JP2007258428A - Method for manufacturing optoelectric transducer - Google Patents

Method for manufacturing optoelectric transducer Download PDF

Info

Publication number
JP2007258428A
JP2007258428A JP2006080559A JP2006080559A JP2007258428A JP 2007258428 A JP2007258428 A JP 2007258428A JP 2006080559 A JP2006080559 A JP 2006080559A JP 2006080559 A JP2006080559 A JP 2006080559A JP 2007258428 A JP2007258428 A JP 2007258428A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
adhesion layer
protective film
resin
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006080559A
Other languages
Japanese (ja)
Inventor
Kaoru Terajima
薫 寺島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Holdings Co Ltd
Original Assignee
Citizen Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Holdings Co Ltd filed Critical Citizen Holdings Co Ltd
Priority to JP2006080559A priority Critical patent/JP2007258428A/en
Publication of JP2007258428A publication Critical patent/JP2007258428A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing an optoelectric transducer obtaining a plurality of resin boards from one resin board without deteriorating the efficiency of a photoelectric conversion. <P>SOLUTION: In the manufacturing method for the optoelectric transducer, optoelectric transducer elements are formed on the resin board fixed onto a support board and the optoelectric transducer is obtained by removing the support board. The manufacturing method has a process successively laminating and arranging a first adhesive layer with a smoothed surface, a protective film composed of a resin film, and a second adhesive layer with the smoothed surface from the surface of the support board; the process sticking the resin board on the surface of the second adhesive layer; and the process forming a plurality of the optoelectric transducer elements on the resin board. The manufacturing method further has the process separating optoelectric transducer element pieces and support board pieces, while using an interface between the first adhesive layer and the protective film as a boundary; the process cutting the protective film and the second adhesive layer in conformity with the desired shapes of a plurality of the optoelectric transducer elements in the optoelectric transducer element pieces; and the process separating the optoelectric transducer from the optoelectric transducer element pieces. Such a manufacturing method is adopted. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、支持基板上に樹脂基板を固着させた後に光電変換層を形成する光電変換装置を製造するにあたって、光電変換効率を低下させることなく、1枚の樹脂基板から複数個の光電変換装置を同時に得ることができる光電変換装置の製造方法に関する。   In manufacturing a photoelectric conversion device in which a photoelectric conversion layer is formed after fixing a resin substrate on a support substrate, the present invention provides a plurality of photoelectric conversion devices from a single resin substrate without reducing the photoelectric conversion efficiency. It is related with the manufacturing method of the photoelectric conversion apparatus which can obtain simultaneously.

アモルファスシリコン膜からなる光電変換層が樹脂基板上に形成された光電変換装置は、ガラス基板や金属基板を用いて形成されたものに比べて、軽量、薄型であるうえに可撓性を有している点に優れており、この特性を生かして、腕時計などの小型携帯機器に使用されている。   A photoelectric conversion device in which a photoelectric conversion layer made of an amorphous silicon film is formed on a resin substrate is lighter, thinner, and more flexible than those formed using a glass substrate or a metal substrate. It is used for small portable devices such as wristwatches by taking advantage of this characteristic.

この様な光電変換装置は、装置を構成する光電変換層、その光電変換層を挟持する透明電極層、裏面電極層を有するため、各層を加熱処理しながら形成しなくてはならない。そこで、この加熱処理を踏まえた製造方法が提案されている(例えば、特許文献1参照)。   Since such a photoelectric conversion device has a photoelectric conversion layer constituting the device, a transparent electrode layer sandwiching the photoelectric conversion layer, and a back electrode layer, each layer must be formed while heat-treating each layer. Then, the manufacturing method based on this heat processing is proposed (for example, refer patent document 1).

図3は、従来の製造工程を示す図面である。図3(a)は、硬化後に所定の軟性を持ち、かつ未硬化状態で表面を平滑とした密着層2を支持基板1に形成後、完全に硬化させ、この密着層2を介して、支持基板1上に樹脂基板4を貼り付ける工程を示している。図3(b)は、図3(a)で得た構造体に、光電変換素子を形成する工程を示す図面であり、図3(c)は、図3(b)で得た構造体から目的の光電変換装置を得る工程を示す図面である。   FIG. 3 is a drawing showing a conventional manufacturing process. FIG. 3 (a) shows an adhesive layer 2 having a predetermined softness after curing and having a smooth surface in an uncured state, and then completely cured and supported via the adhesion layer 2. The process of affixing the resin substrate 4 on the substrate 1 is shown. FIG.3 (b) is drawing which shows the process of forming a photoelectric conversion element in the structure obtained by Fig.3 (a), FIG.3 (c) is from the structure obtained by FIG.3 (b). It is drawing which shows the process of obtaining the target photoelectric conversion apparatus.

はじめに、液状のシリコーンゴムを、スピンコータを使用して支持基板1上に50μm程度の厚さに塗布した後、200℃に設定したドライオーブンにて60分間加熱し、このシリコーンゴムを完全に硬化させ、支持基板1に確実に固着された密着層2を形成する。   First, liquid silicone rubber is applied on the support substrate 1 to a thickness of about 50 μm using a spin coater, and then heated in a dry oven set at 200 ° C. for 60 minutes to completely cure the silicone rubber. Then, the adhesion layer 2 firmly fixed to the support substrate 1 is formed.

次に、フィルム状の樹脂基板4を支持基板1の端部から徐々に密着層2に貼っていくと、樹脂基板4と密着層2の界面から空気が押し出されて、その界面はほぼ真空に近い状態になる。そして、まだ僅かに残存している空気を完全に取り除くために、支持基板1ごと真空中で加熱して脱気処理を行う。すると、樹脂基板4と密着層2とは密着して、支持基板1に固着される。   Next, when the film-like resin substrate 4 is gradually attached to the adhesion layer 2 from the end of the support substrate 1, air is pushed out from the interface between the resin substrate 4 and the adhesion layer 2, and the interface is almost vacuumed. Become close. Then, in order to completely remove still remaining air, the support substrate 1 is heated in vacuum to perform a deaeration process. Then, the resin substrate 4 and the adhesion layer 2 are adhered to each other and fixed to the support substrate 1.

さらに、図3(b)に示すように、樹脂基板4の表面に透明電極層5、アモルファスシリコン膜からなる光電変換層6、裏面電極層7を順次積層して、光電変換素子8を形成する。そして、この光電変換素子8の表面を保護膜9で被覆する。   Further, as shown in FIG. 3B, a transparent electrode layer 5, a photoelectric conversion layer 6 made of an amorphous silicon film, and a back electrode layer 7 are sequentially laminated on the surface of the resin substrate 4 to form a photoelectric conversion element 8. . Then, the surface of the photoelectric conversion element 8 is covered with a protective film 9.

光電変換層6となるアモルファスシリコン膜の形成には、概してプラズマCVD法が用いられ、CVD装置内に生成したプラズマにより原料ガスを分解し、P型、I型、N型の順にアモルファスシリコン膜を積層する。P型アモルファスシリコン膜はシラン(SiH
)ガスとジボラン(B)ガスを、I型アモルファスシリコン膜はSiHガスを、N型アモルファスシリコン膜はSiHガスとホスフィン(PH)ガスを原料ガスとして装置内に導入して形成する。そして、この成膜工程において良質のアモルファスシリコン膜を形成するためには、CVD装置内で基板温度を150℃以上にして成膜することが必須となる。
For the formation of the amorphous silicon film to be the photoelectric conversion layer 6, a plasma CVD method is generally used. The source gas is decomposed by plasma generated in the CVD apparatus, and the amorphous silicon film is formed in the order of P-type, I-type, and N-type. Laminate. P-type amorphous silicon film is silane (SiH
4 ) Gas and diborane (B 2 H 6 ) gas, SiH 4 gas for the I-type amorphous silicon film, and SiH 4 gas and phosphine (PH 3 ) gas for the N-type amorphous silicon film are introduced into the apparatus. Form. In order to form a high-quality amorphous silicon film in this film forming process, it is essential to form the film at a substrate temperature of 150 ° C. or higher in the CVD apparatus.

最後に、図3(c)に示す様に、樹脂基板4の端部に図示しない粘着テープを貼り付けて、その粘着テープを支点として樹脂基板4の端部から剥がし、密着層2と樹脂基板4と
の界面に空気を侵入させれば、樹脂基板4は支持基板1から容易に分離して、光電変換装置13を製造することができる。
Finally, as shown in FIG. 3C, an adhesive tape (not shown) is attached to the end of the resin substrate 4 and peeled off from the end of the resin substrate 4 using the adhesive tape as a fulcrum. If the air is allowed to enter the interface with the resin 4, the resin substrate 4 can be easily separated from the support substrate 1, and the photoelectric conversion device 13 can be manufactured.

このように従来の製造方法においては、樹脂基板4と支持基板1とを、シリコーンゴムを用いた完全に硬化させた密着層2を介して真空吸着により強固に密着させているので、光電変換素子8の製造過程で加熱処理を行う際に、両基板の線膨張係数の違いによる応力がこの樹脂基板4に掛かっても、樹脂基板4が支持基板1から分離することを極力防止することができる。また、密着層2を支持基板1上に設けた後に、完全に硬化させてから樹脂基板4を貼り付けているので、光電変換層6の形成時に密着層2からアウトガスが発生することがなく、光電変換素層6の膜質の低下を防止することができる。さらに、支持基板1と樹脂基板4の分離が容易なので、この工程における製造時間を大幅に短縮することができるだけでなく、この樹脂基板1を貼り付ける際には何度でも貼り直しが可能となる。   Thus, in the conventional manufacturing method, the resin substrate 4 and the support substrate 1 are firmly adhered by vacuum adsorption through the completely cured adhesion layer 2 using silicone rubber. When the heat treatment is performed in the manufacturing process 8, the resin substrate 4 can be prevented from being separated from the support substrate 1 as much as possible even if stress due to the difference in linear expansion coefficient between the two substrates is applied to the resin substrate 4. . In addition, after the adhesive layer 2 is provided on the support substrate 1, the resin substrate 4 is pasted after being completely cured, so that no outgas is generated from the adhesive layer 2 when the photoelectric conversion layer 6 is formed. It is possible to prevent deterioration of the film quality of the photoelectric conversion element layer 6. Further, since the support substrate 1 and the resin substrate 4 can be easily separated, not only can the manufacturing time in this process be greatly reduced, but also when the resin substrate 1 is attached, it can be attached again and again. .

特開2005−294807号公報(第6−8頁、第1図)Japanese Patent Laying-Open No. 2005-294807 (page 6-8, FIG. 1)

しかしながら、前述した従来の製造方法は、1枚の樹脂基板4上に複数個の光電変換素子8を一度に製造する際には下記に示す問題点を有している。   However, the above-described conventional manufacturing method has the following problems when manufacturing a plurality of photoelectric conversion elements 8 on one resin substrate 4 at a time.

複数個の光電変換素子8が形成されている樹脂基板4を、支持基板1から分離した後に、個々の光電変換装置13を得るためには、各光電変換素子8を樹脂基板4毎に切断する切断工程が必要となる。まず、この切断工程では、プレスやカッターなど切断用の機械装置の冶具(ステージ)に、光電変換素子8が形成されていない樹脂基板4を載置して、光電変換素子8の外形形状に合わせて、樹脂基板4を切断するための位置調整をする必要がある。その位置調整の際に、樹脂基板4表面と冶具等とが擦れて、光電変換素子8の光入射側となる樹脂基板4の裏面を傷つけてしまう場合がある。この様に、樹脂基板4の裏面に傷が付くと、その部分では光電変換素子に入射する入射光が散乱してしまい、光電変換層6への入射光量は減少する。その結果として、この様にして製造された光電変換素子は、光電変換量が減少することとなる。   In order to obtain individual photoelectric conversion devices 13 after separating the resin substrate 4 on which the plurality of photoelectric conversion elements 8 are formed from the support substrate 1, each photoelectric conversion element 8 is cut for each resin substrate 4. A cutting process is required. First, in this cutting process, the resin substrate 4 on which the photoelectric conversion element 8 is not formed is placed on a jig (stage) of a cutting machine such as a press or a cutter, and the outer shape of the photoelectric conversion element 8 is adjusted. Therefore, it is necessary to adjust the position for cutting the resin substrate 4. During the position adjustment, the surface of the resin substrate 4 and a jig or the like may rub against each other, and the back surface of the resin substrate 4 on the light incident side of the photoelectric conversion element 8 may be damaged. Thus, when the back surface of the resin substrate 4 is scratched, the incident light incident on the photoelectric conversion element is scattered at that portion, and the amount of light incident on the photoelectric conversion layer 6 is reduced. As a result, the photoelectric conversion element manufactured in this way has a reduced photoelectric conversion amount.

そこで、本発明は上記課題を解決し、光電変換効率を低下させることなく、1枚の樹脂基板から複数個の光電変換装置を同時に形成することができる光電変換装置の製造方法を提供することを目的とする。   Accordingly, the present invention provides a method for manufacturing a photoelectric conversion device that can solve the above-described problems and that can simultaneously form a plurality of photoelectric conversion devices from a single resin substrate without reducing the photoelectric conversion efficiency. Objective.

本発明の光電変換装置の製造方法は、上記した目的を達成するため、基本的には、以下に記載された製造方法を採用するものである。   In order to achieve the above-described object, the photoelectric conversion device manufacturing method of the present invention basically employs the manufacturing method described below.

即ち、本発明の光電変換装置の製造方法は、支持基板上に固着した樹脂基板に光電変換素子を形成した後に、支持基板を除去して得られる光電変換装置の製造方法において、支持基板の表面から順に、表面が平滑化された第1の密着層と、樹脂フィルムからなる保護フィルムと、表面が平滑化された第2の密着層とを積層配置する工程と、第2の密着層の表面に樹脂基板を貼り付ける工程と、この樹脂基板上に複数個の光電変換素子を形成する工程と、第1の密着層と保護フィルムとの界面を境に、光電変換素子片と支持基板片とに分離する工程と、光電変換素子片における複数個の光電変換素子の外形形状に合わせて、保護フィルムと第2の密着層を個々に切断する工程と、光電変換素子片から光電変換装置を分離する工程とを含むことを特徴とするものである。   That is, the photoelectric conversion device manufacturing method of the present invention is a method for manufacturing a photoelectric conversion device obtained by removing a support substrate after forming a photoelectric conversion element on a resin substrate fixed on the support substrate. , In order, a step of laminating and arranging a first adhesion layer whose surface is smoothed, a protective film made of a resin film, and a second adhesion layer whose surface is smoothed, and the surface of the second adhesion layer A step of affixing a resin substrate to the substrate, a step of forming a plurality of photoelectric conversion elements on the resin substrate, and a photoelectric conversion element piece and a supporting substrate piece at the interface between the first adhesion layer and the protective film, Separating the protective film and the second adhesive layer in accordance with the outer shape of the plurality of photoelectric conversion elements in the photoelectric conversion element piece, and separating the photoelectric conversion device from the photoelectric conversion element piece Including the step of It is an butterfly.

また、本発明の光電変換装置の製造方法は、前述した第1の密着層と第2の密着層が、ともにシリコーン樹脂材料により形成された樹脂膜であることを特徴とするものである。   Moreover, the manufacturing method of the photoelectric conversion device of the present invention is characterized in that both the first adhesion layer and the second adhesion layer described above are resin films formed of a silicone resin material.

また、本発明の光電変換装置の製造方法は、前述した第1の密着層と第2の密着層が、硬化後に所定の軟性を持ち、かつ未硬化状態で表面を平滑とした樹脂膜を支持基板に形成した後に、この樹脂膜を完全に硬化させて得られる膜であることを特徴とするものである。   In addition, the method for manufacturing a photoelectric conversion device of the present invention supports the resin film in which the first adhesion layer and the second adhesion layer described above have a predetermined softness after curing and have a smooth surface in an uncured state. It is a film obtained by completely curing the resin film after it is formed on the substrate.

また、本発明の光電変換装置の製造方法は、第1の密着層の表面に保護フィルムを貼り付けた後と、第2の密着層の表面に樹脂基板を貼り付けた後に、それぞれ脱気処理を行うことを特徴とするものである。   Moreover, the manufacturing method of the photoelectric conversion device of the present invention includes a degassing treatment after a protective film is attached to the surface of the first adhesion layer and a resin substrate is attached to the surface of the second adhesion layer, respectively. It is characterized by performing.

本発明の光電変換装置の製造方法によれば、複数個の光電変換装置を同時に形成したとしても、光電変換素子が形成された面とは反対側の樹脂基板の表面に傷が発生することはない。したがって、光電変換装置の製造工程において、樹脂基板の裏面に付く傷を極力少なくし、光利用効率の高い光電変換装置を容易に得ることができる。   According to the method for manufacturing a photoelectric conversion device of the present invention, even when a plurality of photoelectric conversion devices are formed at the same time, scratches are generated on the surface of the resin substrate opposite to the surface on which the photoelectric conversion elements are formed. Absent. Therefore, in the manufacturing process of the photoelectric conversion device, scratches on the back surface of the resin substrate can be reduced as much as possible, and a photoelectric conversion device with high light utilization efficiency can be easily obtained.

本発明の光電変換装置の製造方法は、支持基板上に固着した樹脂基板に光電変換素子を形成した後に、支持基板を除去して得られる光電変換装置の製造方法において、支持基板の表面から順に、第1の密着層と保護フィルムと第2の密着層とを積層配置する工程と、第2の密着層の表面に樹脂基板を貼り付ける工程と、この樹脂基板上に複数個の光電変換素子を形成する工程と、第1の密着層と保護フィルムとの界面を境に、光電変換素子片と支持基板片とに分離する工程と、光電変換素子片における複数個の光電変換素子の外形形状に合わせて、保護フィルムと第2の密着層を個々に切断する工程と、光電変換素子片から光電変換装置を分離する工程とを有することを特徴とする製造方法である。以下に、本発明の実施の形態を上記に示した工程順に図面に基づいて詳細に説明する。なお、従来技術で使用した同じ部材については、同じ符号を付して説明する。   The method for producing a photoelectric conversion device of the present invention is a method for producing a photoelectric conversion device obtained by removing a support substrate after forming a photoelectric conversion element on a resin substrate fixed on the support substrate, in order from the surface of the support substrate. A step of laminating and arranging the first adhesion layer, the protective film, and the second adhesion layer, a step of attaching a resin substrate to the surface of the second adhesion layer, and a plurality of photoelectric conversion elements on the resin substrate Forming a step, separating the photoelectric conversion element piece and the supporting substrate piece from the interface between the first adhesion layer and the protective film, and the outer shape of the plurality of photoelectric conversion elements in the photoelectric conversion element piece In accordance with the manufacturing method, the method includes a step of individually cutting the protective film and the second adhesion layer, and a step of separating the photoelectric conversion device from the photoelectric conversion element piece. Hereinafter, embodiments of the present invention will be described in detail based on the drawings in the order of the steps shown above. In addition, about the same member used by the prior art, it attaches | subjects and demonstrates the same code | symbol.

まず、本発明の光電変換装置の製造方法について、図1の工程断面図にしたがって説明する。図1(a)は、支持基板1の表面から順に、第1の密着層2aと保護フィルム3と第2の密着層2bとを積層配置する工程を示している。   First, the manufacturing method of the photoelectric conversion apparatus of this invention is demonstrated according to process sectional drawing of FIG. FIG. 1A shows a step of laminating and arranging the first adhesion layer 2 a, the protective film 3, and the second adhesion layer 2 b in order from the surface of the support substrate 1.

先ず、図1(a)に示す様に、従来の工程と同様にして、ガラス製の支持基板1における一方の面の全面に、硬化後のゴム硬度が20〜50(JIS A)となる液状のシリコーンゴム(例えばジーイー東芝シリコーン社製、製品名:TSE3033)を、スピンコータを使用して50μm程度の厚さに塗布する。   First, as shown in FIG. 1 (a), in the same manner as in the conventional process, a liquid having a cured rubber hardness of 20 to 50 (JIS A) is formed on the entire surface of one side of the glass support substrate 1. A silicone rubber (for example, product name: TSE3033, manufactured by GE Toshiba Silicones Co., Ltd.) is applied to a thickness of about 50 μm using a spin coater.

その後、200℃に設定したドライオーブンに、この液状のシリコーンゴムが塗布された支持基板1を投入して60分間加熱し、このシリコーンゴムを完全に硬化させ、支持基板1に確実に固着された第1の密着層2aを形成する。   Thereafter, the support substrate 1 coated with the liquid silicone rubber was put into a dry oven set at 200 ° C. and heated for 60 minutes to completely cure the silicone rubber, and was firmly fixed to the support substrate 1. The first adhesion layer 2a is formed.

この際、第1の密着層2aの表面は平滑に形成されていることが必要である。この平滑化は、次に支持基板1上に第1の密着層2aを介して保護フィルム3を貼り付ける際に、保護フィルム3と第1の密着層2aとを確実に真空吸着させて固定するために必要となる。   At this time, the surface of the first adhesion layer 2a needs to be formed smoothly. In this smoothing, when the protective film 3 is next attached onto the support substrate 1 via the first adhesive layer 2a, the protective film 3 and the first adhesive layer 2a are securely vacuum-adsorbed and fixed. It is necessary for.

上記のようにして、支持基板1上に第1の密着層2aを形成したら、次に、保護フィルム3を支持基板1上に第1の密着層2aを介して貼り付ける。保護フィルム3の材料は限
定しないが、可撓性を有すること、後の光電変換素子の作成工程における加熱に耐えうることと、その際に光電変換層の特性を低下させるようなアウトガスを発生しないことを満たしていることが肝要である。例えば、後の工程で使用する樹脂基板と同素材のポリエチレンテレフタレート基板、ポリエチレン基板を用いてもよい。保護フィルム3を支持基板1の端部から徐々に第1の密着層2aに貼っていくと、保護フィルム3と第1の密着層2aの界面から空気が徐々に押し出されて、その界面はほぼ真空に近い状態になる。すると、保護フィルム3と第1の密着層2aとは密着して、支持基板1に固着される。
If the 1st contact | adherence layer 2a is formed on the support substrate 1 as mentioned above, next, the protective film 3 will be affixed on the support substrate 1 through the 1st contact | adherence layer 2a. The material of the protective film 3 is not limited. However, the protective film 3 has flexibility, can withstand heating in the subsequent process of producing a photoelectric conversion element, and does not generate outgas that deteriorates the characteristics of the photoelectric conversion layer. It is important to satisfy this. For example, a polyethylene terephthalate substrate or a polyethylene substrate, which is the same material as the resin substrate used in the subsequent process, may be used. When the protective film 3 is gradually attached to the first adhesion layer 2a from the end of the support substrate 1, air is gradually pushed out from the interface between the protection film 3 and the first adhesion layer 2a, and the interface is almost the same. It becomes a state close to vacuum. Then, the protective film 3 and the first adhesion layer 2 a are in close contact with each other and are fixed to the support substrate 1.

なお、保護フィルム3を第1の密着層2aに貼り付ける際に保護フィルム3を貼り損ねたとしても、保護フィルム3の端部に粘着テープを貼って、この部分を支点にして保護フィルム3を剥がし、再び所望の位置に貼り直すことが可能である。ここで、保護フィルム3の貼り直しができるのは、保護フィルム3が可撓性のフィルムであることと、保護フィルム3と密着層2aとの界面に接着剤などを介在させずに単に真空吸着をさせて固定しているからである。   In addition, even if it fails to stick the protective film 3 at the time of sticking the protective film 3 to the 1st adhesion layer 2a, an adhesive tape is stuck on the edge part of the protective film 3, and this part is used as a fulcrum, and the protective film 3 It can be peeled off and pasted again at a desired position. Here, the protective film 3 can be reattached because the protective film 3 is a flexible film and is simply vacuum-adsorbed without an adhesive or the like at the interface between the protective film 3 and the adhesion layer 2a. This is because it is fixed.

この段階では、支持基板1上に貼り付けられた保護フィルム3と第1の密着層2aの界面には、まだ僅かに空気(図示せず)が残存している。そこで、この残存する空気を完全に取り除くために、支持基板1ごと真空中で加熱して脱気処理を行う。すると、基板周辺からこの残存する空気が抜けて、保護フィルム3と第1の密着層2aを強固に密着(真空吸着)させることができる。なお、この脱気処理は、加熱をせずに真空とするだけでも行うことができるが、この界面から完全に空気を脱気させるのに時間を要する。そのため、この工程は、真空中で加熱して行うことが好ましい。   At this stage, a little air (not shown) still remains at the interface between the protective film 3 and the first adhesion layer 2a attached on the support substrate 1. Therefore, in order to completely remove the remaining air, the support substrate 1 is heated in vacuum to perform a deaeration process. Then, the remaining air escapes from the periphery of the substrate, and the protective film 3 and the first adhesion layer 2a can be firmly adhered (vacuum adsorption). This deaeration treatment can be performed only by creating a vacuum without heating, but it takes time to completely deaerate air from this interface. Therefore, this step is preferably performed by heating in vacuum.

次に、保護フィルム3上に、第2の密着層2bを形成するが、上述の、支持基板1上に第1の密着層2aを形成した際と同様の材料と方法を用いればよい。具体的には、保護フィルム3上に、液状のシリコーンゴムを塗布後、加熱硬化して、第2の密着層2bを保護フィルム3に確実に固着させる。   Next, the second adhesion layer 2b is formed on the protective film 3, and the same material and method as those used when the first adhesion layer 2a is formed on the support substrate 1 may be used. Specifically, after applying liquid silicone rubber on the protective film 3, the second adhesive layer 2 b is securely fixed to the protective film 3 by heating and curing.

この際も、第2の密着層2bの表面は平滑に形成されていることが必要である。この平滑化は、次の工程で、支持基板1上に、樹脂基板を第2の密着層2bを介して貼り付ける際に、樹脂基板と第2の密着層2bとを確実に真空吸着させて固定するために必要となる。   Also in this case, the surface of the second adhesion layer 2b needs to be formed smoothly. In the next step, the smoothing is performed by reliably vacuum-adsorbing the resin substrate and the second adhesion layer 2b when the resin substrate is attached to the support substrate 1 via the second adhesion layer 2b. Necessary for fixing.

図1(b)は、第2の密着層2b上に樹脂基板4を貼り付ける工程を示している。
上記のようにして、支持基板1上に第1の密着層2aと保護フィルム3と第2の密着層2bとを積層配置したら、次に、図1(b) に示すように、フィルム状の樹脂基板4を、支持基板1上に、第1の密着層2aと保護フィルム3と第2の密着層2bを介して貼り付ける。樹脂基板4をその端部から徐々に第2の密着層2bに貼っていくと、樹脂基板4と第2の密着層2bの界面から空気(図示せず)が徐々に押し出されて、その界面はほぼ真空に近い状態になる。すると、樹脂基板4と第2の密着層2bとは密着して、支持基板1に固着される。
FIG. 1B shows a process of attaching the resin substrate 4 on the second adhesion layer 2b.
When the first adhesion layer 2a, the protective film 3 and the second adhesion layer 2b are laminated on the support substrate 1 as described above, then, as shown in FIG. The resin substrate 4 is affixed on the support substrate 1 via the first adhesion layer 2a, the protective film 3, and the second adhesion layer 2b. When the resin substrate 4 is gradually attached to the second adhesion layer 2b from its end, air (not shown) is gradually pushed out from the interface between the resin substrate 4 and the second adhesion layer 2b, and the interface Is almost in a vacuum state. Then, the resin substrate 4 and the second adhesion layer 2 b are in close contact with each other and fixed to the support substrate 1.

また、図1(a)、図1(b)に示す様に、本発明の太陽電池装置の製造方法は、支持基板1表面が露出するように、第1の密着層2aと保護フィルム3と第2の密着層2bのサイズを支持基板1よりも小さくし、さらに、第2の密着層2b表面が露出するように、樹脂基板4のサイズを第2の密着層2bよりも小さくなるようにしてある。それは、樹脂基板4上に光電変換素子を形成した後に、第1の密着層2aと保護フィルム3の界面を境に、光電変換素子片を分離する工程、および個々に切断された光電変換素子片から第2の密着層2bと樹脂基板4の界面を境に光電変換装置を分離する工程において、分離する各片の端部に粘着テープを貼って剥がす作業が容易になるからである。   Further, as shown in FIGS. 1A and 1B, the method for manufacturing the solar cell device of the present invention includes the first adhesive layer 2a, the protective film 3 and the like so that the surface of the support substrate 1 is exposed. The size of the second adhesion layer 2b is made smaller than that of the support substrate 1, and the size of the resin substrate 4 is made smaller than that of the second adhesion layer 2b so that the surface of the second adhesion layer 2b is exposed. It is. That is, after the photoelectric conversion element is formed on the resin substrate 4, the process of separating the photoelectric conversion element pieces at the interface between the first adhesion layer 2a and the protective film 3, and the individually cut photoelectric conversion element pieces This is because, in the process of separating the photoelectric conversion device at the boundary between the second adhesive layer 2b and the resin substrate 4, the operation of attaching and peeling the adhesive tape to the end of each piece to be separated becomes easy.

なお、樹脂基板4を第2の密着層2bに貼り付ける際に樹脂基板4を貼り損ねたとしても、第1の密着層2aと保護フィルム3との貼り直しと同様に、樹脂基板4の端部に粘着テープを貼って、この部分を支点にして樹脂基板4を剥がし、再び所望の位置に貼り直すことが可能である。   Even if the resin substrate 4 is missed when the resin substrate 4 is adhered to the second adhesion layer 2b, the end of the resin substrate 4 is the same as when the first adhesion layer 2a and the protective film 3 are adhered again. It is possible to stick an adhesive tape on the part, peel off the resin substrate 4 using this part as a fulcrum, and stick it again to a desired position.

また、この段階では、支持基板1上に貼り付けられた樹脂基板4と第2の密着層2の界面には、まだ僅かに空気(図示せず)が残存しているので、先と同様にして脱気処理を行う。   At this stage, a little air (not shown) still remains at the interface between the resin substrate 4 and the second adhesion layer 2 adhered on the support substrate 1. To deaerate.

次に、この脱気処理の後に行う工程について説明をする。図1(c)は、樹脂基板4上に複数個の光電変換素子8を形成する工程を示している。
図1(c)に示すように、樹脂基板4の上層にITO等の透明電極層5、アモルファスシリコン膜からなる光電変換層6、TiやAl等の反射性の金属材料からなる裏面電極層7を、従来例と同様に順次積層して所望のパターンに形成して、複数個の光電変換素子8を得た後、光電変換素子8の表面を保護膜9で被覆する。図1(c)では3個の光電変換素子8が図示されているが、光電変換素子8の個数やパターンは適宜変えられるものである。
Next, the process performed after this deaeration process is demonstrated. FIG. 1C shows a process of forming a plurality of photoelectric conversion elements 8 on the resin substrate 4.
As shown in FIG. 1C, a transparent electrode layer 5 such as ITO, a photoelectric conversion layer 6 made of an amorphous silicon film, and a back electrode layer 7 made of a reflective metal material such as Ti or Al are formed on the resin substrate 4. Are formed in a desired pattern in the same manner as in the conventional example to obtain a plurality of photoelectric conversion elements 8, and then the surface of the photoelectric conversion elements 8 is covered with a protective film 9. Although three photoelectric conversion elements 8 are illustrated in FIG. 1C, the number and pattern of the photoelectric conversion elements 8 can be changed as appropriate.

なお、第1の密着層2aと第2の密着層2bに用いたシリコーンゴムは耐熱性に優れており、上述の製造過程において、室温から150℃以上の温度で処理しても組成分解や組成変性することがない。この条件を満たした材料を用いれば、光電変換素子8を形成する工程を経ても樹脂基板4と第2の密着層2bの密着性と保護フィルム3と第1の密着層2aは維持される。   Note that the silicone rubber used for the first adhesion layer 2a and the second adhesion layer 2b has excellent heat resistance, and in the above-described manufacturing process, even when the treatment is performed at a temperature from room temperature to 150 ° C. or higher, the composition decomposition and composition There is no denaturation. If a material satisfying this condition is used, the adhesion between the resin substrate 4 and the second adhesion layer 2b, the protective film 3 and the first adhesion layer 2a are maintained even after the step of forming the photoelectric conversion element 8.

次に、図1(d)を用いて、光電変換素子片10と支持基板片11を分離する工程について説明をする。
第2の密着層2bの端部に図示しない粘着テープを貼り付けて、その粘着テープを支点として、保護フィルム3と第1の密着層の界面に徐々に空気を入れながら、光電変換素子片10を支持基板片11から分離する。この際に、先述したように、第1の密着層2aと保護フィルム3と第2の密着層2bの積層部分を、支持基板1よりも小さく形成しておけば、光電変換素子片10と支持基板片11を容易に分離できる。なお、この光電変換素子片10は、保護フィルム3、第2の密着層2b、樹脂基板4、光電変換素子8と保護膜9からなる光電変換装置13からなる素子片に相当する。また、支持基板片11は、支持基板1と第1の密着層2aからなる基板片に相当する。
Next, the process of separating the photoelectric conversion element piece 10 and the support substrate piece 11 will be described with reference to FIG.
Adhesive tape (not shown) is affixed to the end of the second adhesive layer 2b, and the photoelectric conversion element piece 10 is gradually put into the interface between the protective film 3 and the first adhesive layer using the adhesive tape as a fulcrum. Is separated from the support substrate piece 11. At this time, as described above, if the laminated portion of the first adhesion layer 2a, the protective film 3, and the second adhesion layer 2b is formed to be smaller than the support substrate 1, the photoelectric conversion element piece 10 and the support element are supported. The substrate piece 11 can be easily separated. The photoelectric conversion element piece 10 corresponds to an element piece including the protective film 3, the second adhesion layer 2 b, the resin substrate 4, the photoelectric conversion element 8 and the protective film 9. The support substrate piece 11 corresponds to a substrate piece composed of the support substrate 1 and the first adhesion layer 2a.

さらに、図2(a)に示すように、光電変換素子片10をプレス切断用の機械装置の冶具(ステージ)に載置して、プレス切断により光電変換素子8の外形形状に合わせて、図中の一点鎖線の部分で切断して、光電変換素子片10を個々(本実施例の場合は3個)に分割する。   Further, as shown in FIG. 2A, the photoelectric conversion element piece 10 is placed on a jig (stage) of a machine device for press cutting, and is adjusted to the outer shape of the photoelectric conversion element 8 by press cutting. The photoelectric conversion element piece 10 is divided into individual pieces (in the case of the present embodiment, three pieces) by cutting along the one-dot chain line.

この工程では、密着層2bを介して樹脂基板4と保護フィルム3が強固に固着した状態で光電変換素子片10の切断が行われるから、樹脂基板4の光電変換素子8への光入射面4aに傷が付くことがない。   In this step, since the photoelectric conversion element piece 10 is cut in a state where the resin substrate 4 and the protective film 3 are firmly fixed via the adhesion layer 2b, the light incident surface 4a to the photoelectric conversion element 8 of the resin substrate 4 is cut. Will not be scratched.

図2(b)は、上記したように光電変換素子片10を切断して得られた、個々の光電変換素子片12の内のひとつを示す。
上記のようにして個々に分割された光電変換素子片12の端部に粘着テープを貼って、第2の密着層2bと樹脂基板4の界面を境に分離し、図2(c)に示すような目的とする光電変換装置13を得る。第2の密着層2bを介して樹脂基板4に固着させた保護フィル
ム3が、前工程まで樹脂基板4の光入射面4aを保護していたので、光入射面4aの表面に傷が付くことがない。
FIG. 2B shows one of the individual photoelectric conversion element pieces 12 obtained by cutting the photoelectric conversion element piece 10 as described above.
Adhesive tape is applied to the ends of the photoelectric conversion element pieces 12 that are individually divided as described above, and the boundary between the second adhesion layer 2b and the resin substrate 4 is separated as shown in FIG. The intended photoelectric conversion device 13 is obtained. Since the protective film 3 fixed to the resin substrate 4 through the second adhesion layer 2b protects the light incident surface 4a of the resin substrate 4 until the previous step, the surface of the light incident surface 4a is scratched. There is no.

以上、述べたように、本発明の光電変換装置の製造方法によれば、樹脂基板1から、複数個の光電変換装置13を同時に生産でき、かつ個々の光電変換装置13の光電変換効率を低下させることがなくなる。   As described above, according to the method for manufacturing a photoelectric conversion device of the present invention, a plurality of photoelectric conversion devices 13 can be simultaneously produced from the resin substrate 1 and the photoelectric conversion efficiency of each photoelectric conversion device 13 is lowered. It will not let you.

本発明の光電変換装置の製造方法を示す工程断面図である。It is process sectional drawing which shows the manufacturing method of the photoelectric conversion apparatus of this invention. 図1の続きの工程を示す工程断面図である。FIG. 2 is a process cross-sectional view illustrating a process continued from FIG. 1. 従来の光電変換装置の製造方法を示す工程断面図である。It is process sectional drawing which shows the manufacturing method of the conventional photoelectric conversion apparatus.

符号の説明Explanation of symbols

1 支持基板
2 密着層
2a 第1の密着層
2b 第2の密着層
3 保護フィルム
4 樹脂基板
4a 光入射面
5 透明電極層
6 光電変換層
7 裏面電極層
8 光電変換素子
9 保護膜
10 光電変換素子片
11 支持基板片
12 光電変換素子片
13 光電変換装置
DESCRIPTION OF SYMBOLS 1 Support substrate 2 Adhesion layer 2a 1st adhesion layer 2b 2nd adhesion layer 3 Protective film 4 Resin substrate 4a Light incident surface 5 Transparent electrode layer 6 Photoelectric conversion layer 7 Back surface electrode layer 8 Photoelectric conversion element 9 Protective film 10 Photoelectric conversion Element piece 11 Support substrate piece 12 Photoelectric conversion element piece 13 Photoelectric conversion device

Claims (4)

支持基板上に固着した樹脂基板に光電変換素子を形成した後に、前記支持基板を除去して得られる光電変換装置の製造方法において、
前記支持基板の表面から順に、表面が平滑化された第1の密着層と、樹脂フィルムからなる保護フィルムと、表面が平滑化された第2の密着層とを積層して配置する工程と、
前記第2の密着層の表面に前記樹脂基板を貼り付ける工程と、
前記樹脂基板上に複数個の前記光電変換素子を形成する工程と、
前記第1の密着層と前記保護フィルムとの界面を境に、光電変換素子片と支持基板片とに分離する工程と、
前記光電変換素子片における前記複数個の光電変換素子の外形形状に合わせて、前記保護フィルムと前記第2の密着層を個々に切断する工程と、
前記光電変換素子片から前記光電変換装置を分離する工程と、
を有することを特徴とする光電変換装置の製造方法。
In the method for producing a photoelectric conversion device obtained by removing the support substrate after forming the photoelectric conversion element on the resin substrate fixed on the support substrate,
In order from the surface of the support substrate, a step of laminating and arranging a first adhesion layer whose surface is smoothed, a protective film made of a resin film, and a second adhesion layer whose surface is smoothed;
Attaching the resin substrate to the surface of the second adhesion layer;
Forming a plurality of the photoelectric conversion elements on the resin substrate;
Separating the interface between the first adhesion layer and the protective film into a boundary between the photoelectric conversion element piece and the support substrate piece,
In accordance with the outer shape of the plurality of photoelectric conversion elements in the photoelectric conversion element piece, the step of individually cutting the protective film and the second adhesion layer,
Separating the photoelectric conversion device from the photoelectric conversion element piece;
A process for producing a photoelectric conversion device, comprising:
前記第1の密着層と前記第2の密着層は、ともにシリコーン樹脂材料により形成された樹脂膜であることを特徴とする請求項1に記載の光電変換装置の製造方法。   2. The method of manufacturing a photoelectric conversion device according to claim 1, wherein the first adhesion layer and the second adhesion layer are both resin films formed of a silicone resin material. 前記第1の密着層と前記第2の密着層は、硬化後に所定の軟性を持ち、かつ未硬化状態で表面を平滑とした樹脂層を前記支持基板の表面に形成した後に、この樹脂層を完全に硬化させて得られる膜であることを特徴とする請求項1または2に記載の光電変換装置の製造方法。   The first adhesion layer and the second adhesion layer are formed on the surface of the support substrate after forming a resin layer having a predetermined softness after curing and having a smooth surface in an uncured state. The method for producing a photoelectric conversion device according to claim 1, wherein the film is obtained by completely curing. 前記第1の密着層の表面に前記保護フィルムを貼り付けた後と、前記第2の密着層の表面に前記樹脂基板を貼り付けた後に、それぞれ脱気処理を行うことを特徴とする請求項1から3のいずれか一項に記載の光電変換装置の製造方法。   The deaeration treatment is performed after the protective film is pasted on the surface of the first adhesive layer and after the resin substrate is pasted on the surface of the second adhesive layer, respectively. The manufacturing method of the photoelectric conversion apparatus as described in any one of 1-3.
JP2006080559A 2006-03-23 2006-03-23 Method for manufacturing optoelectric transducer Pending JP2007258428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006080559A JP2007258428A (en) 2006-03-23 2006-03-23 Method for manufacturing optoelectric transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006080559A JP2007258428A (en) 2006-03-23 2006-03-23 Method for manufacturing optoelectric transducer

Publications (1)

Publication Number Publication Date
JP2007258428A true JP2007258428A (en) 2007-10-04

Family

ID=38632367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006080559A Pending JP2007258428A (en) 2006-03-23 2006-03-23 Method for manufacturing optoelectric transducer

Country Status (1)

Country Link
JP (1) JP2007258428A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150372255A1 (en) * 2014-06-19 2015-12-24 Panasonic Intellectual Property Management Co., Ltd. Method for manufacturing electronic device and electronic device manufactured thereby

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150372255A1 (en) * 2014-06-19 2015-12-24 Panasonic Intellectual Property Management Co., Ltd. Method for manufacturing electronic device and electronic device manufactured thereby
US9437839B2 (en) * 2014-06-19 2016-09-06 Panasonic Intellectual Property Management Co., Ltd. Method for manufacturing electronic device and electronic device manufactured thereby

Similar Documents

Publication Publication Date Title
JP5200538B2 (en) Thin glass laminate and method for manufacturing display device using thin glass laminate
EP2535764B1 (en) Substrate tray and manufacturing method of a flexible electronic display device with said substrate tray
WO2011024690A1 (en) Multilayer structure with flexible base material and support, panel for use in electronic device provided with support and production method for panel for use in electronic device
JP2007251080A (en) Fixing method for plastic substrate, circuit substrate, and manufacturing method therefor
JPWO2011036802A1 (en) Solar cell module manufacturing method and solar cell module precursor
CN101504920A (en) Method for forming an electronic device on a flexible metallic substrate and resultant device
JP7063313B2 (en) Laminated board and peeling method
JP2016521247A (en) Glass structure and method of manufacturing and processing glass structure
JP2783918B2 (en) Method for manufacturing photovoltaic device
JPH05315630A (en) Manufacture of flexible thin film solar cell
CN107195658B (en) Flexible substrate and manufacturing method thereof
TWI706505B (en) Mounting of semiconductor-on-diamond wafers for device processing
CN103298615A (en) Method for producing laminate
JP3749015B2 (en) Manufacturing method of solar cell
JP2007258428A (en) Method for manufacturing optoelectric transducer
JP4739772B2 (en) Method for manufacturing photoelectric conversion device
JP3550527B2 (en) Adhesive tape for plastic lens production
JP2005129713A (en) Thin film solar cell and its manufacturing method
CN106783720A (en) A kind of display base plate and preparation method thereof
JP2889719B2 (en) Method for manufacturing photovoltaic device
JP2001060706A (en) Method for manufacture of solar cell module
TW201128476A (en) Flexible touch panel manufacturing method
WO2020019338A1 (en) Display panel, manufacturing method therefor, and display device
JP3216754B2 (en) Manufacturing method of thin film solar cell
JP6365086B2 (en) Method for peeling glass film and method for manufacturing electronic device