JP2007265858A - Nonaqueous electrolytic solution, and secondary battery using the electrolytic solution - Google Patents

Nonaqueous electrolytic solution, and secondary battery using the electrolytic solution Download PDF

Info

Publication number
JP2007265858A
JP2007265858A JP2006090723A JP2006090723A JP2007265858A JP 2007265858 A JP2007265858 A JP 2007265858A JP 2006090723 A JP2006090723 A JP 2006090723A JP 2006090723 A JP2006090723 A JP 2006090723A JP 2007265858 A JP2007265858 A JP 2007265858A
Authority
JP
Japan
Prior art keywords
electrolytic solution
fluorine atom
hydrocarbon group
atom
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006090723A
Other languages
Japanese (ja)
Other versions
JP2007265858A5 (en
JP5084164B2 (en
Inventor
Kohei Yamamoto
康平 山本
Satoru Suzuki
覚 鈴木
Manabu Yamada
学 山田
Noriyuki Taki
敬之 滝
Atsuro Tomita
敦郎 冨田
Hiroto Asano
洋人 浅野
Yoko Nanbu
洋子 南部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adeka Corp
Denso Corp
Original Assignee
Adeka Corp
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Adeka Corp, Denso Corp filed Critical Adeka Corp
Priority to JP2006090723A priority Critical patent/JP5084164B2/en
Publication of JP2007265858A publication Critical patent/JP2007265858A/en
Publication of JP2007265858A5 publication Critical patent/JP2007265858A5/ja
Application granted granted Critical
Publication of JP5084164B2 publication Critical patent/JP5084164B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolytic solution capable of providing a battery in which a stable coating film is formed wherein decomposition of an additive at a negative electrode is suppressed to the minimum, in which increase in internal resistance at high temperatures is small when arranged in the battery, and which is capable of maintaining high electric capacity and superior in high temperature characteristics, and a nonaqueous electrolytic solution secondary battery using the nonaqueous electrolytic solution. <P>SOLUTION: In the nonaqueous electrolytic solution in which electrolyte salts are dissolved in an organic solvent, at least one kind or more selected from cyclic compounds expressed by either one of general formulas (1) to (5) is made to be contained in the nonaqueous electrolytic solution. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、特定の構造を有する環状化合物を含有する非水電解液および該非水電解液を用いた非水電解液二次電池に関し、さらに詳しくは特定の構造を有する環状化合物を電解液に含有させることで、電池に配した時に、高温保存時に電気容量や内部抵抗の変化率が小さい高温特性に優れた電池を提供できる非水電解液、及び該非水電解液を用いた非水電解液二次電池に関する。   The present invention relates to a non-aqueous electrolyte solution containing a cyclic compound having a specific structure and a non-aqueous electrolyte secondary battery using the non-aqueous electrolyte solution. More specifically, the electrolyte solution contains a cyclic compound having a specific structure. Thus, when placed in a battery, a non-aqueous electrolyte that can provide a battery having excellent high-temperature characteristics with a small rate of change in electric capacity and internal resistance during high-temperature storage, and a non-aqueous electrolyte using the non-aqueous electrolyte Next battery.

近年の携帯用パソコン、ハンディビデオカメラ等の携帯電子機器の普及に伴い、高電圧および高エネルギー密度を有する非水電解液二次電池が電源として広く用いられるようになった。また、環境問題の観点から、電池自動車や電力を動力の一部に利用したハイブリッド車の実用化が行われている。   With the spread of portable electronic devices such as portable personal computers and handy video cameras in recent years, non-aqueous electrolyte secondary batteries having high voltage and high energy density have been widely used as power sources. Also, from the viewpoint of environmental problems, battery cars and hybrid cars using electric power as a part of power have been put into practical use.

しかし、非水電解液二次電池は、高温保存時あるいは充放電を繰り返すことで電気容量の低下や内部抵抗の上昇を示し、安定した電力供給源としての信頼性が不足していた。
非水電解液二次電池の安定性や電気特性の向上のために、種々の添加剤が提案されている。例えば、特許文献1には、黒鉛系負極上で電解液の還元分解を抑制する安定な被膜いわゆるSEI(Solid Electrolyte Interface:固体電解質膜)を形成するために、環状化合物であるビニレンカーボネートおよびその誘導体を含有する電解液が提案されている。しかしながら、この電解液に用いられている環状化合物は、一定の効果は見られるものの、電解液中に過剰に添加した場合、逆に電池性能低下し、生成した皮膜成分の抵抗が高く、抵抗上昇率が大きいという欠点があった。さらに添加剤の分解による電荷が不可逆容量成分として現れ、初回充放電効率の低下を導くという課題もあった。また、ビニレンカーボネートにより形成される被膜は、80℃以上の環境下では非常に不安定であり分解してしまうため、露出した負極表面によって電解液が再び分解され、80℃以上での高温特性が必ずしも満足の行くものではなかった。
However, the non-aqueous electrolyte secondary battery exhibits a decrease in electric capacity and an increase in internal resistance when it is stored at a high temperature or repeatedly charged and discharged, and is not reliable as a stable power supply source.
Various additives have been proposed in order to improve the stability and electrical characteristics of the nonaqueous electrolyte secondary battery. For example, Patent Document 1 discloses that vinylene carbonate and its derivatives, which are cyclic compounds, are used to form a stable coating so-called SEI (Solid Electrolyte Interface) that suppresses reductive decomposition of an electrolytic solution on a graphite-based negative electrode. An electrolytic solution containing has been proposed. However, although the cyclic compound used in this electrolyte solution has a certain effect, when it is added excessively to the electrolyte solution, the battery performance is lowered and the resistance of the generated film component is high, resulting in an increase in resistance. There was a drawback that the rate was large. Further, there is a problem that the charge due to the decomposition of the additive appears as an irreversible capacity component, leading to a decrease in the initial charge / discharge efficiency. In addition, since the film formed of vinylene carbonate is very unstable and decomposes in an environment of 80 ° C. or higher, the electrolytic solution is decomposed again by the exposed negative electrode surface, and high temperature characteristics at 80 ° C. or higher are exhibited. It was not always satisfactory.

特許文献2には、環状α−オキシアクリル酸エステル化合物を電解液に添加することで、サイクル時の容量維持率に優れた二次電池が提案されている。しかしながら、特許文献2に記載されている該二次電池の特性はすべて室温での電池特性であり、室温でのサイクル特性については一定の効果があることが記載されているが、高温特性に対する記載はない。   Patent Document 2 proposes a secondary battery that has an excellent capacity retention rate during cycling by adding a cyclic α-oxyacrylate compound to the electrolyte. However, the characteristics of the secondary battery described in Patent Document 2 are all battery characteristics at room temperature, and it is described that there is a certain effect on the cycle characteristics at room temperature. There is no.

特許文献3には、ビニルスルホン化合物を電解液に添加することで、サイクル特性および保存特性に優れた二次電池が提案されている。しかしながら、特許文献3に記載されている該二次電池の特性はすべて室温での電池特性であり、室温でのサイクル特性および保存特性については一定の効果があることが記載されているが、高温特性に対する記載はない。   Patent Document 3 proposes a secondary battery excellent in cycle characteristics and storage characteristics by adding a vinyl sulfone compound to an electrolytic solution. However, the characteristics of the secondary battery described in Patent Document 3 are all battery characteristics at room temperature, and it is described that there are certain effects on the cycle characteristics and storage characteristics at room temperature. There is no description for the characteristics.

特許文献4には、ビニル環状ジスルホン化合物を電解液に添加することで、サイクル寿命および安全性に優れた二次電池が提案されている。しかしながら、特許文献4に記載されている該二次電池の特性はすべて室温での電池特性であり、室温でのサイクル特性については一定の効果があることが記載されているが、高温特性に対する記載はない。   Patent Document 4 proposes a secondary battery excellent in cycle life and safety by adding a vinyl cyclic disulfone compound to an electrolytic solution. However, the characteristics of the secondary battery described in Patent Document 4 are all battery characteristics at room temperature, and it is described that there is a certain effect on the cycle characteristics at room temperature. There is no.

特開平8−45545号公報JP-A-8-45545 特開2004−44710号公報JP 2004-44710 A 特開2001−23688号公報Japanese Patent Laid-Open No. 2001-23688 特開2005−135701号公報JP 2005-135701 A

従って、本発明の目的は、負極での添加剤の分解を最小限に抑えた安定な被膜を形成し、電池に配した時に高温時の内部抵抗増加が小さく、高い電気容量を維持することができる高温特性に優れた電池を提供できる非水電解液、および該非水電解液を用いた非水電解液二次電池を提供することにある。   Accordingly, an object of the present invention is to form a stable coating with minimal decomposition of the additive at the negative electrode, and to increase the internal resistance at high temperatures when placed in a battery, and to maintain a high electric capacity. An object of the present invention is to provide a non-aqueous electrolyte solution that can provide a battery having excellent high-temperature characteristics, and a non-aqueous electrolyte secondary battery using the non-aqueous electrolyte solution.

本発明者等は、上記目的を達成すべく種々の検討を重ねた結果、特定の構造を有する環状化合物を電解液に添加することで、これを電池に配した時に、サイクル特性および高温特性に優れた電池を提供できる非水電解液が得られるとの知見を得た。   As a result of various studies to achieve the above object, the present inventors have added a cyclic compound having a specific structure to the electrolytic solution, and when this is arranged in a battery, the cycle characteristics and the high temperature characteristics are improved. The present inventors have obtained knowledge that a non-aqueous electrolyte that can provide an excellent battery can be obtained.

本発明は、上記知見に基づきなされたもので、電解質塩を有機溶媒に溶解した非水電解液において、下記一般式(1)〜(5)のいずれかで表される環状化合物の中から選ばれる少なくとも1種以上を含有することを特徴とする非水電解液、および電解液として該非水電解液を含む非水電解液二次電池を提供するものである。   The present invention has been made based on the above knowledge, and in a nonaqueous electrolytic solution in which an electrolyte salt is dissolved in an organic solvent, the cyclic compound represented by any one of the following general formulas (1) to (5) is selected. And a non-aqueous electrolyte secondary battery including the non-aqueous electrolyte as the electrolyte.

Figure 2007265858
(式中、R1 およびR2 は、各々独立に水素原子、フッ素原子、または炭素原子数1〜6のフッ素原子を含んでもよい炭化水素基を示す。R3 およびR4 は、各々独立に水素原子またはフッ素原子を示す。Xは、硫黄原子、スルホン、または二硫化物を示す。Yは、酸素原子、炭素原子、N−H、N−アルキル、N−アリール、または硫黄原子を示す。Zは、炭素原子数1〜6のフッ素原子を含んでもよい炭化水素基、またはエーテルもしくはカルボニル結合を有する炭化水素基を示す。)
Figure 2007265858
(In the formula, R 1 and R 2 each independently represent a hydrogen atom, a fluorine atom, or a hydrocarbon group which may contain a fluorine atom having 1 to 6 carbon atoms. R 3 and R 4 each independently represent X represents a sulfur atom, a sulfone, or a disulfide, and Y represents an oxygen atom, a carbon atom, NH, N-alkyl, N-aryl, or a sulfur atom. Z represents a hydrocarbon group which may contain a fluorine atom having 1 to 6 carbon atoms, or a hydrocarbon group having an ether or carbonyl bond.)

Figure 2007265858
(式中、R5 〜R10は、各々独立に水素原子、フッ素原子、または炭素原子数1〜6のフッ素原子を含んでもよい炭化水素基を示す。)
Figure 2007265858
(In the formula, R 5 to R 10 each independently represent a hydrogen atom, a fluorine atom, or a hydrocarbon group that may contain a fluorine atom having 1 to 6 carbon atoms.)

Figure 2007265858
(式中、R11〜R20は、各々独立に水素原子、フッ素原子、または炭素原子数1〜6のフッ素原子を含んでもよい炭化水素基を示す。nは、1〜3の整数を示す。)
Figure 2007265858
(Wherein R 11 to R 20 each independently represent a hydrogen atom, a fluorine atom, or a hydrocarbon group that may contain a fluorine atom having 1 to 6 carbon atoms. N represents an integer of 1 to 3). .)

Figure 2007265858
(式中、R21〜R30は、各々独立に水素原子、フッ素原子、または炭素原子数1〜6のフッ素原子を含んでもよい炭化水素基を示す。nは、1〜2の整数を示す。)
Figure 2007265858
(In the formula, R 21 to R 30 each independently represent a hydrogen atom, a fluorine atom, or a hydrocarbon group that may contain 1 to 6 carbon atoms. N represents an integer of 1 to 2). .)

Figure 2007265858
(式中、R31およびR32は、各々独立にシアノ基、フッ素原子、カルボニル基、または炭素原子数1〜6のフッ素原子もしくはカルボニル基を含んでもよい炭化水素基を示す。R33〜R37は、各々独立に水素原子、フッ素原子、または炭素原子数1〜6のフッ素原子を含んでもよい炭化水素基を示す。)
Figure 2007265858
(In the formula, R 31 and R 32 each independently represent a cyano group, a fluorine atom, a carbonyl group, or a hydrocarbon group that may contain a fluorine atom or a carbonyl group having 1 to 6 carbon atoms. R 33 to R 37 each independently represents a hydrogen atom, a fluorine atom, or a hydrocarbon group that may contain a fluorine atom having 1 to 6 carbon atoms.)

本発明によれば、負極での添加剤の分解を最小限に抑えた安定な被膜を形成し、電池に配した時に高温時の内部抵抗増加が小さく、高い電気容量を維持することができる高温特性に優れた電池を提供できる非水電解液、および該非水電解液を用いた非水電解液二次電池を提供することができる。   According to the present invention, a stable coating with minimal decomposition of the additive at the negative electrode is formed, and the increase in internal resistance at a high temperature is small when placed in a battery, and a high temperature at which a high electric capacity can be maintained. It is possible to provide a non-aqueous electrolyte solution that can provide a battery with excellent characteristics, and a non-aqueous electrolyte secondary battery using the non-aqueous electrolyte solution.

以下に本発明の非水電解液および該非水電解液を用いた非水電解液二次電池について詳述する。
本発明の非水電解液において、上記一般式(1)で表される環状化合物は、例えば、MacromoleculesVol.27、7935頁(1994)、特表平8−504771号公報等に記載される製造方法を用いて得ることができる。
上記一般式(1)において、R1 およびR2 で示される炭素原子数1〜6のフッ素原子を含んでもよい炭化水素基としては、メチル、トリフッ化メチル等が挙げられる。Yで示されるN−アルキルとしては、N−メチル等が挙げられ、N−アリールとしては、N−フェニル、N−トリル等が挙げられる。Zで示される炭素原子数1〜6のフッ素原子を含んでもよい炭化水素基としては、エチル、テトラフッ化エチル、ブチル等が挙げられ、エーテル結合を有する炭化水素基としては、ジエチルエーテル等が挙げられ、カルボニル結合を有する炭化水素基としては、エチルブチルエステル等が挙げられる。
The nonaqueous electrolyte solution of the present invention and the nonaqueous electrolyte secondary battery using the nonaqueous electrolyte solution will be described in detail below.
In the nonaqueous electrolytic solution of the present invention, the cyclic compound represented by the general formula (1) is, for example, Macromolecules Vol. 27, page 7935 (1994), Japanese Patent Publication No. 8-504771 and the like.
In the general formula (1), examples of the hydrocarbon group which may contain a fluorine atom having 1 to 6 carbon atoms represented by R 1 and R 2 include methyl, methyl trifluoride and the like. Examples of N-alkyl represented by Y include N-methyl and the like, and examples of N-aryl include N-phenyl and N-tolyl. Examples of the hydrocarbon group which may contain a fluorine atom having 1 to 6 carbon atoms represented by Z include ethyl, ethyl tetrafluoride, butyl and the like, and examples of the hydrocarbon group having an ether bond include diethyl ether and the like. Examples of the hydrocarbon group having a carbonyl bond include ethyl butyl ester.

上記一般式(1)で表される環状化合物としては、より具体的には以下の化合物No.1〜No.5等が挙げられる。但し、本発明に用いられる化合物は、以下の例示によりなんら制限されるものではない。   As the cyclic compound represented by the general formula (1), more specifically, the following compound No. 1-No. 5 etc. are mentioned. However, the compound used for this invention is not restrict | limited at all by the following illustrations.

Figure 2007265858
Figure 2007265858

Figure 2007265858
Figure 2007265858

Figure 2007265858
Figure 2007265858

Figure 2007265858
Figure 2007265858

Figure 2007265858
Figure 2007265858

上記一般式(2)で表される環状α−オキシアクリル酸エステル化合物は、例えば、Chinese Journal of Polymer ScienceVol.11、No.2、153頁(1993)等に記載される製造方法を用いて得ることができる。
上記一般式(2)において、R5 〜R10で示される炭素原子数1〜6のフッ素原子を含んでもよい炭化水素基としては、メチル、フッ化メチル等が挙げられる。
The cyclic α-oxyacrylic acid ester compound represented by the general formula (2) is described in, for example, Chinese Journal of Polymer Science Vol. 11, no. 2, page 153 (1993) and the like.
In the general formula (2), as the hydrocarbon group which may contain a fluorine atom having 1 to 6 carbon atoms represented by R 5 to R 10, methyl, include methyl fluoride, and the like.

上記一般式(2)で表される環状化合物としては、より具体的には以下の化合物No.6〜No.7等が挙げられる。但し、本発明に用いられる化合物は、以下の例示によりなんら制限されるものではない。   As the cyclic compound represented by the general formula (2), more specifically, the following compound No. 6-No. 7 etc. are mentioned. However, the compound used for this invention is not restrict | limited at all by the following illustrations.

Figure 2007265858
Figure 2007265858

Figure 2007265858
Figure 2007265858

上記一般式(3)で表されるビニル環状スルホン化合物は、例えば、Journal
ofpolymer science. Polymer symposiaVol.74、227頁(1986)、J ournal of polymer science. Part C. Polymer LetterVol.25、309頁(1987)等に記載される製造方法を用いて得ることができる。
上記一般式(3)において、R11〜R20で示される炭素原子数1〜6のフッ素原子を含んでもよい炭化水素基としては、メチル、フッ化メチル等が挙げられる。
The vinyl cyclic sulfone compound represented by the general formula (3) is, for example, Journal
of polymer science. Polymer symposia Vol. 74, pages 227 (1986), Journal of Polymer Science. Part C. Polymer Letter Vol. 25, page 309 (1987) and the like.
In the general formula (3), examples of the hydrocarbon group which may contain a fluorine atom having 1 to 6 carbon atoms represented by R 11 to R 20 include methyl and methyl fluoride.

上記一般式(3)で表される環状化合物としては、より具体的には以下の化合物No.8〜No.9等が挙げられる。但し、本発明に用いられる化合物は、以下の例示によりなんら制限されるものではない。   As the cyclic compound represented by the general formula (3), more specifically, the following compound No. 8-No. 9 etc. are mentioned. However, the compound used for this invention is not restrict | limited at all by the following illustrations.

Figure 2007265858
Figure 2007265858

Figure 2007265858
Figure 2007265858

上記一般式(4)で表される環状化合物は、例えば、The Journal of
Organic ChemistryVol.43、No.254826頁(1978)、Progress in Polymer ScienceVol.25、1043頁(2000)等に記載される製造方法を用いて得ることができる。
上記一般式(4)において、R21〜R30で示される炭素原子数1〜6のフッ素原子を含んでもよい炭化水素基としては、メチル、フッ化メチル等が挙げられる。
The cyclic compound represented by the general formula (4) is, for example, The Journal of
Organic Chemistry Vol. 43, no. 254826 (1978), Progress in Polymer Science Vol. 25, page 1043 (2000) and the like.
In the general formula (4), examples of the hydrocarbon group which may contain a fluorine atom having 1 to 6 carbon atoms represented by R 21 to R 30 include methyl and methyl fluoride.

上記一般式(4)で表される環状化合物としては、より具体的には以下の化合物No.10〜No.11等が挙げられる。但し、本発明に用いられる化合物は、以下の例示によりなんら制限されるものではない。   As the cyclic compound represented by the general formula (4), more specifically, the following compound No. 10-No. 11 etc. are mentioned. However, the compound used for this invention is not restrict | limited at all by the following illustrations.

Figure 2007265858
Figure 2007265858

Figure 2007265858
Figure 2007265858

上記一般式(5)で表される環状化合物は、例えば、下記の化合物No.12(1−ビニル−5,7−ジオキサスピロ [2.5] オクタン−6−オン)の場合、1,1−ビス(ヒドロキシメチル)−2−ビニルシクロプロパンとエチルクロロフォーメートとテトラヒドロフランを仕込み、トリエチルアミンを滴下し、得られた白色結晶をろ過し精製することにより得ることができる。
上記一般式(5)において、R31およびR32で示される炭素原子数1〜6のフッ素原子もしくはカルボニル基を含んでもよい炭化水素基としては、メチル、エチル、プロピル、ブチル、ペンチル、トリフルオロメチル、ペンタフルオロエチル、トリメチレン、テチラメチレン、ペンタメチレン、ヘキサメチレン、フェニル、p−フルオロフェニル、2,4−ジフルオロフェニル、3,5−ジフルオロフェニル、アセチル等が挙げられ、R33〜R37で示される炭素原子数1〜6のフッ素原子を含んでもよい炭化水素基としては、メチル、エチル、プロピル、ブチル、ペンチル、トリフルオロメチル、ペンタフルオロエチル等が挙げられる。
The cyclic compound represented by the general formula (5) is, for example, the following compound No. 12 (1-vinyl-5,7-dioxaspiro [2.5] octane-6-one) is charged with 1,1-bis (hydroxymethyl) -2-vinylcyclopropane, ethyl chloroformate and tetrahydrofuran; Triethylamine can be added dropwise, and the resulting white crystals can be filtered and purified.
In the general formula (5), examples of the hydrocarbon group which may contain a fluorine atom having 1 to 6 carbon atoms or a carbonyl group represented by R 31 and R 32 include methyl, ethyl, propyl, butyl, pentyl, trifluoro methyl, pentafluoroethyl, trimethylene, Techiramechiren, pentamethylene, hexamethylene, phenyl, p- fluorophenyl, 2,4-difluorophenyl, 3,5-difluorophenyl, acetyl and the like, represented by R 33 to R 37 Examples of the hydrocarbon group which may contain a fluorine atom having 1 to 6 carbon atoms include methyl, ethyl, propyl, butyl, pentyl, trifluoromethyl, pentafluoroethyl and the like.

上記一般式(5)で表される環状化合物としては、より具体的には以下の化合物No.12〜No.15等が挙げられる。但し、本発明に用いられる化合物は、以下の例示によりなんら制限されるものではない。   As the cyclic compound represented by the general formula (5), more specifically, the following compound No. 12-No. 15 etc. are mentioned. However, the compound used for this invention is not restrict | limited at all by the following illustrations.

Figure 2007265858
Figure 2007265858

Figure 2007265858
Figure 2007265858

Figure 2007265858
Figure 2007265858

Figure 2007265858
Figure 2007265858

上記一般式(1)〜(5)のいずれかで表される環状化合物は、負極で電子を受け取り、開環し重合し易い化合物であり、サイクル初期に電極電解液界面において重合反応することにより、安定な被膜を形成し、電解液の分解によるサイクルや高温保存に伴う界面抵抗の増加を抑制することができると考えられる。この効果を発現するために、非水電解液中における上記環状化合物の含有量は、0.05〜5体積%、特に0.1〜3体積%が望ましい。上記環状化合物の含有量が0.05体積%未満ではその効果が認められ難く、また5体積%を超えて含有させても、効果はそれ以上発現しなくなるので無駄であるばかりでなく、却って電解液の特性に悪影響を及ぼすことがある。   The cyclic compound represented by any one of the above general formulas (1) to (5) is a compound that accepts electrons at the negative electrode, and is easily ring-opened and polymerized, and undergoes a polymerization reaction at the electrode electrolyte interface at the beginning of the cycle. It is considered that a stable film can be formed and an increase in interfacial resistance associated with cycles due to decomposition of the electrolytic solution and high temperature storage can be suppressed. In order to express this effect, the content of the cyclic compound in the nonaqueous electrolytic solution is preferably 0.05 to 5% by volume, particularly 0.1 to 3% by volume. If the content of the cyclic compound is less than 0.05% by volume, it is difficult to recognize the effect. Even if the content exceeds 5% by volume, the effect is not manifested any more. May adversely affect liquid properties.

本発明の非水電解液に用いられる有機溶媒としては、特に制限されるものではなく、従来より非水電解液の有機溶媒として用いられているものを用いることができ、好ましくは環状または鎖状カーボネート化合物、環状または鎖状エステル化合物、スルホンまたはスルホキシド化合物、アマイド化合物、鎖状または環状エーテル化合物等が挙げられる。以下に該有機溶媒について具体的に例示するが、以下の例示によって限定されるものではない。   The organic solvent used in the non-aqueous electrolyte of the present invention is not particularly limited, and those conventionally used as the organic solvent for non-aqueous electrolytes can be used, preferably cyclic or chain-like. Examples include carbonate compounds, cyclic or chain ester compounds, sulfone or sulfoxide compounds, amide compounds, and chain or cyclic ether compounds. The organic solvent is specifically exemplified below, but is not limited by the following examples.

環状カーボネート化合物、環状エステル化合物、スルホンまたはスルホキシド化合物、およびアマイド化合物は、比誘電率が高いため、電解液の誘電率を上げる役割を果たす。具体的には、環状カーボネート化合物としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ビニレンカーボネート(VC)、1,2−ブチレンカーボネート、イソブチレンカーボネート等が挙げられる。環状エステル化合物としては、γ−ブチロラクトン、γ−バレロラクトン等が挙げられる。スルホンまたはスルホキシド化合物としては、スルホラン、スルホレン、テトラメチルスルホラン、ジフェニルスルホン、ジメチルスルホン、ジメチルスルホキシド等が挙げられ、これらの中でもスルホラン類が好ましい。アマイド化合物としては、N−メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド等が挙げられる。   Since the cyclic carbonate compound, the cyclic ester compound, the sulfone or sulfoxide compound, and the amide compound have a high relative dielectric constant, they serve to increase the dielectric constant of the electrolytic solution. Specifically, examples of the cyclic carbonate compound include ethylene carbonate (EC), propylene carbonate (PC), vinylene carbonate (VC), 1,2-butylene carbonate, and isobutylene carbonate. Examples of the cyclic ester compound include γ-butyrolactone and γ-valerolactone. Examples of the sulfone or sulfoxide compound include sulfolane, sulfolene, tetramethylsulfolane, diphenyl sulfone, dimethyl sulfone, dimethyl sulfoxide, and the like. Among these, sulfolanes are preferable. Examples of the amide compound include N-methylpyrrolidone, dimethylformamide, dimethylacetamide and the like.

鎖状カーボネート化合物、鎖状または環状エーテル化合物、および鎖状エステル化合物は、非水電解液の粘度を低くすることができる。そのため、電解質イオンの移動性を高くすることができる等、出力密度等の電池特性を優れたものにすることができる。また、低粘度であるため、低温での非水電解液の性能を高くすることができる。具体的には、鎖状カーボネート化合物としては、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、エチル−n−ブチルカーボネート、メチル−t−ブチルカーボネート、ジ−i−プロピルカーボネート、t−ブチル−i−プロピルカーボネート等が挙げられる。鎖状または環状エーテル化合物としては、ジメトキシエタン(DME)、エトキシメトキシエタン、ジエトキシエタン、テトラヒドロフラン、ジオキソラン、ジオキサン、1,2−ビス(メトキシカルボニルオキシ)エタン、1,2−ビス(エトキシカルボニルオキシ)エタン、1,2−ビス(エトキシカルボニルオキシ)プロパン、エチレングリコールビス(トリフルオロエチル)エーテル、i−プロピレングリコール(トリフルオロエチル)エーテル、エチレングリコールビス(トリフルオロメチル)エーテル、ジエチレングリコールビス(トリフルオロエチル)エーテル等が挙げられ、これらの中でもジオキソラン類が好ましい。   The chain carbonate compound, the chain or cyclic ether compound, and the chain ester compound can lower the viscosity of the nonaqueous electrolytic solution. Therefore, battery characteristics such as power density can be improved, such as the mobility of electrolyte ions can be increased. Moreover, since it is low-viscosity, the performance of the non-aqueous electrolyte at low temperatures can be increased. Specifically, as the chain carbonate compound, dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), ethyl-n-butyl carbonate, methyl-t-butyl carbonate, di-i-propyl Examples thereof include carbonate and t-butyl-i-propyl carbonate. Examples of the chain or cyclic ether compound include dimethoxyethane (DME), ethoxymethoxyethane, diethoxyethane, tetrahydrofuran, dioxolane, dioxane, 1,2-bis (methoxycarbonyloxy) ethane, 1,2-bis (ethoxycarbonyloxy). ) Ethane, 1,2-bis (ethoxycarbonyloxy) propane, ethylene glycol bis (trifluoroethyl) ether, i-propylene glycol (trifluoroethyl) ether, ethylene glycol bis (trifluoromethyl) ether, diethylene glycol bis (tri Fluoroethyl) ether and the like. Among these, dioxolanes are preferable.

本発明の非水電解液には、難燃性を付与するために、ハロゲン系、リン系、その他の難燃剤を適宜添加することができる。リン系難燃剤としては、トリメチルホスフェート、トリエチルホスフェート等のリン酸エステル類が挙げられる。上記難燃剤の添加量は、本発明の非水電解液を構成する有機溶媒に対して5〜100質量%が好ましく、10〜50質量%が特に好ましい。難燃剤の添加量が5質量%未満では十分な難燃化効果が得られない。   In order to impart flame retardancy, halogen-based, phosphorus-based, and other flame retardants can be appropriately added to the nonaqueous electrolytic solution of the present invention. Examples of the phosphorus flame retardant include phosphate esters such as trimethyl phosphate and triethyl phosphate. 5-100 mass% is preferable with respect to the organic solvent which comprises the non-aqueous electrolyte of this invention, and, as for the addition amount of the said flame retardant, 10-50 mass% is especially preferable. If the addition amount of the flame retardant is less than 5% by mass, a sufficient flame retarding effect cannot be obtained.

本発明の非水電解液に用いられる電解質塩としては、従来公知の電解質塩が用いられ、例えば、LiPF6 、LiBF4 、LiAsF6 、LiCF3 SO3 、LiN(CF3 SO22 、LiC(CF3 SO23 、LiSbF6 、LiSiF5 、LiAlF4 、LiSCN、LiClO4 、LiCl、LiF、LiBr、LiI、LiAlF4 、LiAlCl4 、NaClO4 、NaBF4 、NaI、これらの誘導体等が挙げられ、これらの中でもLiPF6 、LiBF4 、LiClO4 、LiAsF6 、LiCF3 SO3 、LiN(CF3 SO22 、LiC(CF3 SO23 、LiCF3 SO3 の誘導体、LiN(CF3 SO22 の誘導体、およびLiC(CF3 SO23 の誘導体からなる群から選ばれる1種以上を用いるのが、電気特性に優れるので好ましい。 As the electrolyte salt used in the non-aqueous electrolyte of the present invention, a conventionally known electrolyte salt is used. For example, LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2) 3, LiSbF 6, LiSiF 5, LiAlF 4, like LiSCN, LiClO 4, LiCl, LiF , LiBr, LiI, LiAlF 4, LiAlCl 4, NaClO 4, NaBF 4, NaI, derivatives of these Among these, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiCF 3 SO 3 derivatives, LiN (CF 3 SO 2) 2 derivative, and LiC (CF 3 SO 2) to use at least one member selected from the group consisting of 3 derivatives, The preferred because of excellent magnetic characteristics.

上記電解質塩は、本発明の非水電解液中の濃度が、0.1〜3.0モル/リットル、特に0.5〜2.0モル/リットルとなるように、上記有機溶媒に溶解することが好ましい。該電解質塩の濃度が0.1モル/リットルより小さいと、充分な電流密度を得られないことがあり、3.0モル/リットルより大きいと、非水電解液の安定性を損なう恐れがある。   The electrolyte salt is dissolved in the organic solvent so that the concentration in the non-aqueous electrolyte of the present invention is 0.1 to 3.0 mol / liter, particularly 0.5 to 2.0 mol / liter. It is preferable. If the concentration of the electrolyte salt is less than 0.1 mol / liter, a sufficient current density may not be obtained. If the concentration is more than 3.0 mol / liter, the stability of the nonaqueous electrolyte may be impaired. .

本発明の非水電解液は、一次または二次電池、特に後述する非水電解液二次電池を構成する非水電解液として好適に使用できる。   The non-aqueous electrolyte of the present invention can be suitably used as a non-aqueous electrolyte constituting a primary or secondary battery, particularly a non-aqueous electrolyte secondary battery described later.

電池の電極材料としては、正極および負極があり、正極としては、正極活物質と結着剤と導電材とを有機溶媒または水でスラリー化したものを集電体に塗布し、乾燥してシート状にしたものが使用される。正極活物質としては、TiS2 、TiS3 、MoS3 、FeS2 、Li(1-x) MnO2 、Li(1-x) Mn24 、Li(1-x) CoO2 、Li(1-x) NiO2 、LiV23 、V25 等が挙げられる。なお、これらの正極活物質におけるXは0〜1の数を示す。各々にLi、Mg、Al、またはCo、Ti、Nb、Cr等の遷移金属を添加または置換した材料等であってもよい。また、これらのリチウム−金属複合酸化物を単独で用いるばかりでなくこれらを複数種類混合して用いることもできる。このなかでもリチウム−金属複合酸化物としては、層状構造またはスピネル構造のリチウムマンガン含有複合酸化物、リチウムニッケル含有複合酸化物およびリチウムコバルト含有複合酸化物のうちの1種以上であることが好ましい。正極活物質の結着剤としては、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、EPDM、SBR、NBR、フッ素原子ゴム等が挙げられるが、これらに限定されない。負極としては、通常、負極活物質と結着剤とを有機溶媒または水でスラリー化したものを集電体に塗布し、乾燥してシート状にしたものが使用される。負極活物質としては、リチウム、リチウム合金、スズ化合物等の無機化合物、炭素質材料、導電性ポリマー等が挙げられる。特に、安全性の高いリチウムイオンを吸蔵、放出できる炭素質材料が好ましい。この炭素質材料は、特に限定されないが、黒鉛および石油系コークス、石炭系コークス、石油系ピッチの炭化物、石炭系ピッチの炭化物、フェノール樹脂・結晶セルロース樹脂等の炭化物等、およびこれらを一部炭化した炭素材、ファーネスブラック、アセチレンブラック、ピッチ系炭素繊維、PAN系炭素繊維等が挙げられる。負極活物質の結着剤としては、上記の正極活物質の結着剤と同様のものが挙げられる。 As the electrode material of the battery, there are a positive electrode and a negative electrode. As the positive electrode, a positive electrode active material, a binder, and a conductive material slurried with an organic solvent or water are applied to a current collector, dried, and then a sheet. The one made into a shape is used. Examples of the positive electrode active material include TiS 2 , TiS 3 , MoS 3 , FeS 2 , Li (1-x) MnO 2 , Li (1-x) Mn 2 O 4 , Li (1-x) CoO 2 , Li (1 -x) NiO 2, LiV 2 O 3, V 2 O 5 and the like. In addition, X in these positive electrode active materials shows the number of 0-1. A material obtained by adding or substituting a transition metal such as Li, Mg, Al, or Co, Ti, Nb, or Cr may be used. Moreover, not only these lithium-metal composite oxides are used alone, but also a plurality of them can be mixed and used. Among these, the lithium-metal composite oxide is preferably at least one of a lithium manganese-containing composite oxide having a layered structure or a spinel structure, a lithium nickel-containing composite oxide, and a lithium cobalt-containing composite oxide. Examples of the binder for the positive electrode active material include, but are not limited to, polyvinylidene fluoride, polytetrafluoroethylene, EPDM, SBR, NBR, and fluorine atom rubber. As the negative electrode, a negative electrode active material and a binder slurryed with an organic solvent or water is applied to a current collector and dried to form a sheet. Examples of the negative electrode active material include inorganic compounds such as lithium, lithium alloys, and tin compounds, carbonaceous materials, and conductive polymers. In particular, a carbonaceous material that can occlude and release highly safe lithium ions is preferable. The carbonaceous material is not particularly limited, but graphite, petroleum coke, coal coke, petroleum pitch carbide, coal pitch carbide, phenol resin / crystalline cellulose resin, etc., and partially carbonized thereof. Carbon materials, furnace black, acetylene black, pitch-based carbon fibers, PAN-based carbon fibers, and the like. Examples of the binder for the negative electrode active material include the same binders for the positive electrode active material.

正極の導電材としては、黒鉛の微粒子、アセチレンブラック等のカーボンブラック、ニードルコークス等の無定形炭素の微粒子等が使用されるが、これらに限定されない。スラリー化する有機溶媒としては、通常は結着剤を溶解する有機溶剤が使用される。該有機溶剤としては、例えば、N−メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N−N−ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフラン等が挙げられるが、これらに限定されない。   As the conductive material for the positive electrode, fine particles of graphite, carbon black such as acetylene black, and amorphous carbon fine particles such as needle coke are used, but are not limited thereto. As the organic solvent to be slurried, an organic solvent that dissolves the binder is usually used. Examples of the organic solvent include N-methylpyrrolidone, dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethyltriamine, NN-dimethylaminopropylamine, ethylene oxide, tetrahydrofuran, and the like. However, it is not limited to these.

負極の集電体としては、通常、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等が使用され、正極の集電体としては、通常、アルミニウム、ステンレス鋼、ニッケルメッキ鋼等が使用される。   As the current collector for the negative electrode, copper, nickel, stainless steel, nickel-plated steel or the like is usually used, and as the current collector for the positive electrode, aluminum, stainless steel, nickel-plated steel or the like is usually used.

本発明の非水電解液二次電池では、正極と負極との間にセパレータを用いるが、該セパレータとしては、通常用いられる高分子の微多孔フィルムを特に限定なく使用できる。該フィルムとしては、例えば、ポリエチレン、ポリプロピレン、ポリフッ化ビニリデン、ポリ塩化ビニリデン、ポリアクリロニトリル、ポリアクリルアミド、ポリテトラフルオロエチレン、ポリスルホン、ポリエーテルスルホン、ポリカーボネート、ポリアミド、ポリイミド、ポリエチレンオキシドやポリプロピレンオキシド等のポリエーテル類、カルボキシメチルセルロースやヒドロキシプロピルセルロース等の種々のセルロース類、ポリ(メタ)アクリル酸およびその種々のエステル類等を主体とする高分子化合物やその誘導体、これらの共重合体や混合物からなるフィルム等が挙げられる。これらのフィルムは、単独で用いてもよいし、これらのフィルムを重ね合わせて複層フィルムとして用いてもよい。さらに、これらのフィルムには、種々の添加剤を用いてもよく、その種類や含有量は特に制限されない。これらのフィルムの中でも、本発明の非水電解液二次電池には、ポリエチレンやポリプロピレン、ポリフッ化ビニリデン、ポリスルホンからなる微多孔フィルムが好ましく用いられる。   In the non-aqueous electrolyte secondary battery of the present invention, a separator is used between the positive electrode and the negative electrode. As the separator, a commonly used polymer microporous film can be used without any particular limitation. Examples of the film include polyethylene, polypropylene, polyvinylidene fluoride, polyvinylidene chloride, polyacrylonitrile, polyacrylamide, polytetrafluoroethylene, polysulfone, polyethersulfone, polycarbonate, polyamide, polyimide, polyethylene oxide and polypropylene oxide. Films composed of ethers, various celluloses such as carboxymethylcellulose and hydroxypropylcellulose, polymer compounds mainly composed of poly (meth) acrylic acid and various esters thereof, derivatives thereof, copolymers and mixtures thereof. Etc. These films may be used alone, or may be used as a multilayer film by superimposing these films. Furthermore, various additives may be used for these films, and the type and content thereof are not particularly limited. Among these films, a microporous film made of polyethylene, polypropylene, polyvinylidene fluoride, or polysulfone is preferably used for the nonaqueous electrolyte secondary battery of the present invention.

これらのフィルムは、電解液がしみ込んでイオンが透過し易いように、微多孔化がなされている。この微多孔化の方法としては、高分子化合物と溶剤の溶液をミクロ相分離させながら製膜し、溶剤を抽出除去して多孔化する「相分離法」と、溶融した高分子化合物を高ドラフトで押し出し製膜した後に熱処理し、結晶を一方向に配列させ、さらに延伸によって結晶間に間隙を形成して多孔化をはかる「延伸法」等が挙げられ、用いられるフィルムによって適宜選択される。   These films are microporous so that the electrolyte can penetrate and ions can easily pass therethrough. The microporosity method includes a phase separation method in which a polymer compound and a solvent solution are formed into a film while microphase separation is performed, and the solvent is extracted and removed to make it porous. The film is extruded and then heat-treated, the crystals are aligned in one direction, and a gap is formed between the crystals by stretching to make it porous, and so on.

上記構成からなる本発明の非水電解液二次電池は、その形状には特に制限を受けず、コイン型、円筒型、角型等、種々の形状とすることができる。図1は、本発明の非水電解液二次電池のコイン型電池の一例を、図2および図3は円筒型電池の一例をそれぞれ示したものである。   The shape of the non-aqueous electrolyte secondary battery of the present invention having the above configuration is not particularly limited, and can be various shapes such as a coin shape, a cylindrical shape, and a square shape. FIG. 1 shows an example of a coin-type battery of the nonaqueous electrolyte secondary battery of the present invention, and FIGS. 2 and 3 show examples of a cylindrical battery, respectively.

図1に示すコイン型の非水電解液二次電池10において、1はリチウムイオンを放出できる正極、1aは正極集電体、2は正極から放出されたリチウムイオンを吸蔵、放出できる炭素質材料よりなる負極、2aは負極集電体、3は本発明の非水電解液、4はステンレス製の正極ケース、5はステンレス製の負極ケース、6はポリプロピレン製のガスケット、7はポリエチレン製のセパレータである。   In the coin-type non-aqueous electrolyte secondary battery 10 shown in FIG. 1, 1 is a positive electrode capable of releasing lithium ions, 1a is a positive electrode current collector, and 2 is a carbonaceous material capable of inserting and extracting lithium ions released from the positive electrode. The negative electrode current collector, 2a is a negative electrode current collector, 3 is a non-aqueous electrolyte of the present invention, 4 is a stainless steel positive electrode case, 5 is a stainless steel negative electrode case, 6 is a polypropylene gasket, and 7 is a polyethylene separator. It is.

また、図2および図3に示す円筒型の非水電解液二次電池10’において、11は負極、12は負極集合体、13は正極、14は正極集電体、15は本発明の非水電解液、16はセパレータ、17は正極端子、18は負極端子、19は負極板、20は負極リード、21は正極板、22は正極リード、23はケース、24は絶縁板、25はガスケット、26は安全弁、27はPTC素子である。   Further, in the cylindrical nonaqueous electrolyte secondary battery 10 ′ shown in FIGS. 2 and 3, 11 is a negative electrode, 12 is a negative electrode assembly, 13 is a positive electrode, 14 is a positive electrode current collector, and 15 is a non-electrode of the present invention. Water electrolyte, 16 separator, 17 positive electrode terminal, 18 negative electrode terminal, 19 negative electrode plate, 20 negative electrode lead, 21 positive electrode plate, 22 positive electrode lead, 23 case, 24 insulating plate, 25 gasket , 26 are safety valves, and 27 is a PTC element.

以下、本発明を実施例および比較例によって具体的に説明するが、本発明は以下の実施例により制限されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, this invention is not restrict | limited by a following example.

実施例および比較例において、非水電解液二次電池(リチウム二次電池)は、以下の作製手順に従って作製された。   In the examples and comparative examples, nonaqueous electrolyte secondary batteries (lithium secondary batteries) were produced according to the following production procedure.


<作製手順>

(正極の作製)
正極活物質としてLiNi0.8 Co0.17Al0.032 85質量部、導電材としてアセチレンブラック10質量部、および結着剤としてポリフッ化ビニリデン(PVDF)5質量部を混合して、正極材料とした。この正極材料をN−メチル−2−ピロリドン(NMP)に分散させてスラリー状とした。このスラリーをアルミニウム製の正極集電体両面に塗布し、乾燥後、プレス成型して、正極板とした。その後、この正極板を所定の大きさにカットし、電流取り出し用のリードタブ溶接部となる部分の電極合剤を掻き取ることでシート状正極を作製した。

<Production procedure>

(Preparation of positive electrode)
85 parts by mass of LiNi 0.8 Co 0.17 Al 0.03 O 2 as a positive electrode active material, 10 parts by mass of acetylene black as a conductive material, and 5 parts by mass of polyvinylidene fluoride (PVDF) as a binder were mixed to obtain a positive electrode material. This positive electrode material was dispersed in N-methyl-2-pyrrolidone (NMP) to form a slurry. This slurry was applied to both sides of a positive electrode current collector made of aluminum, dried and press-molded to obtain a positive electrode plate. Then, this positive electrode plate was cut into a predetermined size, and a sheet-like positive electrode was produced by scraping off the electrode mixture at a portion that became a lead tab weld for extracting current.

(負極の作製)
負極活物質として黒鉛炭素材料粉末92.5質量部、および結着剤としてPVDF7.5質量部を混合して、負極材料とした。この負極材料をNMPに分散させてスラリー状とした。このスラリーを銅製の負極集電体両面に塗布し、乾燥後、プレス成型して、負極板とした。その後、この負極板を所定の大きさにカットし、電流取り出し用のリードタブ溶接部となる部分の電極合剤を掻き取ることでシート状負極を作製した。
(Preparation of negative electrode)
A negative electrode material was prepared by mixing 92.5 parts by mass of graphite carbon material powder as a negative electrode active material and 7.5 parts by mass of PVDF as a binder. This negative electrode material was dispersed in NMP to form a slurry. This slurry was applied to both sides of a copper negative electrode current collector, dried and press-molded to obtain a negative electrode plate. Then, this negative electrode plate was cut into a predetermined size, and a sheet-like negative electrode was produced by scraping off a portion of the electrode mixture that would become a lead tab weld for extracting current.

(非水電解液の調製)
非水電解液は、エチレンカーボネート(EC)30体積%とジエチルカーボネート(DEC)70体積%の混合溶媒に、LiPF6 を1モル/リットル溶かしたものをベース電解液とし、これに試験化合物(表1記載)を表1記載の配合量(体積%)で添加して非水電解液とした。
(Preparation of non-aqueous electrolyte)
The nonaqueous electrolytic solution was prepared by dissolving 1 mol / liter of LiPF 6 in a mixed solvent of 30% by volume of ethylene carbonate (EC) and 70% by volume of diethyl carbonate (DEC). 1) was added in the amount (volume%) shown in Table 1 to obtain a non-aqueous electrolyte.

(電池の組み立て)
得られたシート状正極およびシート状負極を、厚さ25μmのポリエチレン製の微多孔フィルムを介した状態で巻回させて、巻回型電極体を形成した。得られた巻回型電極体をケースの内部に挿入し、ケース内に保持した。このとき、シート状正極あるいはシート状負極のリードタブ溶接部に一端が溶接された集電リードを、ケースの正極端子あるいは負極端子にそれぞれ接合した。その後、非水電解液を巻回型電極体が保持されたケース内に注入し、ケースを密閉、封止して、φ18mm、軸方向の長さ65mmの円筒型リチウム二次電池を作製した。
(Battery assembly)
The obtained sheet-like positive electrode and sheet-like negative electrode were wound through a polyethylene microporous film having a thickness of 25 μm to form a wound electrode body. The obtained wound electrode body was inserted into the case and held in the case. At this time, the current collecting lead having one end welded to the lead tab weld portion of the sheet-like positive electrode or sheet-like negative electrode was joined to the positive electrode terminal or the negative electrode terminal of the case, respectively. Thereafter, a non-aqueous electrolyte was poured into the case holding the wound electrode body, and the case was sealed and sealed to produce a cylindrical lithium secondary battery having a diameter of 18 mm and an axial length of 65 mm.

(初期充放電、初期放電容量測定方法)
作製した二次電池の初期充放電は、以下の条件により行った。まず、充電電流0.25mA/cm2 (1/4C相当の電流値、1Cは電池容量を1時間で放電する電流値)で4.1Vまで定電流定電圧充電し、放電電流0.33mA/cm2 (1/3C相当の電流値)で3.0Vまで定電流放電を行った。次に、充電電流1.1mA/cm2 (1C相当の電流値)で4.1Vまで定電流定電圧充電し、放電電流1.1mA/cm2 (1C相当の電流値)で3.0Vまで定電流放電する操作を4回行った。その後、充電電流1.1mA/cm2 (1C相当の電流値)で4.1Vまで定電流定電圧充電し、放電電流0.33mA/cm2 (1/3C相当の電流値)で3.0Vまで定電流放電し、この時の放電容量を電池の初期放電容量とした。なお、測定は20℃の雰囲気で行った。
(Initial charge / discharge, initial discharge capacity measurement method)
The initial charge / discharge of the produced secondary battery was performed under the following conditions. First, a constant current and constant voltage charge is performed up to 4.1 V at a charging current of 0.25 mA / cm 2 (current value corresponding to 1/4 C, 1 C is a current value that discharges the battery capacity in one hour), and a discharge current of 0.33 mA / Constant current discharge was performed up to 3.0 V at cm 2 (current value corresponding to 1/3 C). Then, constant current constant voltage to 4.1V at a charging current 1.1 mA / cm 2 (current value of 1C equivalent) charged, up to 3.0V discharge current 1.1 mA / cm 2 (current value of 1C equivalent) The operation of discharging with constant current was performed 4 times. Thereafter, 3.0 V at a charging current 1.1 mA / cm 2 at (1C equivalent current value) to 4.1V charging constant current constant voltage, discharge current 0.33mA / cm 2 (1 / 3C equivalent current value) The discharge capacity at this time was defined as the initial discharge capacity of the battery. The measurement was performed in an atmosphere at 20 ° C.

(初期内部抵抗測定方法)
まず、充電電流1.1mA/cm2 (1C相当の電流値)で3.75Vまで定電流定電圧充電し、交流インピーダンス測定装置((株)東陽テクニカ製:周波数応答アナライザsolartron1260、ポテンショ/ガルバノスタットsolartron1287)を用いて、周波数100kHz〜0.02Hzまで走査し、縦軸に虚数部、横軸に実数部を示すコール−コールプロットを作成した。続いて、このコール−コールプロットにおいて、図4に示すように、円弧部分を円でフィッティングして、この円の実数部(横軸)と交差する二点のうち、大きい方の値を抵抗値とし、電池の初期内部抵抗とした。
(Initial internal resistance measurement method)
First, a constant current and constant voltage charge up to 3.75 V with a charging current of 1.1 mA / cm 2 (current value equivalent to 1 C), an AC impedance measurement device (manufactured by Toyo Technica: frequency response analyzer solartron 1260, potentio / galvanostat) Using a solartron 1287), scanning was performed from a frequency of 100 kHz to 0.02 Hz, and a Cole-Cole plot showing the imaginary part on the vertical axis and the real part on the horizontal axis was created. Subsequently, in this Cole-Cole plot, as shown in FIG. 4, the arc portion is fitted with a circle, and the larger value of the two points intersecting the real part (horizontal axis) of this circle is the resistance value. And the initial internal resistance of the battery.

(高温保存特性試験方法)
リチウム二次電池を、20℃に保ち、充電電流1.1mA/cm2 で4.1V(SOC100%)まで定電流定電圧充電した。80℃の恒温槽にて、720時間(30日間)保存した。その後、雰囲気温度を20℃に戻して、一度、放電電流0.33mA/cm2 (1/3C相当の電流値)で3.0Vまで定電流放電し、再度、充電電流1.1mA/cm2 (1C相当の電流値)で4.1Vまで定電流定電圧充電し、放電電流0.33mA/cm2 (1/3C相当の電流値)で3.0Vまで定電流放電し、この時の放電容量を高温保存試験後の電池の放電容量とした。また、内部抵抗についても初期内部抵抗測定同様、充電電流1.1mA/cm2 (1C相当の電流値)で3.75Vまで定電流定電圧充電し、交流インピーダンス測定装置を用いて、周波数100kHz〜0.02Hzまで走査し、縦軸に虚数部、横軸に実数部を示すコール−コールプロットを作成した。続いて、このコール−コールプロットにおいて、円弧部分を円でフィッティングして、この円の実数部(横軸)と交差する二点のうち、大きい方の値を抵抗値とし、高温保存後の電池の内部抵抗とした。
(High temperature storage characteristics test method)
The lithium secondary battery was kept at 20 ° C. and charged at a constant current and a constant voltage up to 4.1 V (SOC 100%) at a charging current of 1.1 mA / cm 2 . It preserve | saved for 720 hours (30 days) in an 80 degreeC thermostat. Thereafter, the ambient temperature is returned to 20 ° C., and a constant current is discharged to 3.0 V once at a discharge current of 0.33 mA / cm 2 (current value corresponding to 1/3 C), and the charge current is 1.1 mA / cm 2 again. (Current value equivalent to 1C) is constant current and constant voltage charge up to 4.1V, discharge current is 0.33mA / cm 2 (current value equivalent to 1 / 3C) and constant current is discharged to 3.0V. Discharge at this time The capacity was defined as the discharge capacity of the battery after the high temperature storage test. Similarly to the initial internal resistance measurement, the internal resistance was charged at a constant current and a constant voltage up to 3.75 V with a charging current of 1.1 mA / cm 2 (current value equivalent to 1 C), and the frequency was measured from 100 kHz to A Cole-Cole plot was created by scanning to 0.02 Hz and showing the imaginary part on the vertical axis and the real part on the horizontal axis. Subsequently, in this Cole-Cole plot, the arc part is fitted with a circle, and the larger value of the two points intersecting the real part (horizontal axis) of this circle is taken as the resistance value, and the battery after high temperature storage. Of internal resistance.

これらの測定結果から下記式により放電容量回復率(%)および内部抵抗増加率(%)を求めた。
放電容量回復率(%)=[(高温保存後の放電容量)/(初期放電容量)]×100
内部抵抗増加率(%)=[{(高温保存後の内部抵抗)−(初期内部抵抗)}/(初期内部抵抗)]×100
From these measurement results, the discharge capacity recovery rate (%) and the internal resistance increase rate (%) were determined by the following formula.
Discharge capacity recovery rate (%) = [(discharge capacity after storage at high temperature) / (initial discharge capacity)] × 100
Internal resistance increase rate (%) = [{(internal resistance after high temperature storage) − (initial internal resistance)} / (initial internal resistance)] × 100

<実施例1〜実施例9>
上記(非水電解液の調製)の通り、非水電解液をそれぞれ調製した。これらの非水電解液を用いて上記(電池の組み立て)の通りリチウム二次電池をそれぞれ作製し、該リチウム二次電池について、上記作業手順により高温保存特性試験を行った。その結果を表1に示す。
<Example 1 to Example 9>
As described above (preparation of non-aqueous electrolyte solution), non-aqueous electrolyte solutions were prepared. Using these non-aqueous electrolytes, lithium secondary batteries were respectively produced as described above (battery assembly), and the lithium secondary batteries were subjected to a high-temperature storage characteristic test according to the above operation procedure. The results are shown in Table 1.

<比較例1>
非水電解液としてベース電解液を用いた以外は実施例と同様にリチウム二次電池を作製し、該リチウム二次電池について、実施例と同様に高温保存特性試験を行った。その結果を表1に示す。
<Comparative Example 1>
A lithium secondary battery was produced in the same manner as in the example except that the base electrolyte was used as the non-aqueous electrolyte, and the lithium secondary battery was subjected to a high-temperature storage characteristic test in the same manner as in the example. The results are shown in Table 1.

<比較例2>
非水電解液として、ベース電解液にビニレンカーボネート(VC)を0.6体積%添加した非水電解液を用いた以外は実施例と同様にリチウム二次電池を作製し、該リチウム二次電池について、実施例と同様に高温保存特性試験を行った。その結果を表1に示す。
<Comparative example 2>
A lithium secondary battery was produced in the same manner as in Example except that a nonaqueous electrolyte solution in which 0.6% by volume of vinylene carbonate (VC) was added to the base electrolyte solution was used as the nonaqueous electrolyte solution. About this, the high temperature storage characteristic test was done like the Example. The results are shown in Table 1.

Figure 2007265858
Figure 2007265858

〔表1〕の結果からも明らかなように、上記一般式(1)〜(5)のいずれかで表される環状化合物を電解液に添加した実施例1〜9の電池では、添加した環状化合物が初期充電時に負極で電子を受け取り開環重合し、電解液の分解が起こる前に安定な被膜を形成したため、高温保存時の放電容量回復率が向上したと考えられる。また、添加する化合物の量を最低限にすることで高い放電容量回復率を維持しつつ、内部抵抗の増加を抑制できることが確認できた。これに対し、ベース電解液のみの比較例1の電池は、安定な被膜は形成されず電解液の分解が進むため、放電容量回復率が低く、内部抵抗の増加率が高い。VCを電解液に添加した比較例2の電池では、ベース電解液のみの比較例1の電池よりは高温特性が高いものの、80℃の環境下ではVCにより形成された被膜は分解してしまうため、放電容量回復率が低く、内部抵抗の増加率が高いことが確認できた。   As is clear from the results of [Table 1], in the batteries of Examples 1 to 9 in which the cyclic compound represented by any one of the above general formulas (1) to (5) was added to the electrolyte, the added cyclic The compound received electrons at the negative electrode during initial charging and ring-opening polymerization, and formed a stable coating before decomposition of the electrolytic solution. Therefore, it is considered that the discharge capacity recovery rate at high temperature storage was improved. It was also confirmed that the increase in internal resistance can be suppressed while maintaining a high discharge capacity recovery rate by minimizing the amount of the compound to be added. On the other hand, the battery of Comparative Example 1 using only the base electrolyte solution has a low discharge capacity recovery rate and a high increase rate of internal resistance because a stable film is not formed and decomposition of the electrolyte solution proceeds. In the battery of Comparative Example 2 in which VC is added to the electrolytic solution, although the high temperature characteristics are higher than the battery of Comparative Example 1 having only the base electrolytic solution, the coating formed by VC is decomposed in an environment of 80 ° C. It was confirmed that the discharge capacity recovery rate was low and the internal resistance increase rate was high.

図1は、本発明の非水電解液二次電池のコイン型電池の構造の一例を概略的に示す縦断面図である。FIG. 1 is a longitudinal sectional view schematically showing an example of the structure of a coin-type battery of the nonaqueous electrolyte secondary battery of the present invention. 図2は、本発明の非水電解液二次電池の円筒型電池の基本構成を示す概略図である。FIG. 2 is a schematic diagram showing a basic configuration of a cylindrical battery of the nonaqueous electrolyte secondary battery of the present invention. 図3は、本発明の非水電解液二次電池の円筒型電池の内部構造を断面として示す斜視図である。FIG. 3 is a perspective view showing the internal structure of the cylindrical battery of the nonaqueous electrolyte secondary battery of the present invention as a cross section. 図4は、電池の内部抵抗の測定において作成したコール−コールプロットを示すグラフである。FIG. 4 is a graph showing a Cole-Cole plot created in the measurement of the internal resistance of the battery.

符号の説明Explanation of symbols

1 正極
1a 正極集電体
2 負極
2a 負極集電体
3 電解液
4 正極ケース
5 負極ケース
6 ガスケット
7 セパレータ
10 コイン型の非水電解液二次電池
10’円筒型の非水電解液二次電池
11 負極
12 負極集合体
13 正極
14 正極集合体
15 電解液
16 セパレータ
17 正極端子
18 負極端子
19 負極板
20 負極リード
21 正極
22 正極リード
23 ケース
24 絶縁板
25 ガスケット
26 安全弁
27 PTC素子
DESCRIPTION OF SYMBOLS 1 Positive electrode 1a Positive electrode collector 2 Negative electrode 2a Negative electrode collector 3 Electrolyte 4 Positive electrode case 5 Negative electrode case 6 Gasket 7 Separator 10 Coin type nonaqueous electrolyte secondary battery 10 'Cylindrical nonaqueous electrolyte secondary battery DESCRIPTION OF SYMBOLS 11 Negative electrode 12 Negative electrode assembly 13 Positive electrode 14 Positive electrode assembly 15 Electrolytic solution 16 Separator 17 Positive electrode terminal 18 Negative electrode terminal 19 Negative electrode plate 20 Negative electrode lead 21 Positive electrode 22 Positive electrode lead 23 Case 24 Insulating plate 25 Gasket 26 Safety valve 27 PTC element

Claims (3)

電解質塩を有機溶媒に溶解した非水電解液において、下記一般式(1)〜(5)のいずれかで表される環状化合物の中から選ばれる少なくとも1種以上を含有することを特徴とする非水電解液。
Figure 2007265858
(式中、R1 およびR2 は、各々独立に水素原子、フッ素原子、または炭素原子数1〜6のフッ素原子を含んでもよい炭化水素基を示す。R3 およびR4 は、各々独立に水素原子またはフッ素原子を示す。Xは、硫黄原子、スルホン、または二硫化物を示す。Yは、酸素原子、炭素原子、N−H、N−アルキル、N−アリール、または硫黄原子を示す。Zは、炭素原子数1〜6のフッ素原子を含んでもよい炭化水素基、またはエーテルもしくはカルボニル結合を有する炭化水素基を示す。)
Figure 2007265858
(式中、R5 〜R10は、各々独立に水素原子、フッ素原子、または炭素原子数1〜6のフッ素原子を含んでもよい炭化水素基を示す。)
Figure 2007265858
(式中、R11〜R20は、各々独立に水素原子、フッ素原子、または炭素原子数1〜6のフッ素原子を含んでもよい炭化水素基を示す。nは、1〜3の整数を示す。)
Figure 2007265858
(式中、R21〜R30は、各々独立に水素原子、フッ素原子、または炭素原子数1〜6のフッ素原子を含んでもよい炭化水素基を示す。nは、1〜2の整数を示す。)
Figure 2007265858
(式中、R31およびR32は、各々独立にシアノ基、フッ素原子、カルボニル基、または炭素原子数1〜6のフッ素原子もしくはカルボニル基を含んでもよい炭化水素基を示す。R33〜R37は、各々独立に水素原子、フッ素原子、または炭素原子数1〜6のフッ素原子を含んでもよい炭化水素基を示す。)
A nonaqueous electrolytic solution in which an electrolyte salt is dissolved in an organic solvent contains at least one selected from cyclic compounds represented by any one of the following general formulas (1) to (5). Non-aqueous electrolyte.
Figure 2007265858
(In the formula, R 1 and R 2 each independently represent a hydrogen atom, a fluorine atom, or a hydrocarbon group which may contain a fluorine atom having 1 to 6 carbon atoms. R 3 and R 4 each independently represent X represents a sulfur atom, a sulfone, or a disulfide, and Y represents an oxygen atom, a carbon atom, NH, N-alkyl, N-aryl, or a sulfur atom. Z represents a hydrocarbon group which may contain a fluorine atom having 1 to 6 carbon atoms, or a hydrocarbon group having an ether or carbonyl bond.)
Figure 2007265858
(In the formula, R 5 to R 10 each independently represent a hydrogen atom, a fluorine atom, or a hydrocarbon group that may contain a fluorine atom having 1 to 6 carbon atoms.)
Figure 2007265858
(Wherein R 11 to R 20 each independently represent a hydrogen atom, a fluorine atom, or a hydrocarbon group that may contain a fluorine atom having 1 to 6 carbon atoms. N represents an integer of 1 to 3). .)
Figure 2007265858
(In the formula, R 21 to R 30 each independently represent a hydrogen atom, a fluorine atom, or a hydrocarbon group that may contain 1 to 6 carbon atoms. N represents an integer of 1 to 2). .)
Figure 2007265858
(In the formula, R 31 and R 32 each independently represent a cyano group, a fluorine atom, a carbonyl group, or a hydrocarbon group that may contain a fluorine atom or a carbonyl group having 1 to 6 carbon atoms. R 33 to R 37 each independently represents a hydrogen atom, a fluorine atom, or a hydrocarbon group that may contain a fluorine atom having 1 to 6 carbon atoms.)
上記一般式(1)〜(5)のいずれかで表される環状化合物の含有量が、非水電解液に対して0.05〜5体積%である請求項1に記載の非水電解液。   The nonaqueous electrolytic solution according to claim 1, wherein the content of the cyclic compound represented by any one of the general formulas (1) to (5) is 0.05 to 5% by volume with respect to the nonaqueous electrolytic solution. . 電解液として請求項1または2に記載の非水電解液を含む非水電解液二次電池。
A non-aqueous electrolyte secondary battery comprising the non-aqueous electrolyte according to claim 1 as an electrolyte.
JP2006090723A 2006-03-29 2006-03-29 Non-aqueous electrolyte and secondary battery using the electrolyte Expired - Fee Related JP5084164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006090723A JP5084164B2 (en) 2006-03-29 2006-03-29 Non-aqueous electrolyte and secondary battery using the electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006090723A JP5084164B2 (en) 2006-03-29 2006-03-29 Non-aqueous electrolyte and secondary battery using the electrolyte

Publications (3)

Publication Number Publication Date
JP2007265858A true JP2007265858A (en) 2007-10-11
JP2007265858A5 JP2007265858A5 (en) 2008-10-30
JP5084164B2 JP5084164B2 (en) 2012-11-28

Family

ID=38638645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006090723A Expired - Fee Related JP5084164B2 (en) 2006-03-29 2006-03-29 Non-aqueous electrolyte and secondary battery using the electrolyte

Country Status (1)

Country Link
JP (1) JP5084164B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013054511A1 (en) * 2011-10-11 2013-04-18 株式会社Gsユアサ Nonaqueous electrolyte secondary cell and method for producing nonaqueous electrolyte secondary cell
WO2013084393A1 (en) * 2011-12-07 2013-06-13 株式会社Gsユアサ Nonaqueous electrolyte secondary battery and method for manufacturing nonaqueous electrolyte secondary battery
KR20140096324A (en) 2011-10-28 2014-08-05 후지필름 가부시키가이샤 Electrolyte solution for non-aqueous secondary battery, and secondary battery
US8889278B2 (en) 2008-10-02 2014-11-18 Lg Chem, Ltd. Contact pad for sensing voltage of cell module assembly and cell module assembly
EP2565973A4 (en) * 2010-04-26 2015-08-05 Mitsui Chemicals Inc Nonaqueous electrolyte solution containing cyclic sulfone compound, and lithium secondary battery
US9735448B2 (en) 2013-01-28 2017-08-15 Fujifilm Corporation Electrolytic solution for non-aqueous secondary battery, and non-aqueous secondary battery
US10923769B2 (en) 2016-07-20 2021-02-16 Fujifilm Corporation Electrolytic solution for non-aqueous secondary battery and non-aqueous secondary battery
US11201352B2 (en) 2017-01-20 2021-12-14 Fujifilm Corporation Electrolytic solution for non-aqueous secondary battery, non-aqueous secondary battery, and metal complex
WO2022210803A1 (en) * 2021-03-30 2022-10-06 セントラル硝子株式会社 Nonaqueous electrolyic solution, nonaqueous electrolytic solution battery, and method for producing nonaqueous electrolytic solution battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004030991A (en) * 2002-06-21 2004-01-29 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2004281218A (en) * 2003-03-14 2004-10-07 Yuasa Corp Nonaqueous electrolyte and nonaqueous electrolyte battery
JP2005267911A (en) * 2004-03-16 2005-09-29 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004030991A (en) * 2002-06-21 2004-01-29 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2004281218A (en) * 2003-03-14 2004-10-07 Yuasa Corp Nonaqueous electrolyte and nonaqueous electrolyte battery
JP2005267911A (en) * 2004-03-16 2005-09-29 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8889278B2 (en) 2008-10-02 2014-11-18 Lg Chem, Ltd. Contact pad for sensing voltage of cell module assembly and cell module assembly
US9303011B2 (en) 2010-04-26 2016-04-05 Mitsui Chemicals, Inc. Nonaqueous electrolyte solution containing cyclic sulfone compound, and lithium secondary battery
EP2565973A4 (en) * 2010-04-26 2015-08-05 Mitsui Chemicals Inc Nonaqueous electrolyte solution containing cyclic sulfone compound, and lithium secondary battery
WO2013054511A1 (en) * 2011-10-11 2013-04-18 株式会社Gsユアサ Nonaqueous electrolyte secondary cell and method for producing nonaqueous electrolyte secondary cell
US9306238B2 (en) 2011-10-11 2016-04-05 Gs Yuasa International Ltd. Nonaqueous electrolyte secondary battery and method for producing nonaqueous electrolyte secondary battery
JPWO2013054511A1 (en) * 2011-10-11 2015-03-30 株式会社Gsユアサ Non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery
US9595734B2 (en) 2011-10-28 2017-03-14 Fujifilm Corporation Non-aqueous liquid electrolyte for secondary battery and secondary battery
KR20140096324A (en) 2011-10-28 2014-08-05 후지필름 가부시키가이샤 Electrolyte solution for non-aqueous secondary battery, and secondary battery
WO2013084393A1 (en) * 2011-12-07 2013-06-13 株式会社Gsユアサ Nonaqueous electrolyte secondary battery and method for manufacturing nonaqueous electrolyte secondary battery
US9917327B2 (en) 2011-12-07 2018-03-13 Gs Yuasa International Ltd. Nonaqueous electrolyte secondary battery and method for producing nonaqueous electrolyte secondary battery
US10749213B2 (en) 2011-12-07 2020-08-18 Gs Yuasa International Ltd. Nonaqueous electrolyte secondary battery and method for producing nonaqueous electrolyte secondary battery
US9735448B2 (en) 2013-01-28 2017-08-15 Fujifilm Corporation Electrolytic solution for non-aqueous secondary battery, and non-aqueous secondary battery
US10923769B2 (en) 2016-07-20 2021-02-16 Fujifilm Corporation Electrolytic solution for non-aqueous secondary battery and non-aqueous secondary battery
US11201352B2 (en) 2017-01-20 2021-12-14 Fujifilm Corporation Electrolytic solution for non-aqueous secondary battery, non-aqueous secondary battery, and metal complex
WO2022210803A1 (en) * 2021-03-30 2022-10-06 セントラル硝子株式会社 Nonaqueous electrolyic solution, nonaqueous electrolytic solution battery, and method for producing nonaqueous electrolytic solution battery

Also Published As

Publication number Publication date
JP5084164B2 (en) 2012-11-28

Similar Documents

Publication Publication Date Title
JP5004495B2 (en) Non-aqueous electrolyte and secondary battery using the electrolyte
JP4070793B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the electrolyte
JP5390131B2 (en) Non-aqueous electrolyte secondary battery electrode binder, non-aqueous electrolyte secondary battery electrode and non-aqueous electrolyte secondary battery using the binder
JP5222538B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the electrolyte
KR101020346B1 (en) Nonaqueous electrolyte lithium secondary battery
JP5072379B2 (en) Non-aqueous electrolyte and secondary battery using the electrolyte
JP5084164B2 (en) Non-aqueous electrolyte and secondary battery using the electrolyte
KR101060349B1 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery having same
JP4042034B2 (en) Non-aqueous electrolyte battery
JP4093699B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
JP2004039510A (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the electrolyte
JP4931489B2 (en) Non-aqueous electrolyte and secondary battery using the electrolyte
JP2002134169A (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same
US8268489B2 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
JP5230341B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery using the electrolyte
JP5121127B2 (en) Non-aqueous electrolyte composition and non-aqueous electrolyte secondary battery using the composition
JP5180612B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the electrolyte
JP5897869B2 (en) New fluorosilane compounds
JP4765629B2 (en) Non-aqueous electrolyte and lithium secondary battery
JP2002373702A (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using it
JP2001345120A (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using this electrolyte
JP4854316B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the electrolyte
WO2013069529A1 (en) Nonaqueous electrolyte solution, and nonaqueous electrolyte secondary battery using said electrolyte solution
JP2006236648A (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same
JP2010027361A (en) Nonaqueous electrolyte for secondary battery, and nonaqueous electrolyte secondary battery using nonaqueous electrolyte

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080911

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120904

R150 Certificate of patent or registration of utility model

Ref document number: 5084164

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees