JP2007255917A - Concentration measuring device - Google Patents

Concentration measuring device Download PDF

Info

Publication number
JP2007255917A
JP2007255917A JP2006077116A JP2006077116A JP2007255917A JP 2007255917 A JP2007255917 A JP 2007255917A JP 2006077116 A JP2006077116 A JP 2006077116A JP 2006077116 A JP2006077116 A JP 2006077116A JP 2007255917 A JP2007255917 A JP 2007255917A
Authority
JP
Japan
Prior art keywords
concentration
component
sensor
response time
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006077116A
Other languages
Japanese (ja)
Other versions
JP4810264B2 (en
Inventor
Hiroyuki Nishida
啓之 西田
Toshio Mogi
俊夫 茂木
Teiji Horiguchi
貞茲 堀口
Shuzo Fujiwara
修三 藤原
Shunichi Nakamura
俊一 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Cosmos Electric Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
New Cosmos Electric Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Cosmos Electric Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical New Cosmos Electric Co Ltd
Priority to JP2006077116A priority Critical patent/JP4810264B2/en
Publication of JP2007255917A publication Critical patent/JP2007255917A/en
Application granted granted Critical
Publication of JP4810264B2 publication Critical patent/JP4810264B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive concentration measuring device capable of speedily responding to a component to be detected in gas. <P>SOLUTION: The concentration measuring device has a sensor for detecting the component to be detected in gas and measures the concentration of the component based on an output value output from the sensor. The concentration measuring device has a concentration correcting means for converting the concentration value Cm of the component into an estimated value Ce of an actual concentration of the component, based on equation: Ce=-TS/äln(1-x/100)}xdCm/dt+Cm (1), where Ce is the estimated value, Cm is a concentration measured value and TS is an x% response time. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、気体中の検知対象となる成分を検知するセンサを備え、当該センサが出力する出力値に基づいて前記成分の濃度を測定する濃度測定装置に関する。   The present invention relates to a concentration measuring apparatus that includes a sensor that detects a component to be detected in gas and that measures the concentration of the component based on an output value output from the sensor.

従来、気体中の検知対象となる成分の濃度を測定する濃度測定装置として、ガスセンサや煙センサを備えたものが知られている。ガスセンサには、接触燃焼式、気体熱伝導式、半導体式、定電位電解式、隔膜ガルバニ電池式等が使用されており、煙センサには、光学式、イオン化式、光電式等が使用されている。   2. Description of the Related Art Conventionally, as a concentration measuring device that measures the concentration of a component to be detected in a gas, one having a gas sensor or a smoke sensor is known. For gas sensors, contact combustion type, gas heat conduction type, semiconductor type, constant potential electrolysis type, diaphragm galvanic cell type, etc. are used, and for smoke sensor, optical type, ionization type, photoelectric type, etc. are used. Yes.

このようなセンサでは、検知対象となる成分が接触または接近した際に起こる化学変化や物理変化を検知し、その変化に応じて出力する。このため、従来のセンサを備えた濃度測定装置では、検知対象となる成分を検知してから、前記の変化が平衡に達して実際の濃度を表示する(あるいは、指示する)ようになるまでには時間の遅れが発生する。したがって、一般的な濃度測定装置では、図5に示すように、濃度測定装置の濃度測定値Cmが、実際の濃度Ctに相当する最終濃度測定値の所定割合(図5においては90%、以下90%を例として説明する。)の値となるまでの時間の遅れを90%応答時間TSとし、通常は、この90%応答時間が、濃度測定装置の応答速度として表されることが多い。   Such a sensor detects a chemical change or a physical change that occurs when a component to be detected comes into contact or approaches, and outputs the change in accordance with the change. For this reason, in a concentration measuring apparatus equipped with a conventional sensor, after the component to be detected is detected, until the change reaches equilibrium and the actual concentration is displayed (or indicated). Causes a time delay. Therefore, in a general concentration measurement apparatus, as shown in FIG. 5, the concentration measurement value Cm of the concentration measurement apparatus is a predetermined ratio of the final concentration measurement value corresponding to the actual concentration Ct (90% in FIG. 5 or less). 90% is described as an example.) The delay in time until the value becomes 90% is defined as 90% response time TS, and this 90% response time is usually often expressed as the response speed of the concentration measuring apparatus.

なお、本発明における従来技術となる濃度測定装置は、一般的な技術であるため、特許文献等の従来技術文献は示さない。   In addition, since the density | concentration measuring apparatus used as the prior art in this invention is a general technique, prior art documents, such as a patent document, are not shown.

前記従来の濃度測定装置は、図5に示すように、検知対象となる成分の実際の濃度Ctが90%応答時間TSよりも長い時間変動しない場合には、十分な時間が経過した後に、実際の濃度Ctを正しく測定することができる。   As shown in FIG. 5, when the actual concentration Ct of the component to be detected does not fluctuate for a time longer than the 90% response time TS, the conventional concentration measuring apparatus actually performs after a sufficient time has passed. Concentration Ct can be measured correctly.

しかし、例えば、図6及び7に示すように、検知対象となる成分の実際の濃度Ctが90%応答時間TSよりも短い時間で変動する場合には、90%応答時間TS経過後の濃度測定値Cmに基づいて実際の濃度Ctを推定することができなくなる。このため、実際の濃度Ctを正しく測定することができないという問題があった。そして、図7のように、実際の濃度Ctの変動間隔が短くなるほど、測定誤差は大きくなる傾向があった。   However, for example, as shown in FIGS. 6 and 7, when the actual concentration Ct of the component to be detected fluctuates in a time shorter than the 90% response time TS, the concentration measurement after the 90% response time TS has elapsed. The actual density Ct cannot be estimated based on the value Cm. For this reason, there was a problem that the actual density Ct could not be measured correctly. As shown in FIG. 7, the measurement error tends to increase as the actual variation interval of the density Ct becomes shorter.

一方、検知対象の成分を検知してから実際の濃度Ctを示すまでの時間の遅れがほとんどない高速応答センサを備えた濃度測定装置も知られているが、このような濃度測定装置は小型化が困難で、しかも非常に高価であり、汎用性に乏しかった。   On the other hand, there is also known a concentration measuring device including a high-speed response sensor that hardly delays the time from detection of a component to be detected until the actual concentration Ct is indicated. Such a concentration measuring device is downsized. It was difficult, very expensive, and lacked versatility.

また、従来のセンサの検知感度を高くする試みもなされているが、この場合では、初期の立ち上がりまでの時間は早くなるものの、その後のセンサの出力値は測定可能範囲を超えてしまうため、実際の濃度Ctを測定することはできなかった。   Although attempts have been made to increase the detection sensitivity of conventional sensors, in this case, although the time until the initial rise is earlier, the output value of the subsequent sensors will exceed the measurable range, so It was not possible to measure the concentration Ct.

本発明は上記課題に鑑みてなされたものであり、安価で、気体中の検知対象となる成分に対して高速で応答可能な濃度測定装置を提供することを目的とするものである。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a concentration measuring apparatus that is inexpensive and can respond at high speed to a component to be detected in a gas.

上記目的を達成するための本発明に係る濃度測定装置の第1特徴構成は、気体中の検知対象となる成分を検知するセンサを備え、当該センサが出力する出力値に基づいて前記成分の濃度を測定する濃度測定装置であって、前記成分の濃度測定値を、下記(I)式に基づいて、前記成分の実際の濃度を推定した推定値に変換する濃度補正手段を設けた点にある。   The first characteristic configuration of the concentration measuring apparatus according to the present invention for achieving the above object includes a sensor for detecting a component to be detected in gas, and the concentration of the component based on an output value output from the sensor. Is a concentration measuring device for measuring the concentration measurement value of the component based on the following formula (I), and converting the measured concentration value into an estimated value obtained by estimating the actual concentration of the component. .

つまり、この構成によれば、気体中の検知対象となる成分の濃度測定値を、実際の濃度を推定した推定値に変換するため、高速で応答可能となる。よって、この構成により測定誤差を小さくすることができる。また、従来の気体中の検知対象となる成分を検知するセンサを使用することができるため、安価な濃度測定装置とすることができる。
ここで、「x%応答時間」とは、検知対象となる成分の濃度が一定である場合において、検知対象となる成分を検知した時刻から、濃度測定値が、実際の濃度に相当する濃度測定値のx%の値となる時刻までの時間をいう。なお、xは100以下の正の数である。
That is, according to this configuration, since the concentration measurement value of the component to be detected in the gas is converted to the estimated value obtained by estimating the actual concentration, it is possible to respond at high speed. Therefore, the measurement error can be reduced by this configuration. Moreover, since the sensor which detects the component used as the detection target in the conventional gas can be used, it can be set as an inexpensive density | concentration measuring apparatus.
Here, the “x% response time” means that the concentration measurement value corresponds to the actual concentration from the time when the component to be detected is detected when the concentration of the component to be detected is constant. The time until the time of x% of the value. Note that x is a positive number of 100 or less.

本発明に係る濃度測定装置の第2特徴構成は、前記x%応答時間は、前記x%応答時間と前記x%応答時間における前記センサの出力値との関係を示す検量線を作成し、当該検量線に、前記成分を検知した時点の前記センサの出力値を適用して特定する点にある。   The second characteristic configuration of the concentration measuring apparatus according to the present invention is such that the x% response time is a calibration curve indicating the relationship between the x% response time and the output value of the sensor at the x% response time. The point is that the output value of the sensor when the component is detected is applied to the calibration curve for identification.

従来の濃度測定装置では、使用するセンサの種類により、気体中の検知対象となる成分の濃度が異なるとx%応答時間が変化する場合がある。
そこで、本構成のように、濃度測定時のセンサの出力値に応じたx%応答時間を特定できるようにすることで、測定誤差をより小さくでき、指示精度を確保できる。
In the conventional concentration measuring apparatus, the x% response time may change when the concentration of the component to be detected in the gas differs depending on the type of sensor used.
Therefore, as in this configuration, by making it possible to specify the x% response time corresponding to the output value of the sensor at the time of concentration measurement, the measurement error can be further reduced and the indication accuracy can be secured.

本発明に係る濃度測定装置は、気体中の検知対象となる成分を検知するセンサを備え、当該センサが出力する出力値に基づいて前記成分の濃度を測定する濃度測定装置であって、前記成分の濃度測定値を、下記(I)式に基づいて、前記成分の実際の濃度を推定した推定値に変換する濃度補正手段を設けたものである。   A concentration measuring apparatus according to the present invention is a concentration measuring apparatus that includes a sensor that detects a component that is a detection target in a gas, and that measures the concentration of the component based on an output value output from the sensor. Is provided with a density correction means for converting the measured density value into an estimated value obtained by estimating the actual density of the component based on the following equation (I).

本発明者らは、濃度測定装置の応答時間の遅れを一次遅れ系でモデル化できることを見出し、検知対象となる成分の濃度測定値Cmと、その時間微分値dCm/dtと、濃度測定装置のx%応答時間TSとにより、前記成分の実際の濃度を推定した推定値Ceを得ることができる上記(I)式を導き出した。
これにより、安価で、気体中の検知対象となる成分に対し、高速で応答可能な濃度測定装置を提供することができる。
The present inventors have found that the delay of the response time of the concentration measuring device can be modeled by a first-order lag system, and the concentration measurement value Cm of the component to be detected, its time differential value dCm / dt, and the concentration measurement device Based on the x% response time TS, the above formula (I) that can obtain an estimated value Ce obtained by estimating the actual concentration of the component was derived.
Accordingly, it is possible to provide a concentration measuring apparatus that is inexpensive and can respond at high speed to a component to be detected in gas.

本発明において使用するセンサは、特に限定されず、接触燃焼式、気体熱伝導式、半導体式、定電位電解式、隔膜ガルバニ電池式等のガスセンサや、光学式、イオン化式、光電式等の煙センサ等を適用することができる。そして、このようなセンサを備えた濃度測定装置によって測定することができる成分は、気体中の成分であれば検知可能であり、特に限定されないが、例えば、可燃性ガス、毒性ガス、酸素、不活性ガス等の気体や、蒸気、煙、浮遊固体等が例示される。   The sensor used in the present invention is not particularly limited, and gas sensors such as catalytic combustion type, gas heat conduction type, semiconductor type, constant potential electrolytic type, diaphragm galvanic cell type, etc., optical type, ionization type, photoelectric type smoke etc. A sensor or the like can be applied. A component that can be measured by a concentration measuring device equipped with such a sensor can be detected as long as it is a component in gas, and is not particularly limited. For example, combustible gas, toxic gas, oxygen, non Examples thereof include gases such as active gas, steam, smoke, and floating solids.

また、本発明に係る濃度測定装置は、例えば、成分の濃度を測定する濃度測定器や、成分の濃度が一定以上となった場合に警報を発する警報器、一定濃度以上の成分を検知する検知器等、様々な装置に適用することができる。   In addition, the concentration measuring apparatus according to the present invention includes, for example, a concentration measuring device that measures the concentration of a component, an alarm device that issues an alarm when the concentration of a component exceeds a certain level, and a detection that detects a component that exceeds a certain concentration. It can be applied to various devices such as a vessel.

本発明に係る濃度測定装置の濃度補正手段について、以下に一例を示す。なお、x%応答時間TSは、一般的には使用するセンサの特性として予め決まる値である。
まず、濃度測定装置によって検知対象となる成分の濃度を測定し、その濃度測定値Cmを得る。濃度測定値Cmがノイズを含む場合には、移動平均等の手法や、ハイパス、ローパス、バンドパス等のフィルタリングによりノイズを除去することができる。この際、移動平均、またはフィルタリングの幅は、x%応答時間TSより勘案して最適化すればよい。
An example of the density correction means of the density measuring apparatus according to the present invention is shown below. The x% response time TS is generally a value determined in advance as a characteristic of the sensor to be used.
First, the concentration of the component to be detected is measured by the concentration measuring device, and the concentration measurement value Cm is obtained. When the density measurement value Cm includes noise, the noise can be removed by a technique such as moving average, or filtering such as high pass, low pass, and band pass. At this time, the moving average or filtering width may be optimized in consideration of the x% response time TS.

次に、得られた濃度測定値Cmから、一次あるいは高次の差分法により時間微分値dCm/dtを算出する。微分値dCm/dtがノイズを含む場合には、濃度測定値Cmの場合と同様に、移動平均等の手法や、ハイパス、ローパス、バンドパス等のフィルタリングによりノイズを除去することができ、この際、移動平均、またはフィルタリングの幅は、x%応答時間TSより勘案して最適化する。   Next, a time differential value dCm / dt is calculated from the obtained concentration measurement value Cm by a first-order or higher-order difference method. When the differential value dCm / dt includes noise, as in the case of the concentration measurement value Cm, noise can be removed by a moving average method or filtering such as high pass, low pass, and band pass. The moving average or filtering width is optimized in consideration of x% response time TS.

そして、このようにして得られた濃度測定値Cm及び時間微分値dCm/dtと、x%応答時間TSとを上記(I)式に適用することにより、濃度測定値Cmを、実際の濃度を推定した推定値Ceに変換することができる。   Then, by applying the concentration measurement value Cm and the time differential value dCm / dt thus obtained and the x% response time TS to the above equation (I), the concentration measurement value Cm is converted into the actual concentration. The estimated value Ce can be converted.

本発明に係る濃度測定装置を用いて、水素ガスの濃度を測定した実施例を図1に示した。ここでは、x%応答時間として、90%応答時間が12秒の水素ガスセンサを使用した。また、比較例として、図1には、90%応答時間が12秒の水素ガスセンサを備えた従来の濃度測定装置によって測定した濃度測定値Cmと、高速応答センサを備えた濃度測定装置によって測定した濃度測定値Cf(実際の濃度に近い値)とについても示した。その結果、CmはCfと大きな差異があったのに対し、本発明に係る濃度測定装置により求めた推定値Ceは、Cfと非常に近い値となっており、Ceは実際の濃度を推定していることが確認できた。
このように気体中の検知対象となる成分の濃度が絶えず変動する場合には、従来の濃度測定装置に比べて、本発明に係る濃度測定装置が特に有効であることが分かった。
An example in which the concentration of hydrogen gas was measured using the concentration measuring apparatus according to the present invention is shown in FIG. Here, a hydrogen gas sensor having a 90% response time of 12 seconds was used as the x% response time. As a comparative example, FIG. 1 shows a concentration measurement value Cm measured by a conventional concentration measuring device equipped with a hydrogen gas sensor having a 90% response time of 12 seconds and a concentration measuring device equipped with a high-speed response sensor. The density measurement value Cf (a value close to the actual density) is also shown. As a result, while Cm was significantly different from Cf, the estimated value Ce obtained by the concentration measuring apparatus according to the present invention was very close to Cf, and Ce estimated the actual concentration. It was confirmed that
Thus, when the density | concentration of the component used as the detection target in gas changes continuously, it turned out that the density | concentration measuring apparatus which concerns on this invention is especially effective compared with the conventional density | concentration measuring apparatus.

また、本発明に係る濃度測定装置におけるx%応答時間は、検知対象となる成分の初期濃度や、温度、湿度、圧力等の環境等により予め蓄積したデータに基づいて、補正してもよい。   Further, the x% response time in the concentration measuring apparatus according to the present invention may be corrected based on the initial concentration of the component to be detected and data accumulated in advance according to the environment such as temperature, humidity, and pressure.

例えば、接触燃焼式センサを使用すると、図2に示すように、検知対象となる成分の濃度によってx%(図2においては90%)応答時間TSが異なる場合がある。このような場合には、表1に示すように、予めx%応答時間とx%応答時間におけるセンサの出力値とを蓄積し、図3に示すように、x%応答時間とx%応答時間におけるセンサの出力値の関係を示す検量線を作成する。そして、この検量線に、成分の濃度を測定する際にセンサが出力する出力値を適用することにより、x%応答時間を特定することができる。   For example, when a contact combustion type sensor is used, as shown in FIG. 2, the response time TS may differ by x% (90% in FIG. 2) depending on the concentration of the component to be detected. In such a case, as shown in Table 1, the x% response time and the sensor output value at the x% response time are accumulated in advance, and as shown in FIG. 3, the x% response time and the x% response time are stored. A calibration curve showing the relationship between the sensor output values is created. Then, by applying the output value output from the sensor when measuring the concentration of the component to this calibration curve, the x% response time can be specified.

また、x%応答時間は短い方が好ましい。すなわち、x%応答時間が短いガスセンサを、本発明に係る濃度測定装置に適用すれば、x%応答時間が極端に短い濃度測定装置を安価に作製することができる。例えば、90%応答時間が2.2秒である接触燃焼式センサを本発明に係る濃度測定値に適用すると90%応答時間が0.6秒となり、このような濃度測定装置によれば、水素ガスの濃度は、図4に示すように、微分項の影響によるノイズ増幅率を最小限に抑えた形で高速で応答可能となる。このように、濃度測定装置の応答速度が速くなれば、爆発等の事故を未然に防止することができる。   Further, it is preferable that the x% response time is short. That is, if a gas sensor with a short x% response time is applied to the concentration measuring apparatus according to the present invention, a concentration measuring apparatus with an extremely short x% response time can be produced at low cost. For example, when a catalytic combustion sensor having a 90% response time of 2.2 seconds is applied to the concentration measurement value according to the present invention, the 90% response time is 0.6 seconds. As shown in FIG. 4, the gas concentration can be responded at a high speed with the noise amplification factor due to the influence of the differential term being minimized. Thus, if the response speed of the concentration measuring device is increased, an accident such as an explosion can be prevented in advance.

本発明に係る濃度測定装置は、気体中の成分の濃度測定器、検知器、警報器等の濃度測定機能を有する機器等に適用することができる。   The concentration measuring apparatus according to the present invention can be applied to devices having a concentration measuring function such as a concentration measuring device, a detector, and an alarm device for components in gas.

本発明に係る濃度測定装置による水素ガスの濃度測定結果を示すグラフThe graph which shows the density | concentration measurement result of hydrogen gas by the concentration measuring apparatus which concerns on this invention 接触燃焼式センサを使用した場合の各濃度におけるx%応答時間を示すグラフGraph showing x% response time at each concentration when using a catalytic combustion sensor センサ出力値とx%応答時間との関係を示すグラフGraph showing the relationship between sensor output value and x% response time 本発明に係る濃度測定装置による水素ガスの濃度測定結果を示すグラフThe graph which shows the density | concentration measurement result of hydrogen gas by the concentration measuring apparatus which concerns on this invention 従来の濃度測定装置による測定例を示すグラフA graph showing an example of measurement using a conventional concentration measurement device 従来の濃度測定装置による測定例を示すグラフA graph showing an example of measurement using a conventional concentration measurement device 従来の濃度測定装置による測定例を示すグラフA graph showing an example of measurement using a conventional concentration measurement device

符号の説明Explanation of symbols

Ce 推定値
Cm 濃度測定値
TS x%応答時間
Ce Estimated value Cm Concentration measurement TS x% Response time

Claims (2)

気体中の検知対象となる成分を検知するセンサを備え、当該センサが出力する出力値に基づいて前記成分の濃度を測定する濃度測定装置であって、
前記成分の濃度測定値を、下記(I)式に基づいて、前記成分の実際の濃度を推定した推定値に変換する濃度補正手段を設けた濃度測定装置。
A concentration measuring device comprising a sensor for detecting a component to be detected in gas and measuring the concentration of the component based on an output value output from the sensor,
A concentration measuring apparatus provided with a concentration correcting means for converting the measured concentration value of the component into an estimated value obtained by estimating the actual concentration of the component based on the following equation (I).
前記x%応答時間は、前記x%応答時間と前記x%応答時間における前記センサの出力値との関係を示す検量線を作成し、当該検量線に、前記成分を検知した時点の前記センサの出力値を適用して特定する請求項1に記載の濃度測定装置。   The x% response time is a calibration curve showing the relationship between the x% response time and the output value of the sensor at the x% response time, and the sensor at the time when the component is detected on the calibration curve. The concentration measuring apparatus according to claim 1, wherein the concentration is specified by applying an output value.
JP2006077116A 2006-03-20 2006-03-20 Concentration measuring device Expired - Fee Related JP4810264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006077116A JP4810264B2 (en) 2006-03-20 2006-03-20 Concentration measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006077116A JP4810264B2 (en) 2006-03-20 2006-03-20 Concentration measuring device

Publications (2)

Publication Number Publication Date
JP2007255917A true JP2007255917A (en) 2007-10-04
JP4810264B2 JP4810264B2 (en) 2011-11-09

Family

ID=38630330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006077116A Expired - Fee Related JP4810264B2 (en) 2006-03-20 2006-03-20 Concentration measuring device

Country Status (1)

Country Link
JP (1) JP4810264B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010223587A (en) * 2009-03-19 2010-10-07 Toyota Central R&D Labs Inc Gas detection device
JP2010244528A (en) * 2009-03-31 2010-10-28 Internatl Business Mach Corp <Ibm> Method, computer program, and system for determining load capacity of server
JP2011174722A (en) * 2010-02-23 2011-09-08 Riken Keiki Co Ltd Gas detector

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06281607A (en) * 1993-01-29 1994-10-07 Shimadzu Corp Continuously analyzing device for gas concentration
JPH07301614A (en) * 1993-08-05 1995-11-14 Meidensha Corp Automatic calibration method, measured value correction and cleaning correction method for ph meter
JP2000346776A (en) * 1999-06-03 2000-12-15 Nippon Telegr & Teleph Corp <Ntt> Method and device for gas analysis, record medium with gas analysis program stored, and record medium with gsa analysis data stored
JP2004361241A (en) * 2003-06-04 2004-12-24 Horiba Ltd Response speed improving method for analytical system, and exhaust gas measuring system therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06281607A (en) * 1993-01-29 1994-10-07 Shimadzu Corp Continuously analyzing device for gas concentration
JPH07301614A (en) * 1993-08-05 1995-11-14 Meidensha Corp Automatic calibration method, measured value correction and cleaning correction method for ph meter
JP2000346776A (en) * 1999-06-03 2000-12-15 Nippon Telegr & Teleph Corp <Ntt> Method and device for gas analysis, record medium with gas analysis program stored, and record medium with gsa analysis data stored
JP2004361241A (en) * 2003-06-04 2004-12-24 Horiba Ltd Response speed improving method for analytical system, and exhaust gas measuring system therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010223587A (en) * 2009-03-19 2010-10-07 Toyota Central R&D Labs Inc Gas detection device
JP2010244528A (en) * 2009-03-31 2010-10-28 Internatl Business Mach Corp <Ibm> Method, computer program, and system for determining load capacity of server
JP2011174722A (en) * 2010-02-23 2011-09-08 Riken Keiki Co Ltd Gas detector

Also Published As

Publication number Publication date
JP4810264B2 (en) 2011-11-09

Similar Documents

Publication Publication Date Title
JP6305945B2 (en) NOx concentration measurement system
EP2669644B1 (en) Weighing apparatus
WO2020251931A8 (en) Gas sensor with separate contaminant detection element
WO2014188594A1 (en) Environmental measurement device and environmental measurement method
JP7112134B2 (en) BIOGAS DETECTION DEVICE, METHOD, AND PROGRAM
CN112198209B (en) Formaldehyde detection method and formaldehyde detection device
CN102590450A (en) Array type smell detecting element based on MEMS (Micro Electro Mechanical System) technology
WO2008073721A3 (en) Sensor system and method
JP2006275606A (en) Gas detecting method and gas detector
JP4810264B2 (en) Concentration measuring device
JP5416055B2 (en) TVOC detection method, detection apparatus, and outside air introduction amount control system
KR102534577B1 (en) Gas analysis system and gas analysis method
JP2010025646A (en) Calibration method of gas measuring device
WO2003054481A3 (en) Method for detecting and/or monitoring a physical or chemical process variable
JP2010256268A (en) Gas analyzer
JP2010085339A (en) Zero point adjustment method of gas sensor using contact combustion type gas detection element
JP5973234B2 (en) Gas concentration calculation method and gas detection device
JP5844556B2 (en) Method for correcting output of heat conduction type gas sensor and gas detector
KR101986904B1 (en) Autonomic Calibration method in Sensor Measuring Device
JP2006209626A5 (en)
JP2016003998A (en) Gas concentration detector
TWI607200B (en) Real time sensor system
US20170131250A1 (en) Device and method for detecting a gas component
JP2006242750A (en) Gas detection device
JP2005043296A (en) Thermogravimetry

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110822

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4810264

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees