JP2006275606A - Gas detecting method and gas detector - Google Patents

Gas detecting method and gas detector Download PDF

Info

Publication number
JP2006275606A
JP2006275606A JP2005091899A JP2005091899A JP2006275606A JP 2006275606 A JP2006275606 A JP 2006275606A JP 2005091899 A JP2005091899 A JP 2005091899A JP 2005091899 A JP2005091899 A JP 2005091899A JP 2006275606 A JP2006275606 A JP 2006275606A
Authority
JP
Japan
Prior art keywords
gas
component
waveform
gas sensor
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005091899A
Other languages
Japanese (ja)
Inventor
Tatsuya Ogawara
達也 小河原
Kenichi Yoshikawa
研一 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University NUC
Original Assignee
Kyoto University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University NUC filed Critical Kyoto University NUC
Priority to JP2005091899A priority Critical patent/JP2006275606A/en
Publication of JP2006275606A publication Critical patent/JP2006275606A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance the identification accuracy of a gas component in a single gas sensor by well separating information related to the kind and information related to concentration of the gas component from the dynamic response to a temperature change by a metal oxide semiconductor gas sensor to take out the same. <P>SOLUTION: Since an n-order (n=1, 2, ...) differential waveform obtained by differentiating the dynamic response waveform of the gas sensor 10, obtained when the temperature of the gas sensor 10 is changed, passes the fixing point at a position different for every gas component without relying on the concentration of the gas component, the fixing point is preliminarily measured for every gas component to be stored in a fixing point data memory part 25. When a sample gas of which the component is unknown is analyzed, the dynamic response waveform, obtained when the temperature of the gas sensor 10 is changed, is acquired to be subjected to n-order differentiation in a differential operation processing part 22, and a gas kind judging processing part 23 judges which fixing point stored in the fixing point data memory part 25 the n-order differential waveform passes, thereby to identify the gas component on the basis of the judge result. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ガスセンサとして金属酸化物半導体センサを用いたガス検出方法及びガス検出装置に関する。   The present invention relates to a gas detection method and a gas detection apparatus using a metal oxide semiconductor sensor as a gas sensor.

金属酸化物半導体ガスセンサは電極間に金属酸化物半導体から成る感応膜を形成したものであり、この感応膜を高温に加熱した状態で、該感応膜表面に付着したガス成分との間で酸化還元反応を生じさせる。この過程で電子の移動が起こり、感応膜中の自由電子密度や電荷空乏層の厚さが変化して電極間の抵抗値が変化する。この種のガスセンサは、例えば家庭用のガス漏れ検知器などに広く利用されている。   A metal oxide semiconductor gas sensor is a sensor in which a sensitive film made of a metal oxide semiconductor is formed between electrodes. When this sensitive film is heated to a high temperature, it is oxidized and reduced with gas components adhering to the surface of the sensitive film. Cause a reaction. In this process, movement of electrons occurs, the free electron density in the sensitive film and the thickness of the charge depletion layer change, and the resistance value between the electrodes changes. This type of gas sensor is widely used in, for example, a home gas leak detector.

しかしながら、上記のような金属酸化物半導体ガスセンサは、還元性のガスであれば殆どのガスに対して応答してしまい、しかも定常的な応答からはガス成分を区別することができない。そのため、例えば特定のガスを検出するような選択性を持たせたい場合には、不所望のガス成分を予め除去するフィルタを設ける等の構成を採る必要があり、ガス成分の選択性の向上が大きな課題の一つとなっている。   However, the metal oxide semiconductor gas sensor as described above responds to almost any gas as long as it is a reducing gas, and the gas components cannot be distinguished from a steady response. Therefore, for example, when it is desired to have selectivity for detecting a specific gas, it is necessary to adopt a configuration such as providing a filter that removes an undesired gas component in advance, which improves the selectivity of the gas component. It is one of the big issues.

一方、多種類のガス成分の同定や定量が可能であるようなガス検出装置は、環境測定、食品や香料等の検査、犯罪捜査など幅広い分野で要望されており、これまで様々な技術が提案されている。その代表的なものは、添加触媒等の工夫によって互いに異なる応答特性を持たせた複数のガスセンサを並設して多次元情報を得るものである。こうした構成では、同じガスに晒された複数のガスセンサで得られる複数の検出信号に対し、主成分分析等の多変量解析処理やニューラルネットワークを用いた解析処理を実行してガス成分の同定や定量分析を行うのが一般的である(例えば特許文献1など参照)。   On the other hand, gas detectors capable of identifying and quantifying various types of gas components are required in a wide range of fields such as environmental measurement, inspection of foods and fragrances, criminal investigations, and various technologies have been proposed so far. Has been. A typical example is to obtain multidimensional information by arranging a plurality of gas sensors having different response characteristics by devising an added catalyst or the like. In such a configuration, gas components are identified and quantified by performing multivariate analysis processing such as principal component analysis and analysis processing using a neural network on multiple detection signals obtained by multiple gas sensors exposed to the same gas. Analysis is generally performed (see, for example, Patent Document 1).

しかしながら、こうした装置では、識別可能なガス成分の種類を増やそうとするほどガスセンサの数も増加させる必要が生じ、また解析処理の計算量も膨大になる。そのため、装置の大規模化やコストの上昇などが避けられない。   However, in such an apparatus, it is necessary to increase the number of gas sensors as the number of types of gas components that can be identified increases, and the amount of calculation for analysis processing becomes enormous. For this reason, an increase in the scale of the apparatus and an increase in costs are inevitable.

これに対し、単一のガスセンサから多次元情報を得る方法として、ガスセンサの温度(厳密に言えば感応膜の温度)を意図的に変化させ、それに対するガスセンサによる検出信号の動的な変化を解析することでガス成分の同定や定量を行うという手法が従来から知られている(例えば特許文献2、3、4など参照)。例えば特許文献2では、温度変化時のガスセンサ出力のピーク位置と強度とを利用してガス成分を同定している。しかしながら、従来提案されているいずれの手法でも、ガス成分の種類に関する情報、即ち定性情報と、ガス成分の濃度に関する情報、即ち定量情報とを完全には分離することができないという根本的な問題がある。そのため、定性分析(成分の同定)と定量分析(濃度の算出)のいずれについても実用上十分な精度を得ることが困難である。また、周期的温度変化における動的応答の解析では安定したデータを抽出するのに時間がかかるため、例えば環境測定の現場等においてリアルタイムにガス成分の同定や定量を行うには不向きである。   On the other hand, as a method of obtaining multidimensional information from a single gas sensor, the temperature of the gas sensor (strictly speaking, the temperature of the sensitive film) is intentionally changed, and the dynamic change of the detection signal by the gas sensor is analyzed. A method of identifying and quantifying gas components by doing so is conventionally known (see, for example, Patent Documents 2, 3, and 4). For example, in Patent Document 2, the gas component is identified using the peak position and intensity of the gas sensor output when the temperature changes. However, none of the conventionally proposed methods has a fundamental problem that information on the type of gas component, that is, qualitative information, and information on the concentration of gas component, that is, quantitative information cannot be completely separated. is there. Therefore, it is difficult to obtain practically sufficient accuracy for both qualitative analysis (component identification) and quantitative analysis (concentration calculation). In addition, since it takes time to extract stable data in the analysis of the dynamic response in a periodic temperature change, it is not suitable for identifying and quantifying gas components in real time, for example, at the site of environmental measurement.

特開平11−352088号公報Japanese Patent Laid-Open No. 11-352088 特開平1−123848号公報JP-A-1-123848 特開平3−123848号公報Japanese Patent Laid-Open No. 3-123848 特開平7−311170号公報JP-A-7-311170

上述のような単一のガスセンサにおける温度変化に対する動的な応答波形から、ガス成分の種類に関する情報と濃度に関する情報とを良好に分離することが可能であれば、単一又は少数のガスセンサで以て多種類のガス成分の同定が可能となる。また、ガス成分を正確に同定できれば、見かけ上特定ガスのみ対して応答するような高い選択性を持たせることもできる。   If it is possible to satisfactorily separate the information on the type of gas component and the information on the concentration from the dynamic response waveform to the temperature change in the single gas sensor as described above, a single or a small number of gas sensors can be used. This makes it possible to identify many types of gas components. In addition, if the gas component can be accurately identified, it is possible to have such a high selectivity that apparently responds only to a specific gas.

本発明はこのような点に鑑みて成されたものであり、その主な目的は、単一ガスセンサの動的応答を利用して複雑な処理を伴わずに高いガス識別能力を達成することができるガス検出方法及びガス検出装置を提供することにある。   The present invention has been made in view of these points, and its main object is to achieve a high gas discrimination capability without complicated processing by using the dynamic response of a single gas sensor. An object of the present invention is to provide a gas detection method and a gas detection device.

本発明者は金属酸化物半導体ガスセンサの温度変化に対する動的応答に関する研究を長期間に亘って行う過程で、温度変化に対する動的な応答波形の時間に関するn次微分波形が濃度に依存しない固定点を通過し、しかもその固定点がガスに含まれる成分(化合物)毎に相違することを見い出した。換言すれば、その固定点の位置はガス成分の種類に関する情報(定性情報)のみを有し、濃度に関する情報(定量情報)は有さないということになる。したがって、試料ガスに含まれる成分の種類及びその濃度がいずれも不明であるとき、金属酸化物半導体ガスセンサの温度変化に対する動的応答波形のn次微分波形がその波形を含む2次元グラフ上でどのような固定点を通過しているのかを調べれば、濃度とは無関係にその成分を特定することが可能となる。   In the course of conducting research on dynamic response to temperature change of a metal oxide semiconductor gas sensor over a long period of time, the present inventor has a fixed point where the nth-order differential waveform related to time of the dynamic response waveform to temperature change is independent of concentration. And the fixing point was found to be different for each component (compound) contained in the gas. In other words, the position of the fixed point has only information (qualitative information) regarding the type of gas component, and does not have information (quantitative information) regarding the concentration. Therefore, when the type of component contained in the sample gas and its concentration are unknown, the nth-order differential waveform of the dynamic response waveform with respect to the temperature change of the metal oxide semiconductor gas sensor is displayed on the two-dimensional graph including the waveform. If it is checked whether it passes through such a fixed point, it becomes possible to specify the component regardless of the concentration.

本発明はこうした原理を利用して上記課題を解決することを意図したものであり、本発明に係るガス検出方法は、金属酸化物半導体を利用したガスセンサにより未知の成分を含むガスを検出して少なくともその成分を同定するためのガス検出方法において、
a)前記ガスセンサに試料ガスが晒された状態の下で、該ガスセンサの温度をその応答動作可能な範囲内で変化させ、
b)その温度変化に応じた前記ガスセンサの検出信号の動的応答を測定し、
c)その動的応答波形の時間に関するn次微分(n=1、2、…)波形と、該n次微分波形が描かれるグラフ上に設定された、濃度の相違する同一ガス成分に対するn次微分波形のいずれもが共通に通過し且つガス成分の種類毎には一致しないような固定点と、の関係に基づいて前記試料ガスに含まれるガス成分を同定する、
ことを特徴としている。
The present invention is intended to solve the above-mentioned problems using such a principle, and the gas detection method according to the present invention detects a gas containing an unknown component by a gas sensor using a metal oxide semiconductor. In a gas detection method for identifying at least its components,
a) Under the condition where the sample gas is exposed to the gas sensor, the temperature of the gas sensor is changed within a range where the response operation is possible,
b) Measure the dynamic response of the detection signal of the gas sensor according to the temperature change,
c) nth order differential (n = 1, 2,...) waveform with respect to time of the dynamic response waveform and the nth order for the same gas component having different concentrations set on the graph on which the nth order differential waveform is drawn. Identifying the gas component contained in the sample gas based on the relationship with a fixed point where all of the differential waveforms pass in common and do not match for each type of gas component,
It is characterized by that.

また本発明に係るガス検出装置は上記ガス検出方法を具現化する装置であって、
a)金属酸化物半導体を利用したガスセンサと、
b)前記ガスセンサの温度をその応答動作可能な範囲内で変化させる温度制御手段と、
c)前記ガスセンサに試料ガスが晒された状態の下で、前記温度制御手段による温度変化に応じた前記ガスセンサの検出信号の動的応答を測定する測定制御手段と、
d)前記動的応答波形の時間に関するn次微分(n=1、2、…)波形と、該n次微分波形が描かれるグラフ上に設定された、濃度の相違する同一ガス成分に対するn次微分波形のいずれもが共通に通過し且つガス成分の種類毎には一致しないような固定点と、の関係に基づいて前記試料ガスに含まれるガス成分を同定する定性手段と、
を備えることを特徴としている。
A gas detection apparatus according to the present invention is an apparatus that embodies the gas detection method.
a) a gas sensor using a metal oxide semiconductor;
b) temperature control means for changing the temperature of the gas sensor within a range in which the response operation is possible;
c) a measurement control means for measuring a dynamic response of a detection signal of the gas sensor according to a temperature change by the temperature control means under a state in which the sample gas is exposed to the gas sensor;
d) nth-order differential (n = 1, 2,...) waveform with respect to time of the dynamic response waveform and nth-order for the same gas component having different concentrations set on the graph on which the n-order differential waveform is drawn. Qualitative means for identifying a gas component contained in the sample gas based on a relationship between a fixed point where all of the differential waveforms pass in common and do not coincide with each type of gas component;
It is characterized by having.

なお、本明細書で言う「固定点」は厳密な「点」を意味するものではなく、実際には分析時の条件のばらつきや経時変化などを考慮した適度な面積を有する小領域と考えることができる。   Note that the “fixed point” in this specification does not mean a strict “point”, but is actually considered as a small region having an appropriate area in consideration of variations in conditions during analysis and changes over time. Can do.

本発明に係るガス検出方法及びガス検出装置によれば、ガス成分の濃度の影響を受けずにガス成分の種類に関する情報を抽出してそれに基づいてガス成分を同定しているので、従来に比べて正確な同定が可能となる。また、ガス成分が特定されれば、ガス成分の種類という条件を絞った状態で、例えば温度変化から所定時間が経過した時点でのガスセンサの検出値等に基づいて濃度を算出することができる。したがって、定量精度も向上する。これにより、1個のガスセンサで複数のガス成分の定性及び定量が可能となり、ガスセンサの運用効率が向上する。   According to the gas detection method and the gas detection device of the present invention, the information on the type of the gas component is extracted without being influenced by the concentration of the gas component, and the gas component is identified based on the extracted information. And accurate identification is possible. If the gas component is specified, the concentration can be calculated based on, for example, the detection value of the gas sensor when a predetermined time has elapsed from the temperature change, with the condition of the type of the gas component narrowed down. Therefore, quantitative accuracy is also improved. This makes it possible to qualitatively and quantitatively determine a plurality of gas components with a single gas sensor, improving the operational efficiency of the gas sensor.

また、本発明に係るガス検出方法及びガス検出装置によれば、n次微分演算処理や波形が固定点を通過するか否かといった判定処理など、必要な解析処理が簡単であるので、比較的安価な処理装置(例えばパーソナルコンピュータ)でもリアルタイムで分析を行うことができる。したがって、装置の小型化、低コスト化が容易であり、測定場所でのリアルタイム測定も可能である。   Further, according to the gas detection method and the gas detection device according to the present invention, since necessary analysis processing such as n-th order differential calculation processing and determination processing such as whether a waveform passes through a fixed point is simple, Even an inexpensive processing device (for example, a personal computer) can perform analysis in real time. Therefore, it is easy to reduce the size and cost of the apparatus, and real-time measurement at the measurement location is also possible.

本発明に係るガス検出装置の好ましい一態様として、複数種類のガス成分について前記固定点を予め調べて記憶しておくための記憶手段を備え、前記定性手段は、試料ガスの測定によって得られたn次微分波形が、前記記憶手段に記憶されたガス成分毎の固定点のいずれを通るのか調べることによりガス成分を同定する構成とすることができる。   As a preferable aspect of the gas detection device according to the present invention, the gas detection device includes a storage unit for previously checking and storing the fixed points for a plurality of types of gas components, and the qualitative unit is obtained by measuring a sample gas. The gas component can be identified by examining which of the fixed points for each gas component stored in the storage means passes through the nth-order differential waveform.

即ち、上述したようにn次微分波形を含む2次元グラフ上での上記固定点の位置はガス成分の種類毎に相違しているから、予め標準試料を用いて実際に測定を行って分析対象として考えられるガス成分毎に固定点を求めて記憶手段に記憶しておくことができる。この構成によれば、定性手段の処理内容が簡単であるので、装置の小型化、低コスト化に有利である。   That is, as described above, the position of the fixed point on the two-dimensional graph including the nth-order differential waveform is different for each type of gas component. Therefore, the measurement target is actually measured using a standard sample in advance. It is possible to obtain a fixed point for each gas component that can be stored in the storage means. According to this configuration, the processing content of the qualitative means is simple, which is advantageous for downsizing and cost reduction of the apparatus.

なお、上記固定点の装置間差(器差)が大きい場合には、各装置毎にそれぞれ標準試料の測定を行って固定点を求めるようにするか、或いは固定点の装置間差を補正するような演算処理を各装置で行うようにするとよい。また、固定点の経時変化が大きい場合には、予め経時変化を想定してその想定に沿った補正を行うようにするか、或いは、例えば所定時間装置を使用する毎に標準試料を測定し直して固定点の較正を実行するようにするとよい。   In addition, when the difference (instrument difference) between the fixed points is large, the standard sample is measured for each device to obtain the fixed point, or the fixed point difference between the devices is corrected. Such arithmetic processing may be performed by each device. In addition, when the change with time of the fixed point is large, it is assumed that the change with time is assumed in advance and correction is performed according to the assumption, or the standard sample is measured again every time the apparatus is used for a predetermined time, for example. It is advisable to perform a fixed point calibration.

本発明に係るガス検出装置では、ガスセンサとしては各種の金属酸化物半導体ガスセンサを用いることができ、例えば広く使用されているSnO2センサを用いてもよい。これにより、特殊なガスセンサではなく、一般的な安価なガスセンサを利用することができる。 In the gas detection device according to the present invention, various metal oxide semiconductor gas sensors can be used as the gas sensor, for example, a widely used SnO 2 sensor may be used. Thereby, not a special gas sensor but a general inexpensive gas sensor can be used.

なお、微分の次数nが大きくなると波形の時間的変化が小さくなるから、一般的にnは小さいほうがよく、例えば1又は2とする(つまり1次微分又は2次微分とする)とよい。また、nを1つのみ選択するのではなく複数選択し、例えば動的応答の時間に関する1次微分波形と固定点との関係、及び2次微分波形と固定点との関係の両方に基づいてガス成分を同定するようにしてもよい。   In addition, since the time change of a waveform will become small if the order n of a differentiation becomes large, generally n should be small, for example, it is good to set it as 1 or 2 (namely, it is set as a primary differentiation or a secondary differentiation). Further, not only one n but a plurality are selected, for example, based on both the relationship between the primary differential waveform and the fixed point related to the dynamic response time, and the relationship between the secondary differential waveform and the fixed point. You may make it identify a gas component.

以下、まず本発明に係るガス検出方法及びガス検出装置におけるガス成分の同定の原理について、本発明者が行った実験結果を交えて説明する。   Hereinafter, the principle of gas component identification in the gas detection method and gas detection apparatus according to the present invention will be described together with the results of experiments conducted by the present inventors.

単一成分を含むガス雰囲気中に置かれた金属酸化物半導体ガスセンサ(この例ではSnO2ガスセンサ)の温度を、ガス検知可能な温度範囲内で第1温度T1から第2温度T2に上昇させたとき、その温度変化の過程でガスセンサの検出信号は特徴的な態様を以て変化する。この過渡的な変化が温度変化に対する動的応答であるが、その応答特性はガス成分の種類とその濃度とによって異なるものとなる。 The temperature of the metal oxide semiconductor gas sensor (SnO 2 gas sensor in this example) placed in a gas atmosphere containing a single component was raised from the first temperature T1 to the second temperature T2 within the temperature range in which gas can be detected. When the temperature changes, the detection signal of the gas sensor changes in a characteristic manner. This transient change is a dynamic response to a temperature change, but its response characteristic varies depending on the type of gas component and its concentration.

図4は本発明者が行った実験において、時刻0でガスセンサに付設されたヒータに流す加熱電流をステップ状に増加させたときのガスセンサの表面温度の実測値を示すグラフである。時間0から約15秒間で温度はT1=約410[K](約140℃)からT2=約520[K](約250℃)まで上昇する。但し、後述のガスセンサ10の応答特性の結果からみると、この温度変化はこの実験で使用した温度検出装置の限界により、実際にガスセンサの感応膜で生じている温度変化よりも遅れているものと考えられる。いずれにしても、このような加熱電流の増加に伴ってガスセンサ10の温度は第1温度T1から第2温度T2まで適宜のレートで上昇し、第2温度T2に近づくにつれて上昇レートが緩やかになり、第2温度T2近傍に達すると熱平衡によりほぼその温度に維持される。   FIG. 4 is a graph showing measured values of the surface temperature of the gas sensor when the heating current passed through the heater attached to the gas sensor at time 0 is increased stepwise in an experiment conducted by the present inventor. The temperature rises from T1 = about 410 [K] (about 140 ° C.) to T2 = about 520 [K] (about 250 ° C.) from time 0 to about 15 seconds. However, from the result of the response characteristics of the gas sensor 10 described later, this temperature change is delayed from the temperature change actually generated in the sensitive film of the gas sensor due to the limit of the temperature detection device used in this experiment. Conceivable. In any case, as the heating current increases, the temperature of the gas sensor 10 increases at an appropriate rate from the first temperature T1 to the second temperature T2, and the rate of increase increases gradually as the temperature approaches the second temperature T2. When the temperature reaches the vicinity of the second temperature T2, the temperature is substantially maintained by thermal equilibrium.

図5は、メタノール、エタノール、ベンゼン、1−プロパノール、2−プロパノール、1−ブタノール、2−メチル−1−プロパノール、及び2−ブタノールの8種のガス成分と希釈ガスである空気とについて、上記のような温度変化に対するガスセンサ10の動的応答を実測した波形を示すグラフである。ガス成分の濃度は各成分とも100、200、300ppmの3段階である。   FIG. 5 shows the above eight gas components of methanol, ethanol, benzene, 1-propanol, 2-propanol, 1-butanol, 2-methyl-1-propanol, and 2-butanol, and air as a dilution gas. It is a graph which shows the waveform which measured the dynamic response of the gas sensor 10 with respect to such temperature changes. The concentration of the gas component is three stages of 100, 200, and 300 ppm for each component.

図5で分かるように、動的応答の波形形状は基本的にガス成分毎に異なっており、また濃度によっても異なる。したがって、この動的応答の波形はガス成分の種類に関する情報(定性情報)と濃度に関する情報(定量情報)とを含むと言える。しかしながら、この波形形状から直接的に定性情報と定量情報とを完全に分離して、それぞれ求めることは困難である。   As can be seen from FIG. 5, the waveform shape of the dynamic response basically differs for each gas component, and also varies depending on the concentration. Therefore, it can be said that the waveform of this dynamic response includes information (qualitative information) regarding the type of gas component and information (quantitative information) regarding the concentration. However, it is difficult to completely separate qualitative information and quantitative information directly from this waveform shape.

図6は図5に示した各波形をそれぞれ時間に関して1次微分した波形を示すグラフである。この図6を見れば、特に温度変化の初期の5秒間においてガス成分毎に波形形状に相違が生じていることが分かる。一方、7.5秒経過以降の波形形状ではガス成分による明確な差異は殆どみられない。そこで、本発明者はこの初期の5秒間の過渡的な波形変動に着目した。   FIG. 6 is a graph showing waveforms obtained by first-order differentiation of the waveforms shown in FIG. 5 with respect to time. It can be seen from FIG. 6 that there is a difference in the waveform shape for each gas component, particularly in the initial 5 seconds of the temperature change. On the other hand, in the waveform shape after 7.5 seconds, there is almost no clear difference due to the gas component. Therefore, the present inventor has paid attention to the initial 5 second transient waveform fluctuation.

図7は、エタノール、1−ブタノール、2−メチル−1−プロパノールの3種のガス成分をそれぞれ単体で含む試料ガスについて、温度変化時点(時刻0)からの初期の5秒間の動的応答の時間に関する1次微分波形及び2次微分波形をより詳細に求めた結果を示すグラフである。各ガス成分毎に1次微分波形及び2次微分波形は異なるが、それぞれの2次元グラフ上で濃度に依存しない或る固定点を通過しており、しかもその固定点はガス成分毎に異なる位置(時間及び微分値)に存在していることが分かる。   FIG. 7 shows the dynamic response of the initial 5 seconds from the time of temperature change (time 0) for the sample gas containing each of the three gas components, ethanol, 1-butanol and 2-methyl-1-propanol. It is a graph which shows the result of having calculated | required in detail the primary differential waveform and secondary differential waveform regarding time. The primary differential waveform and the secondary differential waveform differ for each gas component, but pass through a fixed point that does not depend on the concentration on each two-dimensional graph, and the fixed point is different for each gas component. It can be seen that it exists in (time and differential value).

例えばエタノールについての1次微分波形では約0.5秒経過後に1個の固定点が存在し、1−ブタノールについての1次微分波形では約1.0秒経過後と約3.6秒経過後とにそれぞれ1個ずつ固定点が存在し、さらに2−メチル−1−プロパノールについての1次微分波形では約0.6経過後、約2.1秒経過後、及び約3.4秒経過後の3箇所にそれぞれ1個ずつ固定点が存在していることが分かる。   For example, in the first derivative waveform for ethanol, there is one fixed point after about 0.5 seconds, and in the first derivative waveform for 1-butanol, after about 1.0 seconds and after about 3.6 seconds. In addition, there is one fixed point for each, and in the first derivative waveform for 2-methyl-1-propanol, after about 0.6, after about 2.1 seconds, and after about 3.4 seconds It can be seen that one fixed point exists at each of the three locations.

上記図7は3種のガス成分のみの結果であるが、上述したような他のガス成分についても同様の結果となり、濃度には依存しないが各成分の種類に依存して、1次微分波形を含む2次元グラフ(横軸を時間、縦軸を1次微分値としたグラフ)上及び2次微分波形を含む2次元グラフ(横軸を時間、縦軸を2次微分値としたグラフ)上で、それぞれ互いに異なる固定点を有することが判明した。   Although FIG. 7 shows the result of only three kinds of gas components, the same result is obtained for the other gas components as described above, and the first-order differential waveform does not depend on the concentration but depends on the type of each component. Two-dimensional graph (including time on the horizontal axis and the primary differential value on the vertical axis) and a two-dimensional graph including the secondary differential waveform (graph on the horizontal axis with time and the vertical axis with the secondary differential value) Above, it has been found that each has a different fixed point.

各種ガス成分の1次微分波形についての上記固定点の位置をまとめたのが図8に示すグラフである。図8中には参考のために濃度が100ppmである2−メチル−1−プロパノールの1次微分波形を点線で示している。2次微分波形についても同様のグラフを作成することができる。このように横軸を時間、縦軸を1次微分値(又は2次微分値)とした2次元グラフ上において固定点の位置はガス成分毎に明瞭に異なるので、この情報をガス成分の同定に利用することができる。   The graph shown in FIG. 8 summarizes the positions of the fixed points for the first-order differential waveforms of various gas components. In FIG. 8, the first-order differential waveform of 2-methyl-1-propanol having a concentration of 100 ppm is shown by a dotted line for reference. A similar graph can be created for the secondary differential waveform. As described above, the position of the fixed point on the two-dimensional graph with the horizontal axis representing time and the vertical axis representing the primary differential value (or secondary differential value) is clearly different for each gas component. Can be used.

即ち、ガス成分が未知である試料ガスを上述したような方法でガスセンサにより測定して、温度変化に対する動的応答の波形を取得する。そして、その動的応答波形を時間に関して1次微分して得られた波形が図8に示した固定点のいずれを通過しているのかを調べ、その結果からガス成分を同定することができる。   That is, the sample gas whose gas component is unknown is measured by the gas sensor by the method as described above, and the waveform of the dynamic response to the temperature change is acquired. Then, it is possible to examine which of the fixed points shown in FIG. 8 the waveform obtained by first-order differentiation of the dynamic response waveform with respect to time passes and identify the gas component from the result.

また、未知のガス成分が図8中に示したいずれかのガス成分であることが既知である場合(換言すれば、それ以外のガス成分である可能性がない場合)には、1次微分波形が固定点のいずれを通過しているのかを調べるのではなく、例えば1次微分波形と各固定点との相関係数或いは相関性を示す指標値を算出し、相関係数が最も高く相関性が大きいと判定されたガス成分、つまりは最も確からしいと判定されたガス成分が未知のガス成分であると結論付けてもよい。また、同様の考え方として、1次微分波形と各固定点との間の最短距離を算出し、その値に基づいて上記のような識別を行うこともできる。いずれにしても、固定点は濃度に関する情報を持たずガス成分の種類のみの情報を持つとみなして、1次微分波形又はそれ以上の次数の微分波形と該微分波形を含む2次元グラフ上に位置付けられる各ガス成分毎の固定点との関係から、ガス成分を同定することができる。   Further, when it is known that the unknown gas component is one of the gas components shown in FIG. 8 (in other words, when there is no possibility of other gas components), the first derivative Rather than examining which of the fixed points the waveform passes through, for example, the correlation coefficient between the first derivative waveform and each fixed point or an index value indicating the correlation is calculated, and the correlation coefficient is the highest. It may be concluded that the gas component that is determined to be large, that is, the gas component that is determined to be the most probable is an unknown gas component. As a similar idea, the shortest distance between the primary differential waveform and each fixed point can be calculated, and the above identification can be performed based on the value. In any case, the fixed point does not have information on the concentration but has only information on the type of gas component, and on the two-dimensional graph including the first-order differential waveform or higher-order differential waveform and the differential waveform. The gas component can be identified from the relationship with the fixed point for each gas component positioned.

以上が本発明に係るガス検出方法のガス成分同定の原理である。次に、この原理を利用した本発明に係るガス検出装置の一実施例について図1〜図3を参照して説明する。図1は本実施例のガス検出装置の概略構成図である。   The above is the principle of gas component identification of the gas detection method according to the present invention. Next, an embodiment of the gas detection apparatus according to the present invention using this principle will be described with reference to FIGS. FIG. 1 is a schematic configuration diagram of a gas detection apparatus according to this embodiment.

このガス検出装置では、分析対象である試料ガスが導入されるガスチャンバ11内にSnO2ガスセンサ10が設置されている。なお、試料ガス中に含まれる水分の影響を軽減するために、試料ガスを除湿部に通過させた後にガスチャンバ11内に送り込んでもよい。ガスセンサ10に付設されたヒータ10aには外部の温度制御部12より加熱電流が供給され、それによってガスセンサ10は所定温度に加熱される。このガスセンサ10による検出信号は、A/D変換部13によりデジタルデータに変換されてデータ処理部20に入力される。データ処理部20は、微分演算処理部22、ガス種判別処理部23、濃度算出処理部24、固定点情報記憶部25、検量線情報記憶部26、等を機能ブロックとして備える。温度制御部12、データ処理部20等は制御部14によりその動作が統括的に制御され、制御部14には分析者が各種の指示を与えるための入力部15と、分析結果等を表示するための表示部16とが接続されている。 In this gas detector, a SnO 2 gas sensor 10 is installed in a gas chamber 11 into which a sample gas to be analyzed is introduced. In order to reduce the influence of moisture contained in the sample gas, the sample gas may be sent into the gas chamber 11 after passing through the dehumidifying section. A heating current is supplied to the heater 10a attached to the gas sensor 10 from an external temperature control unit 12, and thereby the gas sensor 10 is heated to a predetermined temperature. The detection signal from the gas sensor 10 is converted into digital data by the A / D conversion unit 13 and input to the data processing unit 20. The data processing unit 20 includes a differential calculation processing unit 22, a gas type determination processing unit 23, a concentration calculation processing unit 24, a fixed point information storage unit 25, a calibration curve information storage unit 26, and the like as functional blocks. The operation of the temperature control unit 12, the data processing unit 20, and the like is comprehensively controlled by the control unit 14, and the control unit 14 displays an input unit 15 for an analyzer to give various instructions, an analysis result, and the like. A display unit 16 is connected.

なお、データ処理部20及び制御部14は例えばパーソナルコンピュータ上で所定のプログラムを実行することによりその機能を達成することもできるし、またデジタルシグナルプロセッサなどを含む専用のハードウエアで以て構成することもできる。   The data processing unit 20 and the control unit 14 can achieve their functions by executing a predetermined program on a personal computer, for example, and are configured by dedicated hardware including a digital signal processor or the like. You can also.

図2は上記装置に含まれる固定点情報記憶部25における記憶情報を示す概念図である。上述したように、検出対象である各種の成分(化合物)についての動的応答の1次微分波形はそれぞれ濃度に依存しない固定点を有するから、予めこの固定点を化合物毎に調べて図2に示すようなテーブル形式にまとめて固定点情報記憶部25に記憶しておく。この例では、例えばガス種Aは固定点a1、a2を、ガス種Bは固定点b1、b2、b3を、ガス種Cは固定点c1、c2を持つ。なお、上述の如く、1次微分波形の固定点ではなく、2次微分波形等、n次微分(n=1、2、…)波形の固定点を用いてもよく、また複数のn次微分波形の固定点を併用することで識別性を高めることもできる。   FIG. 2 is a conceptual diagram showing the stored information in the fixed point information storage unit 25 included in the apparatus. As described above, the first-order differential waveform of the dynamic response for various components (compounds) to be detected has a fixed point that does not depend on the concentration. Therefore, this fixed point is examined in advance for each compound and is shown in FIG. They are stored in the fixed point information storage unit 25 in a table format as shown. In this example, for example, gas type A has fixed points a1 and a2, gas type B has fixed points b1, b2, and b3, and gas type C has fixed points c1 and c2. As described above, a fixed point of an n-order differential (n = 1, 2,...) Waveform such as a secondary differential waveform may be used instead of a fixed point of the primary differential waveform, or a plurality of n-order differentials may be used. The discriminability can be improved by using a fixed point of the waveform together.

一方、上記装置に含まれる検量線情報記憶部26には、各種の化合物についての動的応答から求めた、検出値と濃度との関係を示す検量線を表す情報を格納しておく。例えば図5を見れば分かるように、温度変化時点から10秒又は15秒経過後の検出値は濃度によって相違するから、化合物毎に濃度と検出値との関係から例えば図3に示すような検量線を作成して、その検量線を表す近似多項式を求めてその情報を検量線情報記憶部26に格納しておくものとする。   On the other hand, the calibration curve information storage unit 26 included in the apparatus stores information representing a calibration curve indicating the relationship between the detected value and the concentration obtained from the dynamic response of various compounds. For example, as can be seen from FIG. 5, the detected value after 10 seconds or 15 seconds from the time of temperature change differs depending on the concentration. Therefore, for example, a calibration as shown in FIG. 3 from the relationship between the concentration and the detected value for each compound. A line is created, an approximate polynomial representing the calibration curve is obtained, and the information is stored in the calibration curve information storage unit 26.

続いて、本実施例のガス検出装置におけるガス分析動作を説明する。制御部14の制御の下に、温度制御部12はガスセンサ10の温度が第1温度T1となるようにヒータ10aに流す加熱電流を制御する。そして、その状態から所定のタイミング(例えば時刻t0)で以て温度制御部12はガスセンサ10の温度が第1温度T1から第2温度T2(T2>T1)に変化するように加熱電流を増加させる。これによって、ガスセンサ10の温度は第1温度T1から第2温度T2に上昇する。加熱電流の増加はステップ状であっても、熱容量などの影響で実際にはガスセンサ10の温度上昇はステップ状とはならない。なお、第1温度T1、第2温度T2は検出対象であるガス成分の範疇などに応じて適宜に設定するとよい。例えば検出対象がアルコール類であるような場合には、上述したようにT1を400[K]近辺、T2を500[K]近辺にしておけばよい。   Subsequently, a gas analysis operation in the gas detection apparatus of the present embodiment will be described. Under the control of the control unit 14, the temperature control unit 12 controls the heating current that flows through the heater 10a so that the temperature of the gas sensor 10 becomes the first temperature T1. Then, the temperature controller 12 increases the heating current so that the temperature of the gas sensor 10 changes from the first temperature T1 to the second temperature T2 (T2> T1) at a predetermined timing (for example, time t0) from that state. . Thereby, the temperature of the gas sensor 10 rises from the first temperature T1 to the second temperature T2. Even if the heating current increases stepwise, the temperature rise of the gas sensor 10 is not actually stepped due to the influence of heat capacity and the like. The first temperature T1 and the second temperature T2 may be appropriately set according to the category of the gas component to be detected. For example, when the detection target is an alcohol, T1 may be set to around 400 [K] and T2 may be set to around 500 [K] as described above.

制御部14から測定開始の指示を受けたデータ処理部20は上記時刻t0からデータの収集を開始し、A/D変換部13により所定のサンプリング時間間隔でデジタルデータに変換された検出信号を取り込み始める。ガスセンサ10の温度が第1温度T1から第2温度T2に上昇するとき、特にその初期の5秒程度の期間中にガスセンサ10の検出信号は大きく変化し、その後、定常状態に近づくように緩やかに変化する。微分演算処理部22はこうした時間依存性を有するデータを受け、リアルタイムで微分演算処理を行うことで1次微分波形データを作成しガス種判別処理部23に送る。   Upon receiving an instruction to start measurement from the control unit 14, the data processing unit 20 starts collecting data from the time t0, and takes in the detection signal converted into digital data at a predetermined sampling time interval by the A / D conversion unit 13. start. When the temperature of the gas sensor 10 rises from the first temperature T1 to the second temperature T2, the detection signal of the gas sensor 10 changes greatly, especially during the initial period of about 5 seconds, and then gently so as to approach the steady state. Change. The differential operation processing unit 22 receives the data having such time dependency, performs the differential operation processing in real time, creates primary differential waveform data, and sends it to the gas type discrimination processing unit 23.

ガス種判別処理部23は固定点情報記憶部25に格納されている上述したような各ガス成分毎の固定点に関する情報を読み出し、微分演算処理部22より受け取った1次微分波形データがいずれの固定点を通るのかを判定する。ここで、例えば固定点情報記憶部25に格納されている固定点がそれぞれ或る1点の座標位置を示すものであったとしても、分析条件のばらつきや分析誤差などを考えると、或る程度のずれを許容する必要がある。そこで、実際には固定点で示される座標位置を中心として所定範囲をその固定点としての検出範囲と定め、1次微分波形がこの検出範囲を通過した場合には固定点を通過したものとみなすような処理を行う。これによって、分析条件のばらつきや各種誤差の影響が軽減される。   The gas type discrimination processing unit 23 reads information on the fixed point for each gas component as described above stored in the fixed point information storage unit 25, and the primary differential waveform data received from the differential calculation processing unit 22 Determine if it passes through a fixed point. Here, for example, even if the fixed points stored in the fixed point information storage unit 25 each indicate the coordinate position of a certain point, in consideration of variations in analysis conditions, analysis errors, etc., to a certain extent It is necessary to allow the deviation. Therefore, in practice, a predetermined range centered on the coordinate position indicated by the fixed point is defined as a detection range as the fixed point, and if the first-order differential waveform passes through this detection range, it is regarded as having passed through the fixed point. Perform the following process. As a result, the influence of variations in analysis conditions and various errors is reduced.

ガス種判別処理部23は上記のように1次微分波形と固定点との位置関係に基づいて、未知のガス成分がいずれのガス成分であるのかを特定し、成分種類情報として制御部14とともに濃度算出部24に送る。濃度算出部24はその成分情報を受けて、検量線情報記憶部26に格納されているその成分に応じた検量線情報を読み出して検量線を再現する。そして、データ処理部20に入力された動的応答波形において予め決められた経過時間(例えば15秒経過後)における検出値を取得し、再現した検量線を参照して検出値から濃度を求める。   The gas type discrimination processing unit 23 specifies which gas component is the unknown gas component based on the positional relationship between the first-order differential waveform and the fixed point as described above, and together with the control unit 14 as component type information. This is sent to the density calculation unit 24. The concentration calculation unit 24 receives the component information, reads out the calibration curve information corresponding to the component stored in the calibration curve information storage unit 26, and reproduces the calibration curve. Then, a detection value at a predetermined elapsed time (for example, after 15 seconds has elapsed) in the dynamic response waveform input to the data processing unit 20 is acquired, and the concentration is obtained from the detection value with reference to the reproduced calibration curve.

制御部14は上記のようにして求まった成分種類情報と濃度情報とを受けて、これを表示部16に表示させる。これによって、分析者は測定した未知ガスの含有成分の種類とその濃度とを短時間で知ることができる。   The control unit 14 receives the component type information and the concentration information obtained as described above, and causes the display unit 16 to display them. As a result, the analyst can know the types and concentrations of the measured components of the unknown gas in a short time.

なお、ガス種判別処理部23は上記のような処理の結果、固定点情報記憶部25に用意されている固定点に対応したものが見つからない場合には、検出不能であるとして制御部14を通して表示部16にその旨を表示させればよい。   Note that if the gas type discrimination processing unit 23 cannot find the one corresponding to the fixed point prepared in the fixed point information storage unit 25 as a result of the processing as described above, the gas type determination processing unit 23 passes through the control unit 14 as being undetectable. This can be displayed on the display unit 16.

なお、固定点は常に一定とは限らず、経時変化を生じる場合もあるし或いは分析条件(例えば試料ガスの湿度など)等によっても変化する可能性があり得る。また、一般にガスセンサの応答特性には幾分の個体差が認められるため、固定点の装置間差異もあるものと考えれる。そこで、例えば補正処理を行ったり、或いは実際に標準試料の測定を行った結果に基づいて校正処理を行ったりして、固定点を適宜に修正して用いるとよい。   Note that the fixed point is not always constant and may change with time or may change depending on the analysis conditions (for example, the humidity of the sample gas). In addition, since there are generally some individual differences in the response characteristics of the gas sensor, it is considered that there are also differences between the devices at fixed points. Accordingly, for example, correction processing may be performed, or calibration processing may be performed based on the result of actual measurement of a standard sample, and the fixed point may be appropriately corrected and used.

また、上記実施例では1次微分波形がいずれの固定点を通過するのかを判定していたが、上述したように、固定点と1次(又はn次)微分波形との相関性など利用してガス成分の種類を同定するようにしてもよい。   In the above-described embodiment, it is determined which fixed point the first-order differential waveform passes through. However, as described above, the correlation between the fixed point and the first-order (or n-th order) differential waveform is used. Thus, the type of gas component may be identified.

また、上記実施例では、ガスセンサにより得られる検出信号をほぼリアルタイムで処理して分析結果を出すようにしているが、検出信号をA/D変換したデータを一旦データメモリに保存し、その後にバッチ処理的に解析処理を行う構成としてもよい。   In the above embodiment, the detection signal obtained by the gas sensor is processed almost in real time and the analysis result is output. However, the data obtained by A / D conversion of the detection signal is temporarily stored in the data memory, and then batch processing is performed. It is good also as a structure which performs an analysis process in process.

また、上記実施例では1個のガスセンサでガス成分の同定と定量とを行う場合について述べたが、異なる応答特性を有するガスセンサを2個以上併設して、同定可能なガス種類を増やしたり、或いは同定や定量の信頼性を一層高めたりするようにしてもよい。   Further, in the above embodiment, the case where the gas component is identified and quantified by one gas sensor has been described. However, two or more gas sensors having different response characteristics can be provided to increase the types of gas that can be identified, or The reliability of identification and quantification may be further increased.

さらに、上記実施例は本発明の一例であるから、上記記載の点以外においても、本発明の趣旨の範囲で適宜、変更、修正、追加などを行っても本願特許請求の範囲に包含されることは明らかである。   Further, since the above embodiment is an example of the present invention, any change, correction, addition, etc., as appropriate within the scope of the present invention, are included in the scope of the claims of the present application in addition to the above description. It is clear.

本発明の一実施例によるガス検出装置の構成図。The block diagram of the gas detection apparatus by one Example of this invention. 図1中の固定点情報記憶部の記憶情報を示す概念図。The conceptual diagram which shows the memory | storage information of the fixed point information storage part in FIG. 図1中の検量線情報記憶部に記憶される検量線の一例を示す図。The figure which shows an example of the calibration curve memorize | stored in the calibration curve information storage part in FIG. 本発明者による実験において時刻0でガスセンサに流す加熱電流をステップ状に増加させたときのガスセンサの表面温度の変化を示すグラフ。The graph which shows the change of the surface temperature of a gas sensor when the heating current sent through a gas sensor is increased in the step shape in the experiment by this inventor. 図4の温度変化に対するガスセンサの動的応答を、メタノール、エタノール、ベンゼン、1−プロパノール、2−プロパノール、1−ブタノール、2−メチル−1−プロパノール、及び2−ブタノールの8種のガス種と希釈ガスである空気とについて実測した波形を示す図。The dynamic response of the gas sensor with respect to the temperature change in FIG. 4 is expressed by the following eight gas species: methanol, ethanol, benzene, 1-propanol, 2-propanol, 1-butanol, 2-methyl-1-propanol, and 2-butanol. The figure which shows the waveform measured about the air which is a dilution gas. 図5に示す各波形をそれぞれ1次微分して取得した波形を示す図。The figure which shows the waveform acquired by carrying out the primary differentiation of each waveform shown in FIG. エタノール、1−ブタノール、2−メチル−1−プロパノールの3種のガスについて初期5秒間の応答特性の1次微分波形及び2次微分波形を示す図。The figure which shows the primary differential waveform and the secondary differential waveform of the response characteristic of initial 5 second about three types of gases, ethanol, 1-butanol, and 2-methyl-1-propanol. 各種ガスの1次微分波形についての固定点をプロットした図。The figure which plotted the fixed point about the primary differential waveform of various gas.

符号の説明Explanation of symbols

10…SnO2ガスセンサ
10a…ヒータ
11…ガスチャンバ
12…温度制御部
13…A/D変換部
14…制御部
15…入力部
16…表示部
20…データ処理部
22…微分演算処理部
23…ガス種判別処理部
24…濃度算出処理部
25…固定点情報記憶部
26…検量線情報記憶部
10 ... SnO 2 gas sensor 10a ... heater 11 ... gas chamber 12 ... temperature control unit 13 ... A / D conversion unit 14 ... controller 15 ... input unit 16 ... display unit 20 ... data processing unit 22 ... differential operation processing unit 23 ... Gas Species discrimination processing unit 24 ... concentration calculation processing unit
25 ... Fixed point information storage unit 26 ... Calibration curve information storage unit

Claims (5)

金属酸化物半導体を利用したガスセンサにより未知の成分を含むガスを検出して少なくともその成分を同定するためのガス検出方法において、
a)前記ガスセンサに試料ガスが晒された状態の下で、該ガスセンサの温度をその応答動作可能な範囲内で変化させ、
b)その温度変化に応じた前記ガスセンサの検出信号の動的応答を測定し、
c)その動的応答波形の時間に関するn次微分(n=1、2、…)波形と、該n次微分波形が描かれるグラフ上に設定された、濃度の相違する同一ガス成分に対するn次微分波形のいずれもが共通に通過し且つガス成分の種類毎には一致しないような固定点と、の関係に基づいて前記試料ガスに含まれるガス成分を同定する、
ことを特徴とするガス検出方法。
In a gas detection method for detecting a gas containing an unknown component by a gas sensor using a metal oxide semiconductor and identifying at least the component,
a) Under the condition where the sample gas is exposed to the gas sensor, the temperature of the gas sensor is changed within a range where the response operation is possible,
b) Measure the dynamic response of the detection signal of the gas sensor according to the temperature change,
c) nth order differential (n = 1, 2,...) waveform with respect to time of the dynamic response waveform and the nth order for the same gas component having different concentrations set on the graph on which the nth order differential waveform is drawn. Identifying the gas component contained in the sample gas based on the relationship with a fixed point where all of the differential waveforms pass in common and do not match for each type of gas component,
The gas detection method characterized by the above-mentioned.
a)金属酸化物半導体を利用したガスセンサと、
b)前記ガスセンサの温度をその応答動作可能な範囲内で変化させる温度制御手段と、
c)前記ガスセンサに試料ガスが晒された状態の下で、前記温度制御手段による温度変化に応じた前記ガスセンサの検出信号の動的応答を測定する測定制御手段と、
d)前記動的応答波形の時間に関するn次微分(n=1、2、…)波形と、該n次微分波形が描かれるグラフ上に設定された、濃度の相違する同一ガス成分に対するn次微分波形のいずれもが共通に通過し且つガス成分の種類毎には一致しないような固定点と、の関係に基づいて前記試料ガスに含まれるガス成分を同定する定性手段と、
を備えることを特徴とするガス検出装置。
a) a gas sensor using a metal oxide semiconductor;
b) temperature control means for changing the temperature of the gas sensor within a range in which the response operation is possible;
c) a measurement control means for measuring a dynamic response of a detection signal of the gas sensor according to a temperature change by the temperature control means under a state in which the sample gas is exposed to the gas sensor;
d) nth-order differential (n = 1, 2,...) waveform with respect to time of the dynamic response waveform and nth-order for the same gas component having different concentrations set on the graph on which the n-order differential waveform is drawn. Qualitative means for identifying a gas component contained in the sample gas based on a relationship between a fixed point where all of the differential waveforms pass in common and do not coincide with each type of gas component;
A gas detection device comprising:
複数種類のガス成分について前記固定点を予め調べて記憶しておくための記憶手段を備え、前記定性手段は、試料ガスの測定によって得られたn次微分波形が、前記記憶手段に記憶されたガス成分毎の固定点のいずれを通るのか調べることによりガス成分を同定することを特徴とする請求項2に記載のガス検出装置。   Storage means for preliminarily examining and storing the fixed points for a plurality of types of gas components is provided, and the qualitative means stores an nth-order differential waveform obtained by measuring a sample gas in the storage means. The gas detection device according to claim 2, wherein the gas component is identified by examining which of the fixed points for each gas component passes. 前記ガスセンサはSnO2センサであることを特徴とする請求項2又は3に記載のガス検出装置。 The gas detection device according to claim 2, wherein the gas sensor is a SnO 2 sensor. nは1又は2であることをを特徴とする請求項1に記載のガス検出方法、又は請求項2〜4のいずれかに記載のガス検出装置。
The gas detection method according to claim 1 or the gas detection device according to any one of claims 2 to 4, wherein n is 1 or 2.
JP2005091899A 2005-03-28 2005-03-28 Gas detecting method and gas detector Pending JP2006275606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005091899A JP2006275606A (en) 2005-03-28 2005-03-28 Gas detecting method and gas detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005091899A JP2006275606A (en) 2005-03-28 2005-03-28 Gas detecting method and gas detector

Publications (1)

Publication Number Publication Date
JP2006275606A true JP2006275606A (en) 2006-10-12

Family

ID=37210541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005091899A Pending JP2006275606A (en) 2005-03-28 2005-03-28 Gas detecting method and gas detector

Country Status (1)

Country Link
JP (1) JP2006275606A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008232884A (en) * 2007-03-22 2008-10-02 U-Tec Kk Gas detector and gas detecting method
JP2010256268A (en) * 2009-04-28 2010-11-11 Yazaki Corp Gas analyzer
JP2011227069A (en) * 2010-03-30 2011-11-10 Osaka Gas Co Ltd Gas detection device and gas detection method
WO2018101128A1 (en) * 2016-11-29 2018-06-07 国立研究開発法人物質・材料研究機構 Method and device for estimating value to be estimated associated with specimen
JP2018194314A (en) * 2017-05-12 2018-12-06 富士通株式会社 Gas analyzer and gas analysis method
CN109784390A (en) * 2019-01-03 2019-05-21 西安交通大学 A kind of artificial intelligence smell dynamic response map gas detection recognition methods
WO2020026327A1 (en) * 2018-07-31 2020-02-06 日本電気株式会社 Information processing device, control method, and program
WO2020026326A1 (en) * 2018-07-31 2020-02-06 日本電気株式会社 Information processing device, control method, and program
CN113267533A (en) * 2021-05-18 2021-08-17 浙江大学 Device and method for dynamically monitoring VOCs (volatile organic chemicals) on line by self-calibration gas sensor array
JPWO2020090944A1 (en) * 2018-10-30 2021-09-16 京セラ株式会社 Measuring device and measuring method
WO2024181032A1 (en) * 2023-02-27 2024-09-06 パナソニックIpマネジメント株式会社 Gas analysis system and gas analysis method
US12100488B2 (en) 2016-11-29 2024-09-24 National Institute For Materials Science Method and device for estimating value to be estimated associated with specimen

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008232884A (en) * 2007-03-22 2008-10-02 U-Tec Kk Gas detector and gas detecting method
JP2010256268A (en) * 2009-04-28 2010-11-11 Yazaki Corp Gas analyzer
JP2011227069A (en) * 2010-03-30 2011-11-10 Osaka Gas Co Ltd Gas detection device and gas detection method
WO2018101128A1 (en) * 2016-11-29 2018-06-07 国立研究開発法人物質・材料研究機構 Method and device for estimating value to be estimated associated with specimen
US12100488B2 (en) 2016-11-29 2024-09-24 National Institute For Materials Science Method and device for estimating value to be estimated associated with specimen
CN109923397A (en) * 2016-11-29 2019-06-21 国立研究开发法人物质·材料研究机构 Infer the method and apparatus for inferring object value corresponding with sample
JPWO2018101128A1 (en) * 2016-11-29 2019-06-27 国立研究開発法人物質・材料研究機構 Method and apparatus for estimating an estimated target value associated with a sample
JP2018194314A (en) * 2017-05-12 2018-12-06 富士通株式会社 Gas analyzer and gas analysis method
JP7074194B2 (en) 2018-07-31 2022-05-24 日本電気株式会社 Information processing equipment, control methods, and programs
JP7140191B2 (en) 2018-07-31 2022-09-21 日本電気株式会社 Information processing device, control method, and program
JPWO2020026327A1 (en) * 2018-07-31 2021-08-02 日本電気株式会社 Information processing equipment, control methods, and programs
JPWO2020026326A1 (en) * 2018-07-31 2021-08-02 日本電気株式会社 Information processing equipment, control methods, and programs
US12044667B2 (en) 2018-07-31 2024-07-23 Nec Corporation Information processing apparatus, control method, and non-transitory storage medium
WO2020026326A1 (en) * 2018-07-31 2020-02-06 日本電気株式会社 Information processing device, control method, and program
US20210311009A1 (en) * 2018-07-31 2021-10-07 Nec Corporation Information processing apparatus, control method, and non-transitory storage medium
WO2020026327A1 (en) * 2018-07-31 2020-02-06 日本電気株式会社 Information processing device, control method, and program
JP7319997B2 (en) 2018-10-30 2023-08-02 京セラ株式会社 Measuring device and method
JPWO2020090944A1 (en) * 2018-10-30 2021-09-16 京セラ株式会社 Measuring device and measuring method
US11815489B2 (en) 2018-10-30 2023-11-14 Kyocera Corporation Measurement device and measurement method
CN109784390A (en) * 2019-01-03 2019-05-21 西安交通大学 A kind of artificial intelligence smell dynamic response map gas detection recognition methods
CN113267533B (en) * 2021-05-18 2022-10-14 浙江大学 Device and method for dynamically monitoring VOCs (volatile organic chemicals) on line by self-calibration gas sensor array
CN113267533A (en) * 2021-05-18 2021-08-17 浙江大学 Device and method for dynamically monitoring VOCs (volatile organic chemicals) on line by self-calibration gas sensor array
WO2024181032A1 (en) * 2023-02-27 2024-09-06 パナソニックIpマネジメント株式会社 Gas analysis system and gas analysis method

Similar Documents

Publication Publication Date Title
JP2006275606A (en) Gas detecting method and gas detector
US6165347A (en) Method of identifying a gas
CN105466927B (en) Method for identifying, correcting and alarming abnormal reaction curve of turbidimetry
US20160018373A1 (en) Systems and methods for monitoring and controlled capture of air samples for analysis
US9105453B2 (en) Mass spectrometer and mass spectrometry
Guillot E-noses: Actual limitations and perspectives for environmental odour analysis
Di Natale et al. Sensor-array calibration time reduction by dynamic modelling
US20110138879A1 (en) Method and control unit for detecting a gas concentration of gas from a gas mixture
CA2395563C (en) Novel device and method for gas analysis
Ghafarinia et al. Gas identification by a single gas sensor equipped with microfluidic channels
KR20180048702A (en) Gas analysis system and gas analysis method
JP5204655B2 (en) Methods for qualitative and quantitative analysis by emission spectroscopy
JP5657904B2 (en) Gas analyzer and gas analysis method
JP2723209B2 (en) Mixed gas determination method
JP4248087B2 (en) Gas detection method
WO2023037999A1 (en) Gas analyzing method, and gas analyzing system
JP2008241517A (en) Sample analyzer
CN112782233B (en) Gas identification method based on array gas sensor
CN114460161A (en) Ion migration time-based trace substance detection method
KR102031900B1 (en) Semiconductor sensor for detecting chemical materials, detection method and detection system using the same
CN113466398A (en) Element analysis detection method, element analysis detection system, and storage medium
CN112986332A (en) VOCs detection method and system based on dynamic temperature modulation
JPH11142313A (en) Method for quantifying concentration of matter, device for detecting concentration of matter, and storage medium
JPH11125610A (en) Signal-processing device for measuring odor
US11982656B2 (en) Method of control of a spectrometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100622