JP2007263681A - Pressure detection device and intake path of internal combustion engine - Google Patents

Pressure detection device and intake path of internal combustion engine Download PDF

Info

Publication number
JP2007263681A
JP2007263681A JP2006087974A JP2006087974A JP2007263681A JP 2007263681 A JP2007263681 A JP 2007263681A JP 2006087974 A JP2006087974 A JP 2006087974A JP 2006087974 A JP2006087974 A JP 2006087974A JP 2007263681 A JP2007263681 A JP 2007263681A
Authority
JP
Japan
Prior art keywords
pressure detection
pressure
detection device
floating gate
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006087974A
Other languages
Japanese (ja)
Other versions
JP4904881B2 (en
Inventor
Kazunori Saito
和典 斉藤
Mutsuo Nishikawa
睦雄 西川
Katsumichi Kamiyanagi
勝道 上▲柳▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP2006087974A priority Critical patent/JP4904881B2/en
Publication of JP2007263681A publication Critical patent/JP2007263681A/en
Application granted granted Critical
Publication of JP4904881B2 publication Critical patent/JP4904881B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface pressurizing type pressure detection device and an intake path for an internal combustion engine which can be manufactured economically and with high precision and are resistant to the influence of charged gasoline. <P>SOLUTION: The pressure detection device is provided with, in a pressure introducing path which is connected in communication with the downstream side of a throttle valve of the intake path of the internal combustion engine, a floating gate of an EPROM formed on a semiconductor substrate positioned with respect to the pressure introducing path through an insulting film. A metallic shield electrode is provided within the insulating film on the floating gate. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、スロットル弁下流の吸気通路内の吸気負圧を検出する圧力検出装置およびこの圧力検出装置を取り付けた内燃機関の吸気通路に関する。   The present invention relates to a pressure detection device that detects intake negative pressure in an intake passage downstream of a throttle valve, and an intake passage of an internal combustion engine to which the pressure detection device is attached.

例えば自動車用エンジンに設けられる電子制御燃料噴射装置では、吸気管負圧は燃料噴射量を決定するために重要な要素である。   For example, in an electronically controlled fuel injection device provided in an automobile engine, intake pipe negative pressure is an important factor for determining the fuel injection amount.

このため吸気管負圧を検出する圧力検出装置が設けられ、吸気通路のスロットル弁よりも下流側に開口する圧力導入路を介して、圧力検出装置へ吸気通路の負圧が導かれる。   For this reason, a pressure detection device for detecting the intake pipe negative pressure is provided, and the negative pressure in the intake passage is guided to the pressure detection device via a pressure introduction passage that opens downstream from the throttle valve in the intake passage.

図3は、自動車用エンジンの概略図である。図3に示したようなエンジン40の基本的な動作を説明する。まず、吸気通路(インテーク・マニホールド)46からシリンダー50へ向かって空気が供給されている。また燃料は、燃料噴射装置45より噴射され、吸気通路46を流れる空気と供に、内燃機関のシリンダー50の中へ供給されている。   FIG. 3 is a schematic view of an automobile engine. The basic operation of the engine 40 as shown in FIG. 3 will be described. First, air is supplied from the intake passage (intake manifold) 46 toward the cylinder 50. Further, the fuel is injected from the fuel injection device 45 and supplied into the cylinder 50 of the internal combustion engine together with the air flowing through the intake passage 46.

シリンダー50内ではピストン51と弁48、点火プラグ49がそれぞれ同期を取りながら動作することにより、空気と燃料の混合気を、「吸気する」→「圧縮する」→「燃焼(点火・膨張)させる」→「排気する(排気ガス)」という一連の動作を繰り返しおこなわせることでエンジンとして動作する。   In the cylinder 50, the piston 51, the valve 48, and the spark plug 49 operate in synchronization with each other, so that the air / fuel mixture is “intake” → “compress” → “combustion (ignition / expansion)”. The engine operates by repeatedly performing a series of operations “→ exhaust (exhaust gas)”.

エンジンの回転数やパワーを制御するためには、吸気通路46を流れる空気の量と、燃料噴射装置45より噴射させる燃料の量を制御すればよい。吸気通路46に流れる空気の量を制御するための機械的な弁がスロットル弁44である。スロットル弁44は、運転席にあるアクセルの操作に応じて開閉がおこなわれ、吸気通路46に流れる空気の量を制御している。   In order to control the engine speed and power, the amount of air flowing through the intake passage 46 and the amount of fuel injected from the fuel injection device 45 may be controlled. A mechanical valve for controlling the amount of air flowing into the intake passage 46 is a throttle valve 44. The throttle valve 44 is opened and closed according to the operation of the accelerator in the driver's seat, and controls the amount of air flowing through the intake passage 46.

さらに、スロットルボディ41内のスロットル弁44にて制御された吸気通路46内を流れる空気の量がどれくらいであるかを計測するために圧力導入路42を介して圧力検出装置43が用いられている。この圧力検出装置43によって計測された値はエンジン制御装置(ECU)47に出力され、圧力検出装置43の値を元にエンジン制御装置(ECU)47が燃料噴射装置45から噴射する燃料の量を制御する。これにより、シリンダー50内での燃焼効率の向上・最適化を図っている。   Further, a pressure detection device 43 is used via a pressure introduction path 42 to measure the amount of air flowing in the intake passage 46 controlled by the throttle valve 44 in the throttle body 41. . The value measured by the pressure detection device 43 is output to an engine control device (ECU) 47, and the amount of fuel injected from the fuel injection device 45 by the engine control device (ECU) 47 based on the value of the pressure detection device 43 is determined. Control. Thereby, the combustion efficiency in the cylinder 50 is improved and optimized.

近年、二酸化炭素排出量など環境負荷に対する制限が年々厳しくなっており、二輪車用エンジンの燃焼効率の向上は環境負荷対策において最も効果的な分野である。したがって、燃焼効率の向上をおこなうにあたり、吸気通路の圧力と温度を測る検出手段が重要な役割を担っている。   In recent years, restrictions on environmental loads such as carbon dioxide emissions have become stricter year by year, and improvement of the combustion efficiency of motorcycle engines is the most effective field for environmental load countermeasures. Accordingly, detection means for measuring the pressure and temperature of the intake passage plays an important role in improving combustion efficiency.

従来、この内燃機関の吸気通路の圧力を計測するための圧力検出装置(圧力センサ)としては、拡散抵抗によるピエゾ抵抗効果を用いたものや、静電容量を用いたものなどの半導体式センサが知られている。   Conventionally, as a pressure detection device (pressure sensor) for measuring the pressure of the intake passage of the internal combustion engine, a semiconductor sensor such as a device using a piezoresistance effect by diffusion resistance or a device using capacitance is used. Are known.

図4は、圧力検出装置を示す外観図であり、図5は、図4のI−Iにおける断面図ある。   FIG. 4 is an external view showing the pressure detection device, and FIG. 5 is a cross-sectional view taken along line II in FIG.

この圧力検出装置は、樹脂でできた収納容器本体61のセンサマウント部62に、センサ素子である半導体圧力センサチップ63を搭載したガラス台座69を接着剤81等により固定し、半導体圧力センサチップ63とリード端子(リードフレーム)65とをボンディングワイヤ66によって電気的に接続し、ゲル状保護部材67で半導体圧力センサチップ63の表面およびボンディングワイヤ66を保護し、収納容器本体61に圧力導入管64を接着して圧力検出室68を構成したものである。   In this pressure detection device, a glass pedestal 69 on which a semiconductor pressure sensor chip 63 as a sensor element is mounted is fixed to a sensor mount 62 of a storage container body 61 made of resin by an adhesive 81 or the like, and the semiconductor pressure sensor chip 63 And a lead terminal (lead frame) 65 are electrically connected by a bonding wire 66, the surface of the semiconductor pressure sensor chip 63 and the bonding wire 66 are protected by a gel-like protective member 67, and a pressure introducing pipe 64 is connected to the storage container body 61. The pressure detection chamber 68 is configured by bonding.

圧力導入管64は、収納容器本体61との接合に供せられる基部71と、被測定媒体を導入するための筒部72とからなる。筒部72内には、保護部73が、圧力検出室68と筒部72内の空間とが流通した状態で圧力検出室68の入り口を略塞ぐように設けられている。筒部72内の空間は圧力の被測定空間(図示せず)に連通接続する。   The pressure introducing pipe 64 includes a base 71 used for joining to the storage container main body 61 and a cylindrical portion 72 for introducing a medium to be measured. In the cylindrical portion 72, a protective portion 73 is provided so as to substantially block the entrance of the pressure detecting chamber 68 in a state where the pressure detecting chamber 68 and the space in the cylindrical portion 72 are in circulation. The space in the cylindrical portion 72 is connected to a pressure measurement space (not shown).

保護部73は、筒部72内に突出するたとえば3片の突起部74,75,76によって構成されている。これら3片の突起部74,75,76は、筒部72内を基部71の反対側(図5において上側)から見たときに、3片の突起部74,75,76によって圧力検出室68内が殆どまたは完全に見えないように配置されている。なお、保護部73は2片、または4片以上の突起部で構成されていてもよい。このような、圧力検出装置では、ガソリンなどの劣化し固形化した異物が、圧力検出室内に入ってセンシング部表面に衝突するのを防ぎダイアフラムの変化量の変動を防ぐものである。このような圧力検出装置は特許文献1に述べられている。   The protection part 73 is configured by, for example, three pieces of projecting parts 74, 75, and 76 that protrude into the cylindrical part 72. These three pieces of projections 74, 75, 76 are formed by the three pieces of projections 74, 75, 76 when the inside of the cylindrical portion 72 is viewed from the opposite side of the base 71 (upper side in FIG. 5). It is arranged so that the inside is hardly or completely visible. In addition, the protection part 73 may be comprised by the protrusion part of 2 pieces or 4 pieces or more. In such a pressure detection device, a deteriorated and solidified foreign substance such as gasoline enters the pressure detection chamber and collides with the surface of the sensing unit to prevent variation in the amount of change in the diaphragm. Such a pressure detection device is described in Patent Document 1.

図6は、図5で示した半導体圧力センサチップ63の平面図である。   FIG. 6 is a plan view of the semiconductor pressure sensor chip 63 shown in FIG.

これは、ピエゾ抵抗効果を用いた半導体圧力センサであり、ダイアフラム84に図示しない抵抗素子が形成されている。その周りには、抵抗素子からの信号を増幅する増幅回路、感度調整回路、オフセット調整回路、温度特性調整回路、これら調整回路へ調整用トリミングデータを送るEPROMなどからなる信号処理回路82が配置されている。チップの両側に、EPROMのトリミング、電源入力およびセンサ出力のための入出力パッド83が配置されている。   This is a semiconductor pressure sensor using a piezoresistance effect, and a resistance element (not shown) is formed on the diaphragm 84. Around that, a signal processing circuit 82 including an amplification circuit that amplifies a signal from the resistance element, a sensitivity adjustment circuit, an offset adjustment circuit, a temperature characteristic adjustment circuit, and an EPROM that sends adjustment trimming data to these adjustment circuits is arranged. ing. Input / output pads 83 for EPROM trimming, power input and sensor output are arranged on both sides of the chip.

図7は、書き込み動作を行わせた後のEPROMの要部断面図であり、図8は、図7の等価回路図であり、図9は、EPROMの初期状態と書き込み後それぞれのMOSFETのしきい値電圧とドレイン電流の関係を示す図である。なお、初期状態の閾値電圧:Vth(ini)、書き込み後の閾値電圧:Vth(wri)である。   7 is a cross-sectional view of the main part of the EPROM after the write operation is performed, FIG. 8 is an equivalent circuit diagram of FIG. 7, and FIG. 9 shows the initial state of the EPROM and the respective MOSFETs after the write. It is a figure which shows the relationship between a threshold voltage and drain current. Note that the threshold voltage in the initial state is Vth (ini), and the threshold voltage after writing is Vth (wri).

図7は、一層ポリシリコン構造にて構成されたEPROMであり、1セル分について示す。p型の半導体基板1の表面層にn型のコントロールゲート領域2が形成され、この上に、ゲート絶縁膜5を介してフローティングゲート7が形成されている。フローティングゲート7は、ドレイン領域3とソース領域4との間の半導体基板1の上に形成されたゲート絶縁膜5の上にも形成されている。半導体基板1、ドレイン領域3、ソース領域4およびフローティングゲート7より構成されるMOSFET15とコントロールゲート領域2とはLOCOS6によって分離されている。フローティングゲート7の上には、シリコン酸化膜からなる層間絶縁膜8が形成されており、層間絶縁膜8にコンタクト孔を形成し、コントロールゲート電極9、ドレイン電極10およびソース電極11がそれぞれ、コントロールゲート領域2、ドレイン領域3およびソース領域4と接続するように形成されている。コントロールゲート電極9、ドレイン電極10およびソース電極11の上にシリコン窒化膜からなる表面保護膜13が形成されている。ここまでが、半導体圧力センサチップ63を構成するものである。表面保護膜13の上は、図5で示したように、ゲル状保護部材14(67)により保護されている。   FIG. 7 shows an EPROM having a single-layer polysilicon structure, and shows one cell. An n-type control gate region 2 is formed on the surface layer of the p-type semiconductor substrate 1, and a floating gate 7 is formed thereon via a gate insulating film 5. The floating gate 7 is also formed on the gate insulating film 5 formed on the semiconductor substrate 1 between the drain region 3 and the source region 4. The MOSFET 15 constituted by the semiconductor substrate 1, the drain region 3, the source region 4 and the floating gate 7 and the control gate region 2 are separated by a LOCOS 6. An interlayer insulating film 8 made of a silicon oxide film is formed on the floating gate 7, contact holes are formed in the interlayer insulating film 8, and the control gate electrode 9, the drain electrode 10 and the source electrode 11 are controlled respectively. It is formed so as to be connected to gate region 2, drain region 3 and source region 4. A surface protective film 13 made of a silicon nitride film is formed on the control gate electrode 9, the drain electrode 10 and the source electrode 11. The steps up to here constitute the semiconductor pressure sensor chip 63. As shown in FIG. 5, the surface protective film 13 is protected by a gel-like protective member 14 (67).

EPROMへ書き込みを行うには、コントロールゲート電極9とドレイン電極10にかなり高い電圧を印加する。このときソース電極11と半導体基板1を接地する。ソース領域4から半導体基板1に注入された電子がゲート絶縁膜5を突き抜けフローティングゲート7に電子(図7のマイナス電荷で示す。)が注入され、フローティングゲート7がマイナス側に帯電したような形になる。図8に示すように、コントロールゲート領域2とフローティングゲート7とその間のゲート絶縁膜5がコンデンサC1を構成し、フローティングゲート7と半導体基板1とその間のゲート絶縁膜5がコンデンサC2を構成している。図8のA部に示すように、フローティングゲート7に注入された電子は、あたかも逆起電力を起す電池のような形になり、コントロールゲート電極9より印加される電圧(Vcg)を打消すような役割を果たす。   In order to write to the EPROM, a considerably high voltage is applied to the control gate electrode 9 and the drain electrode 10. At this time, the source electrode 11 and the semiconductor substrate 1 are grounded. The electrons injected from the source region 4 into the semiconductor substrate 1 penetrate the gate insulating film 5 and are injected into the floating gate 7 (indicated by negative charges in FIG. 7), so that the floating gate 7 is charged to the negative side. become. As shown in FIG. 8, the control gate region 2, the floating gate 7, and the gate insulating film 5 therebetween constitute a capacitor C1, and the floating gate 7, the semiconductor substrate 1 and the gate insulating film 5 therebetween constitute a capacitor C2. Yes. As shown in part A of FIG. 8, the electrons injected into the floating gate 7 are shaped like a battery that generates a counter electromotive force, so as to cancel the voltage (Vcg) applied from the control gate electrode 9. Play an important role.

図9に示すように、書き込み後のEPROM特性は、判定電圧より高い電圧を入力しないとMOSFET15がオンできないような状態へ遷移する。なお、判定電圧はVth(ini)とVth(wri)との間に設定する。定常時はこの判定電圧がVcgとして与えられるような回路にしておくことにより、初期状態のセルはMOSFET15がオンし、書き込み後のセルはMOSFET15がオフする、という2値状態を作り出し、これをデジタルの”0”,”1”として用いることが可能となっている。   As shown in FIG. 9, the EPROM characteristics after writing transition to a state in which the MOSFET 15 cannot be turned on unless a voltage higher than the determination voltage is input. Note that the determination voltage is set between Vth (ini) and Vth (wri). By making a circuit in which this determination voltage is given as Vcg at regular times, a binary state is created in which the MOSFET 15 is turned on for the cell in the initial state and the MOSFET 15 is turned off for the cell after writing. Can be used as "0" and "1".

図3のエンジン40において、吸気中には、燃料タンク内や燃料噴射時の摩擦によって帯電したガソリンや、水分等が含まれており、これらがゲル状保護部材14表面に付着すると誤動作の原因となる。誤動作のメカニズムは以下の通りである。   In the engine 40 of FIG. 3, the intake air contains gasoline, water, etc. charged by friction in the fuel tank or during fuel injection, and if these adhere to the surface of the gel-like protective member 14, Become. The mechanism of malfunction is as follows.

図10は、帯電ガソリンが表面に付着した場合のEPROMの要部断面図であり、図11は、図10の等価回路図である。   FIG. 10 is a cross-sectional view of the main part of the EPROM when charged gasoline adheres to the surface, and FIG. 11 is an equivalent circuit diagram of FIG.

ゲル状保護部材14の表面に帯電したガソリン(図10のプラス電荷で示す。)が付着すると、帯電したガソリンが一方の電極となりフローティングゲート7が他方の電極となりその間にあるゲル状保護部材14,表面保護膜13,および層間絶縁膜8とでコンデンサC3が構成され、このコンデンサC3を介して、ゲル状保護部材14の表面の電位(Vgel)がフローティングゲート7に伝えられ、フローティングゲート7の電位が変動する。本来、定常状態では判定電圧(Vcg)は一定であるため、EPROMの書き込み有無によりMOSFET15のオン/オフ状態が決定するが、帯電したガソリンが付着した場合、判定電圧が狂わされた形となり、図10のように、プラスに帯電したガソリンが付着した場合は、書き込まれているEPROMが、書き込んでいない(初期状態)EPROMと等価となりすべてのMOSFET15がオンする場合があり、また、マイナスに帯電したガソリンが付着した場合は、書き込んでいないEPROMが、書き込まれているEPROMと等価となりすべてのMOSFET15がオフする場合がある。これらの場合、EPROMにて設定したデジタルデータが化けてしまい、圧力検出装置の出力の変動につながってしまう。   When charged gasoline (indicated by a positive charge in FIG. 10) adheres to the surface of the gel-like protective member 14, the charged gasoline becomes one electrode and the floating gate 7 becomes the other electrode, and the gel-like protective member 14, The surface protective film 13 and the interlayer insulating film 8 constitute a capacitor C3, and the potential (Vgel) of the surface of the gel-like protective member 14 is transmitted to the floating gate 7 via this capacitor C3, and the potential of the floating gate 7 Fluctuates. Originally, since the determination voltage (Vcg) is constant in the steady state, the on / off state of the MOSFET 15 is determined depending on whether or not the EPROM is written. However, when charged gasoline is attached, the determination voltage is distorted. As shown in FIG. 10, when positively charged gasoline adheres, the written EPROM is equivalent to the unwritten (initial state) EPROM, and all MOSFETs 15 may be turned on, or charged negatively. When gasoline adheres, the unwritten EPROM is equivalent to the written EPROM, and all MOSFETs 15 may be turned off. In these cases, the digital data set in the EPROM is garbled, leading to fluctuations in the output of the pressure detection device.

従来、帯電したガソリンが圧力検出装置のセンシング部表面に到達しないように圧力導入路にフィルタ等を設けたものが特許文献2などで提案されている。また、圧力検出装置の半導体回路パターンが形成されていない側で圧力を感知する方式(裏面加圧方式)を採用したものが特許文献3などで知られている。
特開2002−310836号公報 特開平11−82198号公報 特開平2−100372号公報
Conventionally, Patent Document 2 and the like have proposed a filter or the like provided in a pressure introduction path so that charged gasoline does not reach the sensing portion surface of the pressure detection device. Further, Japanese Patent Application Laid-Open No. H10-228561 is known that employs a method of sensing pressure on the side of the pressure detection device where the semiconductor circuit pattern is not formed (back surface pressing method).
JP 2002-310836 A Japanese Patent Laid-Open No. 11-82198 Japanese Patent Laid-Open No. 2-100372

従来、2輪用、特にスポーツバイク向け圧力センサはクイックレスポンスを要求されるため燃料噴射装置の近傍に圧力検出装置が配置される場合が多い。この場合、燃料タンク内や燃料噴射時の摩擦によってガソリンが帯電することはよく知られている。圧力検出装置に感度、オフセットおよび温度特性の調整のためにEPROMトリミングを用いている場合、圧力検出装置のゲル状保護部材に帯電したガソリンが付着してセンサ性能を悪化させる問題がある。これらの問題を生じさせないために、特許文献2に記載のようにフィルタを圧力導入路に設けたり、特許文献3に記載のように裏面加圧式の圧力検出装置を選択したりすることが行われていたが、コスト的に高価となる問題があった。また、特許文献1では、帯電ガソリンの付着の問題については何ら記載されていない。今回の発明は、安価、高精度で製造でき、帯電ガソリンの影響を受けにくい表面加圧式の圧力検出装置および内燃機関の吸気通路を提供することである。   Conventionally, since pressure sensors for two-wheeled vehicles, particularly sports bikes, require a quick response, a pressure detecting device is often disposed in the vicinity of the fuel injection device. In this case, it is well known that gasoline is charged by friction in the fuel tank or during fuel injection. When EPROM trimming is used for adjusting sensitivity, offset, and temperature characteristics in the pressure detection device, there is a problem that charged gasoline adheres to the gel-like protective member of the pressure detection device and deteriorates the sensor performance. In order not to cause these problems, a filter is provided in the pressure introduction path as described in Patent Document 2, or a back surface pressure type pressure detection device is selected as described in Patent Document 3. However, there was a problem that the cost was high. Moreover, in patent document 1, it does not describe at all about the problem of adhesion of charged gasoline. The present invention is to provide a surface pressure type pressure detection device and an intake passage for an internal combustion engine that can be manufactured inexpensively and with high accuracy and are not easily affected by charged gasoline.

前記課題を解決するために、内燃機関の吸気通路のスロットル弁下流側に連通接続された圧力導入路に、該圧力導入路と絶縁膜を介して位置する、半導体基板に形成されたEPROMのフローティングゲートを備えた圧力検出装置において、
前記フローティングゲート上の前記絶縁膜内に金属シールド電極を備えたものとする。
In order to solve the above-mentioned problem, a floating of an EPROM formed on a semiconductor substrate is located in a pressure introduction path that is connected to a downstream side of a throttle valve of an intake passage of an internal combustion engine, with the pressure introduction path and an insulating film interposed therebetween. In a pressure detection device with a gate,
It is assumed that a metal shield electrode is provided in the insulating film on the floating gate.

または、内燃機関の吸気通路のスロットル弁下流側に連通接続された圧力導入路に配置される圧力検出装置であって、
前記圧力検出装置は、圧力を電気信号に変換するセンサ素子と、前記センサ素子からの電気信号を処理する信号処理回路素子と、前記センサ素子および前記信号処理回路素子を収納する圧力検出室と、前記圧力検出室と前記圧力導入路とを連通接続する圧力導入管と、前記圧力センサ素子および前記信号処理回路素子を前記圧力検出室と分離する絶縁性ゲル状保護部材と、を備え、
前記信号処理回路素子には、半導体基板上にゲート絶縁膜を介して形成されたフローティングゲートと、該フローティングゲート上に層間絶縁膜を介して形成された金属シールド電極と、該金属シールド電極上に表面保護膜を有するEPROMを備え、
前記表面保護膜上に前記ゲル状保護部材を介して前記圧力検出室が位置するものとする。
Or a pressure detection device disposed in a pressure introduction path connected to a downstream side of a throttle valve of an intake passage of an internal combustion engine,
The pressure detection device includes a sensor element that converts pressure into an electrical signal, a signal processing circuit element that processes an electrical signal from the sensor element, a pressure detection chamber that houses the sensor element and the signal processing circuit element, A pressure introduction pipe that communicates and connects the pressure detection chamber and the pressure introduction path; and an insulating gel-like protective member that separates the pressure sensor element and the signal processing circuit element from the pressure detection chamber,
The signal processing circuit element includes a floating gate formed on a semiconductor substrate through a gate insulating film, a metal shield electrode formed on the floating gate through an interlayer insulating film, and on the metal shield electrode EPROM having a surface protective film,
The pressure detection chamber is positioned on the surface protective film via the gel-like protective member.

また、前記圧力導入管の内側に、前記圧力検出室と前記被測定空間とが流通した状態で前記圧力検出室の入り口を略塞ぐように設けられた保護部を備えたものとする。   Further, it is assumed that a protective portion provided so as to substantially block the entrance of the pressure detection chamber in a state where the pressure detection chamber and the space to be measured are circulated inside the pressure introduction pipe.

また、前記センサ素子と前記信号処理回路素子とが同一半導体基板内に集積されたものとする。   The sensor element and the signal processing circuit element are integrated on the same semiconductor substrate.

また、前記センサ素子と前記信号処理回路素子とが別々の半導体基板内に形成されたものとする。   Further, it is assumed that the sensor element and the signal processing circuit element are formed in separate semiconductor substrates.

また、前記EPROMは、p型半導体基板の表面層に形成されたn型コントロールゲート領域と、該n型コントロールゲート領域に接続するコントロールゲート電極と、前記n型コントロールゲート領域上に前記層間絶縁膜を介して形成されたポリシリコンからなる前記フローティングゲートと、前記フローティングゲートをゲート電極としたn型MOSトランジスタとを備えたものとする。   The EPROM includes an n-type control gate region formed in a surface layer of a p-type semiconductor substrate, a control gate electrode connected to the n-type control gate region, and the interlayer insulating film on the n-type control gate region. And the n-type MOS transistor using the floating gate as a gate electrode.

さらに、前記金属シールド電極と前記コントロールゲート電極とが同一の材料からなるものとする。   Further, the metal shield electrode and the control gate electrode are made of the same material.

さらに、前記金属シールド電極は、接地されているものとする。   Further, the metal shield electrode is grounded.

さらに、前記金属シールド電極は、前記EPROMの電源と接続されているものとする。   Further, the metal shield electrode is connected to the power source of the EPROM.

または、内燃機関の吸気通路に設けられたスロットル弁と、前記吸気通路に設けられた燃料噴射装置と、前記スロットル弁の下流側で前記スロットル弁と前記燃料噴射装置の間の前記吸気通路に設けられた圧力導入路と、
この圧力導入路に設けられ、該圧力導入路と絶縁膜を介して位置する半導体基板に形成されたEPROMのフローティングゲート上の絶縁膜内に金属シールド電極を備えた圧力検出装置と、を備えた内燃基板の吸気通路とする。
Alternatively, a throttle valve provided in an intake passage of an internal combustion engine, a fuel injection device provided in the intake passage, and provided in the intake passage between the throttle valve and the fuel injection device on the downstream side of the throttle valve. A pressure introduction path,
A pressure detection device provided with a metal shield electrode in the insulating film on the floating gate of the EPROM formed in the semiconductor substrate located on the semiconductor substrate located through the pressure introducing path and the insulating film. The intake passage of the internal combustion board is used.

前記解決手段により、2輪用、特にスポーツバイク向け圧力センサでクイックレスポンスを要求されるため燃料噴射装置の近傍に配置される圧力検出装置において、感度、オフセットおよび温度特性の調整にEPROMトリミングを用いている場合、フローティングゲートの上層に金属シールド電極を設けることにより、帯電ガソリンが吸気通路に設けられる負圧検出用圧力検出装置のセンシング部の表面に付着してセンサ性能を悪化させる現象を生じない、信頼性の高い圧力検出装置および内燃機関の吸気通路を提供することが可能となる。   With the above solution, in the pressure detection device disposed near the fuel injection device because a quick response is required for a pressure sensor for a motorcycle, particularly for a sports motorcycle, EPROM trimming is used to adjust sensitivity, offset and temperature characteristics. In this case, by providing a metal shield electrode in the upper layer of the floating gate, the charged gasoline adheres to the surface of the sensing part of the negative pressure detecting pressure detecting device provided in the intake passage, and the phenomenon of deteriorating the sensor performance does not occur. It is possible to provide a highly reliable pressure detection device and an intake passage for an internal combustion engine.

[実施例1]
図4、図5および図6に示す圧力検出装置において、以下に示すEPROMを製作した。
[Example 1]
In the pressure detection device shown in FIGS. 4, 5, and 6, the following EPROM was manufactured.

図1は、本発明の圧力検出装置のEPROMの要部断面図であり、図2は、図1の等価回路図を示す。   FIG. 1 is a cross-sectional view of an essential part of the EPROM of the pressure detection device of the present invention, and FIG. 2 is an equivalent circuit diagram of FIG.

図10と同一箇所には同一の符号を付した。図10と異なる点は、フローティングゲート7の上に金属シールド電極12を設けた点である。金属シールド電極12は、コントロールゲート電極9、ドレイン電極10およびソース電極11と同時にスパッタにより形成している。図1では、1セル分のみしか示していないが、他に複数のセルが存在し、他のセルにおいてもフローティングゲート7の上に金属シールド電極12が形成され、全ての金属シールド電極12が同電位に保持されるようにする。図2に示すように金属シールド電極12の電位は接地されている。このように、フローティングゲート7の上に金属シールド電極12を設けることにより、図2に示すように、フローティングゲート7の上層に設けられた金属シールド電極12、フッ素系ゲル(例えば、フロロシリコーンゲル)などからなるゲル状保護部材14表面からフローティングゲート7へ影響を及ぼしていた経路を遮断し、強制的にGNDへバイパスすることで、フローティングゲートへの影響(経路)を無くしてしまう効果を有している。よって、この圧力検出装置は、ゲル状保護部材14の表面に帯電したガソリンが付着しても出力の変動が抑制され、センサ性能を悪化させる現象を生じない。また、本実施例では、金属シールド電極12の膜付け処理と、コントロールゲート電極9、ドレイン電極10およびソース電極11などのチップ上の電気的な接続をするための配線に用いる金属の膜付け処理を1工程で(同時に)実施することによって従来工程に追加工数を必要としない。   The same parts as those shown in FIG. The difference from FIG. 10 is that a metal shield electrode 12 is provided on the floating gate 7. The metal shield electrode 12 is formed by sputtering simultaneously with the control gate electrode 9, the drain electrode 10 and the source electrode 11. Although only one cell is shown in FIG. 1, there are a plurality of other cells, and in other cells, the metal shield electrode 12 is formed on the floating gate 7, and all the metal shield electrodes 12 are the same. It should be held at a potential. As shown in FIG. 2, the potential of the metal shield electrode 12 is grounded. Thus, by providing the metal shield electrode 12 on the floating gate 7, as shown in FIG. 2, the metal shield electrode 12 provided on the upper layer of the floating gate 7, a fluorine-based gel (for example, fluorosilicone gel). By blocking the path that had affected the floating gate 7 from the surface of the gel-like protective member 14 made of, etc., and forcibly bypassing it to GND, it has the effect of eliminating the influence (path) on the floating gate. ing. Therefore, in this pressure detection device, even if charged gasoline adheres to the surface of the gel-like protection member 14, the fluctuation of the output is suppressed and the phenomenon of deteriorating the sensor performance does not occur. Further, in this embodiment, the metal film forming process for the metal shield electrode 12 and the metal film forming process used for wiring for electrical connection on the chip such as the control gate electrode 9, the drain electrode 10 and the source electrode 11 are performed. By implementing this in one process (simultaneously), no additional man-hours are required for the conventional process.

また、本実施例では、図4,5,6に示した圧力検出装置を用いているため保護部73が形成されており帯電したガソリンがゲル状保護部材14に付着することも抑制することができ、より確実に圧力検出装置の出力の変動を防止することができる。なお、保護部73が形成されていない圧力検出装置であっても本発明の効果を奏することができる。   Further, in this embodiment, since the pressure detection device shown in FIGS. 4, 5, and 6 is used, the protective portion 73 is formed, and it is possible to suppress the charged gasoline from adhering to the gel-like protective member 14. This can more reliably prevent fluctuations in the output of the pressure detection device. In addition, even if it is a pressure detection apparatus in which the protection part 73 is not formed, there can exist the effect of this invention.

また、本実施例では、金属シールド電極12を接地したが、EPROMの電源に接続することにより所定電位に保持してもよい。   In this embodiment, the metal shield electrode 12 is grounded, but may be held at a predetermined potential by connecting to the power source of the EPROM.

また、本実施例は、EPROMのフローティングゲート7と圧力検出室68との間に相関絶縁膜8、表面保護膜13、ゲル状保護部材14などの絶縁膜を備えたものにおいて適応できるものであるため、本実施例では、センサ素子として半導体圧力センサチップ63を用いたが、表面圧力を電気信号に変換するセンサ素子と、センサ素子からの電気信号を処理する上記のEPROMを備えた信号処理回路素子とを別の半導体チップとして形成してもよい。   Further, this embodiment can be applied to a case in which an insulating film such as a correlation insulating film 8, a surface protective film 13, and a gel-like protective member 14 is provided between the EPROM floating gate 7 and the pressure detection chamber 68. Therefore, in this embodiment, the semiconductor pressure sensor chip 63 is used as the sensor element. However, the signal processing circuit includes the sensor element that converts the surface pressure into an electrical signal and the EPROM that processes the electrical signal from the sensor element. The element may be formed as a separate semiconductor chip.

この発明の実施例1のEPROMの要部段面図Principal step diagram of EPROM of Embodiment 1 of the present invention 図1の等価回路図Equivalent circuit diagram of FIG. 自動車用エンジンの概略図Schematic diagram of automotive engine 圧力検出装置を示す外観図External view showing pressure detector 図4のI−Iにおける断面図Sectional view taken along II in FIG. 図5で示した半導体圧力センサチップの平面図Plan view of the semiconductor pressure sensor chip shown in FIG. 書き込み動作を行わせた後のEPROMの要部断面図Cross section of the main part of the EPROM after the write operation is performed 図7の等価回路図Equivalent circuit diagram of FIG. EPROMの初期状態と書き込み後それぞれのMOSFETのしきい値電圧とドレイン電流の関係を示す図The figure which shows the relationship between the threshold voltage and drain current of each MOSFET after the initial state of EPROM and after writing 帯電ガソリンが表面に付着した場合のEPROMの要部断面図Cross section of the main part of EPROM when charged gasoline adheres to the surface 図10の等価回路図Equivalent circuit diagram of FIG.

符号の説明Explanation of symbols

1 半導体基板
2 コントロールゲート領域
3 ドレイン領域
4 ソース領域
5 ゲート絶縁膜
6 LOCOS
7 フローティングゲート
8 層間絶縁膜
9 コントロールゲート電極
10 ドレイン電極
11 ソース電極
12 金属シールド電極
13 表面保護膜
14、67 ゲル状保護部材
DESCRIPTION OF SYMBOLS 1 Semiconductor substrate 2 Control gate area | region 3 Drain area | region 4 Source area | region 5 Gate insulating film 6 LOCOS
7 Floating gate 8 Interlayer insulating film 9 Control gate electrode 10 Drain electrode 11 Source electrode 12 Metal shield electrode 13 Surface protective film 14, 67 Gel-like protective member

Claims (10)

内燃機関の吸気通路のスロットル弁下流側に連通接続された圧力導入路に、該圧力導入路と絶縁膜を介して位置する、半導体基板に形成されたEPROMのフローティングゲートを備えた圧力検出装置において、
前記フローティングゲート上の前記絶縁膜内に金属シールド電極を備えたことを特徴とする圧力検出装置。
In a pressure detection device comprising an EPROM floating gate formed on a semiconductor substrate, located in a pressure introduction path connected to a downstream side of a throttle valve of an intake passage of an internal combustion engine, via the pressure introduction path and an insulating film ,
A pressure detection device comprising a metal shield electrode in the insulating film on the floating gate.
内燃機関の吸気通路のスロットル弁下流側に連通接続された圧力導入路に配置される圧力検出装置であって、
前記圧力検出装置は、圧力を電気信号に変換するセンサ素子と、前記センサ素子からの電気信号を処理する信号処理回路素子と、前記センサ素子および前記信号処理回路素子を収納する圧力検出室と、前記圧力検出室と前記圧力導入路とを連通接続する圧力導入管と、前記圧力センサ素子および前記信号処理回路素子を前記圧力検出室と分離する絶縁性ゲル状保護部材と、を備え、
前記信号処理回路素子には、半導体基板上にゲート絶縁膜を介して形成されたフローティングゲートと、該フローティングゲート上に層間絶縁膜を介して形成された金属シールド電極と、該金属シールド電極上に表面保護膜を有するEPROMを備え、
前記表面保護膜上に前記ゲル状保護部材を介して前記圧力検出室が位置することを特徴とする圧力検出装置。
A pressure detection device disposed in a pressure introduction path connected to a downstream side of a throttle valve of an intake passage of an internal combustion engine,
The pressure detection device includes a sensor element that converts pressure into an electrical signal, a signal processing circuit element that processes an electrical signal from the sensor element, a pressure detection chamber that houses the sensor element and the signal processing circuit element, A pressure introduction pipe that communicates and connects the pressure detection chamber and the pressure introduction path, and an insulating gel-like protective member that separates the pressure sensor element and the signal processing circuit element from the pressure detection chamber,
The signal processing circuit element includes a floating gate formed on a semiconductor substrate via a gate insulating film, a metal shield electrode formed on the floating gate via an interlayer insulating film, and on the metal shield electrode EPROM having a surface protective film,
The pressure detection device, wherein the pressure detection chamber is located on the surface protective film via the gel-like protective member.
前記圧力導入管の内側に、前記圧力検出室と前記被測定空間とが流通した状態で前記圧力検出室の入り口を略塞ぐように設けられた保護部を備えたことを特徴とする請求項2に記載の圧力検出装置。 3. A protection unit provided inside the pressure introduction pipe so as to substantially block an entrance of the pressure detection chamber in a state where the pressure detection chamber and the space to be measured are in circulation. The pressure detection apparatus described in 1. 前記センサ素子と前記信号処理回路素子とが同一半導体基板内に集積されたことを特徴とする請求項2または3のいずれか一項に記載の圧力検出装置。 4. The pressure detection device according to claim 2, wherein the sensor element and the signal processing circuit element are integrated in the same semiconductor substrate. 前記センサ素子と前記信号処理回路素子とが別々の半導体基板内に形成されたことを特徴とする請求項2または3のいずれか一項に記載の圧力検出装置。 4. The pressure detection device according to claim 2, wherein the sensor element and the signal processing circuit element are formed in different semiconductor substrates. 5. 前記EPROMは、p型半導体基板の表面層に形成されたn型コントロールゲート領域と、該n型コントロールゲート領域に接続するコントロールゲート電極と、前記n型コントロールゲート領域上に前記層間絶縁膜を介して形成されたポリシリコンからなる前記フローティングゲートと、前記フローティングゲートをゲート電極としたn型MOSトランジスタとを備えたことを特徴とする請求項2〜5のいずれか一項に記載の圧力検出装置。 The EPROM includes an n-type control gate region formed in a surface layer of a p-type semiconductor substrate, a control gate electrode connected to the n-type control gate region, and the interlayer insulating film on the n-type control gate region. 6. The pressure detection device according to claim 2, further comprising: the floating gate made of polysilicon formed in the above-described manner; and an n-type MOS transistor using the floating gate as a gate electrode. . 前記金属シールド電極と前記コントロールゲート電極とが同一の材料からなることを特徴とする請求項6に記載の圧力検出装置。 The pressure detection device according to claim 6, wherein the metal shield electrode and the control gate electrode are made of the same material. 前記金属シールド電極は、接地されていることを特徴とする請求項1〜7のいずれか一項に記載の圧力検出装置。 The pressure detection apparatus according to claim 1, wherein the metal shield electrode is grounded. 前記金属シールド電極は、前記EPROMの電源と接続されていることを特徴とする請求項1〜7のいずれか一項に記載の圧力検出装置。 The pressure detection apparatus according to claim 1, wherein the metal shield electrode is connected to a power source of the EPROM. 内燃機関の吸気通路に設けられたスロットル弁と、前記吸気通路に設けられた燃料噴射装置と、前記スロットル弁の下流側で前記スロットル弁と前記燃料噴射装置の間の前記吸気通路に設けられた圧力導入路と、
この圧力導入路に設けられ、該圧力導入路と絶縁膜を介して位置する半導体基板に形成されたEPROMのフローティングゲート上の絶縁膜内に金属シールド電極を備えた圧力検出装置と、を備えたことを特徴とする内燃機関の吸気通路。
A throttle valve provided in an intake passage of an internal combustion engine; a fuel injection device provided in the intake passage; and provided in the intake passage between the throttle valve and the fuel injection device downstream of the throttle valve. A pressure introduction path;
A pressure detection device provided with a metal shield electrode in the insulating film on the floating gate of the EPROM formed in the semiconductor substrate located on the semiconductor substrate located through the pressure introducing path and the insulating film. An intake passage for an internal combustion engine.
JP2006087974A 2006-03-28 2006-03-28 Pressure detecting device and intake passage of internal combustion engine Active JP4904881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006087974A JP4904881B2 (en) 2006-03-28 2006-03-28 Pressure detecting device and intake passage of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006087974A JP4904881B2 (en) 2006-03-28 2006-03-28 Pressure detecting device and intake passage of internal combustion engine

Publications (2)

Publication Number Publication Date
JP2007263681A true JP2007263681A (en) 2007-10-11
JP4904881B2 JP4904881B2 (en) 2012-03-28

Family

ID=38636824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006087974A Active JP4904881B2 (en) 2006-03-28 2006-03-28 Pressure detecting device and intake passage of internal combustion engine

Country Status (1)

Country Link
JP (1) JP4904881B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7776677B1 (en) 2009-03-30 2010-08-17 Semiconductor Components Industries, Llc Method of forming an EEPROM device and structure therefor
US8129266B2 (en) 2008-07-09 2012-03-06 Semiconductor Componenets Industries, LLC Method of forming a shielded semiconductor device and structure therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1182198A (en) * 1997-09-08 1999-03-26 Denso Corp Intake device for internal combustion engine
JP2003188287A (en) * 2001-12-18 2003-07-04 Toshiba Corp Non-volatile semiconductor memory device and manufacturing method thereof
JP2004301553A (en) * 2003-03-28 2004-10-28 Denso Corp Pressure detector
JP2006058137A (en) * 2004-08-20 2006-03-02 Denso Corp Humidity sensor, and composite sensor having humidity detection function

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1182198A (en) * 1997-09-08 1999-03-26 Denso Corp Intake device for internal combustion engine
JP2003188287A (en) * 2001-12-18 2003-07-04 Toshiba Corp Non-volatile semiconductor memory device and manufacturing method thereof
JP2004301553A (en) * 2003-03-28 2004-10-28 Denso Corp Pressure detector
JP2006058137A (en) * 2004-08-20 2006-03-02 Denso Corp Humidity sensor, and composite sensor having humidity detection function

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8129266B2 (en) 2008-07-09 2012-03-06 Semiconductor Componenets Industries, LLC Method of forming a shielded semiconductor device and structure therefor
US8536685B2 (en) 2008-07-09 2013-09-17 Semiconductor Components Industries, Llc Shielded semiconductor device structure
US7776677B1 (en) 2009-03-30 2010-08-17 Semiconductor Components Industries, Llc Method of forming an EEPROM device and structure therefor
US7825454B2 (en) 2009-03-30 2010-11-02 Semiconductor Components Industries, Llc Method of forming an EEPROM device and structure therefor

Also Published As

Publication number Publication date
JP4904881B2 (en) 2012-03-28

Similar Documents

Publication Publication Date Title
EP2306161B1 (en) Flow rate sensor structure
JP4421511B2 (en) Semiconductor pressure sensor
US10876872B2 (en) Physical quantity detection device
JP6154966B2 (en) Physical quantity detection device
JP6352423B2 (en) Physical quantity detection device
JP6325107B2 (en) Physical quantity detection device
JP6475860B2 (en) Flowmeter
US20080148842A1 (en) Semiconductor device for detecting flow rate of fluid
EP1319929A1 (en) Thermal type air flowmeter
US4682496A (en) Flow rate detecting apparatus having semiconductor chips
US20060037404A1 (en) Humidity sensor and composite sensor having humidity detecting function
JP2016031341A (en) Physical quantity detector
JP2002221462A (en) Pressure sensor
JP6670792B2 (en) Physical quantity detection device, method for manufacturing physical quantity detection device
JPWO2016121179A1 (en) Physical quantity detection device and electronic device
US10018492B2 (en) Thermal flow meter with drainage passage at inlet of bypass passage
US20060238186A1 (en) Semiconductor device and temperature detection method using the same
JP6181900B2 (en) Air flow detector
JP4904881B2 (en) Pressure detecting device and intake passage of internal combustion engine
JP2006010426A (en) Sensor device and its manufacturing method
JPWO2017056700A1 (en) Physical quantity detection device
JP6436925B2 (en) Thermal flow meter
JP4362949B2 (en) Semiconductor pressure sensor device
JP4893529B2 (en) Pressure sensor
JPWO2017056672A1 (en) Physical quantity detection device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081216

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090217

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4904881

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250