JP2007258455A - R-Fe-B SYSTEM RARE EARTH SINTERED MAGNET AND ITS METHOD FOR MANUFACTURING - Google Patents

R-Fe-B SYSTEM RARE EARTH SINTERED MAGNET AND ITS METHOD FOR MANUFACTURING Download PDF

Info

Publication number
JP2007258455A
JP2007258455A JP2006081066A JP2006081066A JP2007258455A JP 2007258455 A JP2007258455 A JP 2007258455A JP 2006081066 A JP2006081066 A JP 2006081066A JP 2006081066 A JP2006081066 A JP 2006081066A JP 2007258455 A JP2007258455 A JP 2007258455A
Authority
JP
Japan
Prior art keywords
rare earth
sintered magnet
earth element
magnet body
foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006081066A
Other languages
Japanese (ja)
Other versions
JP4788427B2 (en
Inventor
Masayuki Yoshimura
吉村  公志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2006081066A priority Critical patent/JP4788427B2/en
Publication of JP2007258455A publication Critical patent/JP2007258455A/en
Application granted granted Critical
Publication of JP4788427B2 publication Critical patent/JP4788427B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To form efficiently also in the interior of an R-Fe-B system rare earth sintered magnet body, main phase crystal grain particles in which a heavy rare earth element RH is condensed in its contour and to improve the retentivity while suppressing the lowering of residual magnetic flux. <P>SOLUTION: The method for manufacturing an R-Fe-B system rare earth sintered magnet includes a process (A) which prepares at least one R-Fe-B system rare earth sintered magnet body having R<SB>2</SB>Fe<SB>14</SB>B type compound crystal grain particles containing light rare earth element RL (at least one kind of Nd and Pr) as a main rare earth element R as the main phase. After performing the process (A), a process (B) is performed which arranges a foil or powder containing heavy rare earth element RH (at least one kind selected from a group consisting of Dy, Ho, and Tb) in a treatment chamber together with the R-Fe-B system rare earth sintered magnet body, while being contacted to the R-Fe-B system rare earth sintered magnet body. Further, a process (C) is performed which, while supplying heavy rare earth element RH from the foil or the powder to the surface of the sintered magnet body by heating the sintered magnet body, makes it diffuse in the interior of the sintered magnet body. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、R2Fe14B型化合物結晶粒(Rは希土類元素)を主相として有するR−Fe−B系希土類焼結磁石およびその製造方法に関し、特に、軽希土類元素RL(NdおよびPrの少なくとも1種)を主たる希土類元素Rとして含有し、かつ、軽希土類元素RLの一部が重希土類元素RH(Dy、Ho、およびTbからなる群から選択された少なくとも1種)によって置換されているR−Fe−B系希土類焼結磁石およびその製造方法に関している。 The present invention relates to an R—Fe—B rare earth sintered magnet having R 2 Fe 14 B type compound crystal grains (R is a rare earth element) as a main phase and a method for producing the same, and in particular, to a light rare earth element RL (Nd and Pr). At least one selected from the group consisting of heavy rare earth elements RH (at least one selected from the group consisting of Dy, Ho, and Tb). The present invention relates to a R-Fe-B rare earth sintered magnet and a method for producing the same.

Nd2Fe14B型化合物を主相とするR−Fe−B系の希土類焼結磁石は、永久磁石の中で最も高性能な磁石として知られており、ハードディスクドライブのボイスコイルモータ(VCM)や、ハイブリッド車搭載用モータ等の各種モータや家電製品等に使用されている。R−Fe−B系希土類焼結磁石をモータ等の各種装置に使用する場合、高温での使用環境に対応するため、耐熱性に優れ、高保磁力特性を有することが要求される。 R-Fe-B rare earth sintered magnets with Nd 2 Fe 14 B type compound as the main phase are known as the most powerful magnets among permanent magnets, and are voice coil motors (VCM) for hard disk drives. In addition, it is used in various motors such as motors for mounting on hybrid vehicles, and home appliances. When R-Fe-B rare earth sintered magnets are used in various devices such as motors, they are required to have excellent heat resistance and high coercive force characteristics in order to cope with high temperature use environments.

R−Fe−B系希土類焼結磁石の保磁力を向上する手段として、重希土類元素RHを原料として配合し、溶製した合金を用いることが行われている。この方法によると、希土類元素Rとして軽希土類元素RLを含有するR2Fe14B相の希土類元素Rが重希土類元素RHで置換されるため、R2Fe14B相の結晶磁気異方性(保磁力を決定する本質的な物理量)が向上する。しかし、R2Fe14B相中における軽希土類元素RLの磁気モーメントは、Feの磁気モーメントと同一方向であるのに対して、重希土類元素RHの磁気モーメントは、Feの磁気モーメントと逆方向であるため、軽希土類元素RLを重希土類元素RHで置換するほど、残留磁束密度Brが低下してしまうことになる。 As a means for improving the coercive force of an R—Fe—B rare earth sintered magnet, an alloy prepared by melting and melting heavy rare earth element RH as a raw material is used. According to this method, since the rare earth element R in the R 2 Fe 14 B phase containing the light rare earth element RL as the rare earth element R is replaced with the heavy rare earth element RH, the magnetocrystalline anisotropy of the R 2 Fe 14 B phase ( The essential physical quantity that determines the coercivity is improved. However, the magnetic moment of the light rare earth element RL in the R 2 Fe 14 B phase is in the same direction as the magnetic moment of Fe, whereas the magnetic moment of the heavy rare earth element RH is opposite to the magnetic moment of Fe. Therefore, as the light rare earth element RL is replaced with the heavy rare earth element RH, the residual magnetic flux density Br decreases.

一方、重希土類元素RHは希少資源であるため、その使用量の削減が望まれている。これらの理由により、軽希土類元素RLの全体を重希土類元素RHで置換する方法は好ましくない。   On the other hand, since the heavy rare earth element RH is a rare resource, it is desired to reduce the amount of use thereof. For these reasons, the method of replacing the entire light rare earth element RL with the heavy rare earth element RH is not preferable.

比較的少ない量の重希土類元素RHを添加することにより、重希土類元素RHによる保磁力向上効果を発現させるため、重希土類元素RHを多く含む合金・化合物などの粉末を、軽希土類RLを多く含む主相系母合金粉末に添加し、成形・焼結させることが提案されている。この方法によると、重希土類元素RHがR2Fe14B相の粒界近傍に多く分布することになるため、主相外郭部におけるR2Fe14B相の結晶磁気異方性を効率よく向上させることが可能になる。R−Fe−B系希土類焼結磁石の保磁力発生機構は核生成型(ニュークリエーション型)であるため、主相外郭部(粒界近傍)に重希土類元素RHが多く分布することにより、結晶粒全体の結晶磁気異方性が高められ、逆磁区の核生成が妨げられ、その結果、保磁力が向上する。また、保磁力向上に寄与しない結晶粒の中心部では、重希土類元素RHによる置換が生じないため、残留磁束密度Brの低下を抑制することもできる。 By adding a relatively small amount of heavy rare earth element RH, the effect of improving the coercive force due to heavy rare earth element RH is exhibited, so that powders of alloys / compounds containing a lot of heavy rare earth element RH contain a lot of light rare earth element RL. It has been proposed to add it to the main phase mother alloy powder and form and sinter it. According to this method, since that would heavy rare-earth element RH is distributed more in the vicinity of grain boundaries of the R 2 Fe 14 B phase, efficiently magnetocrystalline anisotropy of the R 2 Fe 14 B phase in the main phase outer portion improves It becomes possible to make it. Since the coercive force generation mechanism of the R—Fe—B rare earth sintered magnet is a nucleation type (nucleation type), a large amount of heavy rare earth element RH is distributed in the main phase outer portion (near the grain boundary), so that the crystal The crystal magnetic anisotropy of the whole grain is increased and the nucleation of the reverse magnetic domain is hindered. Further, since the substitution with the heavy rare earth element RH does not occur at the center of the crystal grains that do not contribute to the improvement of the coercive force, it is possible to suppress the decrease in the residual magnetic flux density Br.

しかしながら、実際にこの方法を実施してみると、焼結工程(工業規模で1000℃から1200℃で実行される)で重希土類元素RHの拡散速度が大きくなるため、重希土類元素RHが結晶粒の中心部にも拡散してしまう結果、期待していた組織構造を得ることは容易でない。   However, when this method is actually carried out, the diffusion rate of the heavy rare earth element RH increases in the sintering process (executed at 1000 ° C. to 1200 ° C. on an industrial scale). As a result, it is difficult to obtain the expected structure.

さらにR−Fe−B系希土類焼結磁石の別の保磁力向上手段として、焼結磁石の段階で重希土類元素RHを含む金属、合金、化合物等を磁石表面に被着後、熱処理、拡散させることによって、残留磁束密度をそれほど低下させずに保磁力を回復または向上させることが検討されている(特許文献1、特許文献2、及び特許文献3)。   Further, as another means for improving the coercive force of the R—Fe—B rare earth sintered magnet, a metal, alloy, compound, or the like containing heavy rare earth element RH is deposited on the magnet surface at the stage of the sintered magnet, and then heat treated and diffused. Thus, it has been studied to recover or improve the coercive force without significantly reducing the residual magnetic flux density (Patent Document 1, Patent Document 2, and Patent Document 3).

特許文献1は、Ti、W、Pt、Au、Cr、Ni、Cu、Co、Al、Ta、Agのうち少なくとも1種を1.0原子%〜50.0原子%含有し、残部R´(R´はCe、La、Nd、Pr、Dy、Ho、Tbのうち少なくとも1種)からなる合金薄膜層を焼結磁石体の被研削加工面に形成することを開示している。   Patent Document 1 contains 1.0 atomic% to 50.0 atomic% of at least one of Ti, W, Pt, Au, Cr, Ni, Cu, Co, Al, Ta, and Ag, and the balance R ′ ( R ′ discloses that an alloy thin film layer made of Ce, La, Nd, Pr, Dy, Ho, and Tb is formed on the ground surface of the sintered magnet body.

特許文献2は、小型磁石の最表面に露出している結晶粒子の半径に相当する深さ以上に金属元素R(このRは、Y及びNd、Dy、Pr、Ho、Tbから選ばれる希土類元素の1種又は2種以上)を拡散させ、それによって加工変質損傷部を改質して(BH)maxを向上させることを開示している。   Patent Document 2 states that a metal element R (the R is a rare earth element selected from Y and Nd, Dy, Pr, Ho, and Tb) exceeds the depth corresponding to the radius of the crystal grains exposed on the outermost surface of the small magnet. 1 type or two or more types) are diffused, thereby modifying the damaged part of the work and improving (BH) max.

特許文献3は、厚さ2mm以下の磁石の表面に希土類元素を主体とする化学気相成長膜を形成し、磁石特性を回復させることを開示している。   Patent Document 3 discloses that a chemical vapor deposition film mainly composed of rare earth elements is formed on the surface of a magnet having a thickness of 2 mm or less to recover the magnet characteristics.

特許文献4は、R−Fe−B系微小焼結磁石や粉末の保磁力を回復するため、希土類元素の収着法を開示している。この方法では、収着金属(Yb、Eu、Smなどの沸点が比較的低い希土類金属)をR−Fe−B系微小焼結磁石や粉末と混合した後、攪拌しながら真空中で均一に加熱するための熱処理が行われる。この熱処理により、希土類金属が磁石表面に被着するとともに、内部に拡散する。沸点の高い希土類金属(例えばDy)を収着させる実施形態では、高周波加熱方式により、Dyなどを選択的に高温に加熱しているが、例えばDyの沸点は2560℃であり、沸点1193℃のYbを800〜850℃に加熱していることから、Dyは少なくとも1000℃を超える温度に加熱しているものと考えられる。さらに、R−Fe−B系微小焼結磁石や粉末は700〜850℃に保つことが好ましいと記載されている。
特開昭62−192566号公報 特開2004−304038号公報 特開2005−285859号公報 特開2004−296973号公報
Patent Document 4 discloses a rare earth element sorption method in order to recover the coercive force of an R—Fe—B micro sintered magnet or powder. In this method, a sorption metal (a rare earth metal having a relatively low boiling point such as Yb, Eu, Sm) is mixed with an R—Fe—B micro-sintered magnet or powder and then heated uniformly in a vacuum with stirring. A heat treatment is performed. By this heat treatment, the rare earth metal is deposited on the magnet surface and diffuses inside. In an embodiment in which a rare earth metal having a high boiling point (for example, Dy) is sorbed, Dy or the like is selectively heated to a high temperature by a high-frequency heating method. For example, Dy has a boiling point of 2560 ° C. and a boiling point of 1193 ° C. Since Yb is heated to 800 to 850 ° C., Dy is considered to be heated to a temperature exceeding at least 1000 ° C. Furthermore, it is described that it is preferable to keep the R—Fe—B based fine sintered magnet and powder at 700 to 850 ° C.
JP-A-62-192566 JP 2004-304038 A JP 2005-285859 A JP 2004-296773 A

特許文献1、特許文献2及び特許文献3に開示されている従来技術は、いずれも、加工劣化した焼結磁石表面の回復を目的としているため、表面から内部に拡散される金属元素の拡散範囲は、焼結磁石の表面近傍に限られている。このため、厚さ3mm以上の磁石では、保磁力の向上効果がほとんど得られない。   The conventional techniques disclosed in Patent Document 1, Patent Document 2 and Patent Document 3 are all intended to recover the surface of a sintered magnet that has been deteriorated by processing. Is limited to the vicinity of the surface of the sintered magnet. For this reason, the effect of improving the coercive force is hardly obtained with a magnet having a thickness of 3 mm or more.

一方、特許文献4に開示されている従来技術では、Ybなどの低沸点の希土類金属を対象とした実施形態において、確かに個々のR−Fe−B系微小磁石の保磁力は回復するが、拡散熱処理時にR−Fe−B系磁石と収着金属が融着したり、処理後お互いを分離することが困難であり、焼結磁石体表面に未反応の収着金属(RH)の残存が事実上避けられない。これは、磁石成形体における磁性成分比率を下げ磁石特性の低減を招くのみならず、希土類金属は本来非常に活性で酸化しやすいため、実用環境において未反応収着金属が腐食の起点になりやすく好ましくない。また、混合攪拌するための回転と真空熱処理を同時に行う必要があるため、耐熱性、圧力(気密度)を維持しながら回転機構を組み込んだ特別な装置が必要になり、量産製造時に設備投資や品質安定製造の観点で課題がある。また、収着原料に粉末を使用した場合は安全性の問題(発火や人体への有害性)や作製工程に手間がかかりコストアップ要因となる。   On the other hand, in the prior art disclosed in Patent Document 4, in the embodiment directed to a low-boiling-point rare earth metal such as Yb, the coercivity of individual R—Fe—B-based micromagnets certainly recovers. R-Fe-B magnet and sorption metal are fused during diffusion heat treatment, or it is difficult to separate them from each other after treatment, and unreacted sorption metal (RH) remains on the surface of the sintered magnet body. Virtually inevitable. This not only lowers the magnetic component ratio in the magnet compact and leads to a reduction in magnet properties, but rare earth metals are inherently very active and susceptible to oxidation, so unreacted sorbed metals are likely to be the starting point of corrosion in practical environments. It is not preferable. Moreover, since it is necessary to perform rotation for mixing and stirring and vacuum heat treatment at the same time, a special device incorporating a rotation mechanism is required while maintaining heat resistance and pressure (gas density). There is a problem in terms of stable quality manufacturing. In addition, when powder is used as the sorption raw material, it takes time for safety problems (ignition and harmfulness to human body) and the production process, which increases costs.

また、Dyを含む高沸点希土類金属を対象とした実施形態においては、高周波によって収着原料と磁石の双方を加熱するため、希土類金属のみを充分な温度に加熱し磁石を低温に保持することは容易ではなく、磁石は、誘導加熱されにくい粉末の状態か極微小なものに限られてしまう。   Further, in the embodiment targeting high boiling point rare earth metal containing Dy, both the sorption raw material and the magnet are heated by high frequency, so that only the rare earth metal is heated to a sufficient temperature to keep the magnet at a low temperature. It is not easy, and the magnet is limited to a powder state that is difficult to be induction-heated or a very small magnet.

また、特許文献1から4の方法のいずれも、重希土類元素RHの膜(RH膜)を焼結磁石体の表面に形成した後、焼結磁石体の内部に拡散させるが、具体的製法において、RH膜を焼結磁石体上に成長させる過程で、成膜装置内部の磁石以外の部分(例えば真空チャンバーの内壁)にも多量に希土類金属が堆積するため、貴重資源である重希土類元素の省資源化に反することになる。   In any of the methods disclosed in Patent Documents 1 to 4, a heavy rare earth element RH film (RH film) is formed on the surface of the sintered magnet body and then diffused into the sintered magnet body. In the process of growing the RH film on the sintered magnet body, a large amount of rare earth metal is deposited on portions other than the magnet inside the film forming apparatus (for example, the inner wall of the vacuum chamber). It is against resource saving.

本発明は、上記課題を解決するためになされたものであり、その目的とするところは、少ない量の重希土類元素RHを効率よく活用し、磁石が比較的厚くとも、磁石全体にわたって主相結晶粒の外郭部に重希土類元素RHを拡散させたR−Fe−B系希土類焼結磁石を提供することにある。   The present invention has been made to solve the above-mentioned problems, and the object of the present invention is to efficiently utilize a small amount of heavy rare earth element RH, and even if the magnet is relatively thick, the main phase crystal is formed over the entire magnet. An object of the present invention is to provide an R—Fe—B rare earth sintered magnet in which a heavy rare earth element RH is diffused in the outer portion of a grain.

本発明のR−Fe−B系希土類焼結磁石の製造方法は、軽希土類元素RL(NdおよびPrの少なくとも1種)を主たる希土類元素Rとして含有するR2Fe14B型化合物結晶粒を主相として有する少なくとも1つのR−Fe−B系希土類焼結磁石体を用意する工程(A)と、重希土類元素RH(Dy、Ho、およびTbからなる群から選択された少なくとも1種)を含有する箔または粉末を前記R−Fe−B系希土類焼結磁石体に接触させた状態で前記R−Fe−B系希土類焼結磁石体とともに処理室内に配置する工程(B)と、前記箔または粉末および前記R−Fe−B系希土類焼結磁石体を加熱することにより、前記箔または粉末から重希土類元素RHを前記R−Fe−B系希土類焼結磁石体の表面に供給しつつ、前記重希土類元素RHを前記R−Fe−B系希土類焼結磁石体の内部に拡散させる工程(C)とを包含する。 The method for producing an R—Fe—B rare earth sintered magnet of the present invention mainly comprises R 2 Fe 14 B type compound crystal grains containing a light rare earth element RL (at least one of Nd and Pr) as a main rare earth element R. Step (A) of preparing at least one R—Fe—B rare earth sintered magnet body having as a phase and heavy rare earth element RH (at least one selected from the group consisting of Dy, Ho, and Tb) (B) arranging the foil or powder to be placed in a processing chamber together with the R-Fe-B rare earth sintered magnet body in a state where the foil or powder is in contact with the R-Fe-B rare earth sintered magnet body; While heating the powder and the R-Fe-B rare earth sintered magnet body, while supplying the heavy rare earth element RH from the foil or powder to the surface of the R-Fe-B rare earth sintered magnet body, Heavy rare earth element R A step (C) of diffusing H into the R-Fe-B rare earth sintered magnet body.

好ましい実施形態において、前記箔または粉末と前記R−Fe−B系希土類焼結磁石体の加熱温度を700℃以上1000℃以下の範囲内に設定する。   In a preferred embodiment, the heating temperature of the foil or powder and the R—Fe—B rare earth sintered magnet body is set within a range of 700 ° C. or more and 1000 ° C. or less.

好ましい実施形態において、前記R−Fe−B系希土類焼結磁石体は複数であり、前記複数のR−Fe−B系希土類焼結磁石体は、それらの間に前記箔または粉末を挟むように配置される。   In a preferred embodiment, the R-Fe-B rare earth sintered magnet body is plural, and the plurality of R-Fe-B rare earth sintered magnet bodies sandwich the foil or powder therebetween. Be placed.

好ましい実施形態において、前記工程(C)は、前記処理室内を真空または不活性雰囲気で満たした状態で加熱処理を行う。   In a preferred embodiment, in the step (C), heat treatment is performed in a state where the processing chamber is filled with a vacuum or an inert atmosphere.

本発明のR−Fe−B系希土類焼結磁石は、軽希土類元素RL(NdおよびPrの少なくとも1種)を主たる希土類元素Rとして含有するR2Fe14B型化合物結晶粒を主相として有するR−Fe−B系希土類焼結磁石であって、積層された複数の焼結磁石部分を備え、各焼結磁石部分は、表面から粒界拡散によって内部に導入された重希土類元素RH(Dy、Ho、およびTbからなる群から選択された少なくとも1種)を含有する。 The R—Fe—B rare earth sintered magnet of the present invention has R 2 Fe 14 B type compound crystal grains containing a light rare earth element RL (at least one of Nd and Pr) as a main rare earth element R as a main phase. An R—Fe—B rare earth sintered magnet comprising a plurality of laminated sintered magnet portions, each sintered magnet portion having a heavy rare earth element RH (Dy) introduced into the interior by grain boundary diffusion from the surface. , Ho, and Tb).

好ましい実施形態において、前記複数の焼結磁石部分の境界部には、前記重希土類元素RHを含有する層が存在している。   In a preferred embodiment, a layer containing the heavy rare earth element RH exists at the boundary between the plurality of sintered magnet portions.

本発明では、重希土類元素RH(Dy、Ho、およびTbからなる群から選択された少なくとも1種)の粒界拡散を行うことにより、焼結磁石体内部の奥深い位置まで重希土類元素RHを供給し、主相外殻部において軽希土類元素RLを効率よく重希土類元素RHで置換することができる。その結果、残留磁束密度Brの低下を抑制しつつ、保磁力HcJを上昇させることが可能になる。また、重希土類元素RHを無駄に消費してしまうことなく、極めて効率的に磁石体の内部に拡散させることが可能になる。   In the present invention, the heavy rare earth element RH is supplied to a deep position inside the sintered magnet body by performing grain boundary diffusion of the heavy rare earth element RH (at least one selected from the group consisting of Dy, Ho, and Tb). In addition, the light rare earth element RL can be efficiently replaced with the heavy rare earth element RH in the main phase outer shell. As a result, the coercive force HcJ can be increased while suppressing a decrease in the residual magnetic flux density Br. Further, the heavy rare earth element RH can be diffused into the magnet body extremely efficiently without being wasted.

本発明のR−Fe−B系希土類焼結磁石の製造方法によって作製される磁石は、焼結磁石体の表面から粒界拡散によって内部に導入された重希土類元素RHを含有している。ここで、重希土類元素RHは、Dy、Ho、およびTbからなる群から選択された少なくとも1種である。   The magnet produced by the method for producing an R—Fe—B rare earth sintered magnet of the present invention contains a heavy rare earth element RH introduced into the interior by grain boundary diffusion from the surface of the sintered magnet body. Here, the heavy rare earth element RH is at least one selected from the group consisting of Dy, Ho, and Tb.

本発明のR−Fe−B系希土類焼結磁石は、重希土類元素RHの箔または粉末(以下、「RH拡散源」と称する。)から重希土類元素RHを焼結磁石体表面に供給しつつ、重希土類元素RHを焼結体の表面から内部へ拡散させることによって製造される。本発明の製造方法では、気化・昇華しにくい重希土類元素RHの箔や粉末を希土類焼結磁石体に接触させた状態で適切な温度(好ましくは700℃以上1000℃以下)に加熱することにより、重希土類元素RHを効率的に磁石体内部に拡散させることができる。   The R—Fe—B based rare earth sintered magnet of the present invention supplies heavy rare earth element RH to the surface of the sintered magnet body from a foil or powder of heavy rare earth element RH (hereinafter referred to as “RH diffusion source”). The heavy rare earth element RH is produced by diffusing from the surface to the inside of the sintered body. In the production method of the present invention, by heating a foil or powder of heavy rare earth element RH which is difficult to vaporize / sublimate to a rare earth sintered magnet body, heating it to an appropriate temperature (preferably 700 ° C. or more and 1000 ° C. or less). The heavy rare earth element RH can be efficiently diffused inside the magnet body.

700℃以上1000℃以下の温度範囲は、重希土類元素RHの気化・昇華がほとんど生じない温度であるが、R−Fe−B系希土類焼結磁石における希土類元素の拡散が活発に生じる温度でもある。RH拡散源を磁石体表面に接触させた状態で上記温度に加熱すると、RH拡散源から磁石体の表面を介して磁石体内部へ重希土類元素RHの粒界拡散を進行させることができる。   The temperature range from 700 ° C. to 1000 ° C. is a temperature at which the vaporization and sublimation of the heavy rare earth element RH hardly occurs, but is also a temperature at which the diffusion of the rare earth element in the R—Fe—B rare earth sintered magnet actively occurs. . When the RH diffusion source is heated to the above temperature in contact with the surface of the magnet body, grain boundary diffusion of the heavy rare earth element RH can proceed from the RH diffusion source to the inside of the magnet body through the surface of the magnet body.

従来技術では、前述のように重希土類元素RHの膜(RH膜)を焼結磁石体の表面に形成した後、焼結磁石体の内部に拡散させるが、RH膜を焼結磁石体上に成長させる過程で、重希土類元素RHの成膜材料供給源を極めて非効率的に消費してしまうことになる。例えばスパッタリング法によってRH膜を焼結磁石体上に堆積する場合、重希土類元素RHのターゲットを焼結磁石体に対向する位置に配置した状態でスパッタリングする必要がある。このとき、ターゲットからスパッタされた重希土類元素RHは、スパッタ装置内において焼結磁石体が存在しない部分にも衝突し、そこにも堆積してゆく。同様のことが、重希土類元素RHの他の薄膜堆積技術(蒸着法など)を用いる場合にも生じる。すなわち、従来の薄膜堆積技術による場合、焼結磁石体に薄膜を堆積する工程で重希土類元素RHの多く(例えば80〜90%)が無駄に消費されてしまうという問題がある。これに対し、本発明では、重希土類元素RHの箔や粉末を焼結磁石体に接触させた状態で加熱処理を行うことにより、極めて効率的に重希土類元素RHを磁石体の内部に拡散させることが可能になる。   In the prior art, as described above, a heavy rare earth element RH film (RH film) is formed on the surface of the sintered magnet body and then diffused into the sintered magnet body. However, the RH film is formed on the sintered magnet body. In the process of growth, the deposition material supply source of the heavy rare earth element RH is consumed extremely inefficiently. For example, when an RH film is deposited on a sintered magnet body by a sputtering method, it is necessary to perform sputtering in a state where a target of the heavy rare earth element RH is disposed at a position facing the sintered magnet body. At this time, the heavy rare earth element RH sputtered from the target collides with a portion where the sintered magnet body does not exist in the sputtering apparatus and is deposited there. The same thing occurs when other thin film deposition techniques (such as vapor deposition) are used. That is, according to the conventional thin film deposition technique, there is a problem that a large amount (for example, 80 to 90%) of the heavy rare earth element RH is wasted in the process of depositing the thin film on the sintered magnet body. On the other hand, in the present invention, the heavy rare earth element RH is extremely efficiently diffused into the magnet body by performing heat treatment in a state where the foil or powder of the heavy rare earth element RH is in contact with the sintered magnet body. It becomes possible.

RH供給源として箔を用いる場合、箔の厚さは1〜50μmの範囲内にあることが好ましい。箔の厚さが1μm未満になると、焼結磁石体の内部に拡散する重希土類元素RHの量(RH量)が不足し、保磁力の向上効果が少なくなる可能性がある。一方、箔の厚さが50μmを超えると、焼結磁石体の表層部分において未拡散のRH層が残存し、重希土類元素RHの効率的な利用が阻害されてしまう。また、厚い箔に含まれる全ての重希土類元素RHを焼結磁石体中に拡散すると、主相であるR2Fe14B型結晶相内にも多量の重希土類元素RHが拡散し、磁化の低下が顕著になる可能性もある。 When foil is used as the RH supply source, the thickness of the foil is preferably in the range of 1 to 50 μm. If the thickness of the foil is less than 1 μm, the amount of heavy rare earth element RH (RH amount) diffusing inside the sintered magnet body may be insufficient, and the effect of improving the coercive force may be reduced. On the other hand, if the thickness of the foil exceeds 50 μm, an undiffused RH layer remains in the surface layer portion of the sintered magnet body, and the efficient use of the heavy rare earth element RH is hindered. Further, when all the heavy rare earth elements RH contained in the thick foil are diffused into the sintered magnet body, a large amount of heavy rare earth elements RH diffuses in the main phase R 2 Fe 14 B type crystal phase, and the magnetization There is also the possibility that the decline will be significant.

箔の大きさ(平面サイズ)は、焼結磁石体が板状の場合、箔が接触する面の面積に整合させることが好ましい。ただし、拡散は粒界相を介して3次元的に生じるため、箔と焼結磁石体とが接触する領域の面積が小さくとも、焼結磁石体の全体に重希土類元素RHを拡散させることが可能である。従って、焼結磁石体の表面の全体を箔で覆う必要は無い。また、箔と焼結磁石体との接触領域は、複数箇所であってもよい。ただし、複数の接触領域の間隔は、拡散距離に比べて小さいことが好ましい。   When the sintered magnet body is plate-shaped, the foil size (planar size) is preferably matched to the area of the surface with which the foil contacts. However, since diffusion occurs three-dimensionally through the grain boundary phase, the heavy rare earth element RH can be diffused throughout the sintered magnet body even if the area of the region where the foil and the sintered magnet body are in contact is small. Is possible. Therefore, it is not necessary to cover the entire surface of the sintered magnet body with the foil. The contact area between the foil and the sintered magnet body may be a plurality of locations. However, it is preferable that the interval between the plurality of contact regions is smaller than the diffusion distance.

本発明者の検討によると、重希土類元素RHは、蒸気圧が低く、拡散のための熱処理工程(700〜1000℃)では昇華しにくく、無駄な消費を避けることができる。また、本発明のように箔または粉末の状態で焼結磁石体の表面に接触させておくと、重希土類元素RHが接触面を介して短時間で磁石体内部に拡散してゆくため、結果として、重希土類元素RHの無駄な昇華・気化を抑制することができる。より高い効率で重希土類元素RHを利用するには、箔や粉末を複数の焼結磁石体で挟み込んだ状態で熱処理を行うことが好ましい。   According to the study of the present inventor, the heavy rare earth element RH has a low vapor pressure, is difficult to sublime in the heat treatment step (700 to 1000 ° C.) for diffusion, and can avoid wasteful consumption. In addition, if the surface of the sintered magnet body is brought into contact with the surface of the sintered magnet body in the state of foil or powder as in the present invention, the heavy rare earth element RH diffuses into the magnet body in a short time through the contact surface. As a result, useless sublimation and vaporization of the heavy rare earth element RH can be suppressed. In order to use the heavy rare earth element RH with higher efficiency, it is preferable to perform the heat treatment in a state where a foil or a powder is sandwiched between a plurality of sintered magnet bodies.

箔の表面は平滑であることが好ましいが、凹凸を有していてもよい。また、箔に複数の孔が存在してもよい。1つの焼結磁石体に接触させる箔の数も一枚に限定されず、同一磁石体上に間隔を置いて複数の箔を配置しても良い。   The surface of the foil is preferably smooth, but may have irregularities. There may also be a plurality of holes in the foil. The number of foils brought into contact with one sintered magnet body is not limited to one, and a plurality of foils may be arranged at intervals on the same magnet body.

なお、箔が焼結磁石体との接触面よりも大きく、焼結磁石体からはみ出していても良い。ただし、上述の昇華により、拡散に利用されずに無駄に消費される重希土類元素RHの量を低減するためには、箔の全体または大部分が焼結磁石体の表面に接触していることが好ましい。   The foil may be larger than the contact surface with the sintered magnet body and may protrude from the sintered magnet body. However, in order to reduce the amount of heavy rare earth element RH that is wasted without being used for diffusion by the above-described sublimation, the whole or most of the foil is in contact with the surface of the sintered magnet body. Is preferred.

RH供給源として粉末を用いる場合、箔と同様の理由により、粒径が1〜50μmの粉末を焼結磁石体の表面に接触させ、厚さ1〜50μm程度の粉末層を形成することが好ましい。焼結磁石体との接触面積を拡大し、拡散を促進するためには、個々の粉末粒子が偏平な形状を有することが好ましい。また、接触面積を拡大するため、箔または粉末層を外側から押圧部材で焼結磁石体に対して押しても良い。この押圧部材は、拡散のための熱処理時に焼結磁石体と反応しにくいNbなどの金属材料から形成されているか、他の焼結磁石体から構成されていることが好ましい。   When powder is used as the RH supply source, it is preferable to form a powder layer having a thickness of about 1 to 50 μm by bringing the powder having a particle size of 1 to 50 μm into contact with the surface of the sintered magnet body for the same reason as the foil. . In order to increase the contact area with the sintered magnet body and promote diffusion, it is preferable that the individual powder particles have a flat shape. Moreover, in order to expand a contact area, you may press a foil or a powder layer with respect to a sintered magnet body with a pressing member from the outside. The pressing member is preferably made of a metal material such as Nb that hardly reacts with the sintered magnet body during heat treatment for diffusion, or is made of another sintered magnet body.

前述のように、複数の焼結磁石体の間に重希土類元素RHの箔や粉末を挟みこんだ状態で熱処理を行っても良い。隣接する焼結磁石体に挟まれた重希土類元素RHの箔や粉末は、垂直方向に焼結磁石体を積層した場合、自重により生じる圧力で磁石体と充分広い接触面積を確保することができる。一方、水平方向に積層した場合は、両側から圧力を磁石体に印加してもよい。   As described above, heat treatment may be performed in a state where a foil or powder of heavy rare earth element RH is sandwiched between a plurality of sintered magnet bodies. A heavy rare earth element RH foil or powder sandwiched between adjacent sintered magnet bodies can ensure a sufficiently wide contact area with the magnet body by the pressure generated by its own weight when the sintered magnet bodies are stacked vertically. . On the other hand, when laminating in the horizontal direction, pressure may be applied to the magnet body from both sides.

焼結磁石体によって箔や粉末を挟む場合、積層した複数の焼結磁石体のうち、両端に位置する焼結磁石体の露出面側からも重希土類元素RHを拡散させることが好ましく、そのためには、上記焼結磁石体の露出面(両端面)にも重希土類元素RHの箔や粉末を接触させておくことが好ましい。これらの両端面上に接触させた重希土類元素RHの箔や粉末を充分に磁石体内部に拡散させるためには、焼結磁石体の露出面に重希土類元素RHの箔や粉末を接触させたものを反応性の低いNbなどの箔に包み込んで熱処理することが好ましい。重希土類元素RHはNbなどの箔の表面にはほとんど堆積しないため、非常に効率的に磁石体内部に拡散する。   When sandwiching a foil or powder with a sintered magnet body, it is preferable to diffuse heavy rare earth elements RH from the exposed surface side of the sintered magnet body located at both ends of the laminated sintered magnet bodies. It is preferable that a foil or a powder of heavy rare earth element RH is also brought into contact with the exposed surfaces (both end surfaces) of the sintered magnet body. In order to sufficiently diffuse the heavy rare earth element RH foil and powder in contact with both end faces into the magnet body, the heavy rare earth element RH foil and powder were brought into contact with the exposed surface of the sintered magnet body. It is preferable to heat the product by wrapping it in a low-reactivity foil such as Nb. Since the heavy rare earth element RH hardly deposits on the surface of the foil such as Nb, it diffuses into the magnet body very efficiently.

拡散のための熱処理は、箔または粉末を接触させたR−Fe−B系希土類焼結磁石体を処理室内に静置させた状態で処理室の雰囲気全体を加熱することによって行っても良いし、高周波誘導加熱等により、重希土類元素RHの箔や粉末、および焼結磁石体を直接加熱することによって行っても良い。   The heat treatment for diffusion may be performed by heating the entire atmosphere of the processing chamber in a state where the R—Fe—B rare earth sintered magnet body in contact with the foil or the powder is left in the processing chamber. Alternatively, the heavy rare earth element RH foil or powder and the sintered magnet body may be directly heated by high-frequency induction heating or the like.

処理室内の加熱温度は700℃〜1000℃が好ましく、850℃〜950℃がより好ましい。この温度領域であれば、重希土類元素RHが焼結磁石体の粒界相を伝って内部へ効率よく拡散する。熱処理時には、実効的な接触面積を拡大し、拡散を促進するため、荷重を印加することが好ましい。このことによる効果は、10mm角程度の小物積層磁石の場合に顕著である。このサイズよりも大きく重い積層磁石の場合は、自重により充分に大きな接触面積を得ることが可能である。   The heating temperature in the treatment chamber is preferably 700 ° C to 1000 ° C, and more preferably 850 ° C to 950 ° C. In this temperature range, the heavy rare earth element RH diffuses efficiently through the grain boundary phase of the sintered magnet body. During heat treatment, it is preferable to apply a load in order to expand the effective contact area and promote diffusion. The effect by this is remarkable in the case of a small laminated magnet of about 10 mm square. In the case of a laminated magnet larger and heavier than this size, a sufficiently large contact area can be obtained by its own weight.

熱処理時の処理室内は不活性雰囲気が好ましい。不活性雰囲気であれば真空でもAr雰囲気でもよい。処理室内の真空度はRH金属の拡散量、すなわち保磁力の向上度には大きく影響しない。上記温度領域で拡散を行う場合、30〜180分程度の熱処理により、焼結磁石体の重量に対して0.1%〜1%の比率で重希土類元素RHを含有するように拡散を行うことができる。   An inert atmosphere is preferable in the treatment chamber during the heat treatment. A vacuum or an Ar atmosphere may be used as long as it is an inert atmosphere. The degree of vacuum in the processing chamber does not greatly affect the diffusion amount of RH metal, that is, the degree of improvement in coercive force. When diffusing in the above temperature range, diffusing so as to contain heavy rare earth element RH at a ratio of 0.1% to 1% with respect to the weight of the sintered magnet body by heat treatment for about 30 to 180 minutes. Can do.

熱処理後の磁石は、拡散に消費されなかったRH箔や、相互拡散によって界面に濃化したRL層を介して、焼結磁石体が相互に接合される。接合された状態の磁石体は、そのまま、積層磁石として利用可能であるが、更に所望の形状および大きさを有する複数の磁石片に分離・加工しても良い。   After the heat treatment, the sintered magnet bodies are joined to each other via the RH foil that has not been consumed for diffusion and the RL layer concentrated at the interface by mutual diffusion. The joined magnet body can be used as a laminated magnet as it is, but may be further separated and processed into a plurality of magnet pieces having a desired shape and size.

このようにして作製された積層磁石は、希土類金属層(重希土類元素RHおよび軽希土類元素RLを含有する層)を界面に有するため、これらの界面を横切るような渦電流が発生しにくくなり、全体として渦電流による発熱が抑制される。このため、モータに実装して使用される場合、優れた磁石特性を発揮することが可能になる。   Since the laminated magnet thus produced has a rare earth metal layer (a layer containing heavy rare earth element RH and light rare earth element RL) at the interface, eddy currents that cross these interfaces are less likely to be generated, As a whole, heat generation due to eddy current is suppressed. For this reason, when it mounts and uses for a motor, it becomes possible to exhibit the outstanding magnet characteristic.

積層する焼結磁石体の間には、重希土類元素RHの箔や粉末層とは別に、Nbなどの金属の箔または粉末や酸化物など電気抵抗率の高い材質の薄板または粉末を介在させてもよい。これにより、更に渦電流抑制効果が発揮される。   In addition to the heavy rare earth element RH foil and powder layer, a metal foil such as Nb or a thin plate or powder of a material having a high electrical resistance such as a powder or oxide is interposed between the laminated sintered magnet bodies. Also good. Thereby, the eddy current suppression effect is further exhibited.

本発明によれば、成膜のためにRH供給源をスパッタリングしたり、蒸発させる必要がないため、重希土類元素RHを磁石体の内部に効率よく拡散させることが可能であり、貴重資源である重希土類元素RHの省資源化に大いに寄与することとなる。   According to the present invention, since it is not necessary to sputter or evaporate the RH supply source for film formation, the heavy rare earth element RH can be efficiently diffused into the magnet body, which is a valuable resource. This will greatly contribute to resource saving of the heavy rare earth element RH.

さらに、同じ容積内での積載効率が高いので、生産効率が高い。また、大掛かりな装置を作製する必要が無く、一般的な真空熱処理炉が活用できるため、コストメリットがあり実用的である。   Furthermore, since the loading efficiency within the same volume is high, the production efficiency is high. In addition, since it is not necessary to manufacture a large-scale apparatus and a general vacuum heat treatment furnace can be used, it is cost-effective and practical.

本発明における拡散処理により、R2Fe14B主相結晶粒に含まれる軽希土類元素RLの一部を焼結体表面から粒界拡散によって内部に浸透させた重希土類元素RHで置換し、R2Fe14B主相の外郭部に重希土類元素RHが相対的に濃縮した層(厚さは例えば1nm)を形成することができる。 By the diffusion treatment in the present invention, a part of the light rare earth element RL contained in the R 2 Fe 14 B main phase crystal grains is replaced with the heavy rare earth element RH that has penetrated into the interior by grain boundary diffusion from the sintered body surface, and R A layer (thickness is, for example, 1 nm) in which the heavy rare earth element RH is relatively concentrated can be formed on the outer portion of the 2 Fe 14 B main phase.

R−Fe−B系希土類焼結磁石の保磁力発生機構はニュークリエーション型であるため、主相外郭部における結晶磁気異方性が高められると、主相における粒界相の近傍で逆磁区の核生成が抑制される結果、主相全体の保磁力HcJが効果的に向上する。本発明では、焼結磁石体の表面に近い領域だけでなく、磁石表面から奥深い領域においても重希土類置換層を主相外殻部に形成することができるため、磁石全体にわたって結晶磁気異方性が高められ、磁石全体の保磁力HcJが充分に向上することになる。したがって、本発明によれば、消費する重希土類元素RHの量が少なくとも、焼結体の内部まで重希土類元素RHを拡散・浸透させることができ、主相外郭部で効率良くRH2Fe14Bを形成することにより、残留磁束密度Brの低下を抑制しつつ保磁力HcJを向上させることが可能になる。 Since the coercive force generation mechanism of the R—Fe—B rare earth sintered magnet is a nucleation type, when the magnetocrystalline anisotropy in the outer portion of the main phase is increased, the reverse magnetic domain in the vicinity of the grain boundary phase in the main phase is increased. As a result of suppressing the nucleation, the coercive force HcJ of the entire main phase is effectively improved. In the present invention, since the heavy rare earth substitution layer can be formed on the outer shell of the main phase not only in the area close to the surface of the sintered magnet body but also in the area deep from the magnet surface, And the coercive force HcJ of the whole magnet is sufficiently improved. Therefore, according to the present invention, the amount of consumed heavy rare earth element RH can be diffused and penetrated at least into the sintered body, and RH 2 Fe 14 B can be efficiently produced in the outer portion of the main phase. The coercive force HcJ can be improved while suppressing the decrease in the residual magnetic flux density Br.

なお、Tb2Fe14Bの結晶磁気異方性は、Dy2Fe14Bの結晶磁気異方性よりも高く、Nd2Fe14Bの結晶磁気異方性の約3倍の大きさを有している。このため、主相外郭部で軽希土類元RLと置換させるべき重希土類元素RHとしては、DyよりもTbが好ましい。 The crystal magnetic anisotropy of Tb 2 Fe 14 B is higher than the crystal magnetic anisotropy of Dy 2 Fe 14 B, and is about three times as large as that of Nd 2 Fe 14 B. is doing. For this reason, Tb is more preferable than Dy as the heavy rare earth element RH to be replaced with the light rare earth element RL in the outer portion of the main phase.

上記説明から明らかなように、本発明では、原料合金の段階において重希土類元素RHを添加しておく必要はない。すなわち、希土類元素Rとして軽希土類元素RL(NdおよびPrの少なくとも1種)を含有する公知のR−Fe−B系希土類焼結磁石を用意し、その表面から重希土類元素を磁石内部に拡散する。従来の重希土類層を磁石表面に形成する場合には、その段階で重希土類元素RHを無駄に消費してしまうため、効率的に磁石内部に重希土類元素を拡散させることは困難であったが、本発明によれば、重希土類元素RHの効率的な利用が可能になる。もちろん、本発明は、原料合金の段階において重希土類元素RHが幾らか添加されているR−Fe−B系焼結磁石に対して適用しても同様の効果が得られる。   As is clear from the above description, in the present invention, it is not necessary to add the heavy rare earth element RH in the raw material alloy stage. That is, a known R—Fe—B rare earth sintered magnet containing a light rare earth element RL (at least one of Nd and Pr) as a rare earth element R is prepared, and heavy rare earth elements are diffused from the surface into the magnet. . When the conventional heavy rare earth layer is formed on the magnet surface, the heavy rare earth element RH is wasted at that stage, and thus it was difficult to efficiently diffuse the heavy rare earth element inside the magnet. According to the present invention, the heavy rare earth element RH can be efficiently used. Of course, the same effect can be obtained when the present invention is applied to an R—Fe—B based sintered magnet to which some heavy rare earth element RH is added in the raw material alloy stage.

なお、本発明書における「処理室」は、焼結磁石体とRH供給源を配置した空間を広く含むものであり、熱処理炉の処理室を意味する場合もあれば、そのような処理室内に収容される処理容器を意味する場合もある。   In addition, the “processing chamber” in the present invention includes a wide space in which the sintered magnet body and the RH supply source are arranged, and may mean a processing chamber of a heat treatment furnace. It may also mean a processing container to be accommodated.

本発明では、焼結磁石体とRH供給源とが接触し、速やかに拡散するため、気化したRH金属が焼結磁石体処理室内の壁面などに付着することが少ない。また、処理室内の壁面がNbなどの耐熱合金やセラミックなどRHと反応しない材質で作製されていれば、壁面に付着したRH金属は再び気化し、最終的には焼結磁石体表面に析出する。このため、貴重資源である重希土類元素RHの無駄な消費を抑制することができる。   In the present invention, since the sintered magnet body and the RH supply source come into contact with each other and quickly diffuse, the vaporized RH metal is less likely to adhere to the wall surface in the sintered magnet body processing chamber. Further, if the wall surface in the processing chamber is made of a material that does not react with RH such as a heat-resistant alloy such as Nb or ceramic, the RH metal adhering to the wall surface is vaporized again and finally deposited on the surface of the sintered magnet body. . For this reason, useless consumption of the heavy rare earth element RH which is a valuable resource can be suppressed.

さらに、RH供給源と焼結磁石体とを接触配置するため、同じ容積を有する処理室内に搭載可能な焼結磁石体の量が増え、積載効率が高い。また、大掛かりな装置を必要としないため、一般的な真空熱処理炉が活用でき、製造コストの上昇を避けることが可能であり、実用的である。   Furthermore, since the RH supply source and the sintered magnet body are arranged in contact with each other, the amount of the sintered magnet body that can be mounted in the processing chamber having the same volume increases, and the loading efficiency is high. Moreover, since a large-scale apparatus is not required, a general vacuum heat treatment furnace can be used, and an increase in manufacturing cost can be avoided, which is practical.

熱処理時における処理室内は不活性雰囲気であることが好ましい。本明細書における「不活性雰囲気」とは、真空、また不活性ガスで満たされた状態を含むものとする。また、「不活性ガス」は、例えばアルゴン(Ar)などの希ガスであるが、RHバルク体および焼結磁石体との間で化学的に反応しないガスであれば、「不活性ガス」に含まれ得る。不活性ガスの圧力は、大気圧よりも低い値を示すように減圧される。   The inside of the treatment chamber during the heat treatment is preferably an inert atmosphere. The “inert atmosphere” in this specification includes a state filled with a vacuum or an inert gas. Further, the “inert gas” is a rare gas such as argon (Ar), for example, but if it is a gas that does not chemically react between the RH bulk body and the sintered magnet body, the “inert gas” is designated as “inert gas”. May be included. The pressure of the inert gas is reduced to show a value lower than the atmospheric pressure.

RH供給源に含まれるRHは、磁石界面におけるRH濃度の差を駆動力として、粒界相中を磁石内部に向かって拡散する。このとき、R2Fe14B相中の軽希土類元素RLの一部が、磁石表面から拡散浸透してきた重希土類元素RHによって置換される。その結果、R2Fe14B相の外郭部に重希土類元素RHが濃縮された層が形成される。 RH contained in the RH supply source diffuses in the grain boundary phase toward the inside of the magnet by using the difference in RH concentration at the magnet interface as a driving force. At this time, a part of the light rare earth element RL in the R 2 Fe 14 B phase is replaced by the heavy rare earth element RH diffused and penetrated from the magnet surface. As a result, a layer enriched with heavy rare earth elements RH is formed in the outer portion of the R 2 Fe 14 B phase.

このようなRH濃縮層の形成により、主相外郭部の結晶磁気異方性が高められ、保磁力HcJが向上することになる。すなわち、少ないRH金属の使用により、磁石内部の奥深くにまで重希土類元素RHを拡散浸透させ、主相外郭部のみを効率的にRH2Fe14Bに変換するため、残留磁束密度Brの低下を抑制しつつ、磁石全体にわたって保磁力HcJを向上させることが可能になる。 By forming such an RH enriched layer, the magnetocrystalline anisotropy of the main phase outline is increased, and the coercive force HcJ is improved. That is, by using a small amount of RH metal, the rare earth element RH is diffused and penetrated deep inside the magnet, and only the outer portion of the main phase is efficiently converted to RH 2 Fe 14 B, so that the residual magnetic flux density Br is reduced. It is possible to improve the coercive force HcJ over the entire magnet while suppressing it.

なお、実験によると、重希土類元素RHの拡散浸透に伴って軽希土類元素RLは焼結磁石体内部から表面に向かって拡散し、磁石体表面にRL濃化層を形成することがわかった。このため、焼結磁石体内部における希土類元素の総量(主相の体積比率)は、ほとんど変化せず、残留磁束密度の低下が抑制される。   According to the experiment, it was found that the light rare earth element RL diffuses from the inside of the sintered magnet body to the surface as the heavy rare earth element RH diffuses and penetrates, thereby forming an RL concentrated layer on the surface of the magnet body. For this reason, the total amount of rare earth elements inside the sintered magnet body (volume ratio of the main phase) hardly changes, and a decrease in residual magnetic flux density is suppressed.

前述のように、R−Fe−B系焼結磁石は、ニュークリエーションによる保磁力発生機構を有しているため、主相外郭部における結晶磁気異方性が高められることにより、主相の粒界相近傍における逆磁区の核生成が抑制され、保磁力HcJが高まる。なお、Tb2Fe14Bにおける結晶磁気異方性はNd2Fe14Bにおける結晶磁気異方性の約3倍であるため、希土類元素RHとしては、DyよりもTbを用いる方が保磁力向上効果を高めることが可能である。 As described above, since the R—Fe—B based sintered magnet has a coercive force generation mechanism by nucleation, the crystal magnetic anisotropy in the outer portion of the main phase is increased, so that the grains of the main phase are increased. Nucleation of reverse magnetic domains in the vicinity of the field phase is suppressed, and the coercive force HcJ is increased. Since the magnetocrystalline anisotropy of Tb 2 Fe 14 B is about three times the magnetocrystalline anisotropy of Nd 2 Fe 14 B, the coercivity is improved when Tb is used as the rare earth element RH rather than Dy. It is possible to increase the effect.

また、拡散するRHの含有量は、磁石全体の重量比で0.1%以上1.5%以下の範囲に設定することが好ましい。1.5%を超えると、残留磁束密度Brの低下を抑制できなくなる可能性があり、0.1%未満では、保磁力HcJの向上効果が不充分だからである。上記の温度領域で、30〜180分熱処理することにより、0.1%〜1%の拡散量が達成できる。   Moreover, it is preferable to set the content of RH to diffuse in the range of 0.1% to 1.5% by weight ratio of the whole magnet. If it exceeds 1.5%, the decrease in the residual magnetic flux density Br may not be suppressed, and if it is less than 0.1%, the effect of improving the coercive force HcJ is insufficient. A diffusion amount of 0.1% to 1% can be achieved by heat treatment in the above temperature range for 30 to 180 minutes.

焼結磁石の表面状態はRHが拡散浸透しやすいよう、より金属状態の近い方が好ましく、事前に酸洗浄やブラスト処理等の活性化処理を行った方がよい。ただし、本発明では、重希土類元素RHが気化し、活性な状態で焼結磁石体の表面に被着すると、固体の層を形成するよりも速い速度で焼結磁石体の内部に拡散していく。このため、焼結磁石体の表面は、例えば切断加工が完了した後の酸化が進んだ状態にあってもよい。   The surface state of the sintered magnet is preferably closer to the metal state so that RH can easily diffuse and penetrate, and it is better to perform an activation treatment such as acid cleaning or blasting in advance. However, in the present invention, when the heavy rare earth element RH is vaporized and deposited on the surface of the sintered magnet body in an active state, it diffuses into the sintered magnet body at a faster rate than the formation of a solid layer. Go. For this reason, the surface of the sintered magnet body may be in a state in which oxidation after the cutting process is completed, for example.

本発明によれば、主として粒界相を介して重希土類元素RHを拡散させることができるため、処理時間を調節することにより、磁石内部のより深い位置へ効率的に重希土類元素RHを拡散させることが可能である。   According to the present invention, since the heavy rare earth element RH can be diffused mainly through the grain boundary phase, the heavy rare earth element RH is efficiently diffused to a deeper position inside the magnet by adjusting the processing time. It is possible.

RH供給源は、少なくとも1種の重希土類元素RHを含んでいれば、金属でも合金でもよい。   The RH supply source may be a metal or an alloy as long as it contains at least one heavy rare earth element RH.

本発明によれば、例えば厚さ3mm以上の厚物磁石に対しても、僅かな量の重希土類元素RHを用いて残留磁束密度Brおよび保磁力HcJの両方を高め、高温でも磁気特性が低下しない高性能磁石を提供することができる。このような高性能磁石は、超小型・高出力モータの実現に大きく寄与する。粒界拡散を利用した本発明の効果は、厚さが10mm以下の磁石において特に顕著に発現する。また、複数の焼結磁石体を間にRH箔などを挟んだ状態で積層し、熱処理を行えば、全体の厚さをブロック磁石と同程度に大きくしても、内部に重希土類元素RHを効率的に拡散させた磁石を得ることができる。   According to the present invention, even for a thick magnet having a thickness of 3 mm or more, for example, a small amount of heavy rare earth element RH is used to increase both the residual magnetic flux density Br and the coercive force HcJ, and the magnetic characteristics deteriorate even at high temperatures. High performance magnets can be provided. Such a high-performance magnet greatly contributes to the realization of an ultra-small and high-power motor. The effect of the present invention using the grain boundary diffusion is particularly remarkable in a magnet having a thickness of 10 mm or less. Also, if a plurality of sintered magnet bodies are laminated with RH foil or the like sandwiched between them and heat treatment is performed, even if the overall thickness is increased to the same level as that of the block magnet, heavy rare earth elements RH are contained therein. An efficiently diffused magnet can be obtained.

以下、本発明によるR−Fe−B系希土類焼結磁石を製造する方法の好ましい実施形態を説明する。   Hereinafter, a preferred embodiment of a method for producing an R—Fe—B rare earth sintered magnet according to the present invention will be described.

[原料合金]
まず、25質量%以上40質量%以下の軽希土類元素RLと、0.6質量%以上〜1.6質量%のB(硼素)と、残部Fe及び不可避的不純物とを含有する合金を用意する。Bの一部はC(炭素)によって置換されていてもよいし、Feの一部(50原子%以下)は、他の遷移金属元素(例えばCoまたはNi)によって置換されていてもよい。この合金は、種々の目的により、Al、Si、Ti、V、Cr、Mn、Ni、Cu、Zn、Ga、Zr、Nb、Mo、Ag、In、Sn、Hf、Ta、W、Pb、およびBiからなる群から選択された少なくとも1種の添加元素Mを0.01〜1.0質量%程度含有していてもよい。
[Raw material alloy]
First, an alloy containing a light rare earth element RL of 25% by mass or more and 40% by mass or less, B (boron) of 0.6% by mass to 1.6% by mass, the remainder Fe and inevitable impurities is prepared. . A part of B may be substituted by C (carbon), and a part of Fe (50 atomic% or less) may be substituted by another transition metal element (for example, Co or Ni). This alloy is suitable for a variety of purposes, including Al, Si, Ti, V, Cr, Mn, Ni, Cu, Zn, Ga, Zr, Nb, Mo, Ag, In, Sn, Hf, Ta, W, Pb, and About 0.01 to 1.0% by mass of at least one additive element M selected from the group consisting of Bi may be contained.

上記の合金は、原料合金の溶湯を例えばストリップキャスト法によって急冷して好適に作製され得る。以下、ストリップキャスト法による急冷凝固合金の作製を説明する。   The above-mentioned alloy can be suitably produced by rapidly cooling a molten raw material alloy by, for example, a strip casting method. Hereinafter, preparation of a rapidly solidified alloy by a strip casting method will be described.

まず、上記組成を有する原料合金をアルゴン雰囲気中において高周波溶解によって溶融し、原料合金の溶湯を形成する。次に、この溶湯を1350℃程度に保持した後、単ロール法によって急冷し、例えば厚さ約0.3mmのフレーク状合金鋳塊を得る。こうして作製した合金鋳片を、次の水素粉砕前に例えば1〜10mmの大きさのフレーク状に粉砕する。なお、ストリップキャスト法による原料合金の製造方法は、例えば、米国特許第5、383、978号明細書に開示されている。   First, a raw material alloy having the above composition is melted by high frequency melting in an argon atmosphere to form a molten raw material alloy. Next, after this molten metal is kept at about 1350 ° C., it is rapidly cooled by a single roll method to obtain a flaky alloy ingot having a thickness of about 0.3 mm, for example. The alloy slab thus produced is pulverized into flakes having a size of 1 to 10 mm, for example, before the next hydrogen pulverization. In addition, the manufacturing method of the raw material alloy by a strip cast method is disclosed by US Patent 5,383,978 specification, for example.

[粗粉砕工程]
上記のフレーク状に粗く粉砕された合金鋳片を水素炉の内部へ収容する。次に、水素炉の内部で水素脆化処理(以下、「水素粉砕処理」と称する場合がある)工程を行なう。水素粉砕後の粗粉砕合金粉末を水素炉から取り出す際、粗粉砕粉が大気と接触しないように、不活性雰囲気下で取り出し動作を実行することが好ましい。そうすれば、粗粉砕粉が酸化・発熱することが防止され、磁石の磁気特性が向上するからである。
[Coarse grinding process]
The alloy slab coarsely crushed into flakes is accommodated in the hydrogen furnace. Next, a hydrogen embrittlement process (hereinafter sometimes referred to as “hydrogen pulverization process”) is performed inside the hydrogen furnace. When the coarsely pulverized alloy powder after hydrogen pulverization is taken out from the hydrogen furnace, it is preferable to perform the take-out operation in an inert atmosphere so that the coarsely pulverized powder does not come into contact with the atmosphere. This is because the coarsely pulverized powder is prevented from oxidizing and generating heat, and the magnetic properties of the magnet are improved.

水素粉砕によって、希土類合金は0.1mm〜数mm程度の大きさに粉砕され、その平均粒径は500μm以下となる。水素粉砕後、脆化した原料合金をより細かく解砕するとともに冷却することが好ましい。比較的高い温度状態のまま原料を取り出す場合は、冷却処理の時間を相対的に長くすれば良い。   By the hydrogen pulverization, the rare earth alloy is pulverized to a size of about 0.1 mm to several mm, and the average particle size becomes 500 μm or less. After the hydrogen pulverization, the embrittled raw material alloy is preferably crushed more finely and cooled. In the case where the raw material is taken out in a relatively high temperature state, the cooling process time may be relatively long.

[微粉砕工程]
次に、粗粉砕粉に対してジェットミル粉砕装置を用いて微粉砕を実行する。本実施形態で使用するジェットミル粉砕装置にはサイクロン分級機が接続されている。ジェットミル粉砕装置は、粗粉砕工程で粗く粉砕された希土類合金(粗粉砕粉)の供給を受け、粉砕機内で粉砕する。粉砕機内で粉砕された粉末はサイクロン分級機を経て回収タンクに集められる。こうして、0.1〜20μm程度(典型的には3〜5μm)の微粉末を得ることができる。このような微粉砕に用いる粉砕装置は、ジェットミルに限定されず、アトライタやボールミルであってもよい。粉砕に際して、ステアリン酸亜鉛などの潤滑剤を粉砕助剤として用いてもよい。
[Fine grinding process]
Next, the coarsely pulverized powder is finely pulverized using a jet mill pulverizer. A cyclone classifier is connected to the jet mill crusher used in the present embodiment. The jet mill pulverizer is supplied with the rare earth alloy (coarse pulverized powder) coarsely pulverized in the coarse pulverization step, and pulverizes in the pulverizer. The powder pulverized in the pulverizer is collected in a collection tank through a cyclone classifier. Thus, a fine powder of about 0.1 to 20 μm (typically 3 to 5 μm) can be obtained. The pulverizer used for such fine pulverization is not limited to a jet mill, and may be an attritor or a ball mill. In grinding, a lubricant such as zinc stearate may be used as a grinding aid.

[プレス成形]
本実施形態では、上記方法で作製された磁性粉末に対し、例えばロッキングミキサー内で潤滑剤を例えば0.3wt%添加・混合し、潤滑剤で合金粉末粒子の表面を被覆する。次に、上述の方法で作製した磁性粉末を公知のプレス装置を用いて配向磁界中で成形する。印加する磁界の強度は、例えば1.5〜1.7テスラ(T)である。また、成形圧力は、成形体のグリーン密度が例えば4〜4.5g/cm3程度になるように設定される。
[Press molding]
In this embodiment, for example, 0.3 wt% of a lubricant is added to and mixed with the magnetic powder produced by the above method in a rocking mixer, and the surface of the alloy powder particles is coated with the lubricant. Next, the magnetic powder produced by the above-described method is molded in an orientation magnetic field using a known press machine. The intensity of the applied magnetic field is, for example, 1.5 to 1.7 Tesla (T). The molding pressure is set so that the green density of the molded body is, for example, about 4 to 4.5 g / cm 3 .

[焼結工程]
上記の粉末成形体に対して、650〜1000℃の範囲内の温度で10〜240分間保持する工程と、その後、上記の保持温度よりも高い温度(例えば1000〜1200℃)で焼結を更に進める工程とを順次行なうことが好ましい。焼結時、特に液相が生成されるとき(温度が650〜1000℃の範囲内にあるとき)、粒界相中のRリッチ相が融け始め、液相が形成される。その後、焼結が進行し、焼結磁石体が形成される。焼結後、必要に応じて、時効処理(500〜1000℃)が行われる。
[Sintering process]
With respect to said powder molded object, the process hold | maintained for 10 to 240 minutes at the temperature within the range of 650-1000 degreeC, and sintering further by the temperature (for example, 1000-1200 degreeC) higher than said holding temperature after that. It is preferable to sequentially perform the proceeding steps. During sintering, particularly when a liquid phase is generated (when the temperature is in the range of 650 to 1000 ° C.), the R-rich phase in the grain boundary phase begins to melt and a liquid phase is formed. Then, sintering progresses and a sintered magnet body is formed. After sintering, an aging treatment (500 to 1000 ° C.) is performed as necessary.

[拡散工程]
次に、こうして作製された焼結磁石体に重希土類元素RHを効率良く拡散浸透させて、保磁力HcJを向上させる。具体的には、重希土類元素RHの箔または粉末を焼結磁石体に接触させた状態で処理室内に配置し、加熱により、箔または粉末から重希土類元素RHを焼結磁石体の表面に供給しつつ、焼結磁石体の内部に拡散させる。
[Diffusion process]
Next, the rare earth element RH is efficiently diffused and infiltrated into the sintered magnet body thus manufactured to improve the coercive force HcJ. Specifically, a heavy rare earth element RH foil or powder is placed in the processing chamber in contact with the sintered magnet body, and the heavy rare earth element RH is supplied from the foil or powder to the surface of the sintered magnet body by heating. However, it is diffused inside the sintered magnet body.

本実施形態における拡散工程では、焼結磁石体の温度を700℃以上1000℃以下の範囲内に設定することが好ましい。本実施形態における拡散工程は、焼結磁石体の表面状況に敏感ではなく、拡散工程の前に焼結磁石体の表面にZnやSnなどからなる膜が形成されていてもよい。ZnやSnは、低融点金属であり、しかも、少量であれば磁石特性を劣化させず、また上記の拡散の障害ともならないからである。ZnやSnなどの元素を重希土類元素RHの箔または粉末に含有させておいたり、ZnやSnなどの箔または粉末を重希土類元素RHの箔または粉末と重ねたり混合したりして拡散工程を行っても良い。   In the diffusion step in the present embodiment, it is preferable to set the temperature of the sintered magnet body within a range of 700 ° C. or higher and 1000 ° C. or lower. The diffusion process in this embodiment is not sensitive to the surface condition of the sintered magnet body, and a film made of Zn, Sn, or the like may be formed on the surface of the sintered magnet body before the diffusion process. This is because Zn and Sn are low melting point metals, and if they are in a small amount, they do not deteriorate the magnetic properties and do not hinder the diffusion described above. An element such as Zn or Sn is contained in a heavy rare earth element RH foil or powder, or a foil or powder such as Zn or Sn is overlapped with or mixed with a heavy rare earth element RH foil or powder. You can go.

まず、Nd:31.8、B:0.97、Co:0.92、Cu:0.1、Al:0.24、残部:Fe(質量%)の組成を有するように配合した合金のインゴットをストリップキャスト装置により溶融し、冷却することによって凝固した。こうして、厚さ0.2〜0.3mmの合金薄片を作製した。   First, an ingot of an alloy blended so as to have a composition of Nd: 31.8, B: 0.97, Co: 0.92, Cu: 0.1, Al: 0.24, and the balance: Fe (% by mass) Was melted by a strip casting apparatus and solidified by cooling. Thus, alloy flakes having a thickness of 0.2 to 0.3 mm were produced.

次に、この合金薄片を容器内に充填し、水素処理装置内に収容した。そして、水素処理装置内に圧力500kPaの水素ガス雰囲気で満たすことにより、室温で合金薄片に水素吸蔵させた後、放出させた。このような水素処理を行うことにより、合金薄片を脆化し、大きさ約0.15〜0.2mmの不定形粉末を作製した。   Next, this alloy flake was filled in a container and accommodated in a hydrogen treatment apparatus. Then, the hydrogen treatment apparatus was filled with a hydrogen gas atmosphere at a pressure of 500 kPa, so that hydrogen was occluded in the alloy flakes at room temperature and then released. By performing such a hydrogen treatment, the alloy flakes were embrittled to produce an amorphous powder having a size of about 0.15 to 0.2 mm.

上記の水素処理により作製した粗粉砕粉末に対し粉砕助剤として0.05wt%のステアリン酸亜鉛を添加し混合した後、ジェットミル装置による粉砕工程を行うことにより、粉末粒径が約3μmの微粉末を製作した。   After adding 0.05 wt% zinc stearate as a grinding aid to the coarsely pulverized powder produced by the hydrogen treatment described above and mixing, a pulverization step using a jet mill device is performed, so that the powder particle size is about 3 μm. Powder was produced.

こうして作製した微粉末をプレス装置により成形し、粉末成形体を作製した。具体的には、印加磁界中で粉末粒子を磁界配向した状態で圧縮し、プレス成形を行った。その後、成形体をプレス装置から抜き出し、真空炉により1020℃で4時間の焼結工程を行った。こうして、15mm角の立方体形状を有する焼結体ブロックを作製したあと、この焼結体ブロックを機械的に加工することにより、厚さ(磁化方向サイズ)1mm×縦10mm×横10mmの焼結磁石体を複数個作製した。   The fine powder thus produced was molded by a press apparatus to produce a powder compact. Specifically, the powder particles were compressed in a magnetic field-oriented state in an applied magnetic field and pressed. Thereafter, the molded body was extracted from the press apparatus and subjected to a sintering process at 1020 ° C. for 4 hours in a vacuum furnace. Thus, after producing a sintered body block having a 15 mm square cube shape, the sintered body block is mechanically processed to obtain a sintered magnet having a thickness (magnetization direction size) of 1 mm × length of 10 mm × width of 10 mm. Several bodies were made.

これらの焼結磁石体を0.3%硝酸水溶液で酸洗し、乾燥させた後、処理容器内に配置した。このとき、3枚の焼結磁石体を1組として、間にDy箔(ニラコ製:Dy純度99.9)を挟んだサンプル1〜6を用意した。各サンプル1〜6では、以下の表1に示すDy箔を焼結磁石体間に挟んだ。   These sintered magnet bodies were pickled with a 0.3% nitric acid aqueous solution, dried, and then placed in a processing vessel. At this time, Samples 1 to 6 were prepared with three sintered magnet bodies as one set and a Dy foil (manufactured by Niraco: Dy purity 99.9) sandwiched between them. In each sample 1-6, Dy foil shown in Table 1 below was sandwiched between sintered magnet bodies.

図1(a)〜(f)は、それぞれ、サンプル1〜6について、焼結磁石体1とDy箔2との配置関係を模式的に示している。図1の左側が断面構成を示し、右側が平面構成を示している。   FIGS. 1A to 1F schematically show the positional relationship between the sintered magnet body 1 and the Dy foil 2 for Samples 1 to 6, respectively. The left side of FIG. 1 shows a cross-sectional configuration, and the right side shows a planar configuration.

サンプル1〜6を真空熱処理炉にて900℃、60min、1.0×10-2Paの条件で熱処理した後、500℃、60min、2Paの条件で時効処理を行った。この後、B−Hトレーサを用いて磁石特性(残留磁束密度:Br、保磁力:HcJ)を測定した。測定結果を以下の表2に示す。 Samples 1 to 6 were heat-treated in a vacuum heat treatment furnace under the conditions of 900 ° C., 60 min, and 1.0 × 10 −2 Pa, and then subjected to aging treatment at 500 ° C., 60 min, and 2 Pa. Thereafter, magnet characteristics (residual magnetic flux density: Br, coercive force: HcJ) were measured using a BH tracer. The measurement results are shown in Table 2 below.

図2(a)および(b)は、表2の結果を示すグラフである。各グラフの左端のデータ(グラフ中「As」と記載されているデータ)は、Dy拡散を行う前の磁石特性を示している。   FIGS. 2A and 2B are graphs showing the results of Table 2. FIG. Data on the left end of each graph (data described as “As” in the graph) indicates the magnet characteristics before Dy diffusion.

以上の結果から明らかなように、Dy箔の形状や面積比率によらず、残留磁束密度の低下を抑制しつつ保磁力HcJが向上した。   As is clear from the above results, the coercive force HcJ was improved while suppressing a decrease in the residual magnetic flux density regardless of the shape and area ratio of the Dy foil.

一方、磁石体内部へのDyの拡散状況をEPMA(島津製作所製EPM−1610)によって評価した。図3は、サンプル2の断面EPMAによる分析結果を示す写真である。図3(a)は、サンプル2の一部断面の構成を示す図、SEM写真、およびDy濃度分布を示すグラフである。図3(b)は、焼結磁石体の最上面中央部における分析結果を示す写真であり、図3(c)は、焼結磁石体の最上面から約200μmの深さにおける分析結果を示す写真である。図4は、サンプル2の断面EPMAによる分析結果を示す写真であり、図4(a)は、図3(a)と同一である。図4(b)は、2つの焼結磁石体の界面近傍における分析結果を示す写真であり、図4(c)は、この界面近傍から約200μmの深さにおける分析結果を示す写真である。   On the other hand, the diffusion state of Dy into the magnet body was evaluated by EPMA (EPM-1610 manufactured by Shimadzu Corporation). FIG. 3 is a photograph showing the analysis result of the sample 2 by cross-sectional EPMA. FIG. 3A is a diagram showing a partial cross-sectional configuration of sample 2, a SEM photograph, and a graph showing a Dy concentration distribution. FIG. 3B is a photograph showing the analysis result at the center of the uppermost surface of the sintered magnet body, and FIG. 3C shows the analysis result at a depth of about 200 μm from the uppermost surface of the sintered magnet body. It is a photograph. FIG. 4 is a photograph showing an analysis result by cross-sectional EPMA of sample 2, and FIG. 4 (a) is the same as FIG. 3 (a). FIG. 4B is a photograph showing the analysis result in the vicinity of the interface between the two sintered magnet bodies, and FIG. 4C is a photograph showing the analysis result in a depth of about 200 μm from the vicinity of the interface.

上記の熱処理により、Dy箔との界面から磁石素材の内部へDyが拡散したことが確認できた。   It was confirmed that Dy diffused from the interface with the Dy foil into the magnet material by the heat treatment.

本発明によれば、重希土類元素RHを無駄に消費することなく、焼結磁石体の内部にも効率よく拡散し、主相結晶粒の外郭部に重希土類元素RHが濃縮することができるため、高い残留磁束密度と高い保磁力とを兼ね備えた高性能磁石を提供することができる。   According to the present invention, the heavy rare earth element RH can be efficiently diffused into the sintered magnet body without wasting wastefully, and the heavy rare earth element RH can be concentrated in the outer portion of the main phase crystal grains. A high-performance magnet having both a high residual magnetic flux density and a high coercive force can be provided.

(a)〜(f)は、それぞれ、サンプル1〜6について、焼結磁石体1とDy箔2との配置関係を示す模式図である。(A)-(f) is a schematic diagram which shows the arrangement | positioning relationship between the sintered magnet body 1 and Dy foil 2, about the samples 1-6, respectively. 本発明の実施例であるサンプル1〜6について得られた磁石特性を示すグラフであり、(a)は残留磁束密度Brを示すグラフであり、(b)は保磁力HcJを示すグラフである。It is a graph which shows the magnet characteristic obtained about samples 1-6 which are the examples of the present invention, (a) is a graph which shows residual magnetic flux density Br, and (b) is a graph which shows coercive force HcJ. 本発明の実施例であるサンプル2について得られた断面EPMA分析結果を示す写真であり、(a)は、深さ方向のDy濃度プロファイルを示すグラフなどであり、(b)は、焼結磁石体の上面中央部における分析結果を示す写真であり、(c)は、焼結磁石体の上面から約200μmの深さにおける分析結果を示す写真である。It is a photograph which shows the cross-sectional EPMA analysis result obtained about the sample 2 which is an Example of this invention, (a) is a graph etc. which show Dy density | concentration profile of a depth direction, (b) is a sintered magnet. It is a photograph which shows the analysis result in the upper surface center part of a body, (c) is a photograph which shows the analysis result in the depth of about 200 micrometers from the upper surface of a sintered magnet body. 上記サンプル2について得られた断面EPMA分析結果を示す写真であり、(a)は、深さ方向のDy濃度プロファイルを示すグラフなどであり、(b)は、2つの焼結磁石体の界面近傍の中央部における分析結果を示す写真であり、(c)は、焼結磁石体の界面から約200μmの深さにおける分析結果を示す写真である。It is the photograph which shows the cross-sectional EPMA analysis result obtained about the said sample 2, (a) is a graph etc. which show Dy density | concentration profile of a depth direction, (b) is the interface vicinity of two sintered magnet bodies (C) is a photograph which shows the analysis result in the depth of about 200 micrometers from the interface of a sintered magnet body.

Claims (6)

軽希土類元素RL(NdおよびPrの少なくとも1種)を主たる希土類元素Rとして含有するR2Fe14B型化合物結晶粒を主相として有する少なくとも1つのR−Fe−B系希土類焼結磁石体を用意する工程(A)と、
重希土類元素RH(Dy、Ho、およびTbからなる群から選択された少なくとも1種)を含有する箔または粉末を前記R−Fe−B系希土類焼結磁石体に接触させた状態で前記R−Fe−B系希土類焼結磁石体とともに処理室内に配置する工程(B)と、
前記箔または粉末および前記R−Fe−B系希土類焼結磁石体を加熱することにより、前記箔または粉末から重希土類元素RHを前記R−Fe−B系希土類焼結磁石体の表面に供給しつつ、前記重希土類元素RHを前記R−Fe−B系希土類焼結磁石体の内部に拡散させる工程(C)と、
を包含するR−Fe−B系希土類焼結磁石の製造方法。
At least one R—Fe—B rare earth sintered magnet body having R 2 Fe 14 B type compound crystal grains containing a light rare earth element RL (at least one of Nd and Pr) as a main rare earth element R as a main phase. Step (A) to be prepared,
The R-Fe-B rare earth sintered magnet body is contacted with a foil or powder containing a heavy rare earth element RH (at least one selected from the group consisting of Dy, Ho, and Tb). A step (B) of arranging in the processing chamber together with the Fe-B rare earth sintered magnet body;
By heating the foil or powder and the R-Fe-B rare earth sintered magnet body, the heavy rare earth element RH is supplied from the foil or powder to the surface of the R-Fe-B rare earth sintered magnet body. Meanwhile, the step (C) of diffusing the heavy rare earth element RH into the R-Fe-B rare earth sintered magnet body;
Method of R-Fe-B rare earth sintered magnet including
前記工程(C)において、前記箔または粉末と前記R−Fe−B系希土類焼結磁石体の加熱温度を700℃以上1000℃以下の範囲内に設定する、請求項1に記載のR−Fe−B系希土類焼結磁石の製造方法。   2. The R—Fe according to claim 1, wherein in the step (C), a heating temperature of the foil or powder and the R—Fe—B rare earth sintered magnet body is set in a range of 700 ° C. or more and 1000 ° C. or less. -Manufacturing method of B type rare earth sintered magnet. 前記R−Fe−B系希土類焼結磁石体は複数であり、前記複数のR−Fe−B系希土類焼結磁石体は、それらの間に前記箔または粉末を挟むように配置される、請求項1に記載のR−Fe−B系希土類焼結磁石の製造方法。   The R-Fe-B rare earth sintered magnet body is plural, and the plurality of R-Fe-B rare earth sintered magnet bodies are arranged so as to sandwich the foil or powder therebetween. Item 2. A method for producing an R-Fe-B rare earth sintered magnet according to Item 1. 前記工程(C)は、前記処理室内を真空または不活性雰囲気で満たした状態で加熱処理を行う、請求項1に記載のR−Fe−B系希土類焼結磁石の製造方法。   The said process (C) is a manufacturing method of the R-Fe-B type rare earth sintered magnet of Claim 1 which heat-processes in the state with which the said process chamber was satisfy | filled with the vacuum or the inert atmosphere. 軽希土類元素RL(NdおよびPrの少なくとも1種)を主たる希土類元素Rとして含有するR2Fe14B型化合物結晶粒を主相として有するR−Fe−B系希土類焼結磁石であって、
積層された複数の焼結磁石部分を備え、
各焼結磁石部分は、表面から粒界拡散によって内部に導入された重希土類元素RH(Dy、Ho、およびTbからなる群から選択された少なくとも1種)を含有する、R−Fe−B系希土類焼結磁石。
An R—Fe—B rare earth sintered magnet having R 2 Fe 14 B type compound crystal grains containing a light rare earth element RL (at least one of Nd and Pr) as a main rare earth element R as a main phase,
It has a plurality of laminated sintered magnet parts,
Each sintered magnet portion contains an R—Fe—B system containing a heavy rare earth element RH (at least one selected from the group consisting of Dy, Ho, and Tb) introduced into the interior by grain boundary diffusion from the surface. Rare earth sintered magnet.
前記複数の焼結磁石部分の境界部には、前記重希土類元素RHを含有する層が存在している、請求項5に記載のR−Fe−B系希土類焼結磁石。   6. The R—Fe—B based rare earth sintered magnet according to claim 5, wherein a layer containing the heavy rare earth element RH exists at a boundary portion between the plurality of sintered magnet portions.
JP2006081066A 2006-03-23 2006-03-23 R-Fe-B rare earth sintered magnet and method for producing the same Active JP4788427B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006081066A JP4788427B2 (en) 2006-03-23 2006-03-23 R-Fe-B rare earth sintered magnet and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006081066A JP4788427B2 (en) 2006-03-23 2006-03-23 R-Fe-B rare earth sintered magnet and method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011119231A Division JP5187411B2 (en) 2011-05-27 2011-05-27 Method for producing R-Fe-B rare earth sintered magnet

Publications (2)

Publication Number Publication Date
JP2007258455A true JP2007258455A (en) 2007-10-04
JP4788427B2 JP4788427B2 (en) 2011-10-05

Family

ID=38632389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006081066A Active JP4788427B2 (en) 2006-03-23 2006-03-23 R-Fe-B rare earth sintered magnet and method for producing the same

Country Status (1)

Country Link
JP (1) JP4788427B2 (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009004794A1 (en) * 2007-07-02 2009-01-08 Hitachi Metals, Ltd. R-fe-b type rare earth sintered magnet and process for production of the same
WO2009016815A1 (en) * 2007-07-27 2009-02-05 Hitachi Metals, Ltd. R-Fe-B RARE EARTH SINTERED MAGNET
WO2009087975A1 (en) * 2008-01-11 2009-07-16 Intermetallics Co., Ltd. PROCESS FOR PRODUCTION OF NdFeB SINTERED MAGNETS AND NDFEB SINTERED MAGNETS
WO2011007758A1 (en) * 2009-07-15 2011-01-20 日立金属株式会社 Process for production of r-t-b based sintered magnets and r-t-b based sintered magnets
JP2011101043A (en) * 2011-01-20 2011-05-19 Hitachi Metals Ltd R-fe-b based rare earth sintered magnet, and method of manufacturing the same
US8142573B2 (en) * 2007-04-13 2012-03-27 Hitachi Metals, Ltd. R-T-B sintered magnet and method for producing the same
CN102483979A (en) * 2009-07-10 2012-05-30 因太金属株式会社 Ndfeb sintered magnet, and process for production thereof
WO2012099186A1 (en) 2011-01-19 2012-07-26 日立金属株式会社 Method of producing r-t-b sintered magnet
CN103003900A (en) * 2010-07-14 2013-03-27 丰田自动车株式会社 Permanent magnet and method of producing permanent magnet
GB2497573A (en) * 2011-12-15 2013-06-19 Vacuumschmelze Gmbh & Co Kg A method of diffusing a rare earth element into a plurality of magnets
JP2013135142A (en) * 2011-12-27 2013-07-08 Toyota Motor Corp Method of manufacturing quenched ribbon for rare-earth magnet
CN103985535A (en) * 2014-05-31 2014-08-13 厦门钨业股份有限公司 Method for conducting Dy diffusion on RTB-system magnet, magnet and diffusion source
WO2014148353A1 (en) 2013-03-18 2014-09-25 インターメタリックス株式会社 RFeB-BASED MAGNET PRODUCTION METHOD, RFeB-BASED MAGNET, AND COATING MATERIAL FOR GRAIN BOUNDARY DIFFUSION PROCESS
WO2014148356A1 (en) * 2013-03-18 2014-09-25 インターメタリックス株式会社 RFeB-BASED MAGNET PRODUCTION METHOD AND RFeB-BASED SINTERED MAGNETS
WO2014148355A1 (en) 2013-03-18 2014-09-25 インターメタリックス株式会社 RFeB-BASED SINTERED MAGNET PRODUCTION METHOD AND RFeB-BASED SINTERED MAGNETS
US20150041022A1 (en) * 2011-10-27 2015-02-12 Intermetallics Co., Ltd. Method for producing ndfeb system sintered magnet
CN104517697A (en) * 2013-10-04 2015-04-15 大同特殊钢株式会社 Combined type RFeB-based magnet and method for producing combined type RFeB-based magnet
CN104517696A (en) * 2013-10-04 2015-04-15 大同特殊钢株式会社 RFeB-based magnet and method for producing RFeB-based magnet
US20150187494A1 (en) * 2013-12-31 2015-07-02 Hyundai Motor Company Process for preparing rare earth magnets
CN105489367A (en) * 2015-12-25 2016-04-13 宁波韵升股份有限公司 Method for improving magnetic performance of sintered neodymium iron boron magnet
JP2016129249A (en) * 2015-08-28 2016-07-14 ティアンヘ (パオトウ) アドヴァンスト テック マグネット カンパニー リミテッド Manufacturing method of permanent magnet material
CN109003802A (en) * 2018-08-14 2018-12-14 中钢集团安徽天源科技股份有限公司 A kind of method that grain boundary decision prepares low-cost and high-performance bulk neodymium iron boron magnetic body
JP2019075493A (en) * 2017-10-18 2019-05-16 Tdk株式会社 Magnet junction body
GB2540149B (en) * 2015-07-06 2019-10-02 Dyson Technology Ltd Magnet
GB2540150B (en) * 2015-07-06 2020-01-08 Dyson Technology Ltd Rare earth magnet with Dysprosium treatment
JP2020013998A (en) * 2018-07-20 2020-01-23 煙台首鋼磁性材料株式有限公司 HEAVY RARE EARTH ELEMENT DIFFUSION TREATMENT METHOD FOR Nd-Fe-B SYSTEM SINTERED PERMANENT MAGNET
CN110942878A (en) * 2019-12-24 2020-03-31 厦门钨业股份有限公司 R-T-B series permanent magnetic material and preparation method and application thereof
CN111599587A (en) * 2020-05-20 2020-08-28 江苏扬子三井造船有限公司 Preparation method of large-size thermal deformation neodymium iron boron magnet
CN113299476A (en) * 2021-06-24 2021-08-24 安徽大地熊新材料股份有限公司 Large-size neodymium iron boron diffusion magnet and preparation method thereof
JP2021141137A (en) * 2020-03-03 2021-09-16 Tdk株式会社 Magnet structure
WO2022176771A1 (en) * 2021-02-17 2022-08-25 株式会社デンソー Rotary electric machine and manufacturing method therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110136909B (en) * 2019-05-22 2020-10-30 包头稀土研究院 Grain boundary diffusion method of sintered neodymium-iron-boron permanent magnet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63219548A (en) * 1987-03-10 1988-09-13 Namiki Precision Jewel Co Ltd Production of permanent magnet
JP2005011973A (en) * 2003-06-18 2005-01-13 Japan Science & Technology Agency Rare earth-iron-boron based magnet and its manufacturing method
JP2005285859A (en) * 2004-03-26 2005-10-13 Tdk Corp Rare-earth magnet and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63219548A (en) * 1987-03-10 1988-09-13 Namiki Precision Jewel Co Ltd Production of permanent magnet
JP2005011973A (en) * 2003-06-18 2005-01-13 Japan Science & Technology Agency Rare earth-iron-boron based magnet and its manufacturing method
JP2005285859A (en) * 2004-03-26 2005-10-13 Tdk Corp Rare-earth magnet and its manufacturing method

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8142573B2 (en) * 2007-04-13 2012-03-27 Hitachi Metals, Ltd. R-T-B sintered magnet and method for producing the same
WO2009004794A1 (en) * 2007-07-02 2009-01-08 Hitachi Metals, Ltd. R-fe-b type rare earth sintered magnet and process for production of the same
US8187392B2 (en) 2007-07-02 2012-05-29 Hitachi Metals, Ltd. R-Fe-B type rare earth sintered magnet and process for production of the same
WO2009016815A1 (en) * 2007-07-27 2009-02-05 Hitachi Metals, Ltd. R-Fe-B RARE EARTH SINTERED MAGNET
JP5532922B2 (en) * 2007-07-27 2014-06-25 日立金属株式会社 R-Fe-B rare earth sintered magnet
US8177921B2 (en) 2007-07-27 2012-05-15 Hitachi Metals, Ltd. R-Fe-B rare earth sintered magnet
CN103646740A (en) * 2008-01-11 2014-03-19 因太金属株式会社 Process for production of NdFeB sintered magnets and NdFeB sintered magnets
JP2009170541A (en) * 2008-01-11 2009-07-30 Inter Metallics Kk PROCESS FOR PRODUCTION OF NdFeB SINTERED MAGNET AND NdFeB SINTERED MAGNET
EP2239747A4 (en) * 2008-01-11 2015-08-12 Intermetallics Co Ltd PROCESS FOR PRODUCTION OF NdFeB SINTERED MAGNETS AND NDFEB SINTERED MAGNETS
US10854380B2 (en) 2008-01-11 2020-12-01 Daido Steel Co., Ltd. NdFeB sintered magnet and method for producing the same
WO2009087975A1 (en) * 2008-01-11 2009-07-16 Intermetallics Co., Ltd. PROCESS FOR PRODUCTION OF NdFeB SINTERED MAGNETS AND NDFEB SINTERED MAGNETS
US8562756B2 (en) 2008-01-11 2013-10-22 Intermetallics Co., Ltd. NdFeB sintered magnet and method for producing the same
US20130169394A1 (en) * 2008-01-11 2013-07-04 Intermetallics Co., Ltd. NdFeB Sintered Magnet and Method for Producing the Same
JPWO2011004894A1 (en) * 2009-07-10 2012-12-20 インターメタリックス株式会社 NdFeB sintered magnet and manufacturing method thereof
CN102483979A (en) * 2009-07-10 2012-05-30 因太金属株式会社 Ndfeb sintered magnet, and process for production thereof
JP5687621B2 (en) * 2009-07-10 2015-03-18 インターメタリックス株式会社 NdFeB sintered magnet and manufacturing method thereof
JP2015122517A (en) * 2009-07-10 2015-07-02 インターメタリックス株式会社 Neodymium-iron-boron sintered magnet, and method for manufacturing the same
US9589714B2 (en) 2009-07-10 2017-03-07 Intermetallics Co., Ltd. Sintered NdFeB magnet and method for manufacturing the same
WO2011007758A1 (en) * 2009-07-15 2011-01-20 日立金属株式会社 Process for production of r-t-b based sintered magnets and r-t-b based sintered magnets
US9415444B2 (en) 2009-07-15 2016-08-16 Hitachi Metals, Ltd. Process for production of R-T-B based sintered magnets and R-T-B based sintered magnets
CN102473515A (en) * 2009-07-15 2012-05-23 日立金属株式会社 Process for production of r-t-b based sintered magnets and r-t-b based sintered magnets
CN103003900A (en) * 2010-07-14 2013-03-27 丰田自动车株式会社 Permanent magnet and method of producing permanent magnet
US9281105B2 (en) 2010-07-14 2016-03-08 Toyota Jidosha Kabushiki Kaisha Permanent magnet and method of producing permanent magnet
EP2667391A4 (en) * 2011-01-19 2017-11-01 Hitachi Metals, Ltd. Method of producing r-t-b sintered magnet
WO2012099186A1 (en) 2011-01-19 2012-07-26 日立金属株式会社 Method of producing r-t-b sintered magnet
US9484151B2 (en) 2011-01-19 2016-11-01 Hitachi Metals, Ltd. Method of producing R-T-B sintered magnet
JP2011101043A (en) * 2011-01-20 2011-05-19 Hitachi Metals Ltd R-fe-b based rare earth sintered magnet, and method of manufacturing the same
US20150041022A1 (en) * 2011-10-27 2015-02-12 Intermetallics Co., Ltd. Method for producing ndfeb system sintered magnet
GB2497573B (en) * 2011-12-15 2016-07-13 Vacuumschmelze Gmbh & Co Kg Method for producing a rare earth-based magnet
DE102012111902B4 (en) * 2011-12-15 2020-02-06 Vacuumschmelze Gmbh & Co. Kg Method of making a rare earth based magnet
GB2497573A (en) * 2011-12-15 2013-06-19 Vacuumschmelze Gmbh & Co Kg A method of diffusing a rare earth element into a plurality of magnets
JP2013135142A (en) * 2011-12-27 2013-07-08 Toyota Motor Corp Method of manufacturing quenched ribbon for rare-earth magnet
CN105051844A (en) * 2013-03-18 2015-11-11 因太金属株式会社 RFeB-based sintered magnet production method and RFeB-based sintered magnets
US10475561B2 (en) 2013-03-18 2019-11-12 Intermetallics Co., Ltd. RFeB system magnet production method, RFeB system magnet, and coating material for grain boundary diffusion treatment
WO2014148353A1 (en) 2013-03-18 2014-09-25 インターメタリックス株式会社 RFeB-BASED MAGNET PRODUCTION METHOD, RFeB-BASED MAGNET, AND COATING MATERIAL FOR GRAIN BOUNDARY DIFFUSION PROCESS
WO2014148356A1 (en) * 2013-03-18 2014-09-25 インターメタリックス株式会社 RFeB-BASED MAGNET PRODUCTION METHOD AND RFeB-BASED SINTERED MAGNETS
WO2014148355A1 (en) 2013-03-18 2014-09-25 インターメタリックス株式会社 RFeB-BASED SINTERED MAGNET PRODUCTION METHOD AND RFeB-BASED SINTERED MAGNETS
JPWO2014148356A1 (en) * 2013-03-18 2017-02-16 インターメタリックス株式会社 RFeB-based sintered magnet manufacturing method and RFeB-based sintered magnet
JPWO2014148355A1 (en) * 2013-03-18 2017-02-16 インターメタリックス株式会社 RFeB-based sintered magnet manufacturing method and RFeB-based sintered magnet
US20160273091A1 (en) 2013-03-18 2016-09-22 Intermetallics Co., Ltd. RFeB SYSTEM SINTERED MAGNET PRODUCTION METHOD AND RFeB SYSTEM SINTERED MAGNET
DE102014114390A1 (en) 2013-10-04 2015-07-23 Daido Steel Co., Ltd. Combined type RFeB-based magnet and method for producing a combination-type RFeB-based magnet
CN104517696A (en) * 2013-10-04 2015-04-15 大同特殊钢株式会社 RFeB-based magnet and method for producing RFeB-based magnet
JP2015073046A (en) * 2013-10-04 2015-04-16 大同特殊鋼株式会社 BONDED RFeB-BASED MAGNET AND PRODUCTION METHOD THEREFOR
US9818513B2 (en) 2013-10-04 2017-11-14 Daido Steel Co., Ltd. RFeB-based magnet and method for producing RFeB-based magnet
CN104517697A (en) * 2013-10-04 2015-04-15 大同特殊钢株式会社 Combined type RFeB-based magnet and method for producing combined type RFeB-based magnet
US20150187494A1 (en) * 2013-12-31 2015-07-02 Hyundai Motor Company Process for preparing rare earth magnets
CN103985535A (en) * 2014-05-31 2014-08-13 厦门钨业股份有限公司 Method for conducting Dy diffusion on RTB-system magnet, magnet and diffusion source
GB2540149B (en) * 2015-07-06 2019-10-02 Dyson Technology Ltd Magnet
GB2540150B (en) * 2015-07-06 2020-01-08 Dyson Technology Ltd Rare earth magnet with Dysprosium treatment
US11810698B2 (en) 2015-07-06 2023-11-07 Dyson Technology Limited Magnet
JP2016129249A (en) * 2015-08-28 2016-07-14 ティアンヘ (パオトウ) アドヴァンスト テック マグネット カンパニー リミテッド Manufacturing method of permanent magnet material
CN105489367A (en) * 2015-12-25 2016-04-13 宁波韵升股份有限公司 Method for improving magnetic performance of sintered neodymium iron boron magnet
JP7020051B2 (en) 2017-10-18 2022-02-16 Tdk株式会社 Magnet joint
JP2019075493A (en) * 2017-10-18 2019-05-16 Tdk株式会社 Magnet junction body
US11335483B2 (en) 2017-10-18 2022-05-17 Tdk Corporation Magnet structure
JP2020013998A (en) * 2018-07-20 2020-01-23 煙台首鋼磁性材料株式有限公司 HEAVY RARE EARTH ELEMENT DIFFUSION TREATMENT METHOD FOR Nd-Fe-B SYSTEM SINTERED PERMANENT MAGNET
CN109003802A (en) * 2018-08-14 2018-12-14 中钢集团安徽天源科技股份有限公司 A kind of method that grain boundary decision prepares low-cost and high-performance bulk neodymium iron boron magnetic body
CN110942878B (en) * 2019-12-24 2021-03-26 厦门钨业股份有限公司 R-T-B series permanent magnetic material and preparation method and application thereof
CN110942878A (en) * 2019-12-24 2020-03-31 厦门钨业股份有限公司 R-T-B series permanent magnetic material and preparation method and application thereof
JP2021141137A (en) * 2020-03-03 2021-09-16 Tdk株式会社 Magnet structure
JP7287314B2 (en) 2020-03-03 2023-06-06 Tdk株式会社 magnet structure
CN111599587A (en) * 2020-05-20 2020-08-28 江苏扬子三井造船有限公司 Preparation method of large-size thermal deformation neodymium iron boron magnet
WO2022176771A1 (en) * 2021-02-17 2022-08-25 株式会社デンソー Rotary electric machine and manufacturing method therefor
CN113299476A (en) * 2021-06-24 2021-08-24 安徽大地熊新材料股份有限公司 Large-size neodymium iron boron diffusion magnet and preparation method thereof
CN113299476B (en) * 2021-06-24 2023-02-17 安徽大地熊新材料股份有限公司 Large-size neodymium iron boron diffusion magnet and preparation method thereof

Also Published As

Publication number Publication date
JP4788427B2 (en) 2011-10-05

Similar Documents

Publication Publication Date Title
JP4788427B2 (en) R-Fe-B rare earth sintered magnet and method for producing the same
JP4831074B2 (en) R-Fe-B rare earth sintered magnet and method for producing the same
JP4677942B2 (en) Method for producing R-Fe-B rare earth sintered magnet
JP5158222B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP4811143B2 (en) R-Fe-B rare earth sintered magnet and method for producing the same
JP4241900B2 (en) R-Fe-B rare earth sintered magnet and method for producing the same
JP5532922B2 (en) R-Fe-B rare earth sintered magnet
JP5510456B2 (en) Method for producing R-Fe-B rare earth sintered magnet and steam control member
JP4962198B2 (en) R-Fe-B rare earth sintered magnet and method for producing the same
JP5598465B2 (en) R-T-B-M alloy for sintered magnet and method for producing the same
JP4788690B2 (en) R-Fe-B rare earth sintered magnet and method for producing the same
JP5348124B2 (en) Method for producing R-Fe-B rare earth sintered magnet and rare earth sintered magnet produced by the method
JPWO2009031292A1 (en) R-Fe-B anisotropic sintered magnet
JP5146552B2 (en) R-Fe-B rare earth sintered magnet and method for producing the same
JP2011086830A (en) R-Fe-B-BASED RARE EARTH SINTERED MAGNET AND METHOD OF PRODUCING THE SAME
JP2012079726A (en) Production method of alloy for r-t-b-m based sintered magnet and production method of r-t-b-m based sintered magnet
JP5187411B2 (en) Method for producing R-Fe-B rare earth sintered magnet
JP2011060965A (en) Method and apparatus for manufacturing r2fe14b rare earth sintered magnet
WO2012029748A1 (en) R-fe-b rare earth sintered magnets and method for manufacturing same, manufacturing device, motor or generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110527

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4788427

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350