JP2007263957A - 地下水流れ状態推定装置及び方法、土壌の有効熱伝導率推定方法、並びに地盤調査方法 - Google Patents

地下水流れ状態推定装置及び方法、土壌の有効熱伝導率推定方法、並びに地盤調査方法 Download PDF

Info

Publication number
JP2007263957A
JP2007263957A JP2007050447A JP2007050447A JP2007263957A JP 2007263957 A JP2007263957 A JP 2007263957A JP 2007050447 A JP2007050447 A JP 2007050447A JP 2007050447 A JP2007050447 A JP 2007050447A JP 2007263957 A JP2007263957 A JP 2007263957A
Authority
JP
Japan
Prior art keywords
groundwater flow
flow state
steel pipe
state estimation
groundwater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007050447A
Other languages
English (en)
Inventor
Katsunori Nagano
克則 長野
Yasushi Nakamura
靖 中村
Takao Katsura
隆生 葛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
Nippon Steel Engineering Co Ltd
Original Assignee
Hokkaido University NUC
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido University NUC, Nippon Steel Engineering Co Ltd filed Critical Hokkaido University NUC
Priority to JP2007050447A priority Critical patent/JP2007263957A/ja
Publication of JP2007263957A publication Critical patent/JP2007263957A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

【課題】短時間かつ低コストで、しかも高精度に地下水の流れ状態を推定できるようにする。
【解決手段】先端外周面に掘進用の螺旋羽根101aが設けられた鋼管101内に、芯管03に巻回された被覆ニクロム線(ヒーター102)、芯管103内に設けられた発泡スチロール等の断熱材104、鋼管101内表面の一定高さ位置に等間隔で配設された8個の温度センサ105等が設けられている。ある測定点(ある熱電対)における温度変化ΔTが最も大きく、それに対向する他の測定点(熱電対)における温度変化ΔTが最も小さくなっている場合、地下水流向は、上記ある測定点が下流に位置し、上記他の測定点が上流に位置するものと推定される。
【選択図】図2

Description

本発明は、地下水流向や地下水流速といった地下水の流れ状態を推定するための地下水流れ状態推定装置、さらにはそれを利用した地下水流れ状態推定方法、土壌の有効熱伝導率推定方法、地盤調査方法に関する。
地下水の調査は種々の目的で行われる。例えば、従来多く行われる地下水を利用対象としてとらえ調査するのは、飲料水や雑用水、工業用水として地下水、いわゆる井戸水を利用する場合で、供給能力や周囲環境への影響等を把握するために実施される。
また、近年では、自然エネルギーの有効利用の一環として地中熱利用システムが研究されており、そのための地下水の調査が行われている。地中熱利用システムとは、大地の安定した温度を熱源として利用する高効率で、さらに大地の大きな熱容量を利用する省エネルギー性に優れたシステムである。このように地中熱利用システムにおいては、地盤を冷熱利用時には放熱源として、温熱利用時には採熱源として利用するが、その放採熱量は地下水動の大小や方向、その地盤土壌の熱伝導率に大きな影響を受ける。このように地中熱利用システムを設計する上で、地下水の流れ状態(例えば流向や流速)や地盤土壌の有効熱伝導率を知ることは重要な条件となる。
地下水調査の手法としては、例えば非特許文献1等にあるように、複数の観測孔で同時に水位を測定し、その水位差から地下水流速や地下水流向を求める手法が知られている。
また、非特許文献1等にあるように、トレーサーをある孔に投入し、その周辺に設置された複数の観測孔でトレーサーの到達時間を測定することによって、地下水流速や地下水流向を求める手法が知られている。
特開平11−326359号公報 「土質基礎工学ライブラリー19 建設工事と地下水」、昭和55年10月30日発行、編集:建設工事と地下水編集委員会、発行者:三木五三郎
しかしながら、上述したような地下水調査の手法では、調査に際して、まず複数の観測孔を形成しなければならず、時間やコスト等がかかってしまう。
非特許文献1等にあるように、単井によるトレーサー拡散法も開発されている。この場合、複数の観測孔を形成しなくてもよいが、観測孔の孔内洗浄が不充分であると流れが明瞭に検出されないこともあるため、観測孔の仕上げに細心の注意を要するといった問題がある。
さらに、この場合も、砂等の土壌粒子の間隙を流れてきた地下水が観測孔内に開放された状態で測定を行うものであり、測定対象となる土壌に直接接触して測定するものではないため、測定の精度が高いとは言えない。単井に挿入して地下水の流向及び流速を測定する装置としては、例えば特許文献1に開示されたものが知られている。
本発明は上記のような点に鑑みてなされたものであり、短時間かつ低コストで、しかも
高精度に地下水の流れ状態を推定できるようにすることを目的とする。
本発明の地下水流れ状態推定装置は、先端から地中に貫入させる鋼管と、前記鋼管内に設置された発熱手段と、前記鋼管内表面の一定高さ位置に配設され、地下水の流れ状態を推定するために温度データを測定する複数の温度測定手段と、前記複数の温度測定手段により測定される温度データを記録する記録手段とを備えた点に特徴を有する。
本発明の地下水流れ状態推定装置の他の特徴とするところは、前記鋼管は、先端外周面に掘進用の螺旋羽根が設けられており、地中に回転圧入可能な回転圧入鋼管である点にある。また、前記複数の温度測定手段は、前記鋼管内表面の一定高さ位置に等間隔で配設されている点にある。また、前記発熱手段は、前記鋼管内に設けられた面状ヒーター、或は、前記鋼管内で巻回されたニクロム線により構成される点にある。また、前記巻回されたニクロム線の内側に断熱材が設けられている点にある。
本発明の地下水流れ状態推定方法は、本発明の地下水流れ状態推定装置を利用した地下水流れ状態推定方法であって、前記複数の温度測定手段により測定される温度データに基づいて、地下水流向を推定する点に特徴を有する。
本発明の別の地下水流れ状態推定方法は、本発明の地下水流れ状態推定装置を利用した地下水流れ状態推定方法であって、前記複数の温度測定手段のうち所定の温度測定手段により測定される温度データに基づいて、地下水流速を推定する点に特徴を有する。
本発明の土壌の有効熱伝導率推定方法は、本発明の地下水流れ状態推定装置を利用した土壌の有効熱伝導率推定方法であって、前記複数の温度測定手段のうち所定の温度測定手段により得られる加熱初期段階の温度勾配に基づいて、土壌の有効熱伝導率を算出する点に特徴を有する。
本発明の地盤調査方法は、本発明の地下水流れ状態推定装置を利用した地盤調査方法であって、前記鋼管を地中に回転圧入するときに、その回転負荷及び先端深度を測定して地盤調査を行う点に特徴を有する。
本発明によれば、発熱手段や温度測定手段が内蔵された鋼管を地中に貫入させればよいので、短時間かつ低コストで地下水の流れ状態を推定することができる。しかも、鋼管の表面が土壌に直接接触した状態で温度測定を行うことができるので、高精度に地下水の流れ状態を推定することができる。
以下、添付図面を参照して、本発明の好適な実施形態について説明する。
図1、2に、本発明を適用した実施形態に係る地下水流れ状態推定装置の概略構成を示す。101は先端から地中に貫入させる鋼管である。図3に示すように、鋼管101の先端外周面には掘進用の螺旋羽根101aが設けられており、鋼管101を地中に回転圧入することができる。鋼管101の先端開口は、蓋101bを螺合させることより閉塞可能となっており、土砂の進入を防ぐことができる。
102は鋼管101内表面に設置されたヒーターであり、一例として巻回された被覆ニクロム線を示している。もちろん、ニクロム線以外にも、ヒーター102として面状ヒーター等を使用してもよい。面状ヒータを用いることにより、より均一に発熱させることができる。また、伝熱効率を高めるためにヒーター102の外側に熱伝導シリコンを塗布する等してもよい。103は芯管であり、その外表面に被覆ニクロム線が巻回されている。104は芯管103内に設けられた発泡ウレタン(現場発泡可能)や発泡スチロール等の断熱材である。なお、被覆ニクロム線を断熱材104に直接巻回させてもよく、その場合は芯管103が不要である。
105は温度センサであり、鋼管101内表面の一定高さ位置(被覆ニクロム線102が巻回されている高さ位置)に例えば8点乃至16点の等間隔で配設されている。温度センサ105としては高分解能なものが望ましく、例えば白金測温抵抗体、サーミスタ、熱電対等が用いられる。
106は電源を含む測定機器であり、鋼管101内でヒーター102や温度センサ105等より上方に設けられている。測定機器106には、図2に示すように、各温度センサ105により測定される温度データを記録するデータロガー107が含まれる。また、ヒーター102の電源であるバッテリ108が含まれる。また、データロガー107に記録された温度データを無線通信により外部の情報処理装置等に送信する送信機109が含まれる。また、ヒーター102による発熱のON/OFFを遠隔操作により切り替えるためのリモコン受信機110が含まれる。
本実施形態では、上述した各構成要素が例えばステンレス管等の金属管111内に配設されてユニット化されている。そして、そのユニットを鋼管101の先端開口から挿設し、シール部材を介在させて蓋101bを螺合させ、密封できる構成となっている。
なお、本実施形態では鋼管101内に測定機器106を内蔵したタイプを説明したが、測定機器106の一部或いはすべてが外部に設置されていてもよい。例えば、鋼管101内にヒーター102、芯管103、断熱材104、温度センサ105だけが内蔵されていてもよい。また、測定機器106が内蔵されない場合には、保護管としての金属管111はなくてもよい。
また、測定機器106が内蔵される場合でも、ヒーター102の部分に金属管111がなくてもよい。さらに、ヒーター102として面状ヒーターを使用するような場合には、鋼管101の内表面に貼り付けてもよい。
また、温度センサ105からデータロガー107へのデータ通信や、データロガー107からの不図示の情報処理装置へのデータ通信等は、無線通信であっても、有線通信であってもよい。
次に、地下水流れ状態推定装置を利用した地下水の流れ状態の推定方法について説明する。図1〜3に示した地下水流れ状態推定装置を地中に埋設した後、ヒーター102に電流を流して一定出力での発熱を行う。この場合に、鋼管101の表面温度はできるだけ均一に保たれるようにするのが望ましい。この状態で、各温度センサ105により温度の測定を開始し、測定される温度データをデータロガー107に記録する。
ヒーター102に電流を流すと加熱が始まり、表面温度が初期には一様に上昇する。その後、次第に地下水流れの影響を受けて、温度上昇の様子に差異が現れる。すなわち、地下水流れに対して上流側では下流側よりも温度上昇の勾配が緩やかになり、温度差が生じる。さらに長時間経過した後には、地下水流れの存在する場合には温度上昇がなくなり、定常状態に達する。
(地下水流向の推定)
図4(b)、図5(b)は、一例として、温度センサ105−1〜105−8を8点設けたときの、各測定点1〜8における測定開始から地下水流れの影響が現れた後のある時間における温度変化ΔTの分布を表わす特性図である。
図4(b)に示す例では、測定点5(温度センサ105−5)における温度変化ΔTが最も大きく、それに対向する測定点1(温度センサ105−1)における温度変化ΔTが最も小さくなっている。この場合、図4(a)に示すように、地下水流向は、測定点1(温度センサ105−1)が上流に位置し、測定点5(温度センサ105−5)が下流に位置するものと推定される。
図5(b)に示す例では、測定点3(温度センサ105−3)における温度変化ΔTが最も大きく、それに対向する測定点7(温度センサ105−7)における温度変化ΔTが最も小さくなっている。この場合、図5(a)に示すように、地下水流向は、測定点7(温度センサ105−7)が上流に位置し、測定点3(温度センサ105−3)が下流に位置するものと推定される。
このように推測されるのは、地下水流向の上流側では、地下水流れによる冷却効果が大きく、地下水が上流側で奪った熱を下流側へ運ぶため、上流側に比べて下流側の温度が高くなると考えられるからである。
(地下水流速の推定)
図6は、地下水流速の異なる埋設位置(或いは、同じ埋設位置での異なる埋設深度)A、Bでの、測定点1(温度センサ105−1)における温度変化ΔTと、測定点5(温度センサ105−5)における温度変化ΔTとを表わす特性図である。なお、いずれの埋設位置A、Bにおいても、地下水流向は、測定点1(温度センサ105−1)が上流に位置し、測定点5(温度センサ105−5)が下流に位置するものとなっているとする。
図6において、601は地下水流れが存在しない場合の温度変化ΔTを表わす特性線である。地下水流れが存在しない場合は、温度変化が持続されており、その増加幅は時間の対数軸に対して略一定となっている。
測定点5において、埋設位置Aでは特性線602Aが得られ、埋設位置Bでは特性線602Bが得られたとする。ここで、ある測定点における温度変化ΔTは、地下水流速が高いほど小さくなる。これは、地下水流れが高いほど、地下水流れによって運び去られる熱量が大きくなるため、短い時間内で定常状態に達するからである。すなわち、特性線602Bが得られた埋設位置Bでの地下水流速は、特性線602Aが得られた埋設位置Aでの地下水流速に比べて高いものと推定される。
同様に、測定点1においても、特性線603Bが得られた埋設位置Bでの地下水流速は、特性線603Aが得られた埋設位置Aでの地下水流速に比べて高いものと推定される結果となっている。
もちろん、地下水流速の高速/低速だけでなく、流速そのものを算出して推定するようにしてもよい。
図7は、地下水流速の異なる地盤における温度変化の測定結果を示す。地下水流れが存在する場合、一定加熱を続けると、温度応答はある時間から定常状態に達し、温度変化がなくなる。定常状態には、地下水流速が速いほど短時間で達することがわかる。
図8に示すように、定常状態に達するまでの時間とそのときの温度上昇勾配とを測定し、プロットすれば、各々の地下水流速毎の温度上昇勾配と時間との関係が得られる。
さらに、図9に示すように、図8から地下水流速毎にある温度上昇勾配となる時間tsをプロットすれば、時間tsと流速との関係式及び推定曲線が得られる。この関係式は、地盤の有効熱伝導率により異なるので、測定する地盤の有効熱伝導率により選択した推定曲線を用いれば、その温度上昇勾配に達した時間で地下水流速を推定することができる。
(土壌の有効熱伝導率の推定)
本実施形態の地下水流れ状態推定装置では、鋼管101が土壌に直接接触しているので、加熱初期の温度勾配に基づいて、地下水流れが存在しない場合の土壌の有効熱伝導率λを推定することも可能である。地下水流れが存在する場合の一定加熱に対する地中温度変化は、加熱初期段階では周囲の熱移動に地下水流れの影響はほとんど現れず、熱伝導の影響のみとなるからである。
具体的に、加熱初期段階の温度勾配は、下式(1)のように傾きkを含んで表わされる。そして、図6に示すように、特性線から加熱初期段階(図6で丸で囲んだ領域)の温度勾配の傾きkを求めて、下式(2)に代入することにより、土壌の有効熱伝導率λを算出することができる。なお、T0は温度の初期値、qは熱量である。
ΔT=T−T0=k・ln(t)+C・・・(1)
λ=q/(4πk)・・・(2)
(地盤調査)
本実施形態の地下水流れ状態推定装置を用いて地下水流れの状態を推定する場合、同時に地盤調査を行うことも可能である。具体的には、鋼管101を地中に回転圧入するときに、その回転負荷及び先端深度を連続的に測定する。そして、回転負荷の変化を捉えることにより、地盤の地層の強弱を調査することができる。回転負荷は、例えば回転駆動手段が電動モータである場合はその負荷により変動する電流値や電圧値の変化、油圧モータである場合は油圧値の変化を計測することにより換算して得られる。
以上述べたように、ヒーター102や温度センサ105が内蔵された鋼管101を地中に貫入させて、すぐに測定を開始することができるので、観測孔を形成するのに比べて、短時間(半日〜2日程度)かつ低コストで地下水の流れ状態を推定することができる。特に先端外周面に螺旋羽根101aが設けられた回転圧入鋼管を利用すれば、鋼管101の地中への貫入作業は数時間程度で行うことが可能である。
また、鋼管101の表面が土壌に直接接触した状態で、その表面の温度分布を測定することができるので、地中内の地下水流れによる影響が忠実に温度変化となって現れ、高精度に地下水の流れ状態を推定することができる。しかも、既述したように、加熱初期の温度勾配に基づいて、地下水流れが存在しない場合の土壌の有効熱伝導率λを推定することも可能である。
さらに、地下水流れ状態推定装置を地中から回収すれば、再利用も可能であり、各地点で観測孔を形成するのに比べて大幅なコスト削減を図ることができる。
さらにまた、鋼管101の貫入深さを変えながら温度を測定することができるので、各深さ地点での地下水流れを推定することができる。
以上、本発明を種々の実施形態と共に説明したが、本発明はこれらの実施形態にのみ限定されるものではなく、本発明の範囲内で変更等が可能である。
(実施例)
以下、図10〜13を参照して、地下水流向・流速の推定、土壌の有効熱伝導率の推定について具体例(実施例)を説明する。この実施例では、「砂層」を対象土壌とし、図1〜3で説明した地下水流れ状態推定装置(鋼管101の外径25〜30[mm]、全長200[mm]、温度センサ105を8点の等間隔で配設)を用いた。地下水流向及び地下水流速(0[m/year]、496[m/year]、1095[m/year]、2253[m/year])が予め測定されて既知であり、推定結果を検証する。
図10は、流速1095[m/year]での測定点1〜5における補正温度変化ΔT/qを表わす特性図である。地下水流向は測定点5が最上流に位置し、測定点1が最下流に位置する。地下水流れの存在する場合、ヒーター102による加熱初期では温度が一様に上昇するが、その後、地下水流れの影響を受けて、上流側での温度上昇幅に比べて下流側での温度上昇幅が大きくなる結果が得られた。長時間経過した後には、温度上昇がなくなり、定常状態に達する。このように、各測定点の温度上昇幅の比較により、地下水の流向を推定できることが検証された。
図11は、4つの地下水流速(0[m/year]、496[m/year]、1095[m/year]、2253[m/year])での最上流の測定点5における補正温度変化を表わす特性図である。図11に示すように、地下水流れが存在する場合、一定加熱を続けると、温度応答はある時間から定常状態に達して温度変化がなくなる(丸で囲んだ領域)。この場合に、地下水流速が速いほど短時間で定常状態に達する結果が得られ、図7で説明した現象が検証された。
なお、上述したように、加熱初期の温度勾配に基づいて、地下水流れが存在しない場合の土壌の有効熱伝導率λを推定することができる。上式(1)、(2)に基づいて、本実施例の「砂層」での有効熱伝導率λを算出すると、2.12[W/m/K]であった。
図12に示すように、温度上昇勾配の移動平均をプロットして、4つの地下水流速(0[m/year]、496[m/year]、1095[m/year]、2253[m/year])での温度上昇勾配kの移動平均と時間tとの関係を得た。
ここでは、経過時間tにおける勾配kはk=ΔT/Δln(t)より求め、地下水流速毎に温度上昇勾配kの移動平均が0.1となる時間tsを求めた。その結果、流速496[m/year]では1220[s]、1095[m/year]では630[s]、2253[m/year]では380[s]となった。
図13では、流速496[m/year]で1220[s]、1095[m/year]で630[s]、2253[m/year]で380[s]をプロットし、温度上昇勾配kの移動平均が0.1となる時間ts[s]と流速u[m/year]との関係式及び推定曲線を得た。本実施例の砂層の場合、下式(3)という関係式が得られた。
u=4.75×106s -1.29・・・(3)
例えば温度上昇勾配kの移動平均が0.1となる時間tsが1000[s]の場合、流速uは641[m/year]と推定される。この関係式は、地盤の有効熱伝導率により異なる。予め数種類の有効熱伝導率を持つ地層条件での関係式を求めておくことにより、多くの地層条件下で地下水流速を推定することができる。
本発明を適用した実施形態に係る地下水流れ状態推定装置の概略構成を示す図である。 本発明を適用した実施形態に係る地下水流れ状態推定装置の概略構成を示す図である。 鋼管の一例を示す断面図である。 地下水流向の推定手法を説明するための図であり、(a)が測定点配置を示す図、(b)が各測定点における測定開始から地下水流れの影響が現れた後のある時間における温度変化ΔTの分布を表わす特性図である。 地下水流向の推定手法を説明するための図であり、(a)が測定点配置を示す図、(b)が各測定点における測定開始からの温度変化ΔTの分布を表わす特性図である。 異なる埋設位置(或いは、同じ埋設位置での異なる埋設深度)A、Bでの、ある測定点における温度変化ΔTと、別の測定点における温度変化ΔTとを表わす特性図である。 地下水流速の異なる地盤における温度変化の測定結果を表わす特性図である。 地下水流速毎の温度上昇勾配と時間との関係を表わす特性図である。 ある温度上昇勾配となる時間と流速との関係を表わす特性図である。 実施例での補正温度変化を表わす特性図である。 実施例での補正温度変化を表わす特性図である。 実施例での地下水流速毎の温度上昇勾配の移動平均と時間との関係を表わす特性図である。 実施例でのある温度上昇勾配となる時間と流速との関係を表わす特性図である。
符号の説明
101 鋼管
101a 螺旋羽根
101b 蓋
102 ヒーター
103 芯管
104 断熱材
105 温度センサ
106 測定機器
107 データロガー
108 バッテリ
109 送信機
110 リモコン受信機
111 金属管

Claims (10)

  1. 先端から地中に貫入させる鋼管と、
    前記鋼管内に設置された発熱手段と、
    前記鋼管内表面の一定高さ位置に配設され、地下水の流れ状態を推定するために温度データを測定する複数の温度測定手段と、
    前記複数の温度測定手段により測定される温度データを記録する記録手段とを備えたことを特徴とする地下水流れ状態推定装置。
  2. 前記鋼管は、先端外周面に掘進用の螺旋羽根が設けられており、地中に回転圧入可能な回転圧入鋼管であることを特徴とする請求項1に記載の地下水流れ状態推定装置。
  3. 前記複数の温度測定手段は、前記鋼管内表面の一定高さ位置に等間隔で配設されていることを特徴とする請求項1又は2に記載の地下水流れ状態推定装置。
  4. 前記発熱手段は、前記鋼管内に設けられた面状ヒーターにより構成されることを特徴とする請求項1〜3のいずれか1項に記載の地下水流れ状態推定装置。
  5. 前記発熱手段は、前記鋼管内で巻回されたニクロム線により構成されることを特徴とする請求項1〜3のいずれか1項に記載の地下水流れ状態推定装置。
  6. 前記巻回されたニクロム線の内側に断熱材が設けられていることを特徴とする請求項5に記載の地下水流れ状態推定装置。
  7. 請求項1〜6のいずれか1項に記載の地下水流れ状態推定装置を利用した地下水流れ状態推定方法であって、
    前記複数の温度測定手段により測定される温度データに基づいて、地下水流向を推定することを特徴とする地下水流れ状態推定方法。
  8. 請求項1〜6のいずれか1項に記載の地下水流れ状態推定装置を利用した地下水流れ状態推定方法であって、
    前記複数の温度測定手段のうち所定の温度測定手段により測定される温度データに基づいて、地下水流速を推定することを特徴とする地下水流れ状態推定方法。
  9. 請求項1〜6のいずれか1項に記載の地下水流れ状態推定装置を利用した土壌の有効熱伝導率推定方法であって、
    前記複数の温度測定手段のうち所定の温度測定手段により得られる加熱初期段階の温度勾配に基づいて、土壌の有効熱伝導率を算出することを特徴とする土壌の有効熱伝導率推定方法。
  10. 請求項2に記載の地下水流れ状態推定装置を利用した地盤調査方法であって、
    前記鋼管を地中に回転圧入するときに、その回転負荷及び先端深度を測定して地盤調査を行うことを特徴とする地盤調査方法。
JP2007050447A 2006-03-01 2007-02-28 地下水流れ状態推定装置及び方法、土壌の有効熱伝導率推定方法、並びに地盤調査方法 Pending JP2007263957A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007050447A JP2007263957A (ja) 2006-03-01 2007-02-28 地下水流れ状態推定装置及び方法、土壌の有効熱伝導率推定方法、並びに地盤調査方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006055566 2006-03-01
JP2007050447A JP2007263957A (ja) 2006-03-01 2007-02-28 地下水流れ状態推定装置及び方法、土壌の有効熱伝導率推定方法、並びに地盤調査方法

Publications (1)

Publication Number Publication Date
JP2007263957A true JP2007263957A (ja) 2007-10-11

Family

ID=38637066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007050447A Pending JP2007263957A (ja) 2006-03-01 2007-02-28 地下水流れ状態推定装置及び方法、土壌の有効熱伝導率推定方法、並びに地盤調査方法

Country Status (1)

Country Link
JP (1) JP2007263957A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009145204A (ja) * 2007-12-14 2009-07-02 Asahi Kasei Homes Co 地中熱伝導率計測用のプローブ、地中熱伝導率計測装置及び地中熱伝導率計測方法
CN102706484A (zh) * 2012-06-05 2012-10-03 于华明 一种海水沿输水管输送过程中冷量损失的测量方法
KR101265826B1 (ko) 2009-07-23 2013-05-20 이경민 지하댐 구축용 강재파일
KR20170012655A (ko) * 2015-07-21 2017-02-03 한국전력공사 열전도도 측정 장치
CN106769779A (zh) * 2017-01-22 2017-05-31 中国建筑设计咨询有限公司 一种测算地下水渗流速度和方向的装置及方法
CN111679096A (zh) * 2020-06-18 2020-09-18 中国电建集团贵阳勘测设计研究院有限公司 一种基于电导率测试地下水流速流向的装置及方法
CN114813828A (zh) * 2022-04-25 2022-07-29 河海大学 一种新型确定含水层热物性参数的微热试验方法
CN116148941A (zh) * 2023-04-19 2023-05-23 中国地质大学(武汉) 地下水流速流向测量装置、系统及方法
WO2023112166A1 (ja) * 2021-12-14 2023-06-22 株式会社ジェイテクト 井戸監視システム及び監視プログラム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01192910A (ja) * 1988-01-27 1989-08-03 Taisei Corp 地盤の多目的調査方法
JP2005257367A (ja) * 2004-03-10 2005-09-22 Arekku Denshi Kk 地下水の流向流速測定装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01192910A (ja) * 1988-01-27 1989-08-03 Taisei Corp 地盤の多目的調査方法
JP2005257367A (ja) * 2004-03-10 2005-09-22 Arekku Denshi Kk 地下水の流向流速測定装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009145204A (ja) * 2007-12-14 2009-07-02 Asahi Kasei Homes Co 地中熱伝導率計測用のプローブ、地中熱伝導率計測装置及び地中熱伝導率計測方法
KR101265826B1 (ko) 2009-07-23 2013-05-20 이경민 지하댐 구축용 강재파일
CN102706484A (zh) * 2012-06-05 2012-10-03 于华明 一种海水沿输水管输送过程中冷量损失的测量方法
KR20170012655A (ko) * 2015-07-21 2017-02-03 한국전력공사 열전도도 측정 장치
KR102365955B1 (ko) 2015-07-21 2022-02-25 한국전력공사 열전도도 측정 장치
CN106769779A (zh) * 2017-01-22 2017-05-31 中国建筑设计咨询有限公司 一种测算地下水渗流速度和方向的装置及方法
CN111679096A (zh) * 2020-06-18 2020-09-18 中国电建集团贵阳勘测设计研究院有限公司 一种基于电导率测试地下水流速流向的装置及方法
WO2023112166A1 (ja) * 2021-12-14 2023-06-22 株式会社ジェイテクト 井戸監視システム及び監視プログラム
CN114813828A (zh) * 2022-04-25 2022-07-29 河海大学 一种新型确定含水层热物性参数的微热试验方法
CN114813828B (zh) * 2022-04-25 2022-09-20 河海大学 一种确定含水层热物性参数的微热试验方法
CN116148941A (zh) * 2023-04-19 2023-05-23 中国地质大学(武汉) 地下水流速流向测量装置、系统及方法
CN116148941B (zh) * 2023-04-19 2023-06-20 中国地质大学(武汉) 地下水流速流向测量装置、系统及方法

Similar Documents

Publication Publication Date Title
JP2007263957A (ja) 地下水流れ状態推定装置及び方法、土壌の有効熱伝導率推定方法、並びに地盤調査方法
CN113418957B (zh) 土体的导热系数测试方法及系统
Park et al. Experimental and numerical analysis on thermal performance of large-diameter cast-in-place energy pile constructed in soft ground
del Val et al. Heat dissipation test with fiber‐optic distributed temperature sensing to estimate groundwater flux
JP4421627B2 (ja) 加熱式地下水検層法及び加熱式地下水検層用感知器並びに加熱式地下水検層用測定装置
Yoon et al. A numerical and experimental approach to the estimation of borehole thermal resistance in ground heat exchangers
US4343181A (en) Method for determining thermal conductivity and thermal capacity per unit volume of earth in situ
WO2015137915A1 (en) Identification of thermal conductivity properties of formation fluid
Wang et al. A new analytical solution for horizontal geothermal heat exchangers with vertical spiral coils
CN104048993A (zh) 便携式原位浅层地温和导热系数测量装置及测试方法
Salilih et al. Analysis of double U-tube ground heat exchanger for renewable energy applications with two-region simulation model by combining analytical and numerical techniques
Clow Temperature data acquired from the DOI/GTN-P Deep Borehole Array on the Arctic Slope of Alaska, 1973–2013
Seibertz et al. Development of in-aquifer heat testing for high resolution subsurface thermal-storage capability characterisation
Faizal et al. Thermal resistance analysis of an energy pile and adjacent soil using radial temperature gradients
Zueter et al. Effect of freeze pipe eccentricity in selective artificial ground freezing applications
Bouazza et al. Soil effective thermal conductivity from energy pile thermal tests
Misra et al. CFD analysis of thermal influence zone of earth air tunnel heat exchanger under transient conditions
Kim et al. Development of ground freezing system for undisturbed sampling of granular soils
Teng et al. Stress–strain assessments for buried oil pipelines under freeze-thaw cyclic conditions
JP2022132911A (ja) 熱物性測定装置および熱伝導率の測定方法
Zervantonakis et al. Quality requirements of a thermal response test
Huber et al. Geothermal field tests with forced groundwater flow
Azhar et al. Establishing zone of influence (ZOI) for cylindrical heat source in dry sand
Tsubaki et al. Performance of ground-source heat exchangers using short residential foundation piles
Lüthi Stream gauge calibration of a cave stream using water temperature variability as a tracer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090219

A711 Notification of change in applicant

Effective date: 20090219

Free format text: JAPANESE INTERMEDIATE CODE: A711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A02 Decision of refusal

Effective date: 20111213

Free format text: JAPANESE INTERMEDIATE CODE: A02