor device of the present invention, a LOCOS oxide film is formed before forming a trench in a semiconductor substrate, and when the trench is formed, a part of the LOCOS oxide film is formed at the upper end of the trench. Therefore, the LOCOS oxide film, which is a thermal oxide film, has a lower etching rate than the silicon oxide film, which is a CVD oxide film, and the LOCOS oxide film prevents excessive etching of the silicon oxide film at the upper end of the trench. By such a function of the LOCOS oxide film, a divot does not occur at the upper end portion of the trench, and it is possible to alleviate electric field concentration when a voltage is applied to the gate electrode.

ACエッジ(トレンチの端部)が緩やかとなりストレスが緩和され、後工程で形成されるゲート酸化膜のエッジの特性が向上できる。また、エッジの大部分が熱酸化膜となるため、ディボットの形成が抑制できる。すなわち、ラジカル酸化は、酸化速度の面方位依存性が小さいため、酸化の遅い結晶面が残るファセットが起こり難く、バーズビークの形状が良好となる。また、エッチングによりトレンチを形成する際に、シリコン窒化膜の側壁の酸化膜は除去せずに残しているため、後のHF(フッ酸)によるエッチングの際の横方向の進行を遅らせ、ディボットの形成が抑制される。   The AC edge (end portion of the trench) becomes gentle and stress is relieved, and the edge characteristics of the gate oxide film formed in a later process can be improved. Further, since most of the edge is a thermal oxide film, formation of a divot can be suppressed. That is, in radical oxidation, since the dependence of the oxidation rate on the plane orientation is small, facets that leave a slow-oxidized crystal plane hardly occur, and the bird's beak has a good shape. Further, when the trench is formed by etching, the oxide film on the side wall of the silicon nitride film is left without being removed, so that the lateral progress during the subsequent etching with HF (hydrofluoric acid) is delayed, and the divot Formation is suppressed.

以下、本発明を実施するための最良の形態について、実施例に沿って詳細に説明する。図1は本発明の実施形態を説明するための半導体装置100の断面図であって、本実施形態に係る半導体装置100のトレンチ分離構造部の断面状態を模式的に示したものである。   Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to examples. FIG. 1 is a cross-sectional view of a semiconductor device 100 for explaining an embodiment of the present invention, and schematically shows a cross-sectional state of a trench isolation structure portion of the semiconductor device 100 according to the present embodiment.

図1に示すように、本実施形態に係る半導体装置100のトレンチ分離構造部は、半導体基板101の表面に形成されたトレンチ104と、トレンチ104の内壁に形成されたトレンチ内保護酸化膜(ライナー酸化膜)105と、トレンチ104の内部に埋め込まれたシリコン酸化膜106と、トレンチ104上端部に形成されたLOCOS酸化膜108とを有している。   As shown in FIG. 1, the trench isolation structure portion of the semiconductor device 100 according to this embodiment includes a trench 104 formed on the surface of a semiconductor substrate 101 and an in-trench protective oxide film (liner formed on the inner wall of the trench 104. Oxide film) 105, a silicon oxide film 106 embedded in the trench 104, and a LOCOS oxide film 108 formed at the upper end of the trench 104.

次に、図2〜図5を参照しながら本実施形態における半導体装置の製造方法を説明する。図2〜図5は本発明に係るトレンチ分離法による半導体装置の製造方法に関する工程を説明するための断面図である。まず、図2(A)に示すように、シリコン基板である半導体基板101の表面にパッド酸化膜(保護酸化膜)102を熱酸化(850℃、ウェット酸化)により100Å形成する。   Next, a method for manufacturing a semiconductor device according to the present embodiment will be described with reference to FIGS. 2 to 5 are cross-sectional views for explaining steps related to a method of manufacturing a semiconductor device by the trench isolation method according to the present invention. First, as shown in FIG. 2A, a pad oxide film (protective oxide film) 102 is formed on the surface of a semiconductor substrate 101 which is a silicon substrate by thermal oxidation (850 ° C., wet oxidation).

その後、減圧化学的気相成長(LPCVD)法によってシリコン窒化膜103を保護酸化膜102上に堆積する。シリコン窒化膜103の厚さは、約1500Åとする。また、処理条件は、755℃、SiH2C=100ccm、NH3=1000ccmとする。   Thereafter, a silicon nitride film 103 is deposited on the protective oxide film 102 by low pressure chemical vapor deposition (LPCVD). The thickness of the silicon nitride film 103 is about 1500 mm. The processing conditions are 755 ° C., SiH 2 C = 100 ccm, and NH 3 = 1000 ccm.

次に、図2(B)に示すように、リソグラフィー技術によってレジストマスク(不図示)をシリコン窒化膜103上に形成した後、レジストマスクに覆われていない領域のシリコン窒化膜103とパッド酸化膜102をエッチングし、シリコン基板101に達する開口部を形成する。エッチングは、異方性の高いドライエッチング技術によって行うことが好ましく、エッチング部の幅は例えば0.3μmとすることができる。   Next, as shown in FIG. 2B, after a resist mask (not shown) is formed on the silicon nitride film 103 by lithography, the silicon nitride film 103 and the pad oxide film in a region not covered with the resist mask are formed. 102 is etched to form an opening reaching the silicon substrate 101. Etching is preferably performed by a highly anisotropic dry etching technique, and the width of the etched portion can be set to 0.3 μm, for example.

次に、図2(C)に示すように、一般的なLOCOS法により、1100℃、H2/O2減圧雰囲気にて酸化膜108を約500Å成長させる。ここで、H2流量比は10〜30%程度、圧力は10Torr以下とする。   Next, as shown in FIG. 2C, an oxide film 108 is grown by about 500 mm in a 1100 ° C. H2 / O2 reduced pressure atmosphere by a general LOCOS method. Here, the H2 flow rate ratio is about 10 to 30%, and the pressure is 10 Torr or less.

ここまでは、従来のLOCOS法とほとんど同様であるが、本実施例においては、成長させる酸化膜108の膜厚を従来に比べ薄くするところに1つの特徴がある。また、本実施例で示した酸化法としては、O2/H2混合減圧雰囲気での熱酸化でラジカルを生成するラジカル酸化法を採用し、シリコン窒化膜103を酸化させて表面に酸化膜108を形成する。なお、ラジカル酸化法には、プラズマによって生成される高濃度の酸化ラジカルを用いた酸化方法もある。シリコン窒化膜103の表面及び側面に形成される酸化膜108の膜厚T1は、シリコン基板101上の熱酸化膜108の厚さT0の50〜70%程度とし、T0=500Åの場合、T1=250〜350Åとなる。   Up to this point, it is almost the same as the conventional LOCOS method, but this embodiment has one feature in that the thickness of the oxide film 108 to be grown is made thinner than the conventional one. Further, as the oxidation method shown in this embodiment, a radical oxidation method in which radicals are generated by thermal oxidation in an O2 / H2 mixed reduced pressure atmosphere is employed, and the silicon nitride film 103 is oxidized to form an oxide film 108 on the surface. To do. In addition, the radical oxidation method includes an oxidation method using a high-concentration oxidized radical generated by plasma. The thickness T1 of the oxide film 108 formed on the surface and side surfaces of the silicon nitride film 103 is about 50 to 70% of the thickness T0 of the thermal oxide film 108 on the silicon substrate 101. When T0 = 500 mm, T1 = 250-350cm.

次に、図3(D)に示すように、異方性ドライエッチングにてシリコン窒化膜103上の酸化膜108とシリコン基板101上の酸化膜108を除去する。この時、シリコン窒化膜103の側壁上の酸化膜108は除去せずに残しておく。   Next, as shown in FIG. 3D, the oxide film 108 on the silicon nitride film 103 and the oxide film 108 on the silicon substrate 101 are removed by anisotropic dry etching. At this time, the oxide film 108 on the sidewall of the silicon nitride film 103 is left without being removed.

次に、図3(E)に示すように、シリコン窒化膜103及びその側壁の酸化膜108をマスクとして、選択性の高い異方性ドライエッチング条件にて、シリコン基板101をエッチングし、溝(トレンチ)104を形成する。   Next, as shown in FIG. 3E, the silicon substrate 101 is etched under anisotropic dry etching conditions with high selectivity using the silicon nitride film 103 and the oxide film 108 on the sidewall thereof as a mask to form a groove ( Trench) 104 is formed.

次に、図3(F)に示すように、1000℃、Pure-O2雰囲気にて熱酸化膜105を150〜200Å成長させる(ライナー酸化と称す)。   Next, as shown in FIG. 3F, a thermal oxide film 105 is grown in a thickness of 150 to 200 μm at 1000 ° C. in a Pure-O 2 atmosphere (referred to as liner oxidation).

次に、図4(G)に示すように、HDP(High Density Plasma)により溝104を酸化膜106で埋め込む。続いて、図4(H)に示すように、CMPにより酸化膜106の表面を平坦化する。平坦化はシリコン窒化膜103が完全に露出するまで行う。なお、溝104をHDPで埋め込んだ後、1000℃〜1100℃のアニール処理を施しても良い。   Next, as shown in FIG. 4G, the trench 104 is filled with an oxide film 106 by HDP (High Density Plasma). Subsequently, as shown in FIG. 4H, the surface of the oxide film 106 is planarized by CMP. The planarization is performed until the silicon nitride film 103 is completely exposed. Note that after the trench 104 is filled with HDP, an annealing treatment at 1000 ° C. to 1100 ° C. may be performed.

次に、STIの高さ調整のため、5%HF(質量比で5%に希釈したフッ化水素酸溶液)処理を施し、HDP酸化膜106をあらかじめ所定量除去した後、図5(I)に示すように、熱リン酸(加熱した燐酸水溶液)にてシリコン窒化膜103を除去する。   Next, in order to adjust the STI height, a 5% HF (hydrofluoric acid solution diluted to 5% by mass ratio) treatment is performed to remove a predetermined amount of the HDP oxide film 106 in advance, and then FIG. As shown in FIG. 3, the silicon nitride film 103 is removed with hot phosphoric acid (heated phosphoric acid aqueous solution).

次に、図5(J)に示すように、5%HFにてパッド酸化膜102を除去することでSTIによる素子分離領域(トレンチ分離構造)が形成される。   Next, as shown in FIG. 5J, by removing the pad oxide film 102 with 5% HF, an element isolation region (trench isolation structure) by STI is formed.

トレンチ分離構造完成後は、ゲート酸化膜やゲート電極形成など、半導体素子を形成するための公知の工程が実行される。ゲート電極を形成するには、図1に示すように、ゲート酸化膜109およびゲート電極用ポリシリコン110を半導体基板101の表面に成長させる。次に、リソグラフィー技術によってレジストマスク(不図示)をゲート電極用ポリシリコン110上に形成した後、レジストマスクに覆われていない領域のゲート電極用ポリシリコン110およびゲート酸化膜109をエッチングすることによって、図1に示すように、ゲート電極(110)の形状が完成する。   After the trench isolation structure is completed, known processes for forming a semiconductor element such as a gate oxide film and a gate electrode are performed. In order to form the gate electrode, a gate oxide film 109 and gate electrode polysilicon 110 are grown on the surface of the semiconductor substrate 101 as shown in FIG. Next, after a resist mask (not shown) is formed on the gate electrode polysilicon 110 by lithography, the gate electrode polysilicon 110 and the gate oxide film 109 in a region not covered with the resist mask are etched. As shown in FIG. 1, the shape of the gate electrode (110) is completed.

本実施例によれば、ACエッジ(HDP酸化膜106で埋め込んだトレンチ104の端部)が緩やかとなりストレスが緩和され、後工程で形成されるゲート酸化膜のエッジの特性が向上できる。また、エッジの大部分が熱酸化膜となるため、ディボットの形成が抑制できる。すなわち、ラジカル酸化は、酸化速度の面方位依存性が小さいため、酸化の遅い結晶面が残るファセットが起こり難く、バーズビークの形状が良好となる。また、エッチングによりトレンチ104を形成する際に、シリコン窒化膜103の側壁の酸化膜は除去せずに残しているため、後のHF(フッ酸)によるエッチングの際の横方向の進行を遅らせ、ディボットの形成が抑制される。   According to the present embodiment, the AC edge (the end portion of the trench 104 embedded with the HDP oxide film 106) becomes gentle, the stress is relieved, and the edge characteristics of the gate oxide film formed in a later process can be improved. Further, since most of the edge is a thermal oxide film, formation of a divot can be suppressed. That is, in radical oxidation, since the dependence of the oxidation rate on the plane orientation is small, facets that leave a slow-oxidized crystal plane hardly occur, and the bird's beak has a good shape. Further, when the trench 104 is formed by etching, the oxide film on the side wall of the silicon nitride film 103 is left without being removed, so that the lateral progress during the subsequent etching with HF (hydrofluoric acid) is delayed, Divot formation is suppressed.

以上、本発明について実施例を用いて説明したが、本発明は実施例の範囲に限定されるものではなく、各請求項に記載された技術的思想の範囲内において、適宜設計変更可能であることは言うまでもない。
The present invention has been described with reference to the embodiments. However, the present invention is not limited to the scope of the embodiments, and the design can be changed as appropriate within the scope of the technical idea described in each claim. Needless to say.

図1は、本発明の実施例によって製造される半導体装置の構造を示す断面図である。FIG. 1 is a sectional view showing the structure of a semiconductor device manufactured according to an embodiment of the present invention. 図2は、本発明の実施例に係る製造工程を示す断面図である。FIG. 2 is a sectional view showing a manufacturing process according to the embodiment of the present invention. 図3は、本発明の実施例に係る製造工程を示す断面図である。FIG. 3 is a sectional view showing a manufacturing process according to the embodiment of the present invention. 図4は、本発明の実施例に係る製造工程を示す断面図である。FIG. 4 is a sectional view showing a manufacturing process according to the embodiment of the present invention. 図5は、本発明の実施例に係る製造工程を示す断面図である。FIG. 5 is a sectional view showing a manufacturing process according to the embodiment of the present invention. 図6は、従来の半導体装置の製造方法を示す断面図である。FIG. 6 is a cross-sectional view showing a conventional method for manufacturing a semiconductor device. 図7は、従来の半導体装置の製造方法を示す断面図である。FIG. 7 is a cross-sectional view showing a conventional method for manufacturing a semiconductor device. 図8は、従来の半導体装置の製造方法を示す断面図である。FIG. 8 is a cross-sectional view showing a conventional method for manufacturing a semiconductor device.

符号の説明Explanation of symbols

101 半導体基板
102 パッド酸化膜(第1の酸化膜)
103 シリコン窒化膜
104 トレンチ(溝)
105 ライナー酸化膜
106 HDP酸化膜(第3の酸化膜)
108 LOCOS酸化膜(第2の酸化膜)
101 Semiconductor substrate 102 Pad oxide film (first oxide film)
103 Silicon nitride film 104 Trench
105 Liner oxide film 106 HDP oxide film (third oxide film)
108 LOCOS oxide film (second oxide film)

Claims (8)

半導体基板上に第1の酸化膜を形成する工程と;
前記第1の酸化膜上にシリコン窒化膜を形成する工程と;
前記第1の酸化膜及びシリコン窒化膜をエッチングすることにより、前記半導体基板に達する開口部を形成する工程と;
ラジカル酸化により、前記開口部における前記半導体基板上と、前記シリコン窒化膜表面と、前記シリコン窒化膜の前記開口部内の側面とに第2の酸化膜を形成する工程と;
前記開口部における前記半導体基板上及び、前記シリコン窒化膜表面上の前記第2の酸化膜を除去する工程と;
前記シリコン窒化膜及びその側壁の前記第2の酸化膜をマスクとして、前記シリコン基板に溝(トレンチ)を形成する工程と;
前記溝内部を第3の酸化膜で埋め込む工程とを含むことを特徴とする半導体装置の製造方法。
Forming a first oxide film on a semiconductor substrate;
Forming a silicon nitride film on the first oxide film;
Etching the first oxide film and silicon nitride film to form an opening reaching the semiconductor substrate;
Forming a second oxide film on the semiconductor substrate in the opening, on the surface of the silicon nitride film, and on a side surface in the opening of the silicon nitride film by radical oxidation;
Removing the second oxide film on the semiconductor substrate and on the surface of the silicon nitride film in the opening;
Forming a trench in the silicon substrate using the silicon nitride film and the second oxide film on the sidewall thereof as a mask;
And a step of burying the inside of the groove with a third oxide film.
前記第2の酸化膜は、前記半導体基板上における厚さに対する、前記シリコン窒化膜上における厚さが50〜70%であることを特徴とする請求項1に記載の半導体装置の製造方法。   2. The method of manufacturing a semiconductor device according to claim 1, wherein the second oxide film has a thickness of 50 to 70% on the silicon nitride film with respect to a thickness of the semiconductor substrate. 前記半導体基板上における前記第2の酸化膜の厚さは、300〜500Åであることを特徴とする請求項1又は2に記載の半導体装置の製造方法。   3. The method of manufacturing a semiconductor device according to claim 1, wherein a thickness of the second oxide film on the semiconductor substrate is 300 to 500 mm. 4. 前記溝内部を前記第3の酸化膜で埋め込んだ後、CMPにより平坦化し、前記第1の酸化膜及び前記シリコン窒化膜を除去することを特徴とする請求項1,2又は3に記載の半導体装置の製造方法。   4. The semiconductor according to claim 1, wherein the inside of the trench is filled with the third oxide film, and then planarized by CMP to remove the first oxide film and the silicon nitride film. Device manufacturing method. 前記シリコン窒化膜は熱リン酸にて除去し、
前記第1の酸化膜は5%HFにて除去することを特徴とする請求項4に記載の半導体装置の製造方法。
The silicon nitride film is removed with hot phosphoric acid,
5. The method of manufacturing a semiconductor device according to claim 4, wherein the first oxide film is removed with 5% HF.
請求項1記載の半導体装置の製造方法において、前記第3の酸化膜は、HDP(High Density Plasma)により形成することを特徴とする半導体装置の製造方法。   2. The method of manufacturing a semiconductor device according to claim 1, wherein the third oxide film is formed by HDP (High Density Plasma). 請求項1〜6の何れか1項に記載の半導体装置の製造方法において、前記溝を前記第3の酸化膜で埋め込む前に、前記溝内に前記溝の内壁に沿って第4の酸化膜を形成する工程を含むことを特徴とする半導体装置の製造方法。   7. The method of manufacturing a semiconductor device according to claim 1, wherein a fourth oxide film is formed in the groove along the inner wall of the groove before the groove is filled with the third oxide film. The manufacturing method of the semiconductor device characterized by including the process of forming. 請求項7記載の半導体装置の製造方法において、前記第4の酸化膜は、熱酸化により形成されることを特徴とする半導体装置の製造方法。   8. The method of manufacturing a semiconductor device according to claim 7, wherein the fourth oxide film is formed by thermal oxidation.
JP2006087155A 2006-03-28 2006-03-28 Method for manufacturing semiconductor device Pending JP2007266167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006087155A JP2007266167A (en) 2006-03-28 2006-03-28 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006087155A JP2007266167A (en) 2006-03-28 2006-03-28 Method for manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
JP2007266167A true JP2007266167A (en) 2007-10-11

Family

ID=38638883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006087155A Pending JP2007266167A (en) 2006-03-28 2006-03-28 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2007266167A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009272596A (en) * 2008-04-09 2009-11-19 Sony Corp Solid-state imaging device, method of manufacturing the same, and electronic instrument
US8728852B2 (en) 2008-04-09 2014-05-20 Sony Corporation Solid-state imaging device, production method thereof, and electronic device
CN112322295A (en) * 2019-08-05 2021-02-05 Oci有限公司 Silicon nitride film etching solution and method for manufacturing semiconductor device using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07254638A (en) * 1994-03-16 1995-10-03 Toshiba Corp Semiconductor device
JP2001223264A (en) * 2000-02-09 2001-08-17 Sony Corp Manufacturing method for semiconductor device
JP2002100673A (en) * 2000-09-21 2002-04-05 Matsushita Electric Ind Co Ltd Manufacturing method of semiconductor device
JP2004228557A (en) * 2002-06-24 2004-08-12 Hitachi Ltd Semiconductor device and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07254638A (en) * 1994-03-16 1995-10-03 Toshiba Corp Semiconductor device
JP2001223264A (en) * 2000-02-09 2001-08-17 Sony Corp Manufacturing method for semiconductor device
JP2002100673A (en) * 2000-09-21 2002-04-05 Matsushita Electric Ind Co Ltd Manufacturing method of semiconductor device
JP2004228557A (en) * 2002-06-24 2004-08-12 Hitachi Ltd Semiconductor device and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009272596A (en) * 2008-04-09 2009-11-19 Sony Corp Solid-state imaging device, method of manufacturing the same, and electronic instrument
US8728852B2 (en) 2008-04-09 2014-05-20 Sony Corporation Solid-state imaging device, production method thereof, and electronic device
CN112322295A (en) * 2019-08-05 2021-02-05 Oci有限公司 Silicon nitride film etching solution and method for manufacturing semiconductor device using the same
CN112322295B (en) * 2019-08-05 2023-12-22 Oci有限公司 Silicon nitride film etching solution and method for manufacturing semiconductor device using the same

Similar Documents

Publication Publication Date Title
JP2004311487A (en) Method of manufacturing semiconductor device
JP4646743B2 (en) Manufacturing method of semiconductor device
JP2010263129A (en) Semiconductor device and method of manufacturing the same
JP2005203508A (en) Method for manufacturing semiconductor device
US6331472B1 (en) Method for forming shallow trench isolation
JP2005197475A (en) Dry etching method for semiconductor device
JP2005322872A (en) Method for manufacturing semiconductor element equipped with trench type element separation film
JP2001044273A (en) Manufacture of semiconductor device
JP2007266167A (en) Method for manufacturing semiconductor device
JP2010182912A (en) Production process of semiconductor device
JP2008294445A (en) Semiconductor element having sti structure, and method of manufacturing the same
US6893940B2 (en) Method of manufacturing semiconductor device
US9831113B2 (en) Semiconductor device having element separation region formed from a recess-free trench
JP2002289682A (en) Semiconductor device and its manufacturing method
KR100895810B1 (en) Method for forming isolation layer of semiconductor device
JP2004152851A (en) Method of manufacturing semiconductor device
JP2010177474A (en) Production process of semiconductor device
TWI591760B (en) Semiconductor devices and methods for forming the same
JP2005108979A (en) Method for manufacturing semiconductor device
JP4549039B2 (en) Manufacturing method of semiconductor integrated circuit
JP3844239B2 (en) Manufacturing method of semiconductor device
JP2004260151A (en) Method for manufacturing semiconductor device
JP2002190514A (en) Semiconductor device and its manufacturing method
KR20070069747A (en) Method for forming isolation layer of semiconductor device
KR100840469B1 (en) Mask pattern producing method to prevent divot in sti

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080730

Free format text: JAPANESE INTERMEDIATE CODE: A621

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20081210

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091201

A977 Report on retrieval

Effective date: 20110316

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20110412

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111115