JP2007258311A - Varistor - Google Patents

Varistor Download PDF

Info

Publication number
JP2007258311A
JP2007258311A JP2006078295A JP2006078295A JP2007258311A JP 2007258311 A JP2007258311 A JP 2007258311A JP 2006078295 A JP2006078295 A JP 2006078295A JP 2006078295 A JP2006078295 A JP 2006078295A JP 2007258311 A JP2007258311 A JP 2007258311A
Authority
JP
Japan
Prior art keywords
varistor
main
auxiliary electrode
electrode
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006078295A
Other languages
Japanese (ja)
Inventor
Takahide Ogasawara
孝秀 小笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2006078295A priority Critical patent/JP2007258311A/en
Publication of JP2007258311A publication Critical patent/JP2007258311A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance surge voltage absorption effect of an annular ceramic varistor, and to enhance high frequency noise suppression effect. <P>SOLUTION: First through third main electrodes are provided on one major surface 10 of an annular varistor element 1, having a high resistance layer 1b comprising an oxide on the surface of a semiconductor layer 1a, and an annular auxiliary electrode 5 is provided on the other major surface 11. Surge voltage absorption effect and high-frequency noise suppression effect are enhanced, by setting the resistance per unit length of the auxiliary electrode 5 lower than the resistance per unit length of the main electrode. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、小型モータの火花消去用として好適なバリスタに関し、更に詳細には還元再酸化型半導体磁器バリスタ又はこれに類似のバリスタに関する。 The present invention relates to a varistor that is suitable for eliminating sparks in a small motor, and more particularly to a reduced reoxidation type semiconductor porcelain varistor or a similar varistor.

従来の代表的なリング状還元再酸化型半導体磁器バリスタは、チタン酸ストロンチウム(SrTiO3)を主成分とするリング状の還元再酸化型半導体磁器バリスタ素体と、この表面上に設けられた3個の主電極とから成る。 A conventional typical ring-shaped reductive re-oxidation type semiconductor porcelain varistor includes a ring-type reductive re-oxidation type semiconductor porcelain varistor body mainly composed of strontium titanate (SrTiO 3 ), and 3 provided on this surface. And main electrodes.

上記の代表的なリング状バリスタの高い周波数帯域(10kHz 以上)での静電容量の低下を抑制する目的でバリスタ素体の裏面に共通電極(補助電極)を設けることが、特許文献1に開示されている。しかし、バリスタの共通電極(補助電極)は表面上の3個の主電極と同一材料且つ同一厚さに形成されている。また、この特許文献1では、共通電極(補助電極)の抵抗値とサージ電圧の抑制効果との関係について言及されていない。
実開平3−6804号公報
It is disclosed in Patent Document 1 that a common electrode (auxiliary electrode) is provided on the back surface of the varistor element body in order to suppress a decrease in capacitance in a high frequency band (10 kHz or more) of the above typical ring-shaped varistor. Has been. However, the common electrode (auxiliary electrode) of the varistor is formed of the same material and the same thickness as the three main electrodes on the surface. Moreover, in this patent document 1, the relationship between the resistance value of the common electrode (auxiliary electrode) and the surge voltage suppression effect is not mentioned.
Japanese Utility Model Publication No. 3-6804

本発明が解決しようとする課題は、従来のバリスタのサージ電圧抑制効果が必ずしも十分でないことである。 The problem to be solved by the present invention is that the surge voltage suppression effect of a conventional varistor is not necessarily sufficient.

上記課題を解決するための本発明は、互いに対向している一方及び他方の主面を有する半導体層と、前記半導体層の前記一方及び他方の主面を覆っている高抵抗層と、前記半導体層の前記一方の主面上に前記高抵抗層を介して配置された複数の主電極と、前記半導体層の前記他方の主面上に前記高抵抗層を介して配置され且つ前記複数の主電極に対向する部分を有している補助電極とを備え、前記補助電極は前記主電極よりも低い単位長さ当りの抵抗値を有していることを特徴とするバリスタに関わるものである。 The present invention for solving the above-described problems includes a semiconductor layer having one and the other main surfaces facing each other, a high resistance layer covering the one and the other main surfaces of the semiconductor layer, and the semiconductor A plurality of main electrodes disposed on the one main surface of the layer via the high resistance layer; and a plurality of main electrodes disposed on the other main surface of the semiconductor layer via the high resistance layer. An auxiliary electrode having a portion facing the electrode, and the auxiliary electrode has a resistance value per unit length lower than that of the main electrode.

なお、請求項2に示すように、前記補助電極は前記主電極よりも厚く形成されていることが望ましい。
また、請求項3に示すように、前記補助電極は前記主電極よりも導電率の高い材料で形成されていることが望ましい。
また、請求項4に示すように、前記高抵抗層は前記半導体層の側面にも形成され、前記補助電極は前記半導体層の側面の少なくとも一部の上にも前記高抵抗層を介して配置されていることが望ましい。
In addition, as shown in Claim 2, it is desirable that the auxiliary electrode is formed thicker than the main electrode.
According to a third aspect of the present invention, the auxiliary electrode is preferably made of a material having a higher conductivity than the main electrode.
The high resistance layer is also formed on a side surface of the semiconductor layer, and the auxiliary electrode is disposed on at least a part of the side surface of the semiconductor layer via the high resistance layer. It is desirable that

本発明によれば、補助電極の単位長さ当り抵抗値を主電極よりも低くするという簡単な方法でサージ電圧抑制効果を高めることができる。 According to the present invention, the surge voltage suppression effect can be enhanced by a simple method in which the resistance value per unit length of the auxiliary electrode is made lower than that of the main electrode.

次に、図1〜図8を参照して本発明の実施形態を説明する。 Next, an embodiment of the present invention will be described with reference to FIGS.

図1〜図4に示す本発明の実施例1のリング状バリスタは、リング状還元再酸化型半導体磁器バリスタ素体1と、第1、第2及び第3の主電極2,3,4と、補助電極5とから成る。バリスタ素体1は、リング状半導体磁器から成る低い抵抗値の半導体層1aと、この半導体層1aの外周全面、即ち一方の主面6、他方の主面7、外周側の側面8、及び内周側の側面9を覆っている高抵抗層1bとから成る。半導体層1aは電気的に導体とみなせるような低い抵抗を有する。高抵抗層1bは半導体磁器の酸化物層から成り、半導体層1aよりも十分に高い抵抗率を有する。 The ring-shaped varistor of the first embodiment of the present invention shown in FIGS. 1 to 4 includes a ring-shaped reduced reoxidation type semiconductor ceramic varistor element body 1, first, second and third main electrodes 2, 3, 4. And the auxiliary electrode 5. The varistor element body 1 includes a low resistance semiconductor layer 1a made of a ring-shaped semiconductor ceramic, the entire outer periphery of the semiconductor layer 1a, that is, one main surface 6, the other main surface 7, the outer peripheral side surface 8, and the inner And a high resistance layer 1b covering the side surface 9 on the circumferential side. The semiconductor layer 1a has a low resistance that can be regarded as an electrical conductor. The high resistance layer 1b is made of an oxide layer of a semiconductor ceramic and has a sufficiently higher resistivity than the semiconductor layer 1a.

次に、バリスタ素体1の形成方法の1例を説明する。
まず、チタン酸ストロンチウム(SrTiO3)に対して、チタン酸カルシウム(CaTiO3)とチタン酸バリウム(BaTiO3)の内の少なくとも一種を3〜30モル%と、ニオブ(Nb)とランタン(La)とタンタル(Ta)の酸化物粉末の内の少なくとも1種を0.05〜0.50モル%と、銅(Cu)とモリブデン(Mo)とマンガン(Mn)の内の少なくとも1種の酸化物粉末を0.05〜0.50モル%とをそれぞれ添加して全体で100モル%とし、湿式ボールミルにて15時間混合した。
次に、上記の混合物を大気中150℃で乾燥後、バインダとしてPVA(ポリビニルアルコール)を添加し、混合、造粒して原料粉末を得た。
次に、上記のリング状成形体を、窒素(N2)96体積%と水素(H2)4体積%とから成る還元性雰囲気で1350℃にて3時間焼成し、その後大気中で1000℃、3時間の熱処理(再酸化処理)を行ってバリスタ素体1を得た。
Next, an example of a method for forming the varistor element body 1 will be described.
First, 3 to 30 mol% of at least one of calcium titanate (CaTiO 3 ) and barium titanate (BaTiO 3 ), niobium (Nb) and lanthanum (La) with respect to strontium titanate (SrTiO 3 ). And at least one of oxide powders of tantalum (Ta) and 0.05 to 0.50 mol%, and at least one oxide of copper (Cu), molybdenum (Mo), and manganese (Mn) 0.05 to 0.50 mol% of the powder was added to make a total of 100 mol%, and the mixture was mixed in a wet ball mill for 15 hours.
Next, after drying said mixture at 150 degreeC in air | atmosphere, PVA (polyvinyl alcohol) was added as a binder, and it mixed and granulated, and obtained raw material powder.
Next, the above ring-shaped molded body was fired at 1350 ° C. for 3 hours in a reducing atmosphere composed of 96% by volume of nitrogen (N 2 ) and 4% by volume of hydrogen (H 2 ), and then 1000 ° C. in the air. A varistor element body 1 was obtained by heat treatment (reoxidation treatment) for 3 hours.

第1、第2及び第3の主電極2,3,4は導電体層から成り、Ag(銀)77重量%とZn(亜鉛)23重量%とから成る導電性ペーストをバリスタ素体1の一方の主面10上に厚膜印刷し、これを焼付けることによって形成されており、約15μmの厚さを有する。 The first, second and third main electrodes 2, 3 and 4 are made of a conductor layer, and a conductive paste comprising 77% by weight of Ag (silver) and 23% by weight of Zn (zinc) is applied to the varistor element body 1. It is formed by printing a thick film on one main surface 10 and baking it, and has a thickness of about 15 μm.

補助電極5は共通電極又は裏面電極と呼ぶこともできるものであって、第1、第2及び第3の主電極2,3,4に対向する部分を有するようにリング状に形成されている。この補助電極5は導電体層から成り、周知のAg(銀)ペーストをバリスタ素体1の他方の主面11にリング状に厚膜印刷して焼き付けることによって形成されており、第1、第2及び第3の主電極2,3,4よりも厚い例えば20μmの厚さを有する。図4の第1の位置P1と第2の位置P2との間の補助電極5の抵抗値は、約30mΩである。 The auxiliary electrode 5 can also be called a common electrode or a back electrode, and is formed in a ring shape so as to have portions facing the first, second and third main electrodes 2, 3, 4. . The auxiliary electrode 5 is composed of a conductor layer, and is formed by printing a well-known Ag (silver) paste on the other main surface 11 of the varistor element body 1 in a ring shape and baking it. It is thicker than the second and third main electrodes 2, 3, 4, for example, 20 μm. The resistance value of the auxiliary electrode 5 between the first position P1 and the second position P2 in FIG. 4 is about 30 mΩ.

補助電極5は第1〜第3の主電極2〜4よりも導電率の高い材料で形成され且つ第1〜第3の主電極2〜4よりも厚く形成されている。従って、リング状バリスタ素体1の円周方向の補助電極5の単位長さ(例えば1mm)当りの抵抗値は、第1、第2及び第3の主電極2,3,4の円周方向の単位長さ(例えば1mm)当りの抵抗値よりも小さい。 The auxiliary electrode 5 is formed of a material having higher conductivity than the first to third main electrodes 2 to 4 and is formed thicker than the first to third main electrodes 2 to 4. Therefore, the resistance value per unit length (for example, 1 mm) of the auxiliary electrode 5 in the circumferential direction of the ring-shaped varistor element body 1 is the circumferential direction of the first, second and third main electrodes 2, 3, 4. Smaller than the resistance value per unit length (for example, 1 mm).

完成したバリスタを使用する時には、例えば図5に示すように第1及び第2の主電極2,3に半田又は導電性接合材21,22を介して導電性の接続部材23,24を接続し、図5に示されていない第3の主電極4にも同様に半田又は導電性接合材を介して接続部材を接続する。なお、半田又は導電性接合材21,22を使用しないで、接続部材23,24を第1及び第2の主電極2,3に溶接又はボンディングすることもできる。 When using the completed varistor, for example, as shown in FIG. 5, conductive connection members 23 and 24 are connected to the first and second main electrodes 2 and 3 via solder or conductive bonding materials 21 and 22. Similarly, a connection member is connected to the third main electrode 4 not shown in FIG. 5 via solder or a conductive bonding material. The connecting members 23 and 24 can be welded or bonded to the first and second main electrodes 2 and 3 without using the solder or the conductive bonding materials 21 and 22.

図6は図1のバリスタの等価回路である。図5の第1及び第2の端子T1,T2は図1の第1及び第2の主電極2,3に対応している。第1及び第2の主電極2,3を流れる電流の向きはその厚み方向であるので、その厚み方向の抵抗は極めて小さい。従って図6では第1及び第2の主電極2,3の抵抗は無視されている。
図6の第1及び第2の可変抵抗R1,R2は、第1及び第2の主電極2,3と半導体層1aとの間の高抵抗層1bに基づく電圧依存可変抵抗成分を示したものであり、C1、C2はぞれぞれ第1及び第2の可変抵抗R1、R2に並列に存在するコンデンサ成分を示したものである。第3及び第4の可変抵抗R3、R4は、半導体層1aと第1及び第2の主電極2、3に対向している補助電極5の部分との間の高抵抗層1bに基づく電圧依存可変抵抗成分を表したものであり、C3、C4はそれぞれ第3及び第4の可変抵抗R3、R4に並列に存在するコンデンサ成分を示したものである。
第1の抵抗R11は、図5で破線で示す第1の電流通路25における半導体層1aの抵抗である。第2の抵抗R12は、図5で破線で示す第2の電流通路26における補助電極5の抵抗である。本発明では、第2の抵抗R12ができるだけ小さくなるように補助電極5が形成されている。
FIG. 6 is an equivalent circuit of the varistor of FIG. The first and second terminals T1, T2 in FIG. 5 correspond to the first and second main electrodes 2, 3 in FIG. Since the direction of current flowing through the first and second main electrodes 2 and 3 is in the thickness direction, the resistance in the thickness direction is extremely small. Therefore, in FIG. 6, the resistances of the first and second main electrodes 2 and 3 are ignored.
The first and second variable resistors R1 and R2 in FIG. 6 indicate voltage-dependent variable resistance components based on the high resistance layer 1b between the first and second main electrodes 2 and 3 and the semiconductor layer 1a. C1 and C2 indicate capacitor components existing in parallel with the first and second variable resistors R1 and R2, respectively. The third and fourth variable resistors R3, R4 are voltage dependent based on the high resistance layer 1b between the semiconductor layer 1a and the portion of the auxiliary electrode 5 facing the first and second main electrodes 2, 3. The variable resistance component is represented, and C3 and C4 represent capacitor components existing in parallel with the third and fourth variable resistors R3 and R4, respectively.
The first resistor R11 is a resistance of the semiconductor layer 1a in the first current path 25 indicated by a broken line in FIG. The second resistor R12 is a resistance of the auxiliary electrode 5 in the second current path 26 indicated by a broken line in FIG. In the present invention, the auxiliary electrode 5 is formed so that the second resistance R12 is as small as possible.

図5の第1の電流通路25の電流は、図6において第1の端子T1、第1の可変抵抗R1(及びコンデンサC1)、第1の抵抗R11、第2の可変抵抗R2(及びコンデンサC2)及び第2の端子T2の経路で流れる。図5の第2の電流通路26の電流は、図6において第1の端子T1、第1の可変抵抗R1(及びコンデンサC1),第3の可変抵抗R3(及びコンデンサC3)、第2の抵抗R12,第4の可変抵抗R4(及びコンデンサC4)、第2の可変抵抗R2(及びコンデンサC2)及び第2の端子T1の経路で流れる。 The current in the first current path 25 in FIG. 5 is equal to the first terminal T1, the first variable resistor R1 (and the capacitor C1), the first resistor R11, the second variable resistor R2 (and the capacitor C2) in FIG. ) And the second terminal T2. The current in the second current path 26 of FIG. 5 is the same as that of the first terminal T1, the first variable resistor R1 (and the capacitor C1), the third variable resistor R3 (and the capacitor C3), and the second resistor in FIG. R12, the fourth variable resistor R4 (and capacitor C4), the second variable resistor R2 (and capacitor C2), and the second terminal T1 flow.

図7は図1〜図4に示す実施例1のバリスタ及び比較例のバリスタのサージ電圧吸収効果を示す波形図である。初期電圧100Vの状態で図7の波形Aで示す電圧を周知の測定回路で印加した時の実施例1のバリスタ電圧波形はBになる。補助電極5を設けない従来のバリスタのサージ電圧吸収波形はCである。特許文献1と同様に補助電極5の単位長さ当りの抵抗値を第1〜第3の主電極2〜4と同一にした従来のバリスタのサージ電圧吸収波形はDである。図7の波形B,C,Dの比較から明らかなように実施例1に従うバリスタが最も良いサージ電圧吸収効果を有している。
サージ電圧吸収効果を高めるためにバリスタの第1及び第2の端子T1,T2間の抵抗を低くすることが重要である。本発明に従って第2の抵抗R12の値を小さくすると、第1及び第2の端子T1,T2間の抵抗が効果的に小さくなり、サージ電圧吸収効果が向上し、また高周波帯域のノイズ抑制効果も向上する。
サージ電圧吸収効果が大きい実施例1に示すバリスタをモータの火花消去用として使用すると、モータ内のコイルから発生する逆起電力dI/dtを良好に抑制することができ、モータの長寿命化、高い周波数でのモータの低ノイズ化、モータから発生するインパルスノイズの低減化を図ることができる。
FIG. 7 is a waveform diagram showing the surge voltage absorption effect of the varistor of Example 1 and the varistor of the comparative example shown in FIGS. The varistor voltage waveform of Example 1 when the voltage shown by the waveform A in FIG. The surge voltage absorption waveform of a conventional varistor without the auxiliary electrode 5 is C. As in Patent Document 1, the surge voltage absorption waveform of a conventional varistor in which the resistance value per unit length of the auxiliary electrode 5 is the same as that of the first to third main electrodes 2 to 4 is D. As is clear from the comparison of the waveforms B, C, and D in FIG. 7, the varistor according to Example 1 has the best surge voltage absorption effect.
In order to enhance the surge voltage absorption effect, it is important to reduce the resistance between the first and second terminals T1, T2 of the varistor. When the value of the second resistor R12 is reduced according to the present invention, the resistance between the first and second terminals T1 and T2 is effectively reduced, the surge voltage absorption effect is improved, and the noise suppression effect in the high frequency band is also achieved. improves.
When the varistor shown in Example 1 having a large surge voltage absorption effect is used for eliminating the sparks of the motor, the back electromotive force dI / dt generated from the coil in the motor can be well suppressed, and the life of the motor can be extended. It is possible to reduce the noise of the motor at a high frequency and to reduce the impulse noise generated from the motor.

次に、図8を参照して実施例2に従うバリスタを説明する。但し、図8において図1と実質的に同一の部分には同一の符号を付してその説明を省略する。 Next, a varistor according to the second embodiment will be described with reference to FIG. However, in FIG. 8, parts that are substantially the same as those in FIG.

図8のバリスタは変形された補助電極(裏面電極)5aを有する。この補助電極5aは、バリスタ素体1の他方の主面11のみでなく、外周側側面12にも設けられている。従って、図8の補助電極5aの面積は、図1の補助電極5の面積よりも大きい。この結果、図6の第3及び第4のコンデンサC3、C4に対応するものの容量が大きくなり、且つ図6の第2の抵抗R12に対応するものの値が小さくなり、サージ電圧吸収効果が向上する。 The varistor of FIG. 8 has a modified auxiliary electrode (back electrode) 5a. The auxiliary electrode 5 a is provided not only on the other main surface 11 of the varistor element body 1 but also on the outer peripheral side surface 12. Therefore, the area of the auxiliary electrode 5a in FIG. 8 is larger than the area of the auxiliary electrode 5 in FIG. As a result, the capacitance corresponding to the third and fourth capacitors C3 and C4 in FIG. 6 increases, and the value corresponding to the second resistor R12 in FIG. 6 decreases, thereby improving the surge voltage absorption effect. .

本発明は上述の実施例に限定されるものでなく、例えば次の変形が可能なものである。
(1) 実施例1及び実施例2では、補助電極5,5aの厚みと材料との両方を第1〜第3の主電極2〜4と変えることによって単位長さ当りの抵抗値を低減させたが、厚みのみ又は材料のみを変えて単位長さ当りの抵抗値を変えることができる。厚みによって抵抗値を変える場合には、第1〜第3の主電極2〜4の厚みを3〜10μm、補助電極5,5aの厚みを15〜30μmにすることが望ましい。
(2) 実施例1及び実施例2では、第1〜第3の主電極2〜4をAg(銀)77重量%とZn(亜鉛)23重量%とからなる導電ペーストの印刷・焼き付けにより形成する共に補助電極5,5aをAg(銀)ペーストの印刷・焼き付けにより形成したが、逆に、第1〜第3の主電極2〜4をAg(銀)ペーストの焼き付けにより形成し、補助電極5,5aをAg(銀)77重量%とZn(亜鉛)23重量%とからなる導電ペーストの印刷・焼き付けにより形成してもよい。この場合に、第1〜第3の主電極2〜4の厚みを例えば15μm、補助電極5,5aの厚みを例えば50μmとすることにより、補助電極5,5aの単位長さ当りの抵抗値を第1〜第3の主電極2〜4の単位長さ当りの抵抗値よりも低くし、上記実施例1,2と同様にサージ電圧吸収効果を得る。
(3) 第1〜第3の主電極2〜4と補助電極5,5aとの両方をAg(銀)77重量%とZn(亜鉛)23重量%の混合物、又はCu(銅)、又はAg(銀)で形成することができる。
(4) 第1〜第3の主電極2〜4をCu電極とし、補助電極5,5aをAg電極とすることができる。
(5) 補助電極5,5aの第1及び第2の位置P1,P2間の抵抗値を好ましくは10〜40mΩの範囲で調整することができる。
(6) 図2に示すバリスタ素体1の内周側側面13に補助電極5を延在させることもできる。
(7)リング状半導体層1aの外周側側面8と内周側側面9とのいずれか一方又は両方の上の高抵抗層1bを除去することができる。
(8)バリスタ素体1の一方の主面10上に2つの主電極のみ、又は3つよりも多い主電極を設けることができる。
The present invention is not limited to the above-described embodiments, and for example, the following modifications are possible.
(1) In Example 1 and Example 2, the resistance value per unit length is reduced by changing both the thickness and material of the auxiliary electrodes 5 and 5a to the first to third main electrodes 2 to 4. However, the resistance value per unit length can be changed by changing only the thickness or only the material. When the resistance value is changed depending on the thickness, it is desirable that the thickness of the first to third main electrodes 2 to 4 is 3 to 10 μm, and the thickness of the auxiliary electrodes 5 and 5 a is 15 to 30 μm.
(2) In Example 1 and Example 2, the first to third main electrodes 2 to 4 are formed by printing and baking a conductive paste composed of 77% by weight of Ag (silver) and 23% by weight of Zn (zinc). At the same time, the auxiliary electrodes 5 and 5a are formed by printing and baking Ag (silver) paste, but the first to third main electrodes 2 to 4 are formed by baking Ag (silver) paste. 5,5a may be formed by printing and baking a conductive paste composed of 77% by weight of Ag (silver) and 23% by weight of Zn (zinc). In this case, by setting the thickness of the first to third main electrodes 2 to 4 to 15 μm and the thickness of the auxiliary electrodes 5 and 5 a to 50 μm, for example, the resistance value per unit length of the auxiliary electrodes 5 and 5 a can be reduced. The resistance value per unit length of the first to third main electrodes 2 to 4 is set lower than that of the first to third main electrodes 2 to 4, and the surge voltage absorbing effect is obtained as in the first and second embodiments.
(3) A mixture of 77% by weight of Ag (silver) and 23% by weight of Zn (zinc), Cu (copper), or Ag for both the first to third main electrodes 2 to 4 and the auxiliary electrodes 5 and 5a (Silver).
(4) The first to third main electrodes 2 to 4 can be Cu electrodes, and the auxiliary electrodes 5 and 5a can be Ag electrodes.
(5) The resistance value between the first and second positions P1, P2 of the auxiliary electrodes 5, 5a can be adjusted preferably in the range of 10 to 40 mΩ.
(6) The auxiliary electrode 5 can be extended to the inner peripheral side surface 13 of the varistor element body 1 shown in FIG.
(7) The high resistance layer 1b on either or both of the outer peripheral side surface 8 and the inner peripheral side surface 9 of the ring-shaped semiconductor layer 1a can be removed.
(8) Only two main electrodes or more than three main electrodes can be provided on one main surface 10 of the varistor element body 1.

本発明の実施例1に従うリング状還元再酸化型半導体磁器バリスタを図2のA−A線部分で示す断面図である。It is sectional drawing which shows the ring-shaped reduction | restoration re-oxidation type semiconductor ceramic varistor according to Example 1 of this invention in the AA line part of FIG. 実施例1のバリスタを図2のB−B線で示す断面図である。It is sectional drawing which shows the varistor of Example 1 by the BB line of FIG. 実施例1のバリスタを示す平面図である。1 is a plan view showing a varistor of Example 1. FIG. 図3のバリスタの底面図である。It is a bottom view of the varistor of FIG. 図1のバリスタを外部回路に接続した状態を示す断面図である。It is sectional drawing which shows the state which connected the varistor of FIG. 1 to the external circuit. 実施例1のバリスタの概略的な等価回路図である。1 is a schematic equivalent circuit diagram of a varistor of Example 1. FIG. 実施例1のバリスタ及び比較例のバリスタのサージ電圧吸収効果を示す波形図である。It is a wave form diagram which shows the surge voltage absorption effect of the varistor of Example 1, and the varistor of a comparative example. 実施例2のバリスタを図1と同様に示す断面図である。It is sectional drawing which shows the varistor of Example 2 similarly to FIG.

符号の説明Explanation of symbols

1 バリスタ素体
1a 半導体層
1b 高抵抗層
2,3,4 第1、第2及び第3の主電極
5,5a 補助電極
DESCRIPTION OF SYMBOLS 1 Varistor element | base_body 1a Semiconductor layer 1b High resistance layer 2,3,4 The 1st, 2nd and 3rd main electrode 5,5a Auxiliary electrode

Claims (4)

互いに対向している一方及び他方の主面を有する半導体層と、前記半導体層の前記一方及び他方の主面を覆っている高抵抗層と、前記半導体層の前記一方の主面上に前記高抵抗層を介して配置された複数の主電極と、前記半導体層の前記他方の主面上に前記高抵抗層を介して配置され且つ前記複数の主電極に対向する部分を有している補助電極とを備え、
前記補助電極は前記主電極よりも低い単位長さ当りの抵抗値を有していることを特徴とするバリスタ。
A semiconductor layer having one and other main surfaces facing each other; a high resistance layer covering the one and other main surfaces of the semiconductor layer; and the high layer on the one main surface of the semiconductor layer. Auxiliary having a plurality of main electrodes arranged via a resistance layer and a portion arranged via the high-resistance layer on the other main surface of the semiconductor layer and facing the plurality of main electrodes With electrodes,
The auxiliary electrode has a resistance value per unit length lower than that of the main electrode.
前記補助電極は前記主電極よりも厚く形成されていることを特徴とする請求項1記載のバリスタ。 The varistor according to claim 1, wherein the auxiliary electrode is formed thicker than the main electrode. 前記補助電極は前記主電極よりも導電率の高い材料で形成されていることを特徴とする請求項1又は2記載のバリスタ。 The varistor according to claim 1, wherein the auxiliary electrode is made of a material having a higher conductivity than the main electrode. 前記高抵抗層は前記半導体層の側面にも形成され、前記補助電極は前記半導体層の側面の少なくとも一部の上にも前記高抵抗層を介して配置されていることを特徴とする請求項1又は2又は3記載のバリスタ。 The high resistance layer is formed also on a side surface of the semiconductor layer, and the auxiliary electrode is disposed on at least a part of the side surface of the semiconductor layer via the high resistance layer. The varistor according to 1 or 2 or 3.
JP2006078295A 2006-03-22 2006-03-22 Varistor Withdrawn JP2007258311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006078295A JP2007258311A (en) 2006-03-22 2006-03-22 Varistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006078295A JP2007258311A (en) 2006-03-22 2006-03-22 Varistor

Publications (1)

Publication Number Publication Date
JP2007258311A true JP2007258311A (en) 2007-10-04

Family

ID=38632264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006078295A Withdrawn JP2007258311A (en) 2006-03-22 2006-03-22 Varistor

Country Status (1)

Country Link
JP (1) JP2007258311A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112007002342T5 (en) 2006-10-11 2009-11-05 Mitsubishi Materials Corp. Electrode forming composition and method of forming the electrode using the composition
US8531068B2 (en) 2009-12-17 2013-09-10 Denso Corporation Rotation sensor and direct current motor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62197287U (en) * 1986-06-05 1987-12-15
JPH036804U (en) * 1988-10-31 1991-01-23
JP2005340301A (en) * 2004-05-24 2005-12-08 Tdk Corp Voltage-dependent nonlinear resistor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62197287U (en) * 1986-06-05 1987-12-15
JPH036804U (en) * 1988-10-31 1991-01-23
JP2005340301A (en) * 2004-05-24 2005-12-08 Tdk Corp Voltage-dependent nonlinear resistor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112007002342T5 (en) 2006-10-11 2009-11-05 Mitsubishi Materials Corp. Electrode forming composition and method of forming the electrode using the composition
US8531068B2 (en) 2009-12-17 2013-09-10 Denso Corporation Rotation sensor and direct current motor

Similar Documents

Publication Publication Date Title
JP4246716B2 (en) Multilayer filter
JP2009027148A (en) Laminated ceramic capacitor
JP2007195060A (en) Laminated filter
JP2007091539A (en) NONMAGNETIC Zn FERRITE AND COMPOUNDED MULTILAYER ELECTRONIC COMPONENT USING IT
JP2020506554A (en) Integrated capacitor filter and integrated capacitor filter having varistor function
JP2005260137A (en) Antistatic electricity component
JP2007258311A (en) Varistor
JP2024073627A (en) Low inductance component
JP2004022976A (en) Stacked voltage nonlinear resistor and method of manufacturing the same
JP3832071B2 (en) Multilayer varistor
JP2870317B2 (en) Manufacturing method of ceramic porcelain element
JP5569102B2 (en) Laminated positive temperature coefficient thermistor and laminated positive temperature coefficient thermistor manufacturing method
JPH043445Y2 (en)
TWI853922B (en) Low inductance component and method for forming a low inductance component
JP4839762B2 (en) Surge absorber
JP2022541088A (en) Integrated components including capacitors and discrete varistors
JPH07220908A (en) Laminated nonlinear resistor
KR100332430B1 (en) Varistor with low inductance, varistor-capacitor combination chip and fabricating method therefor
KR100372848B1 (en) Integrated chip part with low inductance for high frequency and fabricating method therefor
JP5375467B2 (en) Chip-type ceramic electronic components
JP3240689B2 (en) Laminated semiconductor porcelain composition
JP2007097118A (en) Laminated lc filter
JPH09134807A (en) Voltage-dependent nonlinear resistor ceramic device
CN119361324A (en) Integrated components including capacitors and discrete varistors
JP2006216635A (en) Composite laminated electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100929

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20101101