JP2007258036A - Lithium battery - Google Patents

Lithium battery Download PDF

Info

Publication number
JP2007258036A
JP2007258036A JP2006082045A JP2006082045A JP2007258036A JP 2007258036 A JP2007258036 A JP 2007258036A JP 2006082045 A JP2006082045 A JP 2006082045A JP 2006082045 A JP2006082045 A JP 2006082045A JP 2007258036 A JP2007258036 A JP 2007258036A
Authority
JP
Japan
Prior art keywords
lithium
negative electrode
lithium battery
positive electrode
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006082045A
Other languages
Japanese (ja)
Inventor
Seiji Yoshimura
精司 吉村
Hiroyuki Fujimoto
洋行 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2006082045A priority Critical patent/JP2007258036A/en
Publication of JP2007258036A publication Critical patent/JP2007258036A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • Y02E60/122

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a lithium battery in which a lithium surface in a negative electrode is covered by nickel dissolved from Li<SB>x</SB>NiO<SB>2</SB>of a positive electrode during storage, in which reduction of electric discharge of lithium from the negative electrode is prevented, in which rise of internal resistance during storage is suppressed, and which is superior in storage characteristics in a lithium battery in which Li<SB>x</SB>NiO<SB>2</SB>is used as an active material of a positive electrode. <P>SOLUTION: In the lithium battery provided with the positive electrode 1, the negative electrode 2, and a nonaqueous electrolytic solution in which a solute is dissolved in a nonaqueous solvent, a lithium nickel complex oxide expressed by a general formula Li<SB>x</SB>NiO<SB>2</SB>(in the formula, x satisfies a condition of 0.1≤x≤0.5) is used as the active material of the positive electrode, and a lithium alloy containing at least aluminum is used as the active material of the negative electrode. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、正極と、負極と、非水系溶媒に溶質が溶解された非水電解液とを備えたリチウム電池に係り、その正極及び負極を改善して、保存時にリチウム電池の内部抵抗が上昇するのを抑制し、保存特性に優れたリチウム電池が得られるようにした点に特徴をものである。   The present invention relates to a lithium battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte in which a solute is dissolved in a non-aqueous solvent. The positive electrode and the negative electrode are improved to increase the internal resistance of the lithium battery during storage. This is characterized in that a lithium battery excellent in storage characteristics can be obtained.

近年、様々な機器の電源としてリチウム電池が使用されるようになり、保存特性の高いリチウム電池が要望されている。   In recent years, lithium batteries have been used as a power source for various devices, and lithium batteries having high storage characteristics have been demanded.

このため、近年においては、リチウム電池における正極の活物質に、ある程度安定で保存中に非水電解液との反応が少ないLiNiO2を用いることが提案されている(例えば、非特許文献1参照。)。 For this reason, in recent years, it has been proposed to use Li x NiO 2 that is stable to some extent and has little reaction with the nonaqueous electrolyte during storage (for example, Non-Patent Document 1). reference.).

しかし、このように正極の活物質にLiNiO2を用いたリチウム電池においても、このリチウム電池を保存すると、上記の正極におけるLiNiO2からニッケルが次第に非水電解液中に溶解し、このように溶解したニッケルが負極におけるリチウムの表面に析出して負極を被覆するようになり、これにより負極におけるリチウムの放電が適切に行えなくなって、保存後のリチウム電池の内部抵抗が上昇し、保存特性が悪くなるという問題があった。
Journal of Power Sources,81−82(1999)401−405
However, even in a lithium battery using Li x NiO 2 as the positive electrode active material in this way, when this lithium battery is stored, nickel gradually dissolves in the non-aqueous electrolyte from Li x NiO 2 in the positive electrode, The nickel thus dissolved is deposited on the surface of lithium in the negative electrode to cover the negative electrode, thereby making it impossible to properly discharge lithium in the negative electrode, increasing the internal resistance of the lithium battery after storage, There was a problem that storage characteristics deteriorated.
Journal of Power Sources, 81-82 (1999) 401-405.

本発明は、正極と、負極と、非水系溶媒に溶質が溶解された非水電解液とを備えたリチウム電池において、正極の活物質にLiNiO2を用いた場合における上記のような問題を解決することを課題とするものであり、保存中に正極における上記のLiNiO2から溶解したニッケルによって負極におけるリチウムの表面が被覆されるのを抑制し、負極におけるリチウムの放電が低下するのを防止し、保存時にリチウム電池の内部抵抗が上昇するのを抑制して、保存特性に優れたリチウム電池が得られるようにすることを課題とするものである。 The present invention is a lithium battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte solution in which a solute is dissolved in a non-aqueous solvent, and the above-described problem when Li x NiO 2 is used as an active material of the positive electrode. In this case, the surface of lithium in the negative electrode is prevented from being covered with nickel dissolved from the above Li x NiO 2 in the positive electrode during storage, and the discharge of lithium in the negative electrode is reduced. It is an object of the present invention to prevent a lithium battery from being increased and to suppress an increase in internal resistance of the lithium battery during storage so that a lithium battery having excellent storage characteristics can be obtained.

本発明においては、上記のような課題を解決するため、正極と、負極と、非水系溶媒に溶質が溶解された非水電解液とを備えたリチウム電池において、上記の正極の活物質に、一般式LiNiO2(式中、xは0.1≦x≦0.5の条件を満たす。)で表されるリチウムニッケル複合酸化物を用いると共に、上記の負極の活物質に、少なくともアルミニウムを含有するリチウム合金を用いた。 In the present invention, in order to solve the above problems, in a lithium battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte solution in which a solute is dissolved in a non-aqueous solvent, A lithium nickel composite oxide represented by the general formula Li x NiO 2 (where x satisfies the condition 0.1 ≦ x ≦ 0.5) is used, and at least aluminum is used as the negative electrode active material. A lithium alloy containing was used.

そして、このように正極の活物質に上記のLiNiO2を用いると共に、負極の活物質に少なくともアルミニウムを含有するリチウム合金を用いると、このリチウム電池を保存した場合において、正極におけるLiNiO2からニッケルが次第に非水電解液中に溶解しても、このように溶解したニッケルが負極のリチウム合金に含まれるアルミニウムと結合し、負極におけるリチウムの表面がニッケルで被覆されるのが防止されるようになる。 When the above Li x NiO 2 is used for the positive electrode active material and a lithium alloy containing at least aluminum is used for the negative electrode active material, the Li x NiO in the positive electrode can be obtained when the lithium battery is stored. 2 Even if nickel gradually dissolves in the non-aqueous electrolyte, the nickel thus dissolved is bonded to the aluminum contained in the lithium alloy of the negative electrode, preventing the surface of lithium in the negative electrode from being coated with nickel. Become so.

ここで、正極の活物質に用いるLiNiO2において、xの値が0.1≦x≦0.5の条件を満たすようにしたのは、xの値が0.1未満であるLiNiO2は不安定で分解されやすい一方、xの値が0.5を超えるLiNiO2を用いた場合には、充分な放電容量が得られなくなるためである。 Here, in the Li x NiO 2 is used as the active material of the positive electrode, the value of x is the condition is satisfied of 0.1 ≦ x ≦ 0.5, the value of x is less than 0.1 Li x This is because NiO 2 is unstable and easily decomposed, whereas when Li x NiO 2 having an x value exceeding 0.5 is used, a sufficient discharge capacity cannot be obtained.

また、上記のリチウム電池において、負極の活物質である上記のリチウム合金に含有させるアルミニウムの量については、その量が少ないと、LiNiO2から溶解したニッケルがアルミニウムに充分に結合されなくて、ニッケルが負極におけるリチウムの表面を被覆するようになる一方、その量が多くなりすぎると、ニッケルと結合したアルミニウムの部分が多くなり、何れの場合においても、負極におけるリチウムの放電が抑制されるようになる。このため、リチウム合金に含有させるアルミニウムの量を、好ましくは0.01〜5重量%の範囲、より好ましくは0.05〜2重量%の範囲になるようにする。 In addition, in the above lithium battery, the amount of aluminum contained in the lithium alloy as the negative electrode active material, when the amount is small, nickel dissolved from Li x NiO 2 is not sufficiently bonded to the aluminum. In addition, while nickel comes to cover the surface of lithium in the negative electrode, if the amount becomes too large, the portion of aluminum bonded to nickel increases, and in any case, lithium discharge in the negative electrode is suppressed. It becomes like this. For this reason, the amount of aluminum contained in the lithium alloy is preferably in the range of 0.01 to 5% by weight, more preferably in the range of 0.05 to 2% by weight.

また、本発明のリチウム電池においては、上記の非水電解液における溶質として、一般に使用されているものを用いることができ、例えば、LiPF6,LiBF4,LiCF3SO3,LiN(CF3SO22,LiN(C25SO22,LiN(CF3SO2)(C49SO2),LiC(CF3SO23,LiC(C25SO23,LiAsF6,LiClO4,Li210Cl10,Li212Cl12や、これらの混合物等を用いることができる。特に、溶質としてトリフルオロメタンスルホン酸リチウムLiCF3SO3を使用すると、上記の正極からニッケルが非水電解液中に溶解しても、溶解したニッケルがこの溶質における陰イオンとNi(CF3SO32を形成し、このNi(CF3SO32の溶解度が低いため、ニッケルが負極に移動せずに、Ni(CF3SO32の状態で正極の付近に析出し、正極から溶解したニッケルによって負極におけるリチウムの表面が被覆されるのが一層抑制される。 In the lithium battery of the present invention, those commonly used as the solute in the non-aqueous electrolyte can be used. For example, LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2) 2, LiN (C 2 F 5 SO 2) 2, LiN (CF 3 SO 2) (C 4 F 9 SO 2), LiC (CF 3 SO 2) 3, LiC (C 2 F 5 SO 2) 3 LiAsF 6 , LiClO 4 , Li 2 B 10 Cl 10 , Li 2 B 12 Cl 12 , a mixture thereof, or the like can be used. In particular, when lithium trifluoromethanesulfonate LiCF 3 SO 3 is used as a solute, even if nickel is dissolved in the non-aqueous electrolyte from the above positive electrode, the dissolved nickel is dissolved in the anion and Ni (CF 3 SO 3 in the solute. ) 2 and the solubility of this Ni (CF 3 SO 3 ) 2 is low, so that nickel does not move to the negative electrode but precipitates in the vicinity of the positive electrode in the state of Ni (CF 3 SO 3 ) 2 , It is further suppressed that the surface of lithium in the negative electrode is covered with the dissolved nickel.

また、上記の非水電解液における非水系溶媒としても、一般に使用されているものを用いることかでき、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等の環状カーボネートや、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート等の鎖状カーボネートや、1,2−ジメトキシエタン、1,2−ジエトキシエタン等のエーテル系溶媒や、これらの混合溶媒を用いることができる。特に、非水系溶媒として、エチレンカーボネートと1,2−ジメトキシエタンとの混合溶媒を用いると、上記のNi(CF3SO32の溶解度がさらに低くなり、正極から溶解したニッケルが負極に移動するのが一層抑制され、負極におけるリチウムの表面が正極から溶解したニッケルによって被覆されるのがさらに抑制されるようになる。 Further, as the non-aqueous solvent in the non-aqueous electrolyte, those generally used can be used, for example, cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, ethyl methyl carbonate, A chain carbonate such as diethyl carbonate, an ether solvent such as 1,2-dimethoxyethane, 1,2-diethoxyethane, or a mixed solvent thereof can be used. In particular, when a mixed solvent of ethylene carbonate and 1,2-dimethoxyethane is used as a non-aqueous solvent, the solubility of Ni (CF 3 SO 3 ) 2 is further lowered, and nickel dissolved from the positive electrode moves to the negative electrode. Thus, the lithium surface of the negative electrode is further suppressed from being covered with nickel dissolved from the positive electrode.

本発明のリチウム電池においては、上記のように正極の活物質に一般式LiNiO2(式中、xは0.1≦x≦0.5の条件を満たす。)で表されるリチウムニッケル複合酸化物を用いると共に、負極の活物質に少なくともアルミニウムを含有するリチウム合金を用いたため、このリチウム電池を保存した場合において、正極におけるLiNiO2からニッケルが次第に非水電解液中に溶解しても、このように溶解したニッケルが負極のリチウム合金に含まれるアルミニウムと結合して、負極におけるリチウムの表面がニッケルで被覆されるのが防止されるようになる。 In the lithium battery of the present invention, the lithium nickel represented by the general formula Li x NiO 2 (where x satisfies the condition of 0.1 ≦ x ≦ 0.5) as the positive electrode active material as described above. Since a lithium alloy containing at least aluminum was used as the negative electrode active material while using the composite oxide, when this lithium battery was stored, nickel gradually dissolved in the non-aqueous electrolyte from Li x NiO 2 in the positive electrode. However, the nickel dissolved in this way is bonded to the aluminum contained in the lithium alloy of the negative electrode, and the surface of lithium in the negative electrode is prevented from being coated with nickel.

この結果、本発明のリチウム電池においては、負極におけるリチウムの放電がニッケルの被覆によって低下するのが抑制され、保存後のリチウム電池の内部抵抗が上昇するのが防止されて、保存特性に優れたリチウム電池が得られるようになる。   As a result, in the lithium battery of the present invention, the lithium discharge in the negative electrode is suppressed from being reduced by the nickel coating, and the internal resistance of the lithium battery after storage is prevented from increasing, and the storage characteristics are excellent. A lithium battery can be obtained.

以下、この発明に係るリチウム電池について実施例を挙げて具体的に説明すると共に、この実施例に係るリチウム電池においては、保存後に内部抵抗が上昇するのが抑制されて、保存特性が向上することを、比較例を挙げて明らかにする。なお、本発明のリチウム電池は下記の実施例に示したものに限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施できるものである。   Hereinafter, the lithium battery according to the present invention will be described in detail with reference to examples, and in the lithium battery according to this example, the increase in internal resistance after storage is suppressed and storage characteristics are improved. Is clarified with a comparative example. The lithium battery of the present invention is not limited to those shown in the following examples, and can be implemented with appropriate modifications within a range not changing the gist thereof.

(実施例1)
実施例1においては、下記のようにして作製した負極と正極と非水電解液とを用いるようにした。
Example 1
In Example 1, a negative electrode, a positive electrode, and a nonaqueous electrolytic solution prepared as described below were used.

[正極の作製]
正極を作製するにあたっては、硫酸を用いてLiNiO2粉末からリチウムを浸出させ、Li0.1NiO2粉末からなる正極活物質を得た。
[Production of positive electrode]
In producing the positive electrode, lithium was leached from the LiNiO 2 powder using sulfuric acid to obtain a positive electrode active material made of Li 0.1 NiO 2 powder.

そして、このLi0.1NiO2粉末からなる正極活物質と、導電剤のカーボンブラック粉末と、結着剤のフッ素樹脂粉末とを85:10:5の重量比で混合させて正極合剤を調製した。そして、この正極合剤を円板状に鋳型成型し、真空中において250℃で2時間乾燥させて、正極を作製した。 Then, a positive electrode mixture was prepared by mixing the positive electrode active material composed of this Li 0.1 NiO 2 powder, the carbon black powder of the conductive agent, and the fluororesin powder of the binder at a weight ratio of 85: 10: 5. . The positive electrode mixture was cast into a disk shape and dried in a vacuum at 250 ° C. for 2 hours to produce a positive electrode.

[負極の作製]
負極を作製するにあたっては、アルミニウムが0.01重量%含有されたLi−Al合金の板材を、円板状に打ち抜いて負極を作製した。
[Production of negative electrode]
In producing the negative electrode, a Li—Al alloy plate material containing 0.01% by weight of aluminum was punched into a disc shape to produce a negative electrode.

[非水電解液の作製]
非水電解液を作製するにあたっては、エチレンカーボネート(EC)と、1,2−ジメトキシエタン(DME)とを1:1の体積比で混合させた混合溶媒に、溶質としてトリフルオロメタンスルホン酸リチウムLiCF3SO3を1モル/リットル溶解させて、非水電解液を作製した。
[Preparation of non-aqueous electrolyte]
In preparing the non-aqueous electrolyte, lithium trifluoromethanesulfonate LiCF as a solute in a mixed solvent in which ethylene carbonate (EC) and 1,2-dimethoxyethane (DME) were mixed at a volume ratio of 1: 1. 3 SO 3 was dissolved at 1 mol / liter to prepare a non-aqueous electrolyte.

[電池の作製]
電池を作製するにあたっては、図1に示すように、上記のようにして作製した正極1と負極2との間に、上記の非水電解液を含浸させたポリプロピレン製の不織布からなるセパレータ3を介在させ、これらを正極缶4aと負極缶4bとで形成される電池ケース4内に収容させ、上記の正極1を正極集電体1aを介して正極缶4aに接続させる一方、上記の負極2を負極集電体2aを介して負極缶4bに接続させ、この正極缶4aと負極缶4bとをポリプロピレン製の絶縁パッキン5によって電気的に絶縁させて、直径が24mm、厚さが3mmになった扁平なコイン型の実施例1のリチウム電池を得た。
[Production of battery]
In producing a battery, as shown in FIG. 1, a separator 3 made of a polypropylene nonwoven fabric impregnated with the above non-aqueous electrolyte is interposed between the positive electrode 1 and the negative electrode 2 produced as described above. The positive electrode 1 is connected to the positive electrode can 4a via the positive electrode current collector 1a, while the negative electrode 2 is connected to the positive electrode can 1a through the positive electrode current collector 1a. Is connected to the negative electrode can 4b through the negative electrode current collector 2a, and the positive electrode can 4a and the negative electrode can 4b are electrically insulated by the insulating packing 5 made of polypropylene, so that the diameter becomes 24 mm and the thickness becomes 3 mm. A flat coin-type lithium battery of Example 1 was obtained.

(実施例2〜5)
実施例2〜5においては、上記の実施例1のものと、負極に用いるLi−Al合金だけを変更し、それ以外は、上記の実施例1の場合と同様にして、実施例2〜5の各リチウム電池を作製した。
(Examples 2 to 5)
In Examples 2-5, only the Li-Al alloy used for the negative electrode and the Lithium-Al alloy used for the negative electrode were changed, and other than that, Examples 2-5 were performed in the same manner as in Example 1 above. Each lithium battery was prepared.

ここで、上記のLi−Al合金として、実施例2ではアルミニウムが0.05重量%含有されたLi−Al合金を、実施例3ではアルミニウムが0.2重量%含有されたLi−Al合金を、実施例4ではアルミニウムが2重量%含有されたLi−Al合金を、実施例5ではアルミニウムが5重量%含有されたLi−Al合金を用いた。   Here, as the Li—Al alloy, in Example 2, an Li—Al alloy containing 0.05 wt% aluminum was used, and in Example 3, an Li—Al alloy containing 0.2 wt% aluminum was used. In Example 4, a Li—Al alloy containing 2% by weight of aluminum was used, and in Example 5, a Li—Al alloy containing 5% by weight of aluminum was used.

(比較例1)
比較例1においては、その負極にアルミニウムが含有されていないLi金属を使用し、それ以外は、上記の実施例1の場合と同様にして、比較例1のリチウム電池を作製した。
(Comparative Example 1)
In Comparative Example 1, a lithium battery of Comparative Example 1 was produced in the same manner as in Example 1 except that Li metal containing no aluminum was used for the negative electrode.

そして、上記のようにして作製した直後の実施例1〜5及び比較例1の各リチウム電池に、それぞれ1mV,1kHzの交流電圧を印加し、その時の電流を測定して、各リチウム電池の内部抵抗を算出した結果、何れのリチウム電池も内部抵抗が約20Ωであった。   Then, an alternating voltage of 1 mV and 1 kHz was applied to each of the lithium batteries of Examples 1 to 5 and Comparative Example 1 immediately after being produced as described above, and the current at that time was measured to determine the inside of each lithium battery. As a result of calculating the resistance, all lithium batteries had an internal resistance of about 20Ω.

次に、上記のようにして作製した実施例1〜5及び比較例1の各リチウム電池を、それぞれ80℃の温度雰囲気中において1ヶ月間保存し、その後、上記のように1mV,1kHzの交流電圧を印加し、その時の電流を測定して、保存後における各リチウム電池の内部抵抗を算出し、その結果を下記の表1に示した。   Next, each of the lithium batteries of Examples 1 to 5 and Comparative Example 1 manufactured as described above was stored in a temperature atmosphere of 80 ° C. for 1 month, and then 1 mV and 1 kHz of alternating current as described above. A voltage was applied, the current at that time was measured, the internal resistance of each lithium battery after storage was calculated, and the results are shown in Table 1 below.

Figure 2007258036
Figure 2007258036

この結果、負極にアルミニウムが含有されたLi−Al合金を用いた実施例1〜5の各リチウム電池は、負極にアルミニウムが含有されていないLi金属を用いた比較例1のリチウム電池に比べて、保存後の内部抵抗が大きく減少しており、リチウム電池の保存特性が大幅に改善されていた。特に、アルミニウムが0.05〜2重量%の範囲で含有されたLi−Al合金を用いた実施例2〜4の各リチウム電池においては、保存後の内部抵抗が60Ω未満になっており、リチウム電池の保存特性がさらに改善されていた。   As a result, each of the lithium batteries of Examples 1 to 5 using the Li—Al alloy containing aluminum in the negative electrode was compared with the lithium battery of Comparative Example 1 using Li metal containing no aluminum in the negative electrode. The internal resistance after storage was greatly reduced, and the storage characteristics of the lithium battery were greatly improved. In particular, in each of the lithium batteries of Examples 2 to 4 using a Li-Al alloy containing aluminum in the range of 0.05 to 2% by weight, the internal resistance after storage is less than 60Ω, The storage characteristics of the battery were further improved.

(実施例6,7)
実施例6,7においては、上記の実施例3のものと同様に、負極にアルミニウムが0.2重量%含有されたLi−Al合金を用いると共に、正極における正極活物質として、実施例6ではLi0.2NiO2粉末を、実施例7ではLi0.5NiO2粉末を用いるようにし、それ以外は、上記の実施例1の場合と同様にして、実施例6,7の各リチウム電池を作製した。
(Examples 6 and 7)
In Examples 6 and 7, as in Example 3 above, a Li—Al alloy containing 0.2% by weight of aluminum in the negative electrode was used, and as a positive electrode active material in the positive electrode, Li 0.2 NiO 2 powder was used in Example 7, Li 0.5 NiO 2 powder was used in Example 7, and the lithium batteries of Examples 6 and 7 were prepared in the same manner as in Example 1 above.

そして、このようにして作製した直後の実施例6,7の各リチウム電池についても、上記の場合と同様にして内部抵抗を算出した結果、何れも内部抵抗は約20Ωであった。   And also about each lithium battery of Example 6, 7 immediately after producing in this way, as a result of calculating internal resistance like the above-mentioned case, as a result, all internal resistance was about 20 (ohm).

また、上記のように作製した直後の実施例3,6,7の各リチウム電池について、それぞれ25℃の温度条件で、電流値10mAで1Vまで放電させて、初期放電容量を測定し、その結果を下記の表2に示した。   In addition, for each of the lithium batteries of Examples 3, 6, and 7 immediately after the production as described above, the initial discharge capacity was measured by discharging to 1 V at a current value of 10 mA under a temperature condition of 25 ° C., respectively. Is shown in Table 2 below.

さらに、上記のように作製した実施例6,7の各リチウム電池についても、上記の場合と同様にして、80℃の温度雰囲気中において1ヶ月間保存した後の内部抵抗を算出し、その結果を下記の表2に示した。   Further, for each of the lithium batteries of Examples 6 and 7 produced as described above, the internal resistance after storage for one month in a temperature atmosphere at 80 ° C. was calculated in the same manner as described above, and the result Is shown in Table 2 below.

Figure 2007258036
Figure 2007258036

この結果、上記の実施例6,7の各リチウム電池においても、負極にアルミニウムが含有されていないLi金属を用いた比較例1のリチウム電池に比べて、保存後の内部抵抗が大きく減少しており、リチウム電池の保存特性が大幅に改善されていた。   As a result, in each of the lithium batteries of Examples 6 and 7, the internal resistance after storage was greatly reduced as compared with the lithium battery of Comparative Example 1 using Li metal containing no aluminum in the negative electrode. Thus, the storage characteristics of the lithium battery were greatly improved.

また、上記の実施例3,6,7のリチウム電池を比較した場合、LiNiO2で示される正極活物質において、xの値が大きくなって正極活物質中におけるNiの比率が低下するほど、保存後の内部抵抗が減少する傾向にあるが、初期放電容量が減少するため、LiNiO2で表される正極活物質におけるxの値を0.1〜0.5の範囲にすることが好ましいことが分かった。 Further, when comparing the lithium batteries of Examples 3, 6, and 7 above, in the positive electrode active material represented by Li x NiO 2 , the value of x increases and the ratio of Ni in the positive electrode active material decreases. The internal resistance after storage tends to decrease, but the initial discharge capacity decreases, so the value of x in the positive electrode active material represented by Li x NiO 2 should be in the range of 0.1 to 0.5. Was found to be preferable.

(実施例8〜10)
実施例8〜10においては、上記の実施例3のものと同様に、負極にアルミニウムが0.2重量%含有されたLi−Al合金を用いると共に、非水電解液を作製するにあたり、実施例8においては、溶質としてヘキサフルオロリン酸リチウムLiPF6を、実施例9においては、溶質としてテトラフルオロホウ酸リチウムLiBF4を使用し、また実施例10においては、溶媒としてプロピレンカーボネート(PC)と1,2−ジメトキシエタン(DME)とを1:1の体積比で混合させた混合溶媒を使用するようにし、それ以外は、上記の実施例1の場合と同様にして、実施例8〜10の各リチウム電池を作製した。
(Examples 8 to 10)
In Examples 8 to 10, in the same manner as in Example 3 above, an Li—Al alloy containing 0.2% by weight of aluminum in the negative electrode was used and a non-aqueous electrolyte was prepared. In Example 8, lithium hexafluorophosphate LiPF 6 is used as a solute, in Example 9, lithium tetrafluoroborate LiBF 4 is used as a solute, and in Example 10, propylene carbonate (PC) and 1 are used as solvents. , 2-dimethoxyethane (DME) was mixed in a volume ratio of 1: 1, and other than that, in the same manner as in Example 1 above, Examples 8 to 10 Each lithium battery was produced.

そして、このようにして作製した実施例8〜10の各リチウム電池についても、上記の場合と同様にして、80℃の温度雰囲気中において1ヶ月間保存した後の内部抵抗を算出し、その結果を実施例3のリチウム電池の結果と合わせて下記の表3に示した。   And about each lithium battery of Examples 8-10 produced in this way, the internal resistance after storing for one month in the temperature atmosphere of 80 degreeC was calculated like the above-mentioned case, and the result Are shown in Table 3 below together with the results of the lithium battery of Example 3.

Figure 2007258036
Figure 2007258036

この結果、非水電解液に使用する溶質や溶媒を変更させた実施例8〜10の各リチウム電池においても、負極にアルミニウムが含有されていないLi金属を用いた比較例1のリチウム電池に比べて、保存後の内部抵抗が大きく減少しており、リチウム電池の保存特性が大幅に改善されていた。   As a result, in each of the lithium batteries of Examples 8 to 10 in which the solute and the solvent used in the non-aqueous electrolyte were changed, as compared with the lithium battery of Comparative Example 1 using Li metal containing no aluminum in the negative electrode. As a result, the internal resistance after storage was greatly reduced, and the storage characteristics of the lithium battery were greatly improved.

また、上記の実施例3,8〜10のリチウム電池を比較した場合、非水電解液の溶質にトリフルオロメタンスルホン酸リチウムLiCF3SO3を用いると共に、非水電解液の溶媒にエチレンカーボネート(EC)と1,2−ジメトキシエタン(DME)とを1:1の体積比で混合させた混合溶媒を用いた実施例3のリチウム電池は、非水電解液の溶質にヘキサフルオロリン酸リチウムLiPF6やテトラフルオロホウ酸リチウムLiBF4を用いた実施例8,9のリチウム電池や、非水電解液の溶媒にプロピレンカーボネート(PC)と1,2−ジメトキシエタン(DME)とを1:1の体積比で混合させた混合溶媒を用いた実施例10のリチウム電池に比べて、保存後の内部抵抗がさらに減少しており、リチウム電池の保存特性がさらに改善されていた。 When comparing the lithium batteries of Examples 3 and 8 to 10 above, lithium trifluoromethanesulfonate LiCF 3 SO 3 was used as the solute of the non-aqueous electrolyte, and ethylene carbonate (EC ) And 1,2-dimethoxyethane (DME) in a 1: 1 volume ratio, the lithium battery of Example 3 uses lithium hexafluorophosphate LiPF 6 as the solute of the non-aqueous electrolyte. And lithium batteries of Examples 8 and 9 using lithium tetrafluoroborate LiBF 4 , and 1: 1 volume of propylene carbonate (PC) and 1,2-dimethoxyethane (DME) as a solvent for the non-aqueous electrolyte. Compared to the lithium battery of Example 10 using a mixed solvent mixed at a ratio, the internal resistance after storage was further reduced, and the storage characteristics of the lithium battery were further improved. It had been.

本発明の実施例及び比較例において作製したリチウム電池の概略断面図である。It is a schematic sectional drawing of the lithium battery produced in the Example and comparative example of this invention.

符号の説明Explanation of symbols

1 正極
1a 正極集電体
2 負極
2a 負極集電体
3 セパレータ
4 電池ケース
4a 正極缶
4b 負極缶
5 絶縁パッキン
DESCRIPTION OF SYMBOLS 1 Positive electrode 1a Positive electrode collector 2 Negative electrode 2a Negative electrode collector 3 Separator 4 Battery case 4a Positive electrode can 4b Negative electrode can 5 Insulation packing

Claims (5)

正極と、負極と、非水系溶媒に溶質が溶解された非水電解液とを備えたリチウム電池において、上記の正極の活物質に、一般式LiNiO2(式中、xは0.1≦x≦0.5の条件を満たす。)で表されるリチウムニッケル複合酸化物を用いると共に、上記の負極の活物質に、少なくともアルミニウムを含有するリチウム合金を用いたことを特徴とするリチウム電池。 In a lithium battery including a positive electrode, a negative electrode, and a nonaqueous electrolytic solution in which a solute is dissolved in a nonaqueous solvent, the active material of the positive electrode includes a general formula Li x NiO 2 (wherein x is 0.1 ≦ x ≦ 0.5 is satisfied.) And a lithium alloy containing at least aluminum is used as the negative electrode active material. . 請求項1に記載したリチウム電池において、上記の負極の活物質におけるリチウム合金にアルミニウムが0.01〜5重量%の範囲で含有されていることを特徴とするリチウム電池。   2. The lithium battery according to claim 1, wherein the lithium alloy in the negative electrode active material contains aluminum in an amount of 0.01 to 5% by weight. 請求項1に記載したリチウム電池において、上記の負極の活物質におけるリチウム合金にアルミニウムが0.05〜2重量%の範囲で含有されていることを特徴とするリチウム電池。   2. The lithium battery according to claim 1, wherein aluminum is contained in the lithium alloy in the negative electrode active material in a range of 0.05 to 2% by weight. 請求項1〜請求項3の何れか1項に記載したリチウム電池において、上記の非水電解液の溶質に、トリフルオロメタンスルホン酸リチウムを用いたことを特徴とするリチウム電池。   The lithium battery according to any one of claims 1 to 3, wherein lithium trifluoromethanesulfonate is used as a solute of the non-aqueous electrolyte. 請求項1〜請求項4の何れか1項に記載したリチウム電池において、上記の非水電解液の非水系溶媒に、エチレンカーボネートと1,2−ジメトキシエタンとの混合溶媒を用いたことを特徴とするリチウム電池。   The lithium battery according to any one of claims 1 to 4, wherein a mixed solvent of ethylene carbonate and 1,2-dimethoxyethane is used as the non-aqueous solvent of the non-aqueous electrolyte. Lithium battery.
JP2006082045A 2006-03-24 2006-03-24 Lithium battery Pending JP2007258036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006082045A JP2007258036A (en) 2006-03-24 2006-03-24 Lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006082045A JP2007258036A (en) 2006-03-24 2006-03-24 Lithium battery

Publications (1)

Publication Number Publication Date
JP2007258036A true JP2007258036A (en) 2007-10-04

Family

ID=38632054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006082045A Pending JP2007258036A (en) 2006-03-24 2006-03-24 Lithium battery

Country Status (1)

Country Link
JP (1) JP2007258036A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015518236A (en) * 2012-03-21 2015-06-25 ザ ジレット カンパニー Metal doped nickel oxide active material
US9543576B2 (en) 2012-03-21 2017-01-10 Duracell U.S. Operations, Inc. Methods of making metal-doped nickel oxide active materials

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015518236A (en) * 2012-03-21 2015-06-25 ザ ジレット カンパニー Metal doped nickel oxide active material
US9543576B2 (en) 2012-03-21 2017-01-10 Duracell U.S. Operations, Inc. Methods of making metal-doped nickel oxide active materials
US9570741B2 (en) 2012-03-21 2017-02-14 Duracell U.S. Operations, Inc. Metal-doped nickel oxide active materials
US9819012B2 (en) 2012-03-21 2017-11-14 Duracell U.S. Operations, Inc. Methods of making metal-doped nickel oxide active materials
US9859558B2 (en) 2012-03-21 2018-01-02 Duracell U.S. Operations, Inc. Metal-doped nickel oxide active materials

Similar Documents

Publication Publication Date Title
JP4703203B2 (en) Nonaqueous electrolyte secondary battery
JP3844733B2 (en) Nonaqueous electrolyte secondary battery
JP4794180B2 (en) Nonaqueous electrolyte secondary battery
CN104205471B (en) Nonaqueous electrolytic solution and the electric energy storage device for having used the nonaqueous electrolytic solution
JP2006196250A (en) Lithium secondary battery
JP2006216378A5 (en)
JP2012022794A (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2009140919A (en) Nonaqueous secondary battery
JP4794172B2 (en) Non-aqueous electrolyte secondary battery and charging method thereof
JP2003282055A (en) Non-aqueous electrolyte secondary battery
JP4679064B2 (en) Non-aqueous electrolyte secondary battery
JP2011192402A (en) Nonaqueous electrolyte secondary battery
JP2011142066A (en) Lithium secondary battery
JP2012033397A (en) Nonaqueous electrolyte secondary battery
JPH07320779A (en) Nonaqueous electrolytic battery
JP2011192536A (en) Nonaqueous electrolyte secondary battery
JP6056955B2 (en) Lithium secondary battery
JP2007250440A (en) Nonaqueous electrolyte secondary battery
JP2009110886A (en) Method of manufacturing nonaqueous electrolyte secondary battery
JP5851801B2 (en) Lithium secondary battery
JP5100069B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP4306858B2 (en) Solute for non-aqueous electrolyte battery and non-aqueous electrolyte battery
JP2005093414A (en) Lithium cell
JP2009218112A (en) Nonaqueous electrolyte secondary battery and manufacturing method therefor
JP5235307B2 (en) Nonaqueous electrolyte secondary battery