JP2007265659A - Manufacturing method of organic el element - Google Patents

Manufacturing method of organic el element Download PDF

Info

Publication number
JP2007265659A
JP2007265659A JP2006085774A JP2006085774A JP2007265659A JP 2007265659 A JP2007265659 A JP 2007265659A JP 2006085774 A JP2006085774 A JP 2006085774A JP 2006085774 A JP2006085774 A JP 2006085774A JP 2007265659 A JP2007265659 A JP 2007265659A
Authority
JP
Japan
Prior art keywords
layer
organic
translucent
hole transport
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006085774A
Other languages
Japanese (ja)
Inventor
Yusho Shida
有章 志田
Tokuo Shinpo
徳夫 新保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Seiki Co Ltd
Original Assignee
Nippon Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Seiki Co Ltd filed Critical Nippon Seiki Co Ltd
Priority to JP2006085774A priority Critical patent/JP2007265659A/en
Publication of JP2007265659A publication Critical patent/JP2007265659A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method capable of forming a structure for disturbing a reflection angle of a reflective electrode for improving extraction efficiency of light with high precision and productivity. <P>SOLUTION: The manufacturing method for arranging the organic EL element 9 on a translucent substrate 1 wherein the organic El element 9 is formed by sandwiching a functional organic layer 8 formed of a plurality of layers including a light emitting layer 4 between a translucent electrode 2 formed of a translucent conductive material and a reflective electrode 7 having a structure for disturbing the reflection angle, includes a process for forming an uneven part on, for example, a hole transport layer 3 which is at least one layer of the functional organic layer 8. In the process, a projected part 3a is formed by partially vaporizing the hole transport layer 3 of the functional organic layer 8 by using laser process, electron beam lithography, or ion beam process. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、透光性基板上に、少なくとも発光層を有する機能性有機層を透光性導電性材料からなる透光性電極と反射角を乱す構造を有する反射性電極との間に挟持してなる有機EL素子を配設してなる有機ELパネルの製造方法に関し、特に発光効率を向上させる有機ELパネルの製造方法に関するものである。   In the present invention, a functional organic layer having at least a light emitting layer is sandwiched between a translucent electrode made of a translucent conductive material and a reflective electrode having a structure that disturbs the reflection angle on a translucent substrate. More particularly, the present invention relates to a method for manufacturing an organic EL panel that improves luminous efficiency.

有機EL素子のような自己発光型表示装置では、発光層より発光した光を外部へ取り出す場合、素子を構成する基板、透光性電極や発光層など複数層からなる有機膜の屈折率で一意的に決まる全反射臨界角以上の光が全反射してしまい、導波光として損失し外部へ取り出すことができないことが知られている。また、第2電極側となる背面電極を反射性電極(例えばアルミ電極)を用いる有機EL素子の場合においても、発光層で発光し第1電極側となる透光性電極から直接外部に取り出される光、ならびに前記反射性電極での反射を経由し外部に取り出される光においても、同様に全反射臨界角を超える光は導波光として損失し、全体の20%程度しか外部へ取り出すことができないことが知られている。(例えば、リアライズ理工センター発行の「有機ELハンドブック」参照)。   In a self-luminous display device such as an organic EL element, when light emitted from a light emitting layer is extracted to the outside, the refractive index of an organic film composed of a plurality of layers such as a substrate, a translucent electrode, and a light emitting layer is unique. It is known that light having a total reflection critical angle that is determined by the total reflection is totally reflected and lost as guided light and cannot be extracted outside. Also, in the case of an organic EL element using a reflective electrode (for example, an aluminum electrode) as the back electrode on the second electrode side, light is emitted from the light emitting layer and directly taken out from the translucent electrode on the first electrode side. In light and light extracted outside via reflection at the reflective electrode, similarly, light exceeding the total reflection critical angle is lost as guided light, and only about 20% of the total light can be extracted outside. It has been known. (For example, see "Organic EL Handbook" issued by Realize Science and Technology Center).

上記の20%程度しかない外部へ取り出すことができる発光の比率(以下、光の取出し効率と言う)を向上させることができれば、有機EL素子を用いたディスプレイ、計器表示、照明装置などの明るさを飛躍的に高めることが期待されており、各所で様々な研究開発が行われている。このように光の取り出し効率の向上は、例えば、効率を現状の2倍(すなわち約40%)にできれば、駆動用ICの出力電流容量を半分に減らすことができたり、また配線に用いる電極の配線幅を小さくすることが可能となり、ディスプレイモジュールの小型化や、同一面積のガラス基板で形成できる素子の数量増大、使用する駆動ICの低コスト化などの有機ELパネルのアプリケーション面、製造コスト面からの期待も大きい。   If the above-mentioned ratio of emitted light that can be extracted to the outside of only about 20% (hereinafter referred to as light extraction efficiency) can be improved, the brightness of displays, instrument displays, lighting devices, etc. using organic EL elements Is expected to dramatically increase, and various research and development is being carried out in various places. In this way, the light extraction efficiency can be improved by, for example, reducing the output current capacity of the driving IC by half if the efficiency can be doubled (that is, about 40%) as compared to the current level, and the electrode used for the wiring. It is possible to reduce the wiring width, organic EL panel application and manufacturing cost, such as downsizing the display module, increasing the number of elements that can be formed on a glass substrate of the same area, and reducing the cost of the drive IC used Expectation from is also great.

光の取出し効率を向上させるものとしては、反射性電極(背面電極)の反射角を乱す構造とすることが特許文献1や特許文献2にて提案されている。すなわち、特許文献1は、前記反射性電極をテーパー形状にすることで導波光を外部へ取り出すため光として集光させたり、特許文献2は、前記反射性電極に微小突起を用いることにより反射光の一部を散乱により集光させたりして、光の取り出し効率を向上させる構造が開示されている。また、他の方法により光の取出し効率を向上させるものとしては、溶剤を用いて有機層の第1層目(正孔輸送層)に凹凸を形成し、その後第2層目以降の有機層及び反射性電極を順次形成することで凹凸を形成するものが特許文献2に開示されている。また、他の方法により光の取出し効率を向上させるものとしては、特許文献3に開示されるものがある。特許文献3には、所定の位置に孔を有した蒸着マスクを用いて有機層の第1層目(正孔輸送層)を凹凸に形成した後に、その後第2層目以降の有機層及び反射性電極を順次形成することで凹凸を形成するものや、溶剤を用いて有機層の第1層目(正孔輸送層)に凹凸を形成形成するものが開示されている。
特開平10−189243号公報 特開平11−214162号公報 特開平17−228501号公報
In order to improve the light extraction efficiency, Patent Document 1 and Patent Document 2 propose a structure that disturbs the reflection angle of the reflective electrode (back electrode). That is, Patent Document 1 condenses the reflected light as light in order to extract the guided light to the outside by making the reflective electrode into a tapered shape, and Patent Document 2 reflects the reflected light by using a micro projection on the reflective electrode. A structure for improving the light extraction efficiency by condensing a part of the light by scattering is disclosed. In order to improve the light extraction efficiency by another method, an unevenness is formed in the first layer (hole transport layer) of the organic layer using a solvent, and then the second and subsequent organic layers and Japanese Patent Application Laid-Open No. H10-228667 discloses forming an unevenness by sequentially forming reflective electrodes. Another method for improving the light extraction efficiency by another method is disclosed in Patent Document 3. In Patent Document 3, the first layer (hole transport layer) of the organic layer is formed in a concavo-convex shape using a vapor deposition mask having holes at predetermined positions, and then the second and subsequent organic layers and reflections are formed. Disclosed are those in which irregularities are formed by sequentially forming conductive electrodes, and those in which irregularities are formed and formed in the first layer (hole transport layer) of the organic layer using a solvent.
JP-A-10-189243 JP-A-11-214162 JP-A-17-228501

しかしながら、特許文献3は、蒸着マスクを用いるものであるが、蒸着装置の性能に起因する凹凸形状の変形やばらつきを光学波長レベルで精度よく調整することは非常に困難であり、有機層内に凹凸を光学波長レベルに精度よく、生産性よく形成することは非常に困難であることが現状である。また、特許文献3に開示される製造方法では、凹凸形状の制御が透光性電極と有機材料(溶質)、溶液の凝集エネルギーで決定される、いわゆる「濡れ性」により決まってしまうことから、凹凸段差や凹凸ピッチなど意図した形状を正確に形成できず、さらには、水分や溶剤を嫌う真空蒸着工程の中途で溶剤を用いる工程を実施することは製造上困難であり、残留した溶剤による有機層の性能低下が懸念される。以上述べたように、精度と生産性を兼ね備えた実用的な、反射性電極の反射角を乱す構造を形成する方法は未だ存在しないというのが現実であった。   However, Patent Document 3 uses a vapor deposition mask, but it is very difficult to accurately adjust the deformation and variation of the concavo-convex shape due to the performance of the vapor deposition apparatus at the optical wavelength level. At present, it is very difficult to form the unevenness at the optical wavelength level with high accuracy and high productivity. In addition, in the manufacturing method disclosed in Patent Document 3, the control of the uneven shape is determined by the so-called “wetability” determined by the translucent electrode, the organic material (solute), and the cohesive energy of the solution. The intended shape such as uneven steps and uneven pitches cannot be accurately formed, and it is difficult to manufacture a process using a solvent in the middle of a vacuum deposition process that dislikes moisture and solvent, and organics due to the remaining solvent There is concern about the performance degradation of the layer. As described above, in reality, there is no practical method for forming a structure that disturbs the reflection angle of the reflective electrode that has both accuracy and productivity.

本発明は、前述した問題に鑑みなされ、光の取り出し効率を向上させることが可能な反射性電極の反射角を乱す構造を高精度、かつ生産性よく形成することができる製造方法を提供することを目的とする。   The present invention is made in view of the above-described problems, and provides a manufacturing method capable of forming a structure that disturbs the reflection angle of a reflective electrode capable of improving the light extraction efficiency with high accuracy and high productivity. With the goal.

本発明は、前記課題を解決するため、請求項1に記載した有機ELパネルの製造方法のように、透光性基板上に、発光層を含む複数の層からなる機能性有機層を透光性導電性材料からなる透光性電極と反射角を乱す構造を有する反射性電極との間に挟持してなる有機EL素子を配設してなる有機ELパネルの製造方法であって、前記機能性有機層の少なくも1層に凹凸面を形成する工程を含み、前記工程は、レーザー加工又は電子線描画法又はイオンビーム加工を用いて、前記機能性有機層の少なくとも1層を部分的に気化させ凸部もしくは凹部を形成してなるものである。   In order to solve the above-mentioned problems, the present invention provides a translucent functional organic layer comprising a plurality of light-emitting layers on a translucent substrate as in the method for producing an organic EL panel according to claim 1. A method for producing an organic EL panel comprising an organic EL element sandwiched between a translucent electrode made of a conductive conductive material and a reflective electrode having a structure that disturbs the reflection angle, Forming a concavo-convex surface on at least one layer of the functional organic layer, and the step partially includes at least one layer of the functional organic layer using laser processing, electron beam lithography, or ion beam processing. Vaporized to form convex portions or concave portions.

本発明は、透光性基板上に、少なくとも発光層を有する機能性有機層を透光性導電性材料からなる透光性電極と反射角を乱す構造を有する反射性電極との間に挟持してなる有機EL素子を配設してなる有機ELパネルの製造方法に関し、有機EL素子の光の取り出し効率を向上させることが可能な反射性電極の反射角を乱す構造を高精度、かつ生産性よく形成することができる。   In the present invention, a functional organic layer having at least a light emitting layer is sandwiched between a translucent electrode made of a translucent conductive material and a reflective electrode having a structure that disturbs the reflection angle on a translucent substrate. The structure for disturbing the reflection angle of the reflective electrode capable of improving the light extraction efficiency of the organic EL element with high accuracy and productivity Can be well formed.

以下、添付図面に基づいて本発明の実施形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図1において、有機ELパネルAは、透光性のガラス材料からなる透光性基板1上に、第1電極である透光性電極(陽極)2と、正孔輸送層3と、発光層4と、電子輸送層5と、電子注入層6と、第2電極である反射性電極(陰極)7とを順次形成してなるものであり、正孔輸送層3,発光層4,電子輸送層5及び電子注入層6によって機能性有機層8を構成し、透光性電極2と、機能性有機層8と、反射性電極7とで有機EL素子9を構成する。   In FIG. 1, an organic EL panel A includes a translucent electrode (anode) 2 as a first electrode, a hole transport layer 3, and a light emitting layer on a translucent substrate 1 made of a translucent glass material. 4, an electron transport layer 5, an electron injection layer 6, and a reflective electrode (cathode) 7 as a second electrode are sequentially formed. A hole transport layer 3, a light emitting layer 4, an electron transport A functional organic layer 8 is constituted by the layer 5 and the electron injection layer 6, and an organic EL element 9 is constituted by the translucent electrode 2, the functional organic layer 8 and the reflective electrode 7.

透光性電極2は、例えばITO(Indium Tin Oxide)等の透光性の導電材料をスパッタリングあるいは蒸着法等の方法で支持基板1上に層状に形成し、例えばフォトリソグラフィー法にてストライプ状にパターニングしてなるものである。   The translucent electrode 2 is formed by layering a translucent conductive material such as ITO (Indium Tin Oxide) on the support substrate 1 by a method such as sputtering or vapor deposition, and for example, stripes by a photolithography method. It is formed by patterning.

有機層8は、正孔輸送層3,発光層4,電子輸送層5及び電子注入層6を蒸着法等の手段によって順次積層形成してなり、膜厚80〜280nm程度の層状となるものである。   The organic layer 8 is formed by sequentially laminating a hole transport layer 3, a light emitting layer 4, an electron transport layer 5 and an electron injection layer 6 by means of vapor deposition or the like, and has a layer shape with a film thickness of about 80 to 280 nm. is there.

正孔輸送層3は、透光性電極2から正孔を取り込み発光層4へ伝達する機能を有し、例えばアミン系化合物等の正孔移動度が高い正孔輸送性材料を蒸着法等の手段によって膜厚20〜80nm程度の層状に形成してなる。   The hole transport layer 3 has a function of capturing holes from the translucent electrode 2 and transmitting the holes to the light emitting layer 4. For example, a hole transport material having a high hole mobility such as an amine-based compound is used for vapor deposition. It is formed in a layered form with a film thickness of about 20 to 80 nm by means.

発光層4は、ホスト材料にゲスト材料として少なくとも蛍光材料を蒸着法等の手段によってドープし、膜厚20〜60nm程度の層状に形成してなる。前記ホスト材料は、正孔及び電子の輸送が可能であり、正孔及び電子が輸送されて再結合することで発光を示す機能を有し、例えばジスチリルアリーレン誘導体等からなる。前記蛍光材料は、電子と正孔との再結合に反応して発光する機能を有し、所定の発光色を示し、例えば青緑色発光を示す出光興産株式会社製のBD102からなる。   The light-emitting layer 4 is formed by doping a host material with at least a fluorescent material as a guest material by means of vapor deposition or the like to form a layer having a thickness of about 20 to 60 nm. The host material can transport holes and electrons, and has a function of emitting light when the holes and electrons are transported and recombined. For example, the host material includes a distyrylarylene derivative. The fluorescent material has a function of emitting light in response to recombination of electrons and holes, and exhibits a predetermined emission color, for example, BD102 manufactured by Idemitsu Kosan Co., Ltd., which exhibits blue-green emission.

電子輸送層5は、発光層4へ電子を伝達する機能を有し、例えばキレート系化合物であるアルミキノリノール(Alq3)等の電子移動度の高い電子輸送性材料を蒸着法等の手段によって膜厚20〜60nm程度の層状に形成してなる。   The electron transport layer 5 has a function of transmitting electrons to the light emitting layer 4. For example, an electron transport material having a high electron mobility such as aluminum quinolinol (Alq3) which is a chelate compound is deposited by means such as vapor deposition. It is formed in a layer shape of about 20 to 60 nm.

電子注入層6は、反射性電極7から電子を注入する機能を有し、例えばフッ化リチウム(LiF)を蒸着法等の手段によって膜厚1nm程度の層状に形成してなる。   The electron injection layer 6 has a function of injecting electrons from the reflective electrode 7, and is formed, for example, by forming lithium fluoride (LiF) into a layer having a thickness of about 1 nm by means such as vapor deposition.

反射性電極7は、アルミニウム(Al)やマグネシウム銀(Mg:Ag)等の導電性材料を蒸着法等の手段によって膜厚50〜200nm程度の層状に形成してなるものである。   The reflective electrode 7 is formed by forming a conductive material such as aluminum (Al) or magnesium silver (Mg: Ag) into a layer having a thickness of about 50 to 200 nm by means such as vapor deposition.

次に、図1乃至図3を用いて有機ELパネルAの製造方法について詳述する。   Next, the manufacturing method of the organic EL panel A will be described in detail with reference to FIGS.

真空蒸着装置(図示しない)に連結された真空レーザー加工室に配設されたレーザー10を用いたアブレーション現象により、機能性有機層8の第1層となる正孔輸送層3を部分的に気化せしめる。なお、気化した不要な有機物は、ガス状態のまま前記真空蒸着装置に配設される真空ポンプにより排気することで、基板への再付着を防止することができる。   The hole transport layer 3 as the first layer of the functional organic layer 8 is partially vaporized by the ablation phenomenon using the laser 10 disposed in a vacuum laser processing chamber connected to a vacuum deposition apparatus (not shown). Let me. Note that the vaporized unnecessary organic matter can be prevented from being reattached to the substrate by being exhausted by a vacuum pump disposed in the vacuum deposition apparatus in a gas state.

レーザー加工に用いるレーザー10は、好ましくは、高励起エネルギーを有するエキシマレーザーやYAGの高波長レーザー、HeCdレーザーなどが適している。正孔輸送層3を微細な形状で精度よく気化させ、かつ残すべき正孔輸送層3への熱的な悪影響(熱による溶融、転移、結晶化など)を排除するためには、短パルスにてアブレーション現象を引き起こす必要があり、加工部外(気化させる箇所)の機能性有機層(有機EL素子)8への熱的寄与が少ない高励起エネルギーを有するレーザー種が好適である。   The laser 10 used for laser processing is preferably an excimer laser having a high excitation energy, a YAG high wavelength laser, a HeCd laser, or the like. In order to vaporize the hole transport layer 3 in a fine shape with high accuracy and eliminate the adverse thermal effects (melting, transition, crystallization, etc. due to heat) on the hole transport layer 3 to be left, a short pulse is used. Therefore, a laser species having a high excitation energy that has a low thermal contribution to the functional organic layer (organic EL element) 8 outside the processing portion (a portion to be vaporized) is preferable.

図2は、透光性電極1上に形成した透光性電極2上の正孔輸送層3に、凸部3aを形成するべく凸部3a以外の不要な正孔輸送層3を除去した状態を示している。   FIG. 2 shows a state where unnecessary hole transport layers 3 other than the convex portions 3a are removed to form the convex portions 3a on the hole transport layer 3 on the translucent electrode 2 formed on the translucent electrode 1. Is shown.

エキシマレーザーを用いた加工法としては、パルス方式がアブレーション現象を発生させるに有効であり、パルス幅は短いほど熱的損傷を低減し、加工精度を向上させることができる。好ましくは、100μ秒以下が望ましく、より好ましくは100ナノ秒以下、さらに好ましくはピコ秒,フェムト秒である。例えば、フッ化アルゴンレーザー(ArF)であれば、パルスエネルギ210mJ〜250mJ、PPS(パルス数/秒)20〜200で望ましい加工が得られ、またフッ化クリプトンレーザー(KrF)であれば、パルスエネルギ430mJ〜500mJ、PPS25〜200で望ましい加工が得られる。   As a processing method using an excimer laser, a pulse method is effective for generating an ablation phenomenon. As the pulse width is shorter, thermal damage can be reduced and processing accuracy can be improved. Preferably, it is 100 μsec or less, more preferably 100 nanoseconds or less, still more preferably picosecond or femtosecond. For example, in the case of an argon fluoride laser (ArF), desirable processing can be obtained with a pulse energy of 210 mJ to 250 mJ and PPS (number of pulses / second) of 20 to 200, and in the case of a krypton fluoride laser (KrF), the pulse energy Desirable processing is obtained at 430 mJ to 500 mJ and PPS 25 to 200.

正孔輸送層3を部分的に除去するための他の加工法としては、電子線描画法又はイオンビーム加工が用いられる。   As another processing method for partially removing the hole transport layer 3, an electron beam drawing method or an ion beam processing is used.

電子線照射を用いた加工法(電子線描画法)では、電子線加速電圧は2kV以上で通常50kV以下が望ましい。   In a processing method using electron beam irradiation (electron beam drawing method), the electron beam acceleration voltage is preferably 2 kV or more and usually 50 kV or less.

イオンビームを用いた加工法では、アルゴンや酸素、ガリウムなどイオンビーム照射においては、数百eV〜50keVでの照射で加工可能であるが、低エネルギーではビームの広がりにより加工精度がでにくいため、10keV〜30keV程度での照射が好ましい。   In the processing method using an ion beam, irradiation with ion beams such as argon, oxygen, and gallium can be performed with irradiation of several hundred eV to 50 keV. However, since the processing accuracy is difficult due to the spread of the beam at low energy, Irradiation at about 10 keV to 30 keV is preferable.

上記何れかの加工法を用いることによって、正孔輸送層3の材料にて凸部3aを形成することができる。その後、凸部3a上に従来の蒸着法により正孔輸送層3を蒸着し凸部3aを有する正孔輸送層3を形成して正孔輸送層3に凸3a及び凹部3bを形成した後、機能性有機層8の2層目,3層目及び4層目となる発光層4,電子輸送層5及び電子注入層6を順次蒸着により積層形成し機能性有機層8を得て、機能性有機層8上に反射性電極7を蒸着により形成することで、反射角を乱す凸部7a及び凹部7bを備えた構造を有する反射性電極7を得ることができる。   By using any of the above processing methods, the convex portion 3a can be formed of the material of the hole transport layer 3. Thereafter, the hole transport layer 3 is deposited on the convex portion 3a by a conventional vapor deposition method to form the hole transport layer 3 having the convex portion 3a, and the convex 3a and the concave portion 3b are formed on the hole transport layer 3, The second, third and fourth layers of the functional organic layer 8 are formed by sequentially depositing the light emitting layer 4, the electron transport layer 5 and the electron injection layer 6 to obtain the functional organic layer 8. By forming the reflective electrode 7 on the organic layer 8 by vapor deposition, it is possible to obtain the reflective electrode 7 having a structure including convex portions 7a and concave portions 7b that disturb the reflection angle.

かかる有機ELパネルAの製造方法は、透光性基板上1に、発光層4を含む複数の層からなる機能性有機層8を透光性導電性材料からなる透光性電極1と反射角を乱す構造を有する反射性電極7との間に挟持してなる有機EL素子9を配設してなる製造方法に関し、機能性有機層8の少なくも1層、例えば正孔輸送層3に凹凸を形成する工程を含み、前記工程は、レーザー加工又は電子線描画法又はイオンビーム加工を用いて、機能性有機層8の正孔輸送層3を部分的に気化させ凸部3aを形成するものである。   Such a method for manufacturing an organic EL panel A includes a functional organic layer 8 composed of a plurality of layers including a light emitting layer 4 on a translucent substrate 1 and a reflection angle of the translucent electrode 1 made of a translucent conductive material. In relation to a manufacturing method in which an organic EL element 9 sandwiched between a reflective electrode 7 having a structure that disturbs the structure is disposed, at least one functional organic layer 8 such as a hole transport layer 3 is uneven. And forming the convex portion 3a by partially vaporizing the hole transport layer 3 of the functional organic layer 8 using laser processing, electron beam lithography or ion beam processing. It is.

従って、正孔輸送層3をレーザー加工又は電子線描画法又はイオンビーム加工を用いて、正確な位置を部分的に除去して再び正孔輸送層3を蒸着することで、正孔輸送層3に凹凸を形成し、その後に順次発光層4,電子輸送層5,電子注入層6及び反射性電極7を形成することによって反射角を乱す構造を有する反射性電極7を得ることができることから、有機EL素子9の光の取り出し効率を向上させることが可能な反射性電極の反射角を乱す構造を高精度、かつ生産性よく形成することができる。   Therefore, the hole transport layer 3 is vapor-deposited again by partially removing the accurate position by using laser processing, electron beam lithography, or ion beam processing. The reflective electrode 7 having a structure in which the reflection angle is disturbed can be obtained by sequentially forming the light emitting layer 4, the electron transport layer 5, the electron injection layer 6 and the reflective electrode 7 by forming irregularities on the surface. A structure that disturbs the reflection angle of the reflective electrode capable of improving the light extraction efficiency of the organic EL element 9 can be formed with high accuracy and high productivity.

なお、本発明の実施形態では、正孔輸送層3に凹凸部をレーザー加工又は電子線描画法又はイオンビーム加工を用いて形成するものであったが、本発明にあっては、機能性有機層8の何れかの層にレーザー加工又は電子線描画法又はイオンビーム加工を用いて形成するものであってもよい。   In the embodiment of the present invention, the concavo-convex portion is formed on the hole transport layer 3 by using laser processing, electron beam drawing, or ion beam processing. It may be formed in any one of the layers 8 by using laser processing, electron beam drawing, or ion beam processing.

また、本発明の実施形態では、正孔輸送層3に凸部3aを形成するべく凸部3a以外の正孔輸送層3をレーザー加工又は電子線描画法又はイオンビーム加工を用いて除去しているが、レーザー加工又は電子線描画法又はイオンビーム加工を用いて凹部を形成することで反射角を乱す凹凸構造を有する反射性電極7を形成することができる。   Moreover, in embodiment of this invention, in order to form the convex part 3a in the positive hole transport layer 3, the hole transport layers 3 other than the convex part 3a are removed using laser processing, an electron beam drawing method, or ion beam processing. However, it is possible to form the reflective electrode 7 having a concavo-convex structure that disturbs the reflection angle by forming the concave portion by using laser processing, electron beam lithography, or ion beam processing.

また、本発明の実施形態では、正孔輸送層3に凸部3aを形成した後に再び正孔輸送層3に形成したが、凸部3a上に正孔輸送層3を形成することなく、次なる層(有機層4)を形成するようにしてもよい。   In the embodiment of the present invention, the convex portion 3a is formed on the hole transport layer 3 and then formed again on the hole transport layer 3. However, without forming the hole transport layer 3 on the convex portion 3a, You may make it form the layer (organic layer 4) which becomes.

本発明の実施形態の有機ELパネルを示す要部断面図である。It is principal part sectional drawing which shows the organic electroluminescent panel of embodiment of this invention. 同上実施形態の有機ELパネルの製造方法を説明する図である。It is a figure explaining the manufacturing method of the organic electroluminescent panel of embodiment same as the above. 同上実施形態の製造工程における有機ELパネルを説明する図であるIt is a figure explaining the organic electroluminescent panel in the manufacturing process of embodiment same as the above.

符号の説明Explanation of symbols

A 有機ELパネル
1 透光性基板
2 透光性電極
3 正孔輸送層
4 発光層
5 電子輸送層
6 電子注入層
7 反射性電極
8 機能性有機層
9 有機EL素子
10 レーザー
3a,4a,5a,6a,7a 凸部
A Organic EL Panel 1 Translucent Substrate 2 Translucent Electrode 3 Hole Transport Layer 4 Light-Emitting Layer 5 Electron Transport Layer 6 Electron Injection Layer 7 Reflective Electrode 8 Functional Organic Layer 9 Organic EL Element 10 Laser 3a, 4a, 5a , 6a, 7a Convex part

Claims (1)

透光性基板上に、発光層を含む複数の層からなる機能性有機層を透光性導電性材料からなる透光性電極と反射角を乱す構造を有する反射性電極との間に挟持してなる有機EL素子を配設してなる有機ELパネルの製造方法であって、
前記機能性有機層の少なくも1層に凹凸面を形成する工程を含み、前記工程は、レーザー加工又は電子線描画法又はイオンビーム加工を用いて、前記機能性有機層の少なくとも1層を部分的に気化させ凸部もしくは凹部を形成してなることを特徴とする有機ELパネルの製造方法。
A functional organic layer composed of a plurality of layers including a light emitting layer is sandwiched between a translucent electrode made of a translucent conductive material and a reflective electrode having a structure that disturbs the reflection angle on a translucent substrate. An organic EL panel manufacturing method in which an organic EL element is provided,
Forming a concavo-convex surface on at least one layer of the functional organic layer, wherein the step includes at least one layer of the functional organic layer using laser processing, electron beam lithography, or ion beam processing. The method for producing an organic EL panel is characterized by forming a convex part or a concave part by vaporizing it.
JP2006085774A 2006-03-27 2006-03-27 Manufacturing method of organic el element Pending JP2007265659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006085774A JP2007265659A (en) 2006-03-27 2006-03-27 Manufacturing method of organic el element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006085774A JP2007265659A (en) 2006-03-27 2006-03-27 Manufacturing method of organic el element

Publications (1)

Publication Number Publication Date
JP2007265659A true JP2007265659A (en) 2007-10-11

Family

ID=38638458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006085774A Pending JP2007265659A (en) 2006-03-27 2006-03-27 Manufacturing method of organic el element

Country Status (1)

Country Link
JP (1) JP2007265659A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140038827A (en) * 2012-09-21 2014-03-31 삼성디스플레이 주식회사 Organic light emitting display panel and fabricating method for the same
WO2014084159A1 (en) * 2012-11-27 2014-06-05 昭和電工株式会社 Organic el element and method for manufacturing same
WO2015064716A1 (en) * 2013-10-31 2015-05-07 コニカミノルタ株式会社 Organic thin film patterning device, organic thin film production system, and organic thin film patterning method
WO2017088807A1 (en) * 2015-11-25 2017-06-01 京东方科技集团股份有限公司 Organic electroluminescent device and manufacturing method therefor, and display apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140038827A (en) * 2012-09-21 2014-03-31 삼성디스플레이 주식회사 Organic light emitting display panel and fabricating method for the same
KR101955621B1 (en) * 2012-09-21 2019-05-31 삼성디스플레이 주식회사 Organic light emitting display panel and fabricating method for the same
WO2014084159A1 (en) * 2012-11-27 2014-06-05 昭和電工株式会社 Organic el element and method for manufacturing same
WO2015064716A1 (en) * 2013-10-31 2015-05-07 コニカミノルタ株式会社 Organic thin film patterning device, organic thin film production system, and organic thin film patterning method
JPWO2015064716A1 (en) * 2013-10-31 2017-03-09 コニカミノルタ株式会社 Organic thin film patterning apparatus, organic thin film manufacturing system, and organic thin film patterning method
WO2017088807A1 (en) * 2015-11-25 2017-06-01 京东方科技集团股份有限公司 Organic electroluminescent device and manufacturing method therefor, and display apparatus
US11139457B2 (en) 2015-11-25 2021-10-05 Boe Technology Group Co., Ltd. OLED, method for fabricating the same, display device

Similar Documents

Publication Publication Date Title
KR100282393B1 (en) method for fabricating Organic Electroluminescent display Device
US7473932B2 (en) Organic light emitting device and method of manufacturing the same
JP2007080579A (en) Surface light emitting device
JPH0950888A (en) Organic electroluminescense element
EP0847094B1 (en) Organic light emitting element and producing method thereof
JP2008235178A (en) Organic el display and manufacturing method therefor
JP2004103269A (en) Manufacture method for organic electroluminescence display device
WO2002056641A1 (en) Luminescence device and its manufacturing method
JP2000235894A (en) Organic el element and its manufacture
JP2008235177A (en) Manufacturing method of organic el display, and organic el display
TW200305351A (en) Organic electroluminescence device and the manufacturing method, and the display device
JP2002231443A (en) Display device
KR101608273B1 (en) Method of fabricating light extraction substrate for oled, light extraction substrate for oled and oled including the same
JP2000036385A (en) Manufacture of organic el display
JPH11214163A (en) Organic electromulinescence element and manufacture of the same
JP2007265659A (en) Manufacturing method of organic el element
US8258505B2 (en) Organic electroluminescence display apparatus and manufacturing method therefor
JP2002302759A (en) Thin film pattern deposition method, and manufacturing method for organic electric field light emission and display device
JP2002170663A (en) Organic luminescent element and its manufacturing method
JP2002164167A (en) Manufacturing method of organic el element
JPH09306666A (en) Manufacture or organic electroluminescence element
KR100752384B1 (en) Fabricating method of organic light emitting display
JP2007257909A (en) Organic el element
JP2003217824A (en) Organic light emitting element, light emitting element array using the organic light emitting element, projector, optical write device, display element and electrophotographic printer
JP2010267410A (en) Donor substrate used for transferring method using laser, and manufacturing method of display element