JP2007263587A - Probe and device for measuring absorbance - Google Patents

Probe and device for measuring absorbance Download PDF

Info

Publication number
JP2007263587A
JP2007263587A JP2006085392A JP2006085392A JP2007263587A JP 2007263587 A JP2007263587 A JP 2007263587A JP 2006085392 A JP2006085392 A JP 2006085392A JP 2006085392 A JP2006085392 A JP 2006085392A JP 2007263587 A JP2007263587 A JP 2007263587A
Authority
JP
Japan
Prior art keywords
light
measurement
absorbance
unit
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006085392A
Other languages
Japanese (ja)
Inventor
Gen Matsuno
玄 松野
Hideki Umeda
秀樹 梅田
Takashi Matsuura
貴 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2006085392A priority Critical patent/JP2007263587A/en
Publication of JP2007263587A publication Critical patent/JP2007263587A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a probe for measuring absorbance capable of largely taking signal intensity as compared with a conventional example even if a measuring target is thin and the absorbance thereof is low because measuring light is transmitted through the measuring target a plurality of times (twice). <P>SOLUTION: The probe is composed of a floodlight projection means for projecting the light from a light source in the direction of the measuring target, a reflection means for reflecting the light, which is transmitted through the measuring target, in the direction of the measuring target and a light detection means for detecting the light transmitted through the measuring target. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、吸光度測定用プローブ及び吸光度測定装置に関し、詳しくは近赤外分光分析計を用いてフィルム等の透明固体サンプル(測定対象)の近赤外吸収スペクトルを測定するために使用するプローブ部分に関する。   The present invention relates to an absorbance measurement probe and an absorbance measurement device, and more specifically, a probe portion used for measuring a near infrared absorption spectrum of a transparent solid sample (measurement object) such as a film using a near infrared spectrometer. About.

従来技術における吸光度測定用プローブを備えた吸光度測定装置は、図4に示すように、光源111と投光ユニット112は光ファイバ113で連結され、コリメータレンズ114を介して測定対象115に光が照射される。測定対象115を透過した光は受光ユニット116のコリメータレンズ117で受光側光ファイバ118の端面に集光され、光ファイバ118を介して受光器119に入力される。この構成で、測定対象サンプルの近赤外(概ね800〜2500cm−1の波数域)吸収スペクトルを測定することができ、吸収スペクトル中の吸収ピークを解析することによって、測定対象の組成(例えば、サンプルがプラスチックフィルムであれば、そのOH価、水分率等)を測定することができる。
光ファイバ113、118を用いず、光源111と投光ユニット112、受光器119と受光ユニット116が一体化されている場合もある。
As shown in FIG. 4, the absorbance measuring apparatus provided with the absorbance measuring probe according to the prior art includes a light source 111 and a light projecting unit 112 connected by an optical fiber 113, and light is irradiated to the measuring object 115 via the collimator lens 114. Is done. The light that has passed through the measurement object 115 is collected on the end face of the light receiving side optical fiber 118 by the collimator lens 117 of the light receiving unit 116 and is input to the light receiver 119 through the optical fiber 118. With this configuration, the near-infrared (approximately 800-2500 cm-1 wavenumber region) absorption spectrum of the measurement target sample can be measured, and by analyzing the absorption peak in the absorption spectrum, the composition of the measurement target (for example, If the sample is a plastic film, its OH number, moisture content, etc.) can be measured.
In some cases, the light source 111 and the light projecting unit 112, and the light receiver 119 and the light receiving unit 116 are integrated without using the optical fibers 113 and 118.

特開2000−111472号公報(第4頁〜第5頁 第1図)Japanese Unexamined Patent Publication No. 2000-111472 (page 4 to page 5 FIG. 1)

しかし、従来技術で説明した吸光度測定装置においては、有機物の近赤外吸光スペクトルを測定する際に最適なサンプル厚さは一般に1〜10mm程度であるが、フィルムサンプルは、その厚さが薄い(数10〜数100μm)ため吸収ピークが小さく、ノイズの影響を受けやすいという問題がある。
又、フィルムサンプルは、製造工程上、非常に大きい(例えば、幅が数m)の場合が多いので、投光ユニットと受光ユニットは分離した状態で設置しなければならない。この場合、機器の設置時に投光ユニットから照射された光を受光ユニットの光ファイバに正確に入射させるための光軸調整を行う必要があるが、この作業が非常に困難で手間がかかる。
また、使用中にユニット間の相対位置がずれた場合に、受光器に到達する光量が大きく変動し、誤差要因となるという問題もある。
However, in the absorbance measuring apparatus described in the prior art, the optimum sample thickness when measuring the near-infrared absorption spectrum of an organic substance is generally about 1 to 10 mm, but the film sample is thin ( (Several tens to several hundreds of micrometers), the absorption peak is small, and there is a problem that it is easily affected by noise.
In addition, film samples are often very large (for example, several meters in width) in the manufacturing process, so the light projecting unit and the light receiving unit must be installed separately. In this case, it is necessary to adjust the optical axis so that the light emitted from the light projecting unit is accurately incident on the optical fiber of the light receiving unit when the device is installed. However, this operation is very difficult and time-consuming.
In addition, when the relative position between the units is shifted during use, the amount of light reaching the light receiver greatly fluctuates, resulting in an error factor.

従って、測定対象であるサンプル中に光を複数回透過させることにより、実質的なサンプル厚さを実際のサンプル厚さより大きくし、信号強度を高めるようにすること、併せて
上下ユニット間の位置関係がずれても受光光量の受ける影響が少なく、また、機器の設置時(及びメンテナンス等で取り外した機器の再設置時)に、光軸の調整が容易、且つ正確にできるような測定プローブを実現することに解決しなければならない課題を有する。
Therefore, by transmitting light several times through the sample to be measured, the actual sample thickness is made larger than the actual sample thickness and the signal intensity is increased, and the positional relationship between the upper and lower units A measurement probe that can adjust the optical axis easily and accurately at the time of equipment installation (and when equipment that has been removed for maintenance, etc. is reinstalled) is realized. Having problems that must be solved.

上記課題を解決するために、本願発明の吸光度測定用プローブ及び吸光度測定装置は、次に示す構成にしたことである。   In order to solve the above problems, the absorbance measurement probe and absorbance measurement device of the present invention are configured as follows.

(1)吸光度測定用プローブは、光源からの光線を測定対象方向に投光する投光手段と、前記測定対象を透過した光線を前記測定対象方向に反射させる反射手段と、前記測定対象を透過した光線を受光する受光手段と、からなる。
(2)前記反射手段で反射させた光線を透過させる前記測定対象の領域は、前記投光手段からの光線を透過させた前記測定対象の領域と異なる領域であることを特徴とする(1)に記載の吸光度測定用プローブ。
(3)前記反射手段は、入射光と平行に反射光を返す性質の再帰反射ミラーで構成されていることを特徴とする(1)に記載の吸光度測定用プローブ。
(4)前記投光手段と受光手段は一体に形成され、該一体に形成された投光手段及び受光手段と前記反射手段は予め光軸が一致するように治具により調整され、該治具により調整された状態で所定の測定箇所に配置するようにしたことを特徴とする(1)に記載の吸光度測定用プローブ。
(1) The absorbance measurement probe includes a light projecting unit that projects light from a light source in the direction of the measurement target, a reflection unit that reflects the light transmitted through the measurement target in the direction of the measurement target, and the light transmitted through the measurement target. Light receiving means for receiving the received light.
(2) The region of the measurement target that transmits the light beam reflected by the reflection unit is a region different from the region of the measurement target that transmits the light beam from the light projecting unit (1) The probe for measuring absorbance according to 1.
(3) The absorbance measuring probe according to (1), wherein the reflecting means is configured by a retroreflective mirror having a property of returning reflected light in parallel with incident light.
(4) The light projecting means and the light receiving means are integrally formed, and the integrally formed light projecting means, the light receiving means, and the reflecting means are adjusted in advance by a jig so that the optical axes coincide with each other. The probe for measuring absorbance according to (1), wherein the probe is arranged at a predetermined measurement position adjusted in accordance with (1).

(5)吸光度測定装置は、所定の光線を発生させる分光器と、前記分光器からの光線を測定対象方向に投光する投光手段と、前記測定対象を透過した光線を前記測定対象方向に反射させる反射手段と、前記測定対象を透過した光線を受光する受光手段とからなる吸光度測定用プローブと、前記受光手段で受光した光線を受光する受光器とを備えてなる。
(6)前記反射手段で反射させた光線を透過させる前記測定対象の領域は、前記投光手段からの光線を透過させた前記測定対象の領域と異なる領域であることを特徴とする(5)に記載の吸光度測定装置。
(7)前記反射手段は、入射光と平行に反射光を返す性質の再帰反射ミラーで構成されていることを特徴とする(5)に記載の吸光度測定装置。
(8)前記投光手段と受光手段は一体に形成され、該一体に形成された投光手段及び受光手段と前記反射手段は予め光軸が一致するように治具により調整され、該治具により調整された状態で所定の測定箇所に配置するようにしたことを特徴とする(5)に記載の吸光度測定装置。
(5) The absorbance measurement device includes a spectroscope that generates a predetermined light beam, a light projecting unit that projects the light beam from the spectroscope in a measurement target direction, and a light beam that has passed through the measurement target in the measurement target direction. An absorbance measurement probe comprising a reflecting means for reflecting, a light receiving means for receiving a light beam transmitted through the measurement object, and a light receiver for receiving the light beam received by the light receiving means.
(6) The region of the measurement target that transmits the light beam reflected by the reflection unit is a region different from the region of the measurement target that transmits the light beam from the light projecting unit. The absorbance measuring apparatus according to 1.
(7) The absorbance measuring apparatus according to (5), wherein the reflecting means is configured by a retroreflective mirror having a property of returning reflected light in parallel with incident light.
(8) The light projecting means and the light receiving means are integrally formed, and the integrally formed light projecting means, the light receiving means, and the reflecting means are adjusted in advance by a jig so that the optical axes coincide with each other. The absorbance measurement apparatus according to (5), wherein the absorbance measurement apparatus is arranged at a predetermined measurement location in a state adjusted by the above.

本提案によれば、測定光を測定対象に複数回(2回)透過させているので、測定対象の
厚さが薄く吸光度が小さい場合でも、従来例に比較して信号強度を大きく取ることができる。
又、投光手段と受光手段を一体に形成し、一体に形成した投光手段及び受光手段と反射手段との光軸を治具により一致させた状態を維持して設置するようにしたことで、設置の際の位置ずれをなくし、その後の調整時においても治具を使用すればよいから再設置が簡単且つ容易に行うことができる。
更に、反射手段に、入射光と平行に反射光を返す性質の再帰反射ミラーを使用することにより、設置後の反射ユニットの角度ずれに対し、反射光の角度が影響を受けず、ロバストな測定系を構成できる。
According to this proposal, since the measurement light is transmitted through the measurement object a plurality of times (twice), even when the measurement object is thin and the absorbance is small, the signal intensity can be increased compared to the conventional example. it can.
In addition, the light projecting means and the light receiving means are formed integrally, and the light projecting means and the light receiving means and the reflecting means formed integrally are installed while maintaining the state where the optical axes of the light receiving means and the reflecting means are matched by a jig. Since the positional deviation at the time of installation is eliminated and the jig is used at the time of subsequent adjustment, the re-installation can be performed easily and easily.
In addition, by using a retroreflective mirror that returns reflected light parallel to the incident light as the reflecting means, the angle of the reflected light is not affected by the angle deviation of the reflecting unit after installation, and the measurement is robust. A system can be constructed.

次に、本願発明に係る吸光度測定用プローブ及び吸光度測定装置の実施形態について、図面を参照して以下説明する。   Next, embodiments of an absorbance measurement probe and an absorbance measurement apparatus according to the present invention will be described below with reference to the drawings.

本願発明の吸光度測定用プローブを備え、且つ吸光度測定方法を具現化できる吸光度測定装置は、図1に示すように、所定の光線を発生させる光源である分光器11と、分光器11からの光線を測定対象12であるフィルムサンプル方向に透過させるように投光する投光手段13と、測定対象12を透過した光線を同じ測定対象12方向に反射させる反射手段14と、反射手段14により反射した光線を再び測定対象12を透過させ、該透過した光線を受光する受光手段15とからなる吸光度測定用プローブと、受光手段15で受光した光線を受光する受光器16とを備えた構成になっている。   As shown in FIG. 1, an absorbance measurement apparatus that includes the absorbance measurement probe of the present invention and that can embody an absorbance measurement method includes a spectroscope 11 that is a light source that generates a predetermined light beam, and a light beam from the spectroscope 11. Is reflected by the reflecting means 14, the reflecting means 14 for reflecting the light beam transmitted through the measuring object 12 in the direction of the same measuring object 12, and the reflecting means 14. The configuration includes an absorbance measurement probe including a light receiving unit 15 that transmits light again through the measurement object 12 and receives the transmitted light, and a light receiver 16 that receives the light received by the light receiving unit 15. Yes.

分光器11からの投光手段13への光線の伝達は光ファイバ17を介して行われており、又、投光手段13は、コリメータレンズ18で構成され、光ファイバ17を介して得られた光線を平行光線にして測定対象12方向に投光する。   Transmission of light from the spectroscope 11 to the light projecting means 13 is performed via an optical fiber 17, and the light projecting means 13 is constituted by a collimator lens 18 and obtained via the optical fiber 17. The light is converted into parallel light and projected in the direction of the measurement object 12.

受光手段15は、投光手段13と同様に、コリメータレンズ19で構成され、反射手段14からの平行光線を受光して集光し、その集光した光線を光ファイバ21を介して受光器16に送る。   Similar to the light projecting means 13, the light receiving means 15 is composed of a collimator lens 19, receives and collects parallel rays from the reflection means 14, and collects the collected rays via an optical fiber 21. Send to.

反射手段14は、所謂、入射光と平行に反射光を返す性質の再帰反射ミラー22で構成されており、この再帰反射ミラー22は、入射した入射光と直交する方向に反射させる第1の反射面23と、この第1の反射面23で反射した光線と直交する方向で入射光と正反対方向に反射させて出射光を生成する第2の反射面24とで構成されている。
このように、再帰反射ミラー22を使用することにより、反射手段14で反射させた光線を透過させる測定対象12の領域は、投光手段13からの光線を透過させた測定対象12の領域と異なる領域とすることができるのである。異なる領域にできるということは、1回の投光で、往復の透過を異なる領域で実現できるため、測定対象12の厚さが薄く吸光度が小さい場合でも、従来例に比較して信号強度を大きく取ることができる。
このような再帰反射ミラー22を設置して形成されたのが反射ユニット25である。
The reflection means 14 includes a so-called retroreflective mirror 22 that returns reflected light in parallel with incident light, and the retroreflective mirror 22 reflects the incident light in a direction orthogonal to the incident light. A surface 23 and a second reflecting surface 24 that generates outgoing light by reflecting the light in the direction orthogonal to the light beam reflected by the first reflecting surface 23 in a direction opposite to the incident light.
As described above, by using the retroreflective mirror 22, the region of the measurement target 12 that transmits the light beam reflected by the reflection unit 14 is different from the region of the measurement target 12 that transmits the light beam from the light projecting unit 13. It can be an area. The fact that it can be made in different areas means that a single light projection can achieve reciprocal transmission in different areas, so even if the thickness of the measurement object 12 is thin and the absorbance is small, the signal intensity is larger than in the conventional example. Can be taken.
The reflection unit 25 is formed by installing such a retroreflection mirror 22.

さて、投光手段13と受光手段15は、一体に形成されているものであり、コリメータレンズ18を一定の角度に設置した投光ユニット26、やはりコリメータレンズ19を一定角度で設置した受光ユニット27を一つの台座に調整自在に取付けて投受光ユニット28を形成する。   The light projecting means 13 and the light receiving means 15 are integrally formed, and a light projecting unit 26 in which the collimator lens 18 is installed at a constant angle, and a light receiving unit 27 in which the collimator lens 19 is also installed at a constant angle. The light projecting / receiving unit 28 is formed on one base so as to be adjustable.

これら反射ユニット25及び投受光ユニット28は、工場から出荷する際に予め光軸調整治具29により光軸の調整がなされ、光軸調整治具29を取付けた状態で所定の測定箇所に投受光ユニット固定手段31、反射ユニット固定手段32により配置固定される。
即ち、光軸調整治具29を取付けた状態で投受光ユニット28の投受光ユニット固定手段31を測定設置箇所に取付け、反射ユニット25の反射ユニット固定手段32を測定設置箇所に取付け固定した後に光軸調整治具29を外せばよい。
The reflection unit 25 and the light projecting / receiving unit 28 are adjusted in advance by the optical axis adjustment jig 29 when shipped from the factory, and are projected and received at predetermined measurement locations with the optical axis adjustment jig 29 attached. The unit is fixed by the unit fixing means 31 and the reflection unit fixing means 32.
That is, with the optical axis adjusting jig 29 attached, the light emitting / receiving unit fixing means 31 of the light emitting / receiving unit 28 is attached to the measurement installation location, and the reflection unit fixing means 32 of the reflection unit 25 is attached and fixed to the measurement installation location. The axis adjustment jig 29 may be removed.

このような投受光ユニット28、反射ユニット25、光軸調整治具29の3ユニットで構成された吸光度測定用プローブについて、図2及び図3に示すように、具体的な構造を参照して以下説明する。   With respect to the absorbance measuring probe constituted by three units of the light projecting / receiving unit 28, the reflecting unit 25, and the optical axis adjusting jig 29, as shown in FIGS. explain.

投受光ユニット28は、略凹形状の長方体に形成されたユニット取付台座33に投光ユニット26と受光ユニット27を平行に配置した構成になっており、それぞれの投光ユニット26及び受光ユニット27はユニット取付台座33上において水平方向に調整できる調整ねじ34により固定されている。ユニット取付台座33の側面には固定された測定箇所に配置固定するための固定基部(投受光ユニット固定手段)35を立設した状態で取付けた構成になっている。この固定基部35を取付けた反対側の側面は四角形状に形成された調整面36となっており、この調整面36には、光軸調整治具29と固定するための4つの調整ネジ穴37を備えた構成になっている。   The light projecting / receiving unit 28 has a structure in which a light projecting unit 26 and a light receiving unit 27 are arranged in parallel on a unit mounting base 33 formed in a substantially concave rectangular parallelepiped. 27 is fixed on the unit mounting base 33 by an adjusting screw 34 that can be adjusted in the horizontal direction. On the side surface of the unit mounting base 33, a fixed base portion (light emitting / receiving unit fixing means) 35 for fixing at a fixed measurement location is mounted in a standing state. The opposite side surface to which the fixing base 35 is attached is an adjustment surface 36 formed in a square shape, and the adjustment surface 36 has four adjustment screw holes 37 for fixing to the optical axis adjustment jig 29. It has a configuration with.

反射ユニット25は、下側が略凹形状の直方体に形成されたユニット取付台座38に基台39を備えた反射部41を配置固定された構成になっている。
反射部41は、円筒形状に形成された筐体の内部に図示しない再帰反射ミラーを備えた構成になっており、基台39に設けた4つの調整ねじ42で水平方向への調整をする構成となっている。
ユニット取付台座38の側面には固定された測定箇所に配置固定するための固定基部(反射ユニット固定手段)43を立設した状態で取付けた構成になっている。この固定基部43を取付けた反対側の側面は四角形状に形成された調整面44となっており、この調整面44には、光軸調整治具29と固定するための4つの調整ネジ穴45を備えた構成になっている。
The reflection unit 25 has a configuration in which a reflection portion 41 including a base 39 is disposed and fixed on a unit mounting base 38 formed in a rectangular parallelepiped having a substantially concave bottom.
The reflecting portion 41 has a configuration in which a retroreflecting mirror (not shown) is provided inside a casing formed in a cylindrical shape, and is configured to be adjusted in the horizontal direction by four adjusting screws 42 provided on the base 39. It has become.
On the side surface of the unit mounting base 38, a fixed base portion (reflecting unit fixing means) 43 for mounting and fixing at a fixed measurement location is mounted in an upright state. The opposite side surface to which the fixed base 43 is attached is an adjustment surface 44 formed in a square shape, and the adjustment surface 44 has four adjustment screw holes 45 for fixing to the optical axis adjustment jig 29. It has a configuration with.

光軸調整治具29は、平板の直方体形状に形成され、上端に投受光ユニット28を調整するための投受光ユニット調整部46を備え、下端に反射ユニット25を調整するための反射ユニット調整部47を備えた構成になっている。
投受光ユニット調整部46は、投受光ユニット26の調整面36を位置合わせして取付けるもので上端の面一に対して陥没させた陥没面48を形成し、この陥没面48との境に線状の上下位置決め部49を設け、一方端部に投受光ユニット28を左右方向の位置決めをする陥没させた一部を取り残した凸部51を備え、この凸部51の側面が左右位置決め部52となる構成になっている。そして、この陥没面48には2列左右対称に形成した位置調整孔53を備えた構成になっている。
The optical axis adjusting jig 29 is formed in a flat rectangular parallelepiped shape, includes a light projecting / receiving unit adjusting unit 46 for adjusting the light projecting / receiving unit 28 at the upper end, and a reflection unit adjusting unit for adjusting the reflecting unit 25 at the lower end. 47 is provided.
The light projecting / receiving unit adjusting unit 46 is provided by aligning and attaching the adjustment surface 36 of the light projecting / receiving unit 26, and forms a depressed surface 48 that is depressed with respect to the top surface. Provided with a convex portion 51 having a recessed portion left and right for positioning the light projecting / receiving unit 28 in the left-right direction, and a side surface of the convex portion 51 is connected to the left-right positioning portion 52. It becomes the composition which becomes. The recessed surface 48 is provided with position adjustment holes 53 formed symmetrically in two rows.

反射ユニット調整部47は、反射ユニット25の調整面44を位置合わせして取付けるもので下端縁から内側寄りの位置から所定幅だけ陥没させた陥没面53を形成し、この陥没面53との境に線状の上下位置決め部54を設け、一方端部に反射ユニット25を左右方向の位置決めをする陥没させた一部を取り残した凸部55を備え、この凸部55の側面が左右位置決め部56となる構成になっている。そして、この陥没面53には2列左右対称に形成した位置調整孔57を備えた構成になっている。更に、この陥没面53の上部に2つの通し孔58、下端部縁に2つの通し孔59を備えた構成になっている。この通し孔58、59は、光軸調整治具29で連結されている反射ユニット25を建物等の測定箇所に反射ユニット固定手段(固定基部)43をネジにより配置固定する際に、この通し孔58、59にドライバー等を挿通させるために使用するものである。   The reflection unit adjustment unit 47 is provided by aligning and attaching the adjustment surface 44 of the reflection unit 25. The reflection unit adjustment unit 47 forms a depression surface 53 that is depressed by a predetermined width from a position closer to the inside than the lower end edge. A linear up-and-down positioning part 54 is provided on one end, and a convex part 55 is left at one end, leaving a part of the reflective unit 25 that is recessed in the right-and-left direction. It becomes the composition which becomes. The recessed surface 53 is provided with position adjustment holes 57 formed symmetrically in two rows. Further, two through holes 58 are provided in the upper part of the depressed surface 53 and two through holes 59 are provided in the lower end edge. The through holes 58 and 59 are formed when the reflecting unit 25 connected by the optical axis adjusting jig 29 is fixed to the measurement location such as a building by fixing the reflecting unit fixing means (fixing base) 43 with a screw. 58 and 59 are used for inserting a screwdriver or the like.

このような構造の投受光ユニット28、光軸調整治具29、反射ユニット25の3ユニットは工場出荷時には連結され、投受光ユニット28及び反射ユニット25の位置関係が正しく光軸調整がされている。
連結は、先ず、投受光ユニット28のユニット取付台座33の調整面36を光軸調整治具29の陥没面48に当て(面同士の面当て)、調整面36の下端部を上下位置決め部49に当て(線での当て)、更に、調整面36の側部を凸部51の左右位置決め部52に当てる(点での当て)ことで位置決めし、その状態を維持させておき4つの位置調整孔53に調整ネジ61を通し、調整ネジ穴37に螺合させることで治具へ連結できる。
反射ユニット25も同じく、ユニット取付台座38の調整面44を光軸調整治具29の陥没面53に当て(面同士の面当て)、調整面44の下端部を上下位置決め部54に当て(線での当て)、更に、調整面44の側部を凸部55の左右位置決め部56に当てる(点での当て)ことで位置決めし、その状態を維持させておき4つの位置調整孔57に調整ネジ62を通し、調整ネジ穴45に螺合させることで治具へ連結できる。
The three units of the light projecting / receiving unit 28, the optical axis adjusting jig 29, and the reflecting unit 25 having such a structure are connected at the time of shipment from the factory, and the positional relationship between the light projecting / receiving unit 28 and the reflecting unit 25 is adjusted correctly. .
In connection, first, the adjustment surface 36 of the unit mounting base 33 of the light projecting / receiving unit 28 is brought into contact with the recessed surface 48 of the optical axis adjustment jig 29 (surface-to-surface contact), and the lower end portion of the adjustment surface 36 is vertically positioned 49. In addition, the position of the adjustment surface 36 is adjusted by applying the side of the adjustment surface 36 to the left and right positioning parts 52 of the projection 51 (point application), and the four positions are adjusted while maintaining the state. The adjustment screw 61 can be connected to the jig by passing the adjustment screw 61 through the hole 53 and screwing it into the adjustment screw hole 37.
Similarly, in the reflection unit 25, the adjustment surface 44 of the unit mounting base 38 is applied to the recessed surface 53 of the optical axis adjustment jig 29 (surface-to-surface contact), and the lower end of the adjustment surface 44 is applied to the vertical positioning portion 54 (line). In addition, the side of the adjustment surface 44 is positioned by hitting the left and right positioning portions 56 of the convex portion 55 (point hitting), and the state is maintained and adjusted to the four position adjusting holes 57. It can be connected to the jig by passing the screw 62 and screwing it into the adjusting screw hole 45.

このようにして光軸が調整された状態の投受光ユニット28、光軸調整治具29、反射ユニット25が連結されたままの状態で、投受光ユニット28を投受光ユニット固定手段(固定基部)35、反射ユニット25を反射ユニット固定手段(固定基部)43を用いてそれぞれ固定する。投受光ユニット固定手段、反射ユニット固定手段は、それぞれ、装置全体を設置する建物等に対して位置が変わらないように投受光ユニット28、反射ユニット25のそれぞれを固定する機能を持つ。又、固定する位置と姿勢を微調整する機能を持つ。
この状態で、光軸調整治具29を取り外すことにより、工場出荷時のままの位置関係を保った状態で、投受光ユニット28及び反射ユニット25のそれぞれを分離して固定することができる。
又、光軸調整治具29は、投受光ユニット28及び反射ユニット25のそれぞれの取付け面(調整面)36、44に対し、正面を面で受け、底面を線で受け、側面を点で受けるように設計されているため、それぞれの面を押し当ててネジで固定することによって、出荷時と同じ位置関係を再現した状態で3つのユニットを連結することができる。即ち、機器設置後に何らかの原因で光軸がずれ、ユニット間の位置関係がずれて再設置が必要になった場合でも、容易に再設置を行うことができる。
Thus, the light projecting / receiving unit 28 is fixed to the light projecting / receiving unit fixing means (fixed base) while the light projecting / receiving unit 28 with the optical axis adjusted, the optical axis adjusting jig 29, and the reflecting unit 25 remain connected. 35. The reflection unit 25 is fixed using the reflection unit fixing means (fixed base) 43, respectively. Each of the light projecting / receiving unit fixing means and the reflection unit fixing means has a function of fixing each of the light projecting / receiving unit 28 and the reflection unit 25 so that the position of the light emitting / receiving unit fixing means and the reflection unit fixing means are not changed. In addition, it has a function to finely adjust the position and posture to be fixed.
In this state, by removing the optical axis adjustment jig 29, the light projecting / receiving unit 28 and the reflection unit 25 can be separated and fixed in a state where the positional relationship is maintained as it is at the time of shipment from the factory.
Further, the optical axis adjusting jig 29 receives the front surface as a surface, the bottom surface as a line, and the side surface as a point with respect to the mounting surfaces (adjustment surfaces) 36 and 44 of the light projecting / receiving unit 28 and the reflection unit 25. Therefore, by pressing each surface and fixing with screws, it is possible to connect the three units in a state where the same positional relationship as at the time of shipment is reproduced. That is, even if the optical axis is shifted for some reason after the device is installed, and the positional relationship between the units is shifted and the reinstallation becomes necessary, the reinstallation can be easily performed.

測定光を測定対象に複数回(2回)透過させているので、測定対象の厚さが薄く吸光度が小さい場合でも、従来例に比較して信号強度を大きく取ることができる吸光度測定用プローブを提供する。 Since the measurement light is transmitted through the measurement object a plurality of times (twice), even when the measurement object is thin and the absorbance is small, an absorbance measurement probe that can increase the signal intensity compared to the conventional example is provided. provide.

本願発明の吸光度測定装置を略示的に示したブロック図である。It is the block diagram which showed schematically the light absorbency measuring apparatus of this invention. 同、吸光度ユニット、反射ユニット、光軸調整治具の関係を示す立体図である。It is a three-dimensional view showing the relationship between the absorbance unit, the reflection unit, and the optical axis adjustment jig. 同、吸光度ユニット、反射ユニット、光軸調整治具を組み立てた様子を示す立体図である。It is a three-dimensional view showing a state in which the absorbance unit, the reflection unit, and the optical axis adjustment jig are assembled. 従来技術における吸光度測定装置を略示的に示したブロック図である。It is the block diagram which showed schematically the light absorbency measuring apparatus in a prior art.

符号の説明Explanation of symbols

11 分光器
12 測定対象
13 投光手段
14 反射手段
15 受光手段
16 受光器
17 光ファイバ
18 コリメータレンズ
19 コリメータレンズ
21 光ファイバ
22 再帰反射ミラー
23 第1の反射面
24 第2の反射面
25 反射ユニット
26 投光ユニット
27 受光ユニット
28 投受光ユニット
29 光軸調整治具
31 投受光ユニット固定手段
32 反射ユニット固定手段
33 ユニット取付台座
34 調整ねじ
35 固定基部
36 調整面
37 調整ねじ穴
38 ユニット取付台座
39 基台
41 反射部
42 調整ねじ
43 固定基部
44 調整面
45 調整ねじ穴
46 投受光ユニット調整部
47 反射ユニット調整部
48 陥没面
49 上下位置決め部
51 凸部
52 左右位置決め部
53 陥没面
54 上下位置決め部
55 凸部
56 左右位置決め部
57 位置調整孔
58 通し孔
59 通し孔
61 調整ねじ
62 調整ねじ。
DESCRIPTION OF SYMBOLS 11 Spectrometer 12 Measuring object 13 Light projection means 14 Reflection means 15 Light reception means 16 Light receiver 17 Optical fiber 18 Collimator lens 19 Collimator lens 21 Optical fiber 22 Retroreflective mirror 23 1st reflective surface 24 2nd reflective surface 25 Reflective unit 26 Light Emitting Unit 27 Light Receiving Unit 28 Light Emitting / Receiving Unit 29 Optical Axis Adjustment Jig 31 Light Emitting / Receiving Unit Fixing Means 32 Reflecting Unit Fixing Means 33 Unit Mounting Base 34 Adjustment Screw 35 Fixing Base 36 Adjustment Surface 37 Adjustment Screw Hole 38 Unit Mounting Base 39 Base 41 Reflecting portion 42 Adjusting screw 43 Fixed base 44 Adjusting surface 45 Adjusting screw hole 46 Light emitting / receiving unit adjusting portion 47 Reflecting unit adjusting portion 48 Depressed surface 49 Vertical positioning portion 51 Convex portion 52 Left and right positioning portion 53 Depressed surface 54 Vertical positioning portion 55 Convex part 56 Left / right positioning part 57 Position adjustment Hole 58 Through hole 59 Through hole 61 Adjustment screw 62 Adjustment screw

Claims (8)

光源からの光線を測定対象方向に投光する投光手段と、
前記測定対象を透過した光線を前記測定対象方向に反射させる反射手段と、
前記測定対象を透過した光線を受光する受光手段と、
からなる吸光度測定用プローブ。
A light projecting means for projecting light from the light source in the direction of the measurement object;
Reflecting means for reflecting the light beam transmitted through the measurement object in the measurement object direction;
A light receiving means for receiving a light beam transmitted through the measurement object;
An absorbance measurement probe comprising:
前記反射手段で反射させた光線を透過させる前記測定対象の領域は、前記投光手段からの光線を透過させた前記測定対象の領域と異なる領域であることを特徴とする請求項1に記載の吸光度測定用プローブ。   The region of the measurement target that transmits the light beam reflected by the reflection unit is a region different from the region of the measurement target that transmits the light beam from the light projecting unit. Absorbance measurement probe. 前記反射手段は、入射光と平行に反射光を返す性質の再帰反射ミラーで構成されていることを特徴とする請求項1に記載の吸光度測定用プローブ。   2. The absorbance measuring probe according to claim 1, wherein the reflecting means is constituted by a retroreflective mirror having a property of returning reflected light in parallel with incident light. 前記投光手段と受光手段は一体に形成され、該一体に形成された投光手段及び受光手段と前記反射手段は予め光軸が一致するように治具により調整され、該治具により調整された状態で所定の測定箇所に配置するようにしたことを特徴とする請求項1に記載の吸光度測定用プローブ。   The light projecting means and the light receiving means are integrally formed, and the light projecting means, the light receiving means, and the reflecting means that are integrally formed are adjusted in advance by a jig so that the optical axes coincide with each other, and adjusted by the jig. 2. The probe for measuring absorbance according to claim 1, wherein the probe is arranged at a predetermined measurement location in a state where the probe is in a closed state. 所定の光線を発生させる分光器と、
前記分光器からの光線を測定対象方向に投光する投光手段と、前記測定対象を透過した光線を前記測定対象方向に反射させる反射手段と、前記測定対象を透過した光線を受光する受光手段とからなる吸光度測定用プローブと、
前記受光手段で受光した光線を受光する受光器と
を備えてなる吸光度測定装置。
A spectroscope for generating a predetermined light beam;
Light projecting means for projecting the light beam from the spectroscope in the direction of the measurement object, reflection means for reflecting the light beam transmitted through the measurement object in the direction of the measurement object, and light receiving means for receiving the light beam transmitted through the measurement object An absorbance measurement probe comprising:
An absorbance measurement apparatus comprising: a light receiver that receives light received by the light receiving means.
前記反射手段で反射させた光線を透過させる前記測定対象の領域は、前記投光手段からの光線を透過させた前記測定対象の領域と異なる領域であることを特徴とする請求項5に記載の吸光度測定装置。   The region of the measurement target that transmits the light beam reflected by the reflection unit is a region different from the region of the measurement target that transmits the light beam from the light projecting unit. Absorbance measuring device. 前記反射手段は、入射光と平行に反射光を返す性質の再帰反射ミラーで構成されていることを特徴とする請求項5に記載の吸光度測定装置。   6. The absorbance measuring apparatus according to claim 5, wherein the reflecting means is constituted by a retroreflective mirror having a property of returning reflected light in parallel with incident light. 前記投光手段と受光手段は一体に形成され、該一体に形成された投光手段及び受光手段と前記反射手段は予め光軸が一致するように治具により調整され、該治具により調整された状態で所定の測定箇所に配置するようにしたことを特徴とする請求項5に記載の吸光度測定装置。
The light projecting means and the light receiving means are integrally formed, and the light projecting means, the light receiving means, and the reflecting means that are integrally formed are adjusted in advance by a jig so that the optical axes coincide with each other, and adjusted by the jig. 6. The absorbance measurement apparatus according to claim 5, wherein the absorbance measurement apparatus is arranged at a predetermined measurement location in a state of being in a closed state.
JP2006085392A 2006-03-27 2006-03-27 Probe and device for measuring absorbance Pending JP2007263587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006085392A JP2007263587A (en) 2006-03-27 2006-03-27 Probe and device for measuring absorbance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006085392A JP2007263587A (en) 2006-03-27 2006-03-27 Probe and device for measuring absorbance

Publications (1)

Publication Number Publication Date
JP2007263587A true JP2007263587A (en) 2007-10-11

Family

ID=38636735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006085392A Pending JP2007263587A (en) 2006-03-27 2006-03-27 Probe and device for measuring absorbance

Country Status (1)

Country Link
JP (1) JP2007263587A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013142708A (en) * 2012-01-06 2013-07-22 Canon Inc Illumination device and imaging system
US8948603B2 (en) 2011-03-22 2015-02-03 Panasonic Intellectual Property Management Co., Ltd. Optical microphone
CN108896516A (en) * 2018-05-19 2018-11-27 芜湖新利德玻璃制品有限公司 A kind of organic glass crazing detection device based on light transmittance
US10241042B2 (en) 2016-07-21 2019-03-26 Samsung Electronics Co., Ltd. Wearable device and charger, and method for estimating absorbance of wearable device
CN110320176A (en) * 2019-07-04 2019-10-11 中南林业科技大学 A kind of tunable light source device and control method near infrared spectrum detection

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8948603B2 (en) 2011-03-22 2015-02-03 Panasonic Intellectual Property Management Co., Ltd. Optical microphone
JP2013142708A (en) * 2012-01-06 2013-07-22 Canon Inc Illumination device and imaging system
US10241042B2 (en) 2016-07-21 2019-03-26 Samsung Electronics Co., Ltd. Wearable device and charger, and method for estimating absorbance of wearable device
US10488336B2 (en) 2016-07-21 2019-11-26 Samsung Electronics Co., Ltd. Wearable device and charger, and method for estimating absorbance of wearable device
CN108896516A (en) * 2018-05-19 2018-11-27 芜湖新利德玻璃制品有限公司 A kind of organic glass crazing detection device based on light transmittance
CN110320176A (en) * 2019-07-04 2019-10-11 中南林业科技大学 A kind of tunable light source device and control method near infrared spectrum detection
CN110320176B (en) * 2019-07-04 2021-07-13 中南林业科技大学 Adjustable light source device for near infrared spectrum detection and control method

Similar Documents

Publication Publication Date Title
US9696146B2 (en) Optical scanning probe
JP5072337B2 (en) Optical displacement sensor and adjustment method thereof
KR101415144B1 (en) Remote optical axis alignment apparatus and method for aligning of optical axis using of the same
JP2007263587A (en) Probe and device for measuring absorbance
US11408773B2 (en) On-board radiation sensing apparatus
CN108106722A (en) A kind of low temperature radiometer laser beam position and control system
US7889326B2 (en) Distance measuring apparatus
TWI421471B (en) Laser head with laser head
CN205015271U (en) Testing arrangement of optical glass bobble lens transmissivity
KR20100041024A (en) Apparatus for six-degree-of-freedom displacement measurement using a two-dimensional grating
EP1705473A3 (en) Measuring device for measuring the refraction properties of optical lenses
US7423758B1 (en) Gloss sensor for a paper machine
KR101911425B1 (en) Autocollimator
CN111007482B (en) Laser radar device
JP7422413B2 (en) Spectrometer
KR102257311B1 (en) Apparatus for aligning measuring head of spectroscope
CN113514153A (en) Method and device for effectively improving detection precision of spectrometer
US20090135420A1 (en) Spectrometer mount and measuring apparatus including same
US20040057127A1 (en) Mirror fixing method and optical apparatus
CN217953673U (en) Miniature optical fiber spectrometer and spectrocolorimeter system
KR101198910B1 (en) Apparatus of Laser Interference System and Apparatus of Laser Interference System using Apparatus of Aligning Laser
WO2004111575A3 (en) Interferometric absolute and real-time surface curvature sensor insensitive to tilt, translation and vibration
KR20110039912A (en) Optical biosensor measurement apparatus with autocollimator
JP4989993B2 (en) Edge detecting device and light flux adjusting method thereof
KR20220147217A (en) Dimension measurement device and dimension measurement jig structure therewith