JP2007255584A - Electromagnetic active mount - Google Patents

Electromagnetic active mount Download PDF

Info

Publication number
JP2007255584A
JP2007255584A JP2006081201A JP2006081201A JP2007255584A JP 2007255584 A JP2007255584 A JP 2007255584A JP 2006081201 A JP2006081201 A JP 2006081201A JP 2006081201 A JP2006081201 A JP 2006081201A JP 2007255584 A JP2007255584 A JP 2007255584A
Authority
JP
Japan
Prior art keywords
vibration
chamber
rubber elastic
mounting member
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006081201A
Other languages
Japanese (ja)
Other versions
JP5002176B2 (en
Inventor
Kei Okumura
圭 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP2006081201A priority Critical patent/JP5002176B2/en
Publication of JP2007255584A publication Critical patent/JP2007255584A/en
Application granted granted Critical
Publication of JP5002176B2 publication Critical patent/JP5002176B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Combined Devices Of Dampers And Springs (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid sealed type electromagnetic active mount having a novel structure capable of obtaining superior vibration control performance even in a high frequency area having a higher frequency than a tuning frequency of a filter orifice while securing sufficient enhancing effect of active vibration control performance displayed based on a removing action of a high frequency component of controlled pressure by the filter orifice. <P>SOLUTION: A part of partitioning members 132 and 136 partitioning a pressure receiving chamber 142 and an excitation chamber 144 is constituted by an elastic displacement member 136 which can be elastically displaced. The filter orifice 140 is formed with respect to the elastic displacement member 136. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、封入された非圧縮性流体の圧力を電磁式アクチュエータで能動的に制御することにより、相殺的又は積極的な防振効果を得るようにした電磁式能動型マウントに係り、例えば自動車のパワーユニットを車両ボデーに対して防振支持せしめるエンジンマウント等として好適に用いられる電磁式能動型マウントに関するものである。   The present invention relates to an electromagnetic active mount in which an offset or positive vibration isolation effect is obtained by actively controlling the pressure of an enclosed incompressible fluid with an electromagnetic actuator, for example, an automobile. The present invention relates to an electromagnetic active mount that is suitably used as an engine mount or the like for supporting the power unit of the vehicle body on vibration isolation with respect to the vehicle body.

一般に、自動車において、パワーユニットの車体による支持機構は、第一の取付部材と第二の取付部材を本体ゴム弾性体で弾性連結せしめた基本構造を有するエンジンマウントを用いて実現されている。かかるエンジンマウント等の防振装置の一種として、従来から、ゴム弾性体の弾性変形作用による防振効果だけでなく、内部に非圧縮性流体を封入し、この非圧縮性流体の流動作用による防振効果を利用するようにした流体封入式の防振装置が知られている。また、近年では、より高度な防振性能の要求に対処するために、電磁式アクチュエータを利用して、防振すべき振動の周波数に対応した周期で受圧室の圧力を能動的に制御して、振動を積極的に低減せしめるようにした流体封入式の能動型防振装置が開発されて、検討されている。   Generally, in a motor vehicle, a power unit support mechanism by a vehicle body is realized by using an engine mount having a basic structure in which a first mounting member and a second mounting member are elastically connected by a main rubber elastic body. Conventionally, as a type of vibration isolator such as an engine mount, not only a vibration isolating effect by an elastic deformation action of a rubber elastic body but also an incompressible fluid is enclosed inside and an anti-vibration action by the inflow action of the incompressible fluid 2. Description of the Related Art A fluid-filled vibration isolator using a vibration effect is known. In recent years, in order to cope with the demand for higher vibration isolation performance, the pressure of the pressure receiving chamber is actively controlled using an electromagnetic actuator at a cycle corresponding to the frequency of vibration to be vibration-isolated. A fluid-filled active vibration isolator that actively reduces vibration has been developed and studied.

かかる能動型防振装置は、例えば特開2002−188677号公報(特許文献1)等にも示されているように、電磁式アクチュエータによる駆動力が及ぼされる加振部材を用い、壁部の一部が本体ゴム弾性体で構成されて振動が入力される受圧室の圧力変動を、この加振部材で能動的に制御する構造とされている。そして、防振すべき振動の周波数に応じた周期で加振部材を駆動して受圧室の圧力を制御することによって、相殺的又は積極的な防振効果を得ることが出来るようになっている。   Such an active vibration isolator uses a vibration member to which a driving force is applied by an electromagnetic actuator, as shown in, for example, Japanese Patent Application Laid-Open No. 2002-188777 (Patent Document 1) and the like. The structure is configured so that the pressure fluctuation of the pressure receiving chamber to which the vibration is input is configured to be actively controlled by the vibration member. Then, by controlling the pressure in the pressure receiving chamber by driving the excitation member at a period corresponding to the frequency of the vibration to be isolated, it is possible to obtain an offset or positive vibration isolation effect. .

ところで、このような電磁式の能動型防振装置においては、能動的な防振効果を得るために、防振すべき振動の周波数や波形に対して出来るだけ高精度に対応した圧力変動を受圧室に作用せしめることが要求される。   By the way, in such an electromagnetic active vibration isolator, in order to obtain an active vibration isolating effect, pressure fluctuations corresponding to the vibration frequency and waveform to be vibrated as accurately as possible are received. It is required to act on the chamber.

しかしながら、加振板の加振駆動によって受圧室に及ぼされる圧力変動は、防振すべき振動に対して高精度に対応するものを得難いのが現実である。その原因は幾つか考えられる。例えば、加振部材を変位可能に弾性支持する連結ゴム弾性体自体の弾性変形の高次成分が原因となって、圧力変動に高周波成分がのる可能性がある。また、電磁力や磁力を利用した電磁式のアクチュエータを用いて加振板を加振変位させる際に、可動子の変位に伴って該可動子と固定子における磁極間距離が変化することで発生力が歪むことで、圧力変動に高周波成分がのる可能性もある。更に、電気信号で発生駆動力を制御する場合には、電気信号にのる各種ノイズも駆動力に高周波成分が発生する原因となる。   However, in reality, it is difficult to obtain a pressure fluctuation exerted on the pressure receiving chamber by the vibration drive of the vibration plate with high accuracy corresponding to vibration to be vibrated. There are several possible causes. For example, there is a possibility that a high-frequency component may be applied to pressure fluctuation due to a higher-order component of elastic deformation of the connecting rubber elastic body itself that elastically supports the vibration member so that it can be displaced. Also, when the vibration plate is subjected to vibration displacement using an electromagnetic actuator that uses electromagnetic force or magnetic force, the distance between the magnetic poles of the mover and the stator changes as the mover moves. There is a possibility that a high-frequency component is added to the pressure fluctuation due to the distortion of the force. Further, when the generated driving force is controlled by an electric signal, various noises on the electric signal also cause a high frequency component to be generated in the driving force.

そこで、このように防振すべき振動の周波数から外れた高周波数域の圧力変動が受圧室に発生するという問題に対処するために、例えば特開2004−52872号公報(特許文献2)には、第二の取付部材によって固定的に支持せしめた仕切部材を設けて、該仕切部材を挟んだ両側に、本体ゴム弾性体で壁部の一部が構成されて振動が入力される受圧室と、加振部材で壁部の一部が構成されて能動的な圧力変動が生ぜしめられる加振室とを形成すると共に、仕切部材において、それら受圧室と加振室を相互に連通するフィルタオリフィスを設けた構造が、提案されている。即ち、フィルタオリフィスを、防振すべき振動周波数域に応じて、問題となる周波成分よりも低周波数域にチューニングすることにより、加振室に生ぜしめられる圧力変動を、その高次成分を除いた状態で受圧室に作用させるようになっている。   Therefore, in order to cope with the problem that the pressure fluctuation in the high frequency region deviating from the frequency of the vibration to be isolated in this way occurs in the pressure receiving chamber, for example, Japanese Patent Application Laid-Open No. 2004-52872 (Patent Document 2) A pressure receiving chamber in which a partition member fixedly supported by a second mounting member is provided, and on both sides of the partition member, a part of the wall portion is configured by a main rubber elastic body and vibration is input. A filter orifice that forms a part of the wall portion of the vibration member to form an excitation chamber in which active pressure fluctuations are generated, and communicates the pressure receiving chamber and the excitation chamber with each other in the partition member A structure has been proposed. In other words, the filter orifice is tuned to a lower frequency range than the problematic frequency component according to the vibration frequency range to be vibration-isolated, so that pressure fluctuations generated in the excitation chamber are removed from the higher-order components. It is made to act on the pressure receiving chamber in the state where

しかしながら、この特許文献2に記載の能動型防振装置では、フィルタオリフィスのチューニング周波数よりも高い周波数域の振動入力時に、フィルタオリフィスが目詰まりしてしまう。そのために、高周波数域の振動入力時における防振性能が、フィルタオリフィスを設けない場合に比して低下してしまうという問題があった。   However, in the active vibration isolator described in Patent Document 2, the filter orifice is clogged when vibration is input in a frequency range higher than the tuning frequency of the filter orifice. For this reason, there has been a problem that the anti-vibration performance at the time of vibration input in a high frequency range is lower than that in the case where no filter orifice is provided.

なお、このような高周波数域の防振性能の低下の理由は、フィルタオリフィスを設けないで、受圧室の壁部の一部を直接に加振部材が加振駆動して受圧室の圧力変動を直接に制御する構造であれば、高周波小振幅の振動入力時に受圧室に生ぜしめられる圧力変動が、連結ゴム弾性体で変位可能に支持された加振部材の変位に基づいて吸収されることとなるが、フィルタオリフィスを有する仕切部材で受圧室と加振室を仕切ると、高周波小振幅の振動入力時における受圧室の圧力変動の加振室への伝達が遮断されてしまって、受圧室における圧力変動が解消されないことに起因するものと考えられる。   Note that the reason for such a decrease in the vibration isolating performance in the high frequency range is that the filter orifice is not provided, and the vibration member directly drives a part of the wall portion of the pressure receiving chamber to drive the pressure fluctuation in the pressure receiving chamber. If the structure directly controls the pressure, the pressure fluctuation generated in the pressure receiving chamber at the time of high-frequency small-amplitude vibration input is absorbed based on the displacement of the vibration member supported to be displaceable by the connecting rubber elastic body. However, if the pressure receiving chamber and the excitation chamber are partitioned by a partition member having a filter orifice, transmission of pressure fluctuation of the pressure receiving chamber to the excitation chamber at the time of vibration input of high frequency and small amplitude is interrupted, and the pressure receiving chamber This is thought to be due to the fact that the pressure fluctuations in are not resolved.

特開2002−188677号公報JP 2002-188777 A 特開2004−52872号公報JP 2004-52872 A

ここにおいて、本発明は、上述の如き事情を背景として為されたものであって、その解決課題とするところは、フィルタオリフィスによる制御圧力の高周波成分の除去作用に基づいて発揮される能動的防振性能の向上効果を充分に確保しつつ、フィルタオリフィスのチューニング周波数よりも高周波数域においても良好な防振性能を得ることの出来る、新規な構造を有する流体封入式の電磁式能動型マウントを提供することにある。   Here, the present invention has been made in the background as described above, and the problem to be solved is an active prevention that is exhibited based on the removal action of the high-frequency component of the control pressure by the filter orifice. A fluid-filled electromagnetic active mount with a novel structure that can achieve good vibration-proof performance even in a frequency range higher than the tuning frequency of the filter orifice, while ensuring sufficient improvement in vibration performance It is to provide.

以下、このような課題を解決するために為された本発明の態様を記載する。なお、以下に記載の各態様において採用される構成要素は、可能な限り任意の組み合わせで採用可能である。また、本発明の態様乃至は技術的特徴は、以下に記載のものに限定されることなく、明細書全体および図面に記載されたもの、或いはそれらの記載から当業者が把握することの出来る発明思想に基づいて認識されるものであることが理解されるべきである。   Hereinafter, the aspect of this invention made | formed in order to solve such a subject is described. In addition, the component employ | adopted in each aspect as described below is employable by arbitrary combinations as much as possible. Further, aspects or technical features of the present invention are not limited to those described below, but are described in the entire specification and drawings, or an invention that can be understood by those skilled in the art from those descriptions. It should be understood that it is recognized based on thought.

すなわち、本発明の特徴とするところは、第一の取付部材と第二の取付部材を本体ゴム弾性体で連結して、壁部の一部が本体ゴム弾性体で構成されて非圧縮性流体が封入された受圧室を形成すると共に、第二の取付部材によって弾性支持された加振部材で壁部の一部が構成されて非圧縮性流体が封入された加振室を形成して、それら受圧室と加振室を仕切る仕切部材に両室を連通するフィルタオリフィスを形成する一方、加振部材に加振駆動力を及ぼす電磁式アクチュエータを設けて、電磁式アクチュエータによる加振部材の加振力で加振室に生ぜしめられる圧力変動をフィルタオリフィスを通じて受圧室に及ぼすことにより防振性能を能動的に制御するようにした電磁式能動型マウントにおいて、受圧室と加振室を仕切る仕切部材の一部を弾性変位可能な弾性変位部材で構成して、弾性変位部材に対してフィルタオリフィスを形成したことにある。   That is, a feature of the present invention is that the first mounting member and the second mounting member are connected by the main rubber elastic body, and a part of the wall portion is configured by the main rubber elastic body, so that the incompressible fluid Forming a pressure receiving chamber in which a non-compressible fluid is sealed by forming a part of the wall portion with a vibration member elastically supported by the second mounting member, A filter orifice that communicates the two chambers is formed in the partition member that partitions the pressure receiving chamber and the vibration chamber, and an electromagnetic actuator that exerts an excitation driving force is provided on the vibration member so that the vibration member can be excited by the electromagnetic actuator. A partition that separates the pressure-receiving chamber and the excitation chamber in an electromagnetic active mount that actively controls the vibration-proof performance by applying pressure fluctuations generated by the vibration force to the pressure-receiving chamber through the filter orifice. Part of the member Constituted by sex displaceable elastically displaceable member, it lies in the formation of the filter orifice against the elastic displacement member.

本発明に従う構造とされた電磁式能動型マウントにおいては、防振すべき振動の周波数に対応する周期で電磁式アクチュエータを加振制御して加振室に生ぜしめた圧力変動をフィルタオリフィスを通じて受圧室に及ぼすことにより、防振すべき振動に対して相殺的又は積極的な防振効果を得ることが出来る。そこにおいて、電磁式アクチュエータの加振で加振室に発生する高調波等の高周波成分は、フィルタオリフィスのフィルタ機能で、受圧室への伝達が抑えられることとなり、能動的な防振性能が高性能に発揮されることとなる。   In the electromagnetic active mount constructed according to the present invention, pressure fluctuations generated in the excitation chamber by controlling the excitation of the electromagnetic actuator at a cycle corresponding to the frequency of the vibration to be isolated are received through the filter orifice. By exerting on the chamber, it is possible to obtain an anti-vibration effect that is counterbalance or positive with respect to the vibration to be vibrated. Therefore, high-frequency components such as harmonics generated by the excitation of the electromagnetic actuator are suppressed from being transmitted to the pressure-receiving chamber by the filter function of the filter orifice, and the active vibration-proof performance is high. It will be demonstrated in performance.

しかも、フィルタオリフィスのチューニング周波数よりも高周波数域の振動入力時には、フィルタオリフィスを通じての流体流動抵抗が著しく大きくなってフィルタオリフィス自体は実質的に閉塞状態となってしまうが、受圧室に圧力変動が生ぜしめられて受圧室と加振室の間に相対的な圧力差が発生すると、その圧力差に基づいて、フィルタオリフィスが形成された弾性変位部材自体が変位せしめられる。その結果、受圧室の圧力変動が加振室に逃がされて、加振室において壁部を構成する加振部材又は該加振部材を第二の取付部材に対して弾性支持せしめる弾性変位部材の弾性変位や弾性変形によって吸収されることとなる。   Moreover, when vibration is input in a frequency range higher than the tuning frequency of the filter orifice, the fluid flow resistance through the filter orifice becomes extremely large and the filter orifice itself becomes substantially closed, but there is a pressure fluctuation in the pressure receiving chamber. When a relative pressure difference is generated between the pressure receiving chamber and the excitation chamber, the elastic displacement member in which the filter orifice is formed is displaced based on the pressure difference. As a result, the pressure fluctuation in the pressure receiving chamber is released to the vibration chamber, and the vibration member constituting the wall portion in the vibration chamber or the elastic displacement member that elastically supports the vibration member with respect to the second mounting member It is absorbed by elastic displacement and elastic deformation.

それ故、本発明に係る電磁式能動型マウントでは、能動的な防振性能に関しては、フィルタオリフィスによる制御圧力の高周波成分の除去作用が有効に発揮され得ると共に、フィルタオリフィスのチューニング周波数よりも高周波数域の振動に対しても、受圧室の圧力変動量の増大に起因する防振性能の著しい低下が回避されて、良好な防振性能が発揮され得るのである。   Therefore, in the electromagnetic active mount according to the present invention, with regard to the active vibration isolation performance, the high-frequency component removal effect of the control pressure by the filter orifice can be effectively exerted, and higher than the tuning frequency of the filter orifice. Even with respect to vibration in the frequency range, a significant decrease in the vibration isolation performance due to an increase in the amount of pressure fluctuation in the pressure receiving chamber can be avoided, and good vibration isolation performance can be exhibited.

また、本発明に係る電磁式能動型マウントにおいては、仕切部材に透孔を形成すると共に、透孔をゴム弾性膜で覆蓋することによって弾性変位部材を構成し、ゴム弾性膜に通孔を形成することによりフィルタオリフィスを構成した構造が、採用されても良い。当該構造によれば、弾性変位部材の弾性変形に基づいて、通孔が変形することにより、フィルタオリフィスを通じての流体の流動抵抗が大きくなる。その結果、弾性変位部材の弾性変形時にフィルタオリフィスを通じての液漏れが抑えられて、弾性変位部材による液圧吸収性能が一層有利に発揮され得る。また、通孔の形成に伴いゴム弾性膜のばねが低減することを利用して、弾性変位部材による液圧吸収性能をチューニング変更することも可能となる。   In the electromagnetic active mount according to the present invention, a through hole is formed in the partition member, and an elastic displacement member is formed by covering the through hole with a rubber elastic film, and a through hole is formed in the rubber elastic film. Thus, a structure in which the filter orifice is configured may be employed. According to this structure, the flow resistance of the fluid through the filter orifice increases due to the deformation of the through hole based on the elastic deformation of the elastic displacement member. As a result, liquid leakage through the filter orifice is suppressed when the elastic displacement member is elastically deformed, and the hydraulic pressure absorption performance by the elastic displacement member can be exhibited more advantageously. Further, the hydraulic pressure absorption performance by the elastic displacement member can be tuned by utilizing the fact that the spring of the rubber elastic film is reduced along with the formation of the through hole.

また、本発明に係る電磁式能動型マウントでは、仕切部材に透孔を形成すると共に、透孔に硬質の可動板を配設して、可動板の外周縁部を、支持ゴム弾性体を介して、仕切部材における透孔の周縁部によって弾性的に支持せしめることにより弾性変位部材を構成し、可動板に通孔を形成することによりフィルタオリフィスを構成した構造が、採用されても良い。このような構造においては、可動板で構成される弾性変位部材の中央部分の剛性が高くされるため、受圧室において弾性変位部材による液圧吸収を要しない圧力変動が惹起された際に、弾性変位部材の変形に基づく液圧吸収作用が抑えられて、所期の防振効果が安定して得られる。また、フィルタオリフィスが剛性の可動板に形成されることで、フィルタオリフィスの耐久性能が向上され得る。   In the electromagnetic active mount according to the present invention, a through hole is formed in the partition member, a hard movable plate is disposed in the through hole, and an outer peripheral edge portion of the movable plate is interposed via a support rubber elastic body. A structure in which the elastic displacement member is configured by elastically supporting the peripheral portion of the through hole in the partition member and the filter orifice is configured by forming the through hole in the movable plate may be employed. In such a structure, since the rigidity of the central portion of the elastic displacement member constituted by the movable plate is increased, the elastic displacement is caused when a pressure fluctuation that does not require fluid pressure absorption by the elastic displacement member is induced in the pressure receiving chamber. The hydraulic pressure absorption action based on the deformation of the member is suppressed, and the desired vibration isolation effect can be stably obtained. Further, the durability of the filter orifice can be improved by forming the filter orifice on the rigid movable plate.

また、本発明に係る電磁式能動型マウントでは、壁部の一部が可撓性膜で構成されて非圧縮性流体が封入された平衡室を形成すると共に、平衡室を受圧室に連通せしめるオリフィス通路を形成した構造が、好適に用いられる。かかる構造では、受圧室と平衡室の相対的な圧力変動の差に基づきオリフィス通路を通じての流体の共振作用等の流動作用が生ぜしめられる。それ故、オリフィス通路の長さや大きさ、形状等を適宜に設計変更して、オリフィス通路を通じての流体の共振周波数をチューニング変更することで、該チューニング周波数域の振動に対してのオリフィス通路の流動作用に基づく防振効果が有利に発揮され得る。   Further, in the electromagnetic active mount according to the present invention, a part of the wall portion is formed of a flexible film to form an equilibrium chamber in which an incompressible fluid is enclosed, and the equilibrium chamber is communicated with the pressure receiving chamber. A structure in which an orifice passage is formed is preferably used. In such a structure, a fluid action such as a resonance action of the fluid through the orifice passage is generated based on a difference in relative pressure fluctuation between the pressure receiving chamber and the equilibrium chamber. Therefore, by changing the design of the length, size, shape, etc. of the orifice passage as appropriate and tuning the resonance frequency of the fluid through the orifice passage, the flow of the orifice passage against vibration in the tuning frequency range An anti-vibration effect based on the action can be advantageously exhibited.

また、本発明に係る電磁式能動型マウントにおいては、第二の取付部材を円筒形状として、その一方の開口部側に第一の取付部材を配設し、第一の取付部材と第二の取付部材を本体ゴム弾性体で連結することによって第二の取付部材の一方の開口部を流体密に閉塞する一方、第二の取付部材の他方の開口部側に加振部材を配設して、加振部材を連結ゴム弾性体を介して第二の取付部材で変位可能に支持せしめることにより第二の取付部材の他方の開口部を流体密に閉塞すると共に、第一の取付部材と加振部材の対向面間で軸直角方向に広がる仕切部材を第二の取付部材で固定的に支持せしめることにより、仕切部材を挟んだ両側に受圧室と加振室を形成し、更に本体ゴム弾性体の外表面を外側から離隔して覆うようにして可撓性膜を配設することにより、本体ゴム弾性体を挟んで受圧室と反対側に平衡室を形成する一方、加振部材を挟んで加振室と反対側に電磁式アクチュエータを配して第二の取付部材で支持せしめた構造が、好適に採用される。当該構造においては、第一の取付部材と第二の取付部材を連結する本体ゴム弾性体を挟んだ両側に受圧室と平衡室が形成されることによって、第一の取付部材と第二の取付部材の離隔距離が小さくされる。それ故、電磁式能動型マウントにおいて、中心軸方向のサイズのコンパクト化や弾性中心の低位置化が有利に図られ得る。
Further, in the electromagnetic active mount according to the present invention, the second mounting member is formed in a cylindrical shape, the first mounting member is disposed on one opening side, and the first mounting member and the second mounting member are disposed. By connecting the mounting member with the main rubber elastic body, one opening of the second mounting member is fluid-tightly closed, while the vibration member is disposed on the other opening side of the second mounting member. Then, the vibration member is supported by the second mounting member so as to be displaceable via the connecting rubber elastic body, so that the other opening of the second mounting member is fluid-tightly closed, and the first mounting member and the first mounting member are added. A partition member extending in a direction perpendicular to the axis between the opposing surfaces of the vibration member is fixedly supported by the second mounting member, thereby forming a pressure receiving chamber and an excitation chamber on both sides of the partition member, and further, rubber elasticity of the main body A flexible membrane is disposed so as to cover the outer surface of the body while being separated from the outside. To form an equilibrium chamber on the opposite side of the pressure receiving chamber across the rubber elastic body, while supporting an electromagnetic actuator on the opposite side of the excitation chamber with a second mounting member A caulked structure is preferably employed. In this structure, the pressure receiving chamber and the equilibrium chamber are formed on both sides of the main rubber elastic body connecting the first mounting member and the second mounting member, so that the first mounting member and the second mounting member are formed. The separation distance between members is reduced. Therefore, in the electromagnetic active mount, it is possible to advantageously reduce the size in the central axis direction and lower the position of the elastic center.

以下、本発明を更に具体的に明らかにするために、本発明の実施形態について説明する。先ず、図1には、本発明の第一の実施形態としての自動車用エンジンマウント10が示されている。このエンジンマウント10は、第一の取付部材としての第一の取付金具12と第二の取付部材としての第二の取付金具14が本体ゴム弾性体16によって弾性的に連結された構造とされている。第一の取付金具12が図示しない自動車のパワーユニット側に取り付けられる一方、第二の取付金具14が図示しない自動車のボデー側に取り付けられることにより、パワーユニットがボデーに対して防振支持されるようになっている。   Hereinafter, in order to clarify the present invention more specifically, embodiments of the present invention will be described. First, FIG. 1 shows an automobile engine mount 10 as a first embodiment of the present invention. The engine mount 10 has a structure in which a first mounting bracket 12 as a first mounting member and a second mounting bracket 14 as a second mounting member are elastically connected by a main rubber elastic body 16. Yes. The first mounting bracket 12 is attached to the power unit side of the automobile (not shown), while the second mounting bracket 14 is attached to the body side of the automobile (not shown) so that the power unit is supported in an anti-vibration manner with respect to the body. It has become.

なお、図1では、自動車に装着する前のエンジンマウント10の単体での状態が示されているが、本実施形態では、装着状態において、パワーユニットの分担支持荷重がマウント軸方向(図1中、上下)に入力される。従って、マウント装着状態下では、本体ゴム弾性体16の弾性変形に基づき第一の取付金具12と第二の取付金具14が軸方向で互いに接近する方向に変位する。また、かかる装着状態下、防振すべき主たる振動は、略マウント軸方向に入力されることとなる。以下の説明において、特に断りのない限り、上下方向は、マウント軸方向となる図1中の上下方向をいう。   1 shows the state of the engine mount 10 as a single unit before being mounted on the automobile, but in the present embodiment, in the mounted state, the shared support load of the power unit is in the mount axis direction (in FIG. 1, (Up and down). Therefore, in the mounted state, the first mounting member 12 and the second mounting member 14 are displaced in the axial direction toward each other based on the elastic deformation of the main rubber elastic body 16. In addition, under such a mounted state, main vibrations to be vibrated are input substantially in the mount axis direction. In the following description, unless otherwise specified, the vertical direction refers to the vertical direction in FIG.

より詳細には、第一の取付金具12は、本体ゴムインナ金具18とダイヤフラムインナ金具20を含んで構成されていると共に、第二の取付金具14は、本体ゴムアウタ筒金具22とダイヤフラムアウタ筒金具24を含んで構成されている。また、本体ゴム弾性体16に本体ゴムインナ金具18と本体ゴムアウタ筒金具22が加硫接着されて、第一の一体加硫成形品26が構成されていると共に、可撓性膜としてのダイヤフラム28に対してダイヤフラムインナ金具20とダイヤフラムアウタ筒金具24が加硫接着されて、第二の一体加硫成形品30が構成されている。   More specifically, the first mounting bracket 12 includes a main body rubber inner bracket 18 and a diaphragm inner bracket 20, and the second mounting bracket 14 includes a main body rubber outer cylinder bracket 22 and a diaphragm outer cylinder bracket 24. It is comprised including. Further, the main rubber inner metal fitting 18 and the main rubber outer cylinder metal fitting 22 are vulcanized and bonded to the main rubber elastic body 16 to form a first integral vulcanized molded product 26, and a diaphragm 28 as a flexible film is formed. On the other hand, the diaphragm inner metal fitting 20 and the diaphragm outer tube metal fitting 24 are vulcanized and bonded to form a second integral vulcanized molded product 30.

本体ゴムインナ金具18は、下方に向かって凸となる略円錐台形状を有している。また、本体ゴムインナ金具18の略中央部分には、軸方向(図1中、上下)に所定の深さで延びる螺子穴32が設けられている。   The main rubber inner metal fitting 18 has a substantially truncated cone shape that protrudes downward. Further, a screw hole 32 extending at a predetermined depth in the axial direction (up and down in FIG. 1) is provided at a substantially central portion of the main rubber inner metal fitting 18.

本体ゴムアウタ筒金具22は、大径の略円筒形状を有しており、下端部には径方向外方に広がるフランジ状部34が一体形成されていると共に、上端部には下方に行くに従って円錐状に径寸法が次第に小さくなるテーパ状部36が一体形成されている。それによって、本体ゴムアウタ筒金具22の外周面には、径方向外方に開口して周方向に延びる周溝38が形成されている。なお、周溝38は、周上の一箇所に本体ゴム弾性体16と一体形成された図示しない仕切ゴムが充填されることによって、その周上の一部が仕切ゴムで仕切られて、周方向に一周弱の長さで延びている。   The main rubber outer tube fitting 22 has a large-diameter, generally cylindrical shape. A flange-like portion 34 that extends radially outward is integrally formed at the lower end portion, and a conical shape as it goes downward at the upper end portion. A tapered portion 36 having a gradually decreasing diameter is integrally formed. As a result, a circumferential groove 38 is formed on the outer peripheral surface of the main rubber outer cylinder member 22 so as to open radially outward and extend in the circumferential direction. The circumferential groove 38 is filled with a partition rubber (not shown) integrally formed with the main rubber elastic body 16 at one place on the circumference, so that a part of the circumference is partitioned by the partition rubber, and the circumferential direction It extends with a length of less than one round.

さらに、本体ゴムアウタ筒金具22の上方に離隔して、本体ゴムインナ金具18が略同一中心軸上に配置されていることによって、本体ゴムインナ金具18におけるテーパ形状の外周面と本体ゴムアウタ筒金具22におけるテーパ状部36の内周面が互いに離隔して対向位置せしめられている。そして、これら本体ゴムインナ金具18と本体ゴムアウタ筒金具22の間に本体ゴム弾性体16が配設されている。   Further, the main rubber inner metal fitting 18 is disposed on substantially the same central axis so as to be spaced apart above the main rubber outer cylinder fitting 22, so that the tapered outer peripheral surface of the main rubber inner metal fitting 18 and the taper of the main rubber outer cylinder fitting 22 are arranged. The inner peripheral surfaces of the shaped portions 36 are spaced apart from each other and opposed to each other. The main rubber elastic body 16 is disposed between the main rubber inner metal fitting 18 and the main rubber outer cylinder metal fitting 22.

本体ゴム弾性体16は、全体として大径の略円錐台形状を有しており、その小径側端面には本体ゴムインナ金具18が差し込まれた状態で略同一中心軸上に配されて加硫接着されていると共に、その大径側端部外周面に対して本体ゴムアウタ筒金具22のテーパ状部36が重ね合わされて加硫接着されている。これにより、本体ゴム弾性体16が、本体ゴムインナ金具18と本体ゴムアウタ筒金具22を備えた第一の一体加硫成形品26として形成されている。また、本体ゴム弾性体16の大径側端面には、下方に開口するすり鉢形状の凹所40が形成されており、その結果、第一の取付金具12と第二の取付金具14の間に荷重が入力されて本体ゴム弾性体16が弾性変形せしめられた際に、本体ゴム弾性体16の引張応力が軽減されるようになっている。   The main rubber elastic body 16 has a generally frustoconical shape with a large diameter as a whole, and is disposed on the same central axis with the main rubber inner metal fitting 18 inserted into the end surface on the small diameter side and vulcanized and bonded. In addition, the tapered portion 36 of the main rubber outer tube fitting 22 is overlapped and vulcanized and bonded to the outer peripheral surface of the large-diameter side end portion. Thus, the main rubber elastic body 16 is formed as a first integral vulcanization molded product 26 including the main rubber inner metal fitting 18 and the main rubber outer cylinder fitting 22. Further, a mortar-shaped recess 40 that opens downward is formed on the large-diameter side end face of the main rubber elastic body 16, and as a result, between the first mounting bracket 12 and the second mounting bracket 14. When the load is inputted and the main rubber elastic body 16 is elastically deformed, the tensile stress of the main rubber elastic body 16 is reduced.

さらに、本体ゴムアウタ筒金具22の内周面には、本体ゴム弾性体16と一体形成されたシールゴム層42が略全体に亘って被着形成されており、フランジ状部34の下面にまで延び出している。なお、本体ゴムアウタ筒金具22のテーパ状部36に本体ゴム弾性体16の大径側端部外周面が加硫接着されていることにより、本体ゴム弾性体16には、軸方向(図1中、上下)の圧縮荷重に対して安定した線形に近いばね特性が発揮されるようになっている。   Further, a seal rubber layer 42 integrally formed with the main rubber elastic body 16 is formed on the inner peripheral surface of the main rubber outer tube fitting 22 over the entire surface, and extends to the lower surface of the flange-shaped portion 34. ing. Note that the outer peripheral surface of the large-diameter side end portion of the main rubber elastic body 16 is vulcanized and bonded to the tapered portion 36 of the main rubber outer cylinder fitting 22, so that the main rubber elastic body 16 has an axial direction (in FIG. 1). , Up and down) spring characteristics that are close to a stable linear shape are exhibited.

ダイヤフラムインナ金具20は、小径の略円板形状を有している。また、ダイヤフラムインナ金具20の略中央には、挿通孔44が軸方向に貫設されている。更に、ダイヤフラムインナ金具20における挿通孔44を外れた位置には、上方に突出する取付板部46が一体形成されていると共に、その取付板部46の中央部分には、取付孔48が貫設されている。   The diaphragm inner metal fitting 20 has a substantially disk shape with a small diameter. Further, an insertion hole 44 is provided in the axial direction substantially at the center of the diaphragm inner metal fitting 20. Further, a mounting plate portion 46 that protrudes upward is integrally formed at a position off the insertion hole 44 in the diaphragm inner metal member 20, and a mounting hole 48 is formed through the central portion of the mounting plate portion 46. Has been.

さらに、ダイヤフラムインナ金具20の下方に離隔して、ダイヤフラムアウタ筒金具24が略同一中心軸上に配置されている。ダイヤフラムアウタ筒金具24は、薄肉の略大径円筒形状を有しており、その上方の開口部には、フランジ状部50が一体形成されている。フランジ状部50には、径方向一方向で対向位置せしめられた一対の取付ボルト52,52が上方に向かって突設されている。また、ダイヤフラムアウタ筒金具24の下方開口部には、径方向外方に向かって広がる円環形状の段差部54が一体形成されており、更に、段差部54の外周縁部には、下方に突出する略円環状のかしめ部56が一体形成されている。   Further, a diaphragm outer cylinder fitting 24 is disposed on substantially the same central axis so as to be spaced below the diaphragm inner fitting 20. The diaphragm outer tube fitting 24 has a thin, substantially large-diameter cylindrical shape, and a flange-like portion 50 is integrally formed in an opening above the diaphragm outer tube fitting 24. A pair of mounting bolts 52, 52 that are opposed to each other in one radial direction are provided on the flange-like portion 50 so as to protrude upward. In addition, an annular stepped portion 54 that extends radially outward is integrally formed in the lower opening of the diaphragm outer tube fitting 24, and further on the outer peripheral edge of the stepped portion 54 downward. A projecting substantially annular caulking portion 56 is integrally formed.

ダイヤフラム28は、変形容易な薄肉のゴム弾性膜からなり、略円環形状を呈している。ダイヤフラム28の内周縁部が、ダイヤフラムインナ金具20の外周縁部に加硫接着されていると共に、ダイヤフラム28の外周縁部が、ダイヤフラムアウタ筒金具24の上方の開口縁部乃至はフランジ状部50の内周縁部に加硫接着されている。これによって、ダイヤフラム28が、ダイヤフラムインナ金具20とダイヤフラムアウタ筒金具24を備えた第二の一体加硫成形品30として形成されている。なお、ダイヤフラムアウタ筒金具24の内周面には、略全体に亘ってダイヤフラム28と一体形成されたシールゴム層58が被着形成されており、このシールゴム層58が、ダイヤフラムアウタ筒金具24の段差部54の下面にまで延び出して形成されている。   The diaphragm 28 is made of a thin rubber elastic film that can be easily deformed, and has a substantially annular shape. The inner peripheral edge of the diaphragm 28 is vulcanized and bonded to the outer peripheral edge of the diaphragm inner fitting 20, and the outer peripheral edge of the diaphragm 28 is an opening edge or flange-like portion 50 above the diaphragm outer tube fitting 24. Is vulcanized and bonded to the inner peripheral edge of each. Thus, the diaphragm 28 is formed as a second integral vulcanized molded product 30 including the diaphragm inner metal fitting 20 and the diaphragm outer cylinder fitting 24. A seal rubber layer 58 that is integrally formed with the diaphragm 28 is formed on the inner peripheral surface of the diaphragm outer tube fitting 24 so as to be attached to the inner surface of the diaphragm outer tube fitting 24, and the seal rubber layer 58 is formed on the step of the diaphragm outer tube fitting 24. It extends to the lower surface of the portion 54 and is formed.

この第二の一体加硫成形品30が、第一の一体加硫成形品26に対して上方から被せられて、ダイヤフラムインナ金具20の下面と本体ゴムインナ金具18の上面が軸方向に重ね合わせられていると共に、ダイヤフラムインナ金具20の挿通孔44と本体ゴムインナ金具18の螺子穴32が相互に位置合わせされて、固定ボルト60が、挿通孔44を通して螺子穴32に螺着固定されている。また、本体ゴムアウタ筒金具22がダイヤフラムアウタ筒金具24に圧入されて、本体ゴムアウタ筒金具22のテーパ状部36の外周縁部(面)とダイヤフラムアウタ筒金具24の内周面が、径方向にシールゴム層58を介して密着状に重ね合わせられている。更に、本体ゴムアウタ筒金具22のフランジ状部34とダイヤフラムアウタ筒金具24の段差部54が、軸方向にシールゴム層58を介して密着状に重ね合わせられている。これにより、第一の取付金具12と第二の取付金具14が、それぞれ構成されて、マウントの中心軸を略同心状に囲むようにして配置されていると共に、第二の取付金具14が、筒状を呈しており、その軸方向一方(図1中、上)の開口部が、本体ゴム弾性体16やダイヤフラム28によって流体密に閉塞されている。   The second integral vulcanized molded product 30 is placed on the first integral vulcanized molded product 26 from above, and the lower surface of the diaphragm inner metal fitting 20 and the upper surface of the main rubber inner metal fitting 18 are overlapped in the axial direction. In addition, the insertion hole 44 of the diaphragm inner metal fitting 20 and the screw hole 32 of the main rubber inner metal fitting 18 are aligned with each other, and the fixing bolt 60 is screwed and fixed to the screw hole 32 through the insertion hole 44. Further, the main rubber outer tube fitting 22 is press-fitted into the diaphragm outer tube fitting 24, and the outer peripheral edge (surface) of the tapered portion 36 of the main rubber outer tube fitting 22 and the inner peripheral surface of the diaphragm outer tube fitting 24 are arranged in the radial direction. The seal rubber layers 58 are stacked in close contact with each other. Further, the flange-like portion 34 of the main rubber outer cylinder fitting 22 and the stepped portion 54 of the diaphragm outer cylinder fitting 24 are overlapped in close contact with each other via the seal rubber layer 58 in the axial direction. As a result, the first mounting bracket 12 and the second mounting bracket 14 are configured and arranged so as to surround the central axis of the mount substantially concentrically, and the second mounting bracket 14 is cylindrical. The opening in one axial direction (upper in FIG. 1) is fluid-tightly closed by the main rubber elastic body 16 and the diaphragm 28.

なお、図面上に明示されていないが、門形のストッパ金具が、本体ゴム弾性体16やダイヤフラム28の外方を跨ぐように配されて、その両端基端部が、それぞれダイヤフラムアウタ筒金具24のフランジ状部50に設けられた取付ボルト52,52に固定されている。このストッパ金具は、第一の取付金具12に固定された図示しないブラケットの外方に離隔位置せしめられ、該ブラケットに対する当接によって第一の取付金具12と第二の取付金具14のリバウンド方向の相対変位量を制限するようになっている。   Although not clearly shown in the drawings, a gate-shaped stopper fitting is arranged so as to straddle the outer side of the main rubber elastic body 16 and the diaphragm 28, and both end base ends thereof are diaphragm outer cylinder fittings 24, respectively. Are fixed to mounting bolts 52, 52 provided on the flange-shaped portion 50. This stopper metal fitting is spaced apart from a bracket (not shown) fixed to the first attachment metal 12 and is in the rebound direction of the first attachment metal 12 and the second attachment metal 14 by contact with the bracket. The relative displacement is limited.

第二の取付金具14の軸方向他方(図1中、下)の開口部には、加振部材としての加振板62が配されている。加振板62は、小径の略円板形状を有しており、金属材や合成樹脂材等の硬質材を用いて形成されている。また、加振板62の中央部分には、下方に延びる駆動軸64が一体形成されており、この駆動軸64の先端部分に雄ねじ部が形成されている。また、加振板62の外周縁部には、周方向の全周に亘って連続して延びる円筒形状の環状突出部65が、上方に向かって突設されている。更に、環状突出部65の径方向外方には、離隔して略同一中心軸上に支持金具66が配置されている。支持金具66は、大径の略円筒形状を呈しており、上下の端部に、径方向外方に拡がる略円環形状の上鍔状部68と下鍔状部70が、それぞれ一体形成されている。上鍔状部68の外径寸法が、下鍔状部70の外径寸法よりも大きくされている。   A vibration plate 62 serving as a vibration member is disposed in the opening on the other axial direction other side (lower in FIG. 1) of the second mounting bracket 14. The vibration plate 62 has a substantially circular shape with a small diameter, and is formed using a hard material such as a metal material or a synthetic resin material. A drive shaft 64 extending downward is integrally formed at the central portion of the vibration plate 62, and a male screw portion is formed at the tip portion of the drive shaft 64. In addition, a cylindrical annular projecting portion 65 extending continuously over the entire circumference in the circumferential direction is provided on the outer peripheral edge portion of the vibration plate 62 so as to project upward. Further, a support fitting 66 is disposed on the substantially same central axis at a distance from the outer side of the annular protrusion 65 in the radial direction. The support metal fitting 66 has a large-diameter, generally cylindrical shape, and an upper ring-shaped portion 68 and a lower ring-shaped portion 70 that extend in the radially outward direction are integrally formed at upper and lower ends, respectively. ing. The outer diameter dimension of the upper collar part 68 is made larger than the outer diameter dimension of the lower collar part 70.

これら加振板62の環状突出部65と支持金具66の間には、連結ゴム弾性体としての支持ゴム弾性体72が配設されている。支持ゴム弾性体72は、略円環形状を有していると共に、弾性変形可能な所定の厚さ寸法のゴム膜からなり、その内周面が環状突出部65の外周面に加硫接着されていると共に、その外周面が支持金具66の内周面に加硫接着されている。即ち、支持ゴム弾性体72が、加振板62と支持金具66を備えた第三の一体加硫成形品74として形成されている。   A support rubber elastic body 72 as a connecting rubber elastic body is disposed between the annular protrusion 65 of the vibration plate 62 and the support fitting 66. The support rubber elastic body 72 has a substantially annular shape and is made of a rubber film having a predetermined thickness that can be elastically deformed, and its inner peripheral surface is vulcanized and bonded to the outer peripheral surface of the annular protrusion 65. In addition, the outer peripheral surface thereof is vulcanized and bonded to the inner peripheral surface of the support metal fitting 66. That is, the support rubber elastic body 72 is formed as a third integral vulcanization molded product 74 including the vibration plate 62 and the support fitting 66.

支持金具66の外周面には、支持ゴム弾性体72と一体形成された環状のシールゴム76が被着形成されている。シールゴム76の外径寸法が、略全体に亘って支持金具66の下鍔状部70の外径寸法よりも僅かに大きくされている。また、シールゴム76の上端部が径方向外方に延びて上鍔状部68の下面に被着形成されている。更に、シールゴム76の下端部が下鍔状部70の下面に回されて被着形成されている。なお、シールゴム76の外周面には、必要に応じて1又は2以上のシールリップが一体形成される。また、加振板62の環状突出部65の上端部分には、支持ゴム弾性体72と一体形成された、円環形状の緩衝ゴム77が設けられている。   An annular seal rubber 76 integrally formed with the support rubber elastic body 72 is attached to the outer peripheral surface of the support metal fitting 66. The outer diameter dimension of the seal rubber 76 is slightly larger than the outer diameter dimension of the lower collar portion 70 of the support fitting 66 over substantially the whole. Further, the upper end portion of the seal rubber 76 extends radially outward and is attached to the lower surface of the upper collar portion 68. Further, the lower end portion of the seal rubber 76 is rotated and attached to the lower surface of the lower collar 70. One or more seal lips are integrally formed on the outer peripheral surface of the seal rubber 76 as required. An annular buffer rubber 77 formed integrally with the support rubber elastic body 72 is provided at the upper end portion of the annular protrusion 65 of the vibration plate 62.

このような第三の一体加硫成形品74が、第二の取付金具14の下方開口部(かしめ部56)に嵌め込まれて、支持金具66の上鍔状部68が本体ゴムアウタ筒金具22のフランジ状部34にシールゴム層42を介して重ね合わされている。そして、ダイヤフラムアウタ筒金具24のかしめ部56にかしめ加工が施されていることによって、第三の一体加硫成形品74が第二の取付金具14に固定されている。これにより、第二の取付金具14の軸方向他方(図1中、下)の開口部が、加振板62および支持ゴム弾性体72を含んでなる第三の一体加硫成形品74で流体密に覆蓋されている。また、加振板62が、支持ゴム弾性体72を介して第二の取付金具14に弾性的に支持されている。   Such a third integrally vulcanized molded product 74 is fitted into the lower opening (caulking portion 56) of the second mounting bracket 14, and the upper flange portion 68 of the supporting bracket 66 is formed on the main rubber outer tube bracket 22. It overlaps with the flange-shaped portion 34 via a seal rubber layer 42. The third integral vulcanization molded product 74 is fixed to the second mounting member 14 by the caulking process 56 being applied to the caulking portion 56 of the diaphragm outer tubular member 24. As a result, the opening on the other axial direction (the lower side in FIG. 1) of the second mounting bracket 14 is fluidized by the third integral vulcanization molded product 74 including the vibration plate 62 and the support rubber elastic body 72. Closely covered. Further, the vibration plate 62 is elastically supported by the second mounting bracket 14 via a support rubber elastic body 72.

本体ゴム弾性体16と支持ゴム弾性体72の軸方向対向面間には、壁部の一部が本体ゴム弾性体16で構成されて、第一の取付金具12と第二の取付金具14の間への振動入力による本体ゴム弾性体16の弾性変形に基づいて圧力変動が惹起される主液室78が形成されている。主液室78には、非圧縮性流体が封入されている。   Between the axially opposed surfaces of the main rubber elastic body 16 and the support rubber elastic body 72, a part of the wall portion is constituted by the main rubber elastic body 16, and the first mounting bracket 12 and the second mounting bracket 14 are A main liquid chamber 78 is formed in which pressure fluctuation is caused based on elastic deformation of the main rubber elastic body 16 due to vibration input therebetween. An incompressible fluid is sealed in the main liquid chamber 78.

本体ゴムアウタ筒金具22がダイヤフラムアウタ筒金具24にシールゴム層58を介して流体密に固着されていることによって、本体ゴム弾性体16とダイヤフラム28の間には、壁部の一部がダイヤフラム28で構成されて、該ダイヤフラム28の弾性変形に基づいて容積変化が容易に許容される平衡室80が形成されている。平衡室80には、主液室78と同一の非圧縮性流体が封入されている。   Since the main rubber outer cylinder fitting 22 is fluid-tightly fixed to the diaphragm outer cylinder fitting 24 via the seal rubber layer 58, a part of the wall portion between the main rubber elastic body 16 and the diaphragm 28 is the diaphragm 28. Thus, an equilibrium chamber 80 is formed in which the volume change is easily allowed based on the elastic deformation of the diaphragm 28. The equilibrium chamber 80 is filled with the same incompressible fluid as the main liquid chamber 78.

また、本体ゴムアウタ筒金具22の周溝38がシールゴム層58を介してダイヤフラムアウタ筒金具24で流体密に覆蓋されていることによって、主液室78の径方向外方において周方向に所定の長さ(例えば一周弱の長さ)で延びるオリフィス通路82が形成されている。オリフィス通路82の一方の端部が本体ゴムアウタ筒金具22のテーパ状部36と本体ゴム弾性体16に貫設された図示しない連通孔を通じて平衡室80に接続されていると共に、オリフィス通路82の他方の端部が、本体ゴムアウタ筒金具22の周壁部に貫設された図示しない連通孔を通じて主液室78に接続されている。これにより、主液室78と平衡室80がオリフィス通路82を通じて相互に連通されている。   Further, the circumferential groove 38 of the main rubber outer cylinder fitting 22 is fluid-tightly covered with the diaphragm outer cylinder fitting 24 via the seal rubber layer 58, so that a predetermined length is provided in the circumferential direction outside the main liquid chamber 78 in the radial direction. An orifice passage 82 extending in length (for example, a length of less than one round) is formed. One end of the orifice passage 82 is connected to the equilibrium chamber 80 through a tapered hole 36 of the main rubber outer tube fitting 22 and a communication hole (not shown) penetrating the main rubber elastic body 16, and the other end of the orifice passage 82. Is connected to the main liquid chamber 78 through a communication hole (not shown) penetrating the peripheral wall portion of the main rubber outer cylinder fitting 22. As a result, the main liquid chamber 78 and the equilibrium chamber 80 are communicated with each other through the orifice passage 82.

なお、主液室78や平衡室80に封入される非圧縮性流体としては、例えば水やアルキレングリコール,ポリアルキレングリコール,シリコーン油等が採用可能であり、特にオリフィス通路82を通じて流動せしめられる流体の共振作用等の流動作用に基づく防振効果を自動車用のエンジンマウント10に要求される振動周波数域で効率的に得るために、0.1Pa・s以下の低粘性流体が好適に採用される。また、特に限定されるものでないが、本実施形態では、オリフィス通路82を流動せしめられる流体の共振周波数が、該流体の共振作用に基づいてエンジンシェイク等に相当する10Hz前後の低周波数域の振動に対して有効な防振効果(高減衰効果)が発揮されるようにチューニングされている。オリフィス通路82のチューニングは、例えば、主液室78や平衡室80の各壁ばね剛性、即ちそれら流体室を単位容積だけ変化させるのに必要な圧力変化量に対応する本体ゴム弾性体16やダイヤフラム28の各弾性変形量に基づく特性値を考慮しつつ、オリフィス通路82の通路長さと通路断面積を調節することによって行うことが可能であり、一般に、オリフィス通路82を通じて伝達される圧力変動の位相が変化して略共振状態となる周波数を、当該オリフィス通路82のチューニング周波数として把握することが出来る。   As the incompressible fluid sealed in the main liquid chamber 78 and the equilibrium chamber 80, for example, water, alkylene glycol, polyalkylene glycol, silicone oil, or the like can be used. In particular, the fluid that is caused to flow through the orifice passage 82 is used. In order to efficiently obtain a vibration isolation effect based on a fluid action such as a resonance action in a vibration frequency range required for the engine mount 10 for an automobile, a low-viscosity fluid of 0.1 Pa · s or less is preferably employed. Although not particularly limited, in this embodiment, the resonance frequency of the fluid that flows through the orifice passage 82 is a vibration in a low frequency range of about 10 Hz corresponding to an engine shake or the like based on the resonance action of the fluid. Is tuned so as to exhibit an effective anti-vibration effect (high attenuation effect). The orifice passage 82 is tuned by, for example, the rigidity of the wall springs of the main liquid chamber 78 and the equilibrium chamber 80, that is, the main rubber elastic body 16 and the diaphragm corresponding to the amount of pressure change required to change the fluid chamber by a unit volume. 28, by adjusting the passage length and passage cross-sectional area of the orifice passage 82 while taking into account the characteristic values based on the respective elastic deformation amounts 28, and in general, the phase of the pressure fluctuation transmitted through the orifice passage 82 Can be grasped as the tuning frequency of the orifice passage 82.

加振板62を挟んで主液室78と反対側には、電磁式アクチュエータとしての電磁式加振器84が配設されている。電磁式加振器84は、略カップ形状のハウジング86内にコイル88が収容状態で固定的に組み付けられていると共に、コイル88の周りに、それぞれ環状の強磁性材からなる上下のヨーク部材90, 92が組み付けられて磁路が形成されている。また、上ヨーク部材90の中央には、軸方向に延びる中心孔としての筒状内周面94が形成されていると共に、該筒状内周面94には、ガイドスリーブ96が弾性的に位置決めされて装着されている。そして、アーマチャとしての強磁性材からなる滑動子98が、ガイドスリーブ96内を軸方向に滑動可能に組み付けられている。   On the opposite side of the main liquid chamber 78 with the vibration plate 62 interposed therebetween, an electromagnetic vibrator 84 as an electromagnetic actuator is disposed. The electromagnetic exciter 84 has a coil 88 fixedly assembled in a substantially cup-shaped housing 86 in an accommodated state, and upper and lower yoke members 90 each made of an annular ferromagnetic material around the coil 88. , 92 are assembled to form a magnetic path. A cylindrical inner peripheral surface 94 as a central hole extending in the axial direction is formed at the center of the upper yoke member 90, and a guide sleeve 96 is elastically positioned on the cylindrical inner peripheral surface 94. Has been installed. A slider 98 made of a ferromagnetic material as an armature is assembled so as to be slidable in the guide sleeve 96 in the axial direction.

滑動子98は、全体として略円筒形状を有しており、外周面においてガイドスリーブ96に摺動可能とされて、上下のヨーク部材90,92間に形成された磁気ギャップの領域に配設されており、コイル88に通電することにより磁力が及ぼされて、ガイドスリーブ96で案内されつつ、軸方向に駆動されるようになっている。また、滑動子98の内周面には、環状の係合突部100が径方向内方に向かって突設されている。   The slider 98 has a substantially cylindrical shape as a whole, is slidable on the guide sleeve 96 on the outer peripheral surface, and is arranged in a magnetic gap region formed between the upper and lower yoke members 90 and 92. A magnetic force is applied by energizing the coil 88, and it is driven in the axial direction while being guided by the guide sleeve 96. An annular engagement protrusion 100 is provided on the inner peripheral surface of the slider 98 so as to protrude radially inward.

略有底円筒形状を呈するハウジング86は、その底部に下ヨーク部材92を固定的に収容配置していると共に、その開口部分が上ヨーク部材90の上端部よりも上方に所定長さで延びている。ハウジング86の開口部分には、フランジ状部102が一体的に形成されている。また、ハウジング86の径方向外方には、ベースブラケット104が配設されている。ベースブラケット104は、その内径寸法がハウジング86の外径寸法よりも大きな大径の略円筒形状とされていると共に、軸方向中間部分から下方にかけて次第に径寸法が大きくなる逆テーパ状部を備えている。ベースブラケット104の軸方向両端部には、上下のフランジ状部106,108が一体形成されている。   A housing 86 having a substantially bottomed cylindrical shape has a lower yoke member 92 fixedly accommodated and disposed at the bottom thereof, and an opening portion extending above the upper end of the upper yoke member 90 by a predetermined length. Yes. A flange-like portion 102 is integrally formed in the opening portion of the housing 86. A base bracket 104 is disposed outside the housing 86 in the radial direction. The base bracket 104 has a substantially cylindrical shape whose inner diameter is larger than the outer diameter of the housing 86, and includes an inversely tapered portion whose diameter gradually increases from the axially intermediate portion downward. Yes. Upper and lower flange-like portions 106 and 108 are integrally formed at both axial ends of the base bracket 104.

ハウジング86が、ダイヤフラムアウタ筒金具24のかしめ部56に嵌め込まれて、ハウジング86のフランジ状部102が、支持金具66の上鍔状部68に被着されたシールゴム76を介して上鍔状部68に重ね合わせられていると共に、支持金具66に固着された環状のシールゴム76がハウジング86に圧入されている。   The housing 86 is fitted into the caulking portion 56 of the diaphragm outer tube fitting 24, and the flange-like portion 102 of the housing 86 is attached to the upper flange-like portion via the seal rubber 76 attached to the upper flange-like portion 68 of the support fitting 66. An annular seal rubber 76 that is superposed on 68 and fixed to the support fitting 66 is press-fitted into the housing 86.

支持金具66の下鍔状部70が、その下端面に被着されたシールゴム76を介して上ヨーク部材90の上端部に密着状に重ね合わされている。それによって、ハウジング86の内側における支持ゴム弾性体72と上ヨーク部材90の間には、外部空間に対して流体密に閉塞された空気室としての密閉室110が形成されている。   The lower collar portion 70 of the support metal 66 is overlapped in close contact with the upper end portion of the upper yoke member 90 via a seal rubber 76 attached to the lower end surface thereof. Thus, a sealed chamber 110 is formed between the support rubber elastic body 72 and the upper yoke member 90 inside the housing 86 as an air chamber that is fluid-tightly closed with respect to the external space.

ベースブラケット104がハウジング86に外挿されていると共に、ベースブラケット104の上フランジ状部106が、ダイヤフラムアウタ筒金具24のかしめ部56に嵌め込まれて、ハウジング86のフランジ状部102に重ね合わせられている。そして、かしめ部56にかしめ加工が施されていることによって、ハウジング86およびベースブラケット104が、滑動子98の中心軸がマウント中心軸(第一及び第二の取付金具12,14の中心軸)に略一致するようにして第二の取付金具14に固定されている。これにより、電磁式加振器84が、第二の取付金具14に固定されている。   The base bracket 104 is extrapolated to the housing 86, and the upper flange-like portion 106 of the base bracket 104 is fitted into the caulking portion 56 of the diaphragm outer tube bracket 24 and overlapped with the flange-like portion 102 of the housing 86. ing. By caulking the caulking portion 56, the housing 86 and the base bracket 104 are configured such that the central axis of the slider 98 is the mount central axis (the central axis of the first and second mounting brackets 12 and 14). Is fixed to the second mounting member 14 so as to substantially coincide with each other. Thereby, the electromagnetic vibrator 84 is fixed to the second mounting bracket 14.

加振板62の駆動軸64が、電磁式加振器84の中心軸(滑動子98の中心軸)上で上方から差し入れられて、滑動子98の係合突部100に挿通されている。この駆動軸64にコイルスプリング112が外挿されて、加振板62と係合突部100の対向面間に跨って配設されていると共に、駆動軸64の先端の雄ねじ部に対して位置決めナット114が螺着されている。そして、位置決めナット114が、駆動軸64にねじ込まれて、係合突部100を介して加振板62との間でコイルスプリング112を圧縮せしめていることによって、滑動子98が、駆動軸64に対して軸方向に位置決め固定されている。また、コイルスプリング112の両端には、カラー部材116が冠着されており、コイルスプリング112と他部材との擦れによる摩擦を軽減している。而して、駆動軸64と滑動子98が、コイルスプリング112への付勢力で軸方向において連結されていることによって、コイル88への通電で滑動子98に作用せしめられる駆動力が、駆動軸64を介して加振板62に及ぼされるようになっている。   A drive shaft 64 of the vibration plate 62 is inserted from above on the central axis of the electromagnetic exciter 84 (the central axis of the slider 98), and is inserted through the engagement protrusion 100 of the slider 98. A coil spring 112 is extrapolated to the drive shaft 64 and is disposed across the opposing surfaces of the vibration plate 62 and the engaging protrusion 100 and is positioned with respect to the male screw portion at the tip of the drive shaft 64. A nut 114 is screwed. Then, the positioning nut 114 is screwed into the drive shaft 64 and compresses the coil spring 112 with the vibration plate 62 via the engaging projection 100, so that the slider 98 is driven by the drive shaft 64. Is fixed in the axial direction. Further, collar members 116 are crowned on both ends of the coil spring 112 to reduce friction caused by friction between the coil spring 112 and other members. Thus, since the drive shaft 64 and the slider 98 are connected in the axial direction by the urging force to the coil spring 112, the drive force applied to the slider 98 by energizing the coil 88 is increased. 64 is applied to the vibration plate 62 via 64.

ハウジング86の底壁中央には、開口部118が貫設されて、滑動子98の中心孔に導かれている。開口部118を通じて滑動子98の中心孔に六角レンチ等の工具を差し入れて、位置決めナット114乃至は位置決めナット114の中央に締め込まれたロックボルト120を操作することにより、滑動子98の駆動軸64に対する位置を外部から調節することが出来るようになっている。要するに、位置決めナット114の駆動軸64へのねじ込み量を調節することによって、第二の取付金具14に対して支持ゴム弾性体72で弾性的に位置決め支持された加振板62に対して滑動子98の取り付け位置を変更設定することが出来るのであり、それによって、滑動子98のヨーク部材90,92に対する磁力作用対向面間の距離を調節することが出来るようになっている。   An opening 118 is provided in the center of the bottom wall of the housing 86 and led to the center hole of the slider 98. A tool such as a hexagon wrench is inserted into the center hole of the slider 98 through the opening 118, and the positioning nut 114 or the lock bolt 120 tightened in the center of the positioning nut 114 is operated to drive the driving shaft of the slider 98. The position with respect to 64 can be adjusted from the outside. In short, by adjusting the screwing amount of the positioning nut 114 into the drive shaft 64, the slider with respect to the vibration plate 62 elastically positioned and supported by the support rubber elastic body 72 with respect to the second mounting bracket 14. The mounting position of 98 can be changed and set, so that the distance between the magnetically acting opposing surfaces of the slider 98 with respect to the yoke members 90 and 92 can be adjusted.

なお、位置決めナット114の外周縁部と滑動子98の対向面間には、僅かな間隙が形成されており、滑動子98が、駆動軸64に対して軸直角方向の滑り変位が許容される状態で位置決めナット114と重ね合わされて当接状態に保持されている。これにより、各部材の製造上の寸法誤差や組み付け時の位置決め誤差等に起因する駆動軸64と滑動子98との相対的な位置ずれを有利に吸収することが出来て、滑動子98をコイル88に対して軸直角方向にも安定して位置決めすることが出来る。また、電磁式加振器84の作動時における一時的な軸ずれも有利に吸収されることとなって、安定した作動特性を得ることが出来るようになっている。   A slight gap is formed between the outer peripheral edge of the positioning nut 114 and the facing surface of the slider 98, and the slider 98 is allowed to slide in a direction perpendicular to the drive shaft 64. In this state, it is overlapped with the positioning nut 114 and held in contact. As a result, relative positional deviation between the drive shaft 64 and the slider 98 caused by dimensional errors in manufacturing of each member, positioning errors during assembly, and the like can be advantageously absorbed, and the slider 98 is coiled. It is possible to position stably in the direction perpendicular to the axis 88. Further, the temporary shaft misalignment during the operation of the electromagnetic exciter 84 is also advantageously absorbed, so that stable operation characteristics can be obtained.

位置決めナット114やロックボルト120の先端部分が収容配置されている下ヨーク部材92の中心孔122の開口部には、周方向に連続して延びる複数条の溝部が軸方向に連設されてなる取付口124が設けられており、この取付口124に対して蓋部材126が配設されている。蓋部材126は、硬質の表面にゴム層128が被着形成された略平板形状とされて、取付口124に嵌め入れられていると共に、取付口124の端部に弾性を利用して係合された略平面視C字状の板ばね130に支持されることによって、取付口124に着脱可能に取り付けられている。これにより、必要に応じて、取付口124から蓋部材126を取り外して、前述の如き位置決めナット114の駆動軸64へのねじ込み量を調節することが出来るようになっていると共に、取付口124に蓋部材126が取り付けられていることで、下ヨーク部材92の中心孔122が、ゴム層128を介した蓋部材126で流体密に覆蓋されている。また、ゴム層128が加振板62の駆動軸64の先端面に対して軸方向に所定距離を隔てて対向位置せしめられていることによって、駆動軸64が蓋部材126に当接する際に、駆動軸64と蓋部材126の間に設けられたゴム層128の弾性変形作用に基づいて、当接に起因する打音が軽減されるようになっている。   In the opening of the central hole 122 of the lower yoke member 92 in which the distal end portions of the positioning nut 114 and the lock bolt 120 are accommodated, a plurality of grooves extending continuously in the circumferential direction are continuously provided in the axial direction. An attachment port 124 is provided, and a lid member 126 is disposed with respect to the attachment port 124. The lid member 126 has a substantially flat plate shape in which a rubber layer 128 is formed on a hard surface. The lid member 126 is fitted in the attachment port 124 and is engaged with the end portion of the attachment port 124 using elasticity. By being supported by the substantially planar C-shaped leaf spring 130, it is detachably attached to the attachment port 124. As a result, the lid member 126 can be removed from the attachment port 124 as necessary, and the screwing amount of the positioning nut 114 to the drive shaft 64 can be adjusted as described above. Since the lid member 126 is attached, the center hole 122 of the lower yoke member 92 is fluid-tightly covered with the lid member 126 through the rubber layer 128. Further, since the rubber layer 128 is opposed to the front end surface of the drive shaft 64 of the vibration plate 62 at a predetermined distance in the axial direction, when the drive shaft 64 comes into contact with the lid member 126, Based on the elastic deformation action of the rubber layer 128 provided between the drive shaft 64 and the lid member 126, the hitting sound caused by the contact is reduced.

加振板62や支持ゴム弾性体72を含んでなる第三の一体加硫成形品74の上方には、隔壁部材132が配設されている。隔壁部材132は、図2にも示されているように、金属材や合成樹脂材等の硬質材を用いて形成されていると共に、薄肉の円板形状を呈した部材にあって、その径方向中間部分に下方から上方に向かって次第に径寸法が小さくなるテーパ状部が設けられていることによって、全体として円形の略ハット形状を呈している。   A partition wall member 132 is disposed above the third integrally vulcanized molded product 74 including the vibration plate 62 and the support rubber elastic body 72. As shown in FIG. 2, the partition wall member 132 is formed of a hard material such as a metal material or a synthetic resin material, and is a member having a thin disk shape. By providing a taper-shaped portion with a gradually decreasing diameter from the lower side to the upper side in the middle portion in the direction, a substantially circular hat shape is exhibited as a whole.

隔壁部材132のテーパ状部の径方向内側における円板形状の中央部分には、円形状の透孔134が、該中央部分の略全体に亘って広がるようにして板厚方向(図1中、上下)に貫設されている。透孔134には、弾性変位部材としてのゴム弾性膜136が設けられている。   In the central portion of the disk shape on the radially inner side of the tapered portion of the partition wall member 132, a circular through hole 134 extends so as to extend over substantially the entire central portion (in FIG. 1, (Up and down). The through hole 134 is provided with a rubber elastic film 136 as an elastic displacement member.

ゴム弾性膜136は、弾性変形可能な円板形状のゴム弾性材からなり、その外周縁部が透孔134の内周縁部に固着されていることによって、透孔134を覆蓋するようにして隔壁部材132に固定されている。本実施形態では、ゴム弾性膜136の透孔134への固着が、ゴム弾性膜136と隔壁部材132の一体加硫成形に伴いゴム弾性膜136が隔壁部材132に加硫接着されていることにより実現されているが、例えば隔壁部材132と別体形成されたゴム弾性膜136の外周面に嵌着溝を設けて、嵌着溝に透孔134の内周縁部を嵌め込むことにより実現されるようにしても良い。   The rubber elastic film 136 is made of an elastically deformable disk-shaped rubber elastic material, and its outer peripheral edge is fixed to the inner peripheral edge of the through hole 134 so that the through hole 134 is covered with a partition wall. It is fixed to the member 132. In the present embodiment, the rubber elastic film 136 is fixed to the through-hole 134 by the rubber elastic film 136 and the partition member 132 being integrally vulcanized and bonded to the partition member 132 by vulcanization. This is realized, for example, by providing a fitting groove on the outer peripheral surface of the rubber elastic film 136 formed separately from the partition member 132 and fitting the inner peripheral edge of the through hole 134 into the fitting groove. You may do it.

また、ゴム弾性膜136の外周部分に上下に開口する環状の肉抜き溝138,138が設けられていることで、当該部分の厚さ寸法が小さくされてばね剛性が低くされている。これにより、ゴム弾性膜136の外周部分の応力集中が軽減されていることに加えて、ゴム弾性膜136の肉抜き溝138,138の径方向内側に位置する中央部分の透孔134内における変形乃至は変位の許容度が、大きく確保されている。   In addition, by providing annular hollow grooves 138 and 138 that open upward and downward in the outer peripheral portion of the rubber elastic film 136, the thickness dimension of the portion is reduced and the spring rigidity is reduced. As a result, the stress concentration at the outer peripheral portion of the rubber elastic film 136 is reduced, and the deformation in the through hole 134 in the central portion located on the radially inner side of the hollow grooves 138 and 138 of the rubber elastic film 136 is reduced. In addition, a large tolerance for displacement is secured.

さらに、ゴム弾性膜136の中央部分には、通孔140の複数が貫設されている。本実施形態では、通孔140がゴム弾性膜136の厚さ方向(図1中、上下)に略一定の円形断面で貫通していると共に、8つの通孔140が、ゴム弾性膜136の中央と肉抜き溝138の間の径方向中間部分において、周方向に略等間隔に配置されている。   Furthermore, a plurality of through holes 140 are provided in the central portion of the rubber elastic membrane 136. In the present embodiment, the through hole 140 penetrates the rubber elastic film 136 in the thickness direction (up and down in FIG. 1) with a substantially constant circular cross section, and the eight through holes 140 are the center of the rubber elastic film 136. Are arranged at substantially equal intervals in the circumferential direction at a radial intermediate portion between the first and second cutout grooves 138.

このような隔壁部材132の外周縁部が、第三の一体加硫成形品74における支持金具66の上鍔状部68に重ね合わせられて、上鍔状部68と本体ゴムアウタ筒金具22の下端部乃至はフランジ状部34との間でシールゴム層42を介して挟持されていることにより、隔壁部材132が第二の取付金具14に固定的に支持されている。また、加振板62の環状突出部65の先端部分と隔壁部材132の透孔134の周縁部乃至はゴム弾性膜136の外周縁部が、環状突出部65に被着形成された緩衝ゴム77を介して軸方向に対向位置せしめられている。緩衝ゴム77とゴム弾性膜136乃至は隔壁部材132の当接状態は、要求される防振特性や製作性等に応じて設定変更されるものであって、特に限定されるものでなく、それらが離隔していても良いし、或いは緩衝ゴム77が、ゴム弾性膜136乃至は隔壁部材132に当接して、ゴム弾性膜136乃至は隔壁部材132と環状突出部65の間で軸方向に圧縮変形していても良い。   The outer peripheral edge portion of the partition wall member 132 is overlapped with the upper flange portion 68 of the support fitting 66 in the third integrally vulcanized molded product 74, and the lower ends of the upper flange portion 68 and the main rubber outer cylinder fitting 22. The partition wall member 132 is fixedly supported by the second mounting bracket 14 by being sandwiched between the part or the flange-like part 34 via the seal rubber layer 42. Further, a shock absorbing rubber 77 in which the tip end portion of the annular protrusion 65 of the vibration plate 62 and the peripheral edge portion of the through hole 134 of the partition wall member 132 or the outer peripheral edge portion of the rubber elastic film 136 are attached to the annular protrusion portion 65. Are opposed to each other in the axial direction. The contact state between the buffer rubber 77 and the rubber elastic film 136 or the partition wall member 132 is set and changed according to the required anti-vibration characteristics and manufacturability, and is not particularly limited. May be separated from each other, or the buffer rubber 77 may be in contact with the rubber elastic film 136 or the partition member 132 and compressed between the rubber elastic film 136 and the partition member 132 and the annular protrusion 65 in the axial direction. It may be deformed.

これにより、隔壁部材132が、本体ゴム弾性体16と支持ゴム弾性体72の対向面間において軸直角方向(図1中、左右)に広がるように配設されており、主液室78を二分せしめている。隔壁部材132を挟んだ一方(図1中、上)の側である本体ゴム弾性体16側には、壁部の一部が本体ゴム弾性体16で構成された受圧室142が形成されていると共に、隔壁部材132を挟んだ他方(図1中、下)の側である支持ゴム弾性体72側には、壁部の一部が支持ゴム弾性体72および加振板62で構成された加振室144が形成されている。受圧室142と加振室144は、ゴム弾性膜136に形成された複数の通孔140を通じて相互に連通せしめられている。   Thereby, the partition member 132 is disposed so as to spread in the direction perpendicular to the axis (left and right in FIG. 1) between the opposing surfaces of the main rubber elastic body 16 and the support rubber elastic body 72, thereby dividing the main liquid chamber 78 into two parts. I'm coughing. A pressure receiving chamber 142 in which a part of the wall portion is formed of the main rubber elastic body 16 is formed on the main rubber elastic body 16 side which is one side (the upper side in FIG. 1) sandwiching the partition wall member 132. At the same time, on the side of the support rubber elastic body 72, which is the other side (lower side in FIG. 1) across the partition wall member 132, a part of the wall portion is composed of the support rubber elastic body 72 and the vibration plate 62. A shaking chamber 144 is formed. The pressure receiving chamber 142 and the excitation chamber 144 are communicated with each other through a plurality of through holes 140 formed in the rubber elastic film 136.

特に本実施形態では、通孔140を通じて流動せしめられる流体の共振周波数が、例えば20〜40Hzのアイドリング振動等の高周波小振幅振動の周波成分よりも低周波数域にチューニングされている。かかるチューニングは、例えば、オリフィス通路82のチューニングと同様に、主液室78や平衡室80の各壁ばね剛性等を考慮しつつ、通孔140の長さと断面積を調節することによって行うことが可能である。   In particular, in the present embodiment, the resonance frequency of the fluid that is caused to flow through the through hole 140 is tuned to a lower frequency range than the frequency component of high-frequency small-amplitude vibration such as idling vibration of 20 to 40 Hz. Such tuning can be performed, for example, by adjusting the length and cross-sectional area of the through hole 140 in consideration of the rigidity of the wall springs of the main liquid chamber 78 and the equilibrium chamber 80 as in the tuning of the orifice passage 82. Is possible.

上述の説明からも明らかなように、本実施形態では、受圧室142と加振室144を仕切る仕切部材が、隔壁部材132やゴム弾性膜136を含んで構成されていると共に、それら両室142,144を相互に連通するフィルタオリフィスが、通孔140の複数を含んで構成されている。   As is clear from the above description, in this embodiment, the partition member that partitions the pressure receiving chamber 142 and the excitation chamber 144 includes the partition wall member 132 and the rubber elastic film 136, and both the chambers 142 are provided. 144 are configured to include a plurality of through-holes 140.

このような構造とされた自動車用エンジンマウント10においては、第一の取付金具12が、取付板部46の取付孔48に挿通される図示しない固定ボルトによってパワーユニット側の取付部材に固定されると共に、第二の取付金具14に固定されたベースブラケット104の下フランジ状部108が、図示しない固定ボルトを介して自動車ボデー側の取付部材に固定されることにより、パワーユニットと自動車ボデーの間に装着されて、パワーユニットをボデーに対して防振支持せしめるようになっている。そして、かかる装着状態下、第一の取付金具12と第二の取付金具14の間に振動が入力されると、本体ゴム弾性体16の弾性変形によって主液室78と平衡室80の間に惹起される圧力差に基づいてオリフィス通路82を通じて流体流動が生ぜしめられることとなり、該流体の共振作用等の流動作用に基づいて受動的な防振効果が発揮され得る。   In the automotive engine mount 10 having such a structure, the first mounting bracket 12 is fixed to the mounting member on the power unit side by a fixing bolt (not shown) inserted through the mounting hole 48 of the mounting plate portion 46. The lower flange portion 108 of the base bracket 104 fixed to the second mounting bracket 14 is fixed to a mounting member on the side of the vehicle body via a fixing bolt (not shown), so that it is mounted between the power unit and the vehicle body. As a result, the power unit is supported on the body against vibration. When vibration is input between the first mounting bracket 12 and the second mounting bracket 14 in such a mounted state, the elastic deformation of the main rubber elastic body 16 causes the main liquid chamber 78 and the equilibrium chamber 80 to be interposed. A fluid flow is generated through the orifice passage 82 based on the induced pressure difference, and a passive vibration isolation effect can be exhibited based on a fluid action such as a resonance action of the fluid.

また、例えば、パワーユニットのエンジン点火信号を参照信号とすると共に、車両ボデー等の防振すべき部材の振動検出信号をエラー信号として適応制御乃至はフィードバック制御を行うこと等によって、コイル88への通電を制御し、駆動軸64を軸方向に加振駆動せしめる。その結果、例えばエンジンシェイク等の低周波振動が入力された際に、受圧室142および加振室144からなる主液室78と平衡室80の間に圧力変動が有効に惹起せしめられるように加振板62を駆動制御せしめることによって、オリフィス通路82の流体流動量が効率良く確保されて、オリフィス通路82を通じての流体の共振作用等の流動作用に基づく防振効果が一層有利に発揮され得るのである。   In addition, for example, the coil 88 is energized by performing adaptive control or feedback control using the engine ignition signal of the power unit as a reference signal and the vibration detection signal of a member to be isolated such as a vehicle body as an error signal. To drive the drive shaft 64 in the axial direction. As a result, for example, when low frequency vibration such as engine shake is input, pressure fluctuation is effectively caused between the main liquid chamber 78 including the pressure receiving chamber 142 and the vibration chamber 144 and the equilibrium chamber 80. By controlling the vibration of the vibration plate 62, the amount of fluid flow in the orifice passage 82 can be secured efficiently, and the vibration isolation effect based on the flow action such as the resonance action of the fluid through the orifice passage 82 can be exhibited more advantageously. is there.

また、例えばアイドリング振動等の高周波小振幅振動が入力された際に、該振動に対応した駆動力を加振板62に作用せしめて、加振室144に生ぜしめられる圧力変動を通孔140を通じて受圧室142に及ぼすことによって、主液室78の内圧が制御されることとなり、当該高周波振動に対して積極的乃至は能動的な防振効果が有効に発揮され得る。   Further, when a high-frequency small-amplitude vibration such as idling vibration is input, a driving force corresponding to the vibration is applied to the vibration plate 62, and a pressure fluctuation generated in the vibration chamber 144 is passed through the hole 140. By exerting on the pressure receiving chamber 142, the internal pressure of the main liquid chamber 78 is controlled, and a positive or active vibration isolating effect can be effectively exhibited against the high frequency vibration.

特に、通孔140を通じて流動せしめられる流体の共振周波数が、アイドリング振動等の周波数域よりも低周波数域にチューニングされていることで、加振室144において電磁式加振器84を用いた加振板62の加振駆動等により生じる圧力変動の高周波成分が、通孔140のフィルタ作用に基づき、受圧室142に及ぼされないようになっている。即ち、加振室144に生ぜしめられる圧力変動が、その高次成分を除いた状態で受圧室142に作用せしめられることにより、防振すべきアイドリング振動の周波数や波形に高精度に対応した圧力変動が受圧室142に及ぼされることとなる。それ故、目的とする防振効果が安定して得られる。   In particular, the resonance frequency of the fluid that is caused to flow through the through-hole 140 is tuned to a frequency range lower than the frequency range such as idling vibration, so that the excitation using the electromagnetic exciter 84 is performed in the excitation chamber 144. A high frequency component of pressure fluctuation caused by vibration driving of the plate 62 is prevented from being exerted on the pressure receiving chamber 142 based on the filter action of the through hole 140. That is, the pressure fluctuation generated in the excitation chamber 144 is applied to the pressure receiving chamber 142 in a state where the higher-order components are removed, so that the pressure corresponding to the frequency and waveform of the idling vibration to be vibrated is highly accurate. The fluctuation is exerted on the pressure receiving chamber 142. Therefore, the intended vibration proofing effect can be obtained stably.

ところで、第一の取付金具12と第二の取付金具14の間にアイドリング振動等の周波数域よりも更に高周波数域の例えば、80〜100Hz前後の走行こもり音等の高周波微振幅振動が入力されると、通孔140を通じての流体の流動抵抗が大きくなって、通孔140が実質的に閉塞状態となり、受圧室142の高動ばね化が問題となる可能性がある。   By the way, between the first mounting bracket 12 and the second mounting bracket 14, a high frequency fine amplitude vibration such as a traveling boom noise of about 80 to 100 Hz, for example, in a higher frequency range than an idling vibration or the like is input. Then, the flow resistance of the fluid through the through hole 140 is increased, the through hole 140 is substantially closed, and there is a possibility that the high pressure spring of the pressure receiving chamber 142 becomes a problem.

そこにおいて、受圧室142と加振室144を仕切る仕切部材の一部がゴム弾性膜136で構成されているため、通孔140が閉塞した状態で、受圧室142と加振室144の間に相対的な圧力差が生じると、その圧力差に基づいてゴム弾性膜136が弾性変形する。即ち、ゴム弾性膜136の変形乃至は変位に基づき受圧室142の圧力変動が吸収される。   In this case, since a part of the partition member that partitions the pressure receiving chamber 142 and the vibration chamber 144 is configured by the rubber elastic film 136, the pressure hole 142 is closed between the pressure receiving chamber 142 and the vibration chamber 144. When a relative pressure difference occurs, the rubber elastic film 136 is elastically deformed based on the pressure difference. That is, the pressure fluctuation of the pressure receiving chamber 142 is absorbed based on the deformation or displacement of the rubber elastic film 136.

特に本実施形態では、圧力変動を吸収する弾性変位部材がゴム弾性膜136で構成されていることによって、ゴム弾性膜136の弾性変形作用を利用して、微振幅振動を効率良く吸収することが出来る。また、ゴム弾性膜136の固有振動数を問題となる高周波数域の振動にチューニングすることも可能であり、それによって、ゴム弾性膜136の共振現象を利用して、圧力吸収効果をより一層向上させることも可能となる。   In particular, in the present embodiment, the elastic displacement member that absorbs the pressure fluctuation is configured by the rubber elastic film 136, so that the elastic deformation action of the rubber elastic film 136 can be used to efficiently absorb the minute amplitude vibration. I can do it. It is also possible to tune the natural frequency of the rubber elastic membrane 136 to a high-frequency vibration that is a problem, thereby further improving the pressure absorption effect by utilizing the resonance phenomenon of the rubber elastic membrane 136. It is also possible to make it.

さらに、本実施形態では、ゴム弾性膜136の中央のまわりに複数の通孔140が設けられて、それらが周方向に略等間隔に設けられている。加えて、通孔140が加振板62の上方において加振板62の外周縁部よりも内側に位置せしめられていると共に、ゴム弾性膜136と加振板62が同心軸上に位置せしめられていることによって、加振板62の加振駆動に伴う圧力作用がゴム弾性膜136の中央部分に集められやすくなっている。その結果、ゴム弾性膜136が、その中央部分を中心として、板厚方向に大きく変位乃至は変形しやすくなり、安定した液圧吸収効果が得られる。   Further, in the present embodiment, a plurality of through holes 140 are provided around the center of the rubber elastic membrane 136, and these are provided at substantially equal intervals in the circumferential direction. In addition, the through-hole 140 is positioned above the vibration plate 62 inside the outer peripheral edge of the vibration plate 62, and the rubber elastic film 136 and the vibration plate 62 are positioned on the concentric axis. As a result, the pressure action accompanying the vibration drive of the vibration plate 62 is easily collected in the central portion of the rubber elastic film 136. As a result, the rubber elastic film 136 is likely to be greatly displaced or deformed in the thickness direction with the center portion as the center, and a stable hydraulic pressure absorbing effect can be obtained.

それ故、本実施形態に係る自動車用エンジンマウント10においては、能動的な防振性能に関しては、ゴム弾性膜136の通孔140による問題となる加振室144の制御圧力の除去作用が有効に発揮され得ると共に、通孔140のチューニング周波数よりも高周波数域の振動に対しても、ゴム弾性膜136の弾性変形によって、受圧室142の圧力変動量の増大に起因する防振性能の著しい低下が回避されて、優れた防振性能が発揮され得るのである。   Therefore, in the automotive engine mount 10 according to the present embodiment, with regard to the active vibration isolation performance, the action of removing the control pressure of the vibration chamber 144 which is a problem due to the through hole 140 of the rubber elastic membrane 136 is effective. In addition to being able to be exerted, even with respect to vibration in a frequency range higher than the tuning frequency of the through-hole 140, the elastic deformation of the rubber elastic film 136 causes a significant decrease in vibration-proof performance due to an increase in the amount of pressure fluctuation in the pressure receiving chamber 142. Can be avoided, and excellent anti-vibration performance can be exhibited.

また、本実施形態では、緩衝ゴム77が被着された環状突出部65と隔壁部材132の透孔134の周縁部乃至はゴム弾性膜136の外周縁部が軸方向に対向位置せしめられている。これにより、軸方向の荷重が入力されて、環状突出部65と隔壁部材132が互いに当接する際に、緩衝ゴム77乃至はゴム弾性膜136の外周縁部を介して当接することによる緩衝的な制限作用に基づいて、当接に起因する衝撃や異音の発生が抑えられることから、耐久性能や静粛性が有利に向上され得る。   Further, in the present embodiment, the annular protrusion 65 to which the buffer rubber 77 is attached and the peripheral edge of the through hole 134 of the partition wall member 132 or the outer peripheral edge of the rubber elastic film 136 are opposed to each other in the axial direction. . As a result, when an axial load is input and the annular projecting portion 65 and the partition wall member 132 come into contact with each other, the buffer rubber 77 or the rubber elastic film 136 is brought into contact with each other via the outer peripheral edge portion. Since the occurrence of impact and abnormal noise due to contact is suppressed based on the limiting action, durability and quietness can be advantageously improved.

次に、図3には、本発明の第二の実施形態としての自動車用エンジンマウントの要部が示されている。本実施形態では、受圧室142と加振室144を仕切る仕切部材の一部を構成する弾性変位部材が、第一の実施形態と異なる態様を示している。なお、以下の説明において、前記第一の実施形態と実質的に同一の構造とされた部材および部位については、図中に第一の実施形態と同一の符号を付することにより、それらの詳細な説明を省略する。   Next, the principal part of the engine mount for motor vehicles as 2nd embodiment of this invention is shown by FIG. In this embodiment, the elastic displacement member which comprises a part of partition member which partitions off the pressure receiving chamber 142 and the excitation chamber 144 has shown the aspect different from 1st embodiment. In the following description, members and parts having substantially the same structure as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment in the drawings, and details thereof are given. The detailed explanation is omitted.

詳細には、本実施形態に係る隔壁部材132の透孔134の内側には、弾性変位部材としての可動板146が設けられている。可動板146は、図4にも示されているように、隔壁部材132と同一の金属材や樹脂材等の硬質材で形成されて、透孔134よりも一回り小さな円形の板状を呈していると共に、隔壁部材132と略同じ厚さ寸法とされている。可動板146の中央のまわりには、8つの通孔140が貫設されていると共に、周方向に略等間隔に配されている。   Specifically, a movable plate 146 as an elastic displacement member is provided inside the through hole 134 of the partition wall member 132 according to the present embodiment. As shown in FIG. 4, the movable plate 146 is formed of a hard material such as the same metal material or resin material as the partition wall member 132 and has a circular plate shape slightly smaller than the through-hole 134. In addition, the thickness dimension is substantially the same as that of the partition wall member 132. Around the center of the movable plate 146, eight through holes 140 are provided so as to be arranged at substantially equal intervals in the circumferential direction.

このような可動板146が隔壁部材132の透孔134の内側に配されて、軸直角方向(径方向)に広がった形態で、透孔134(隔壁部材132)の中心軸と略同心円状に位置せしめられている。可動板146の外周縁部と隔壁部材132の内周縁部が径方向で離隔して対向位置せしめられている。これら可動板146と隔壁部材132の間には、支持ゴム弾性体148が配設されている。   Such a movable plate 146 is arranged inside the through-hole 134 of the partition wall member 132, and extends in the direction perpendicular to the axis (radial direction), and is substantially concentric with the central axis of the through-hole 134 (partition wall member 132). It is positioned. The outer peripheral edge portion of the movable plate 146 and the inner peripheral edge portion of the partition wall member 132 are spaced apart from each other in the radial direction. A support rubber elastic body 148 is disposed between the movable plate 146 and the partition member 132.

支持ゴム弾性体148は、略円環板形状を呈していると共に、弾性変形可能なゴム弾性材を用いて形成されている。支持ゴム弾性体148の径方向中間部分には、上下に開口する肉抜き溝138,138が設けられている。支持ゴム弾性体148の内周面が可動板146の外周面に加硫接着されていると共に、支持ゴム弾性体148の外周面が透孔134の周縁部(面)に加硫接着されている。これにより、可動板146と隔壁部材132の径方向対向面間が支持ゴム弾性体148で覆蓋されていると共に、可動板146と隔壁部材132が支持ゴム弾性体148を介して相互に弾性連結されている。   The support rubber elastic body 148 has a substantially annular plate shape and is formed using a rubber elastic material that can be elastically deformed. In the middle portion of the support rubber elastic body 148 in the radial direction, there are provided thinning grooves 138 and 138 that open vertically. The inner peripheral surface of the support rubber elastic body 148 is vulcanized and bonded to the outer peripheral surface of the movable plate 146, and the outer peripheral surface of the support rubber elastic body 148 is vulcanized and bonded to the peripheral edge (surface) of the through hole 134. . As a result, the movable rubber plate 146 and the partition wall member 132 are covered with the support rubber elastic body 148 between the radially opposing surfaces, and the movable plate 146 and the partition wall member 132 are elastically connected to each other via the support rubber elastic body 148. ing.

要するに、本実施形態では、隔壁部材132の透孔134に硬質の可動板146が配設されて、可動板146の外周縁部が支持ゴム弾性体148を介して隔壁部材132の透孔134の周縁部に弾性的に支持されることにより、弾性変位部材が構成されていると共に、硬質の可動板146に対してフィルタオリフィスとしての通孔140の複数が形成されている。隔壁部材132が第二の取付金具14に固定的に支持された状態で、加振板62の環状突出部65と隔壁部材132の透孔134の周縁部乃至は支持ゴム弾性体148が軸方向に対向位置せしめられている。   In short, in the present embodiment, the rigid movable plate 146 is disposed in the through hole 134 of the partition wall member 132, and the outer peripheral edge of the movable plate 146 is connected to the through hole 134 of the partition wall member 132 through the support rubber elastic body 148. By elastically supporting the peripheral edge portion, an elastic displacement member is formed, and a plurality of through holes 140 as filter orifices are formed in the hard movable plate 146. In a state where the partition member 132 is fixedly supported by the second mounting member 14, the annular protrusion 65 of the vibration plate 62 and the peripheral portion of the through hole 134 of the partition member 132 or the supporting rubber elastic body 148 are axially disposed. It is made to oppose to.

このような構造とされた自動車用エンジンマウントにおいては、通孔140のフィルタ作用によって、加振板62の加振駆動により加振室144に生ぜしめられる圧力変動が、その高次成分を除いた状態で受圧室142に作用せしめられる。それ故、防振すべきアイドリング振動等の周波数や波形に高精度に対応した圧力変動が受圧室142に及ぼされる。   In the automobile engine mount having such a structure, the pressure fluctuation generated in the vibration chamber 144 by the vibration drive of the vibration plate 62 due to the filter action of the through hole 140 excludes the higher order components. It is made to act on the pressure receiving chamber 142 in a state. Therefore, pressure fluctuation corresponding to the frequency and waveform of idling vibration to be vibrated with high accuracy is exerted on the pressure receiving chamber 142.

また、通孔140を通じての流体の共振周波数よりも高周波数域の振動入力に起因して通孔140が閉塞した状態下にあって、受圧室142と加振室144の間に相対的な圧力差が生じると、その圧力差に基づいて、支持ゴム弾性体148の弾性変形に伴い可動板146が受圧室142側乃至は加振室144側に変位する。この可動板146の変位によって、受圧室142の圧力変動が吸収される。   In addition, the relative pressure between the pressure receiving chamber 142 and the excitation chamber 144 is determined when the through hole 140 is closed due to vibration input in a frequency range higher than the resonance frequency of the fluid through the through hole 140. When the difference occurs, the movable plate 146 is displaced to the pressure receiving chamber 142 side or the excitation chamber 144 side with elastic deformation of the support rubber elastic body 148 based on the pressure difference. Due to the displacement of the movable plate 146, the pressure fluctuation in the pressure receiving chamber 142 is absorbed.

それ故、本実施形態に係る自動車用エンジンマウントにおいても、第一の実施形態と同様に、能動的な防振性能に関しては、可動板146の通孔140による問題となる加振室144の制御圧力の除去作用が有効に発揮され得ると共に、通孔140のチューニング周波数よりも高周波数域の振動に対しても、可動板146の変位によって、受圧室142の圧力変動量の増大に起因する防振性能の著しい低下が回避されて、優れた防振性能が発揮され得るのである。   Therefore, also in the engine mount for automobiles according to the present embodiment, as in the first embodiment, regarding the active vibration isolation performance, the control of the vibration chamber 144 which is a problem due to the through hole 140 of the movable plate 146 is performed. The pressure removing action can be exhibited effectively, and the vibration due to the increase in the pressure fluctuation amount of the pressure receiving chamber 142 due to the displacement of the movable plate 146 due to the displacement of the movable plate 146 even against the vibration in the frequency range higher than the tuning frequency of the through hole 140. A significant decrease in vibration performance is avoided, and excellent vibration isolation performance can be exhibited.

特に本実施形態では、可動板146で構成される弾性変位部材の中央部分の剛性が高くされるため、シェイク等の大振幅振動が入力された際に、弾性変位部材の変形に基づく液圧吸収作用が抑えられることから、主液室78と平衡室80の相対的な圧力変動の差が有効に惹起せしめられる。それ故、オリフィス通路82を通じての流体流動量が十分に確保されて、該流体の共振作用等の流動作用に基づく防振効果が一層安定して得られるのである。   In particular, in this embodiment, since the rigidity of the central portion of the elastic displacement member constituted by the movable plate 146 is increased, when a large amplitude vibration such as a shake is input, the hydraulic pressure absorbing action based on the deformation of the elastic displacement member. Therefore, the difference in relative pressure fluctuation between the main liquid chamber 78 and the equilibrium chamber 80 is effectively caused. Therefore, a sufficient fluid flow amount through the orifice passage 82 is ensured, and the vibration isolation effect based on the fluid action such as the resonance action of the fluid can be obtained more stably.

以上、本発明の実施形態について詳述してきたが、これらはあくまでも例示であり、これら実施形態における具体的な記載によって、本発明は、何等限定されるものでなく、当業者の知識に基づいて種々なる変更、修正、改良等を加えた態様で実施可能であり、また、そのような実施態様が、本発明の趣旨を逸脱しない限り、何れも、本発明の範囲内に含まれるものであることは、言うまでもない。   Although the embodiments of the present invention have been described in detail above, these are merely examples, and the present invention is not limited to specific descriptions in these embodiments, and is based on the knowledge of those skilled in the art. The present invention can be implemented with various changes, modifications, improvements, and the like, and any such embodiments are included in the scope of the present invention without departing from the spirit of the present invention. Needless to say.

例えば、ゴム弾性膜136や可動板146、透孔134、通孔140における形状や大きさ、構造、位置、数等の形態は、例示の如き形態に限定されるものでない。   For example, the shape, size, structure, position, number, and the like of the rubber elastic film 136, the movable plate 146, the through hole 134, and the through hole 140 are not limited to the illustrated forms.

また、受圧室142および加振室144を含んでなる主液室78や平衡室80、オリフィス通路82等の形状や大きさ、構造、数等も、例示の如きものに限定されるものでない。   Further, the shape, size, structure, number, and the like of the main liquid chamber 78, the equilibrium chamber 80, the orifice passage 82, and the like including the pressure receiving chamber 142 and the excitation chamber 144 are not limited to those illustrated.

前記実施形態では、本体ゴム弾性体16を挟んで主液室78と平衡室80が形成されていると共に、エンジンシェイク等の低周波数域にチューニングされたオリフィス通路82を通じて、主液室78と平衡室80が相互に連通せしめられていたが、例えばエンジンシェイク等の低周波振動を防振せしめる必要がない場合やエンジンシェイク等が他のオリフィス通路のチューニングで対応される場合等に、オリフィス通路82や平衡室80は必須の構成要件でない。   In the embodiment, the main liquid chamber 78 and the equilibrium chamber 80 are formed with the main rubber elastic body 16 interposed therebetween, and the main liquid chamber 78 is balanced through the orifice passage 82 tuned to a low frequency region such as an engine shake. Although the chambers 80 are communicated with each other, the orifice passage 82 is used when it is not necessary to prevent low-frequency vibration such as engine shake, or when the engine shake is dealt with by tuning other orifice passages. The equilibrium chamber 80 is not an essential component.

また、オリフィス通路82や通孔140の具体的構造や寸法等は何等限定されるものでなく、要求される防振特性に応じてチューニングされる。   Further, the specific structure, dimensions, and the like of the orifice passage 82 and the through hole 140 are not limited in any way, and are tuned according to the required vibration isolation characteristics.

また、例えば、採用される電磁式加振器84には、例示の如きものに限定されるものでなく、具体的には、例えば固定子側に永久磁石を配設すると共に、可動子側を強磁性材からなる可動部材で構成することにより、コイルへの通電によって生ぜしめられる磁界によって固定子側のN極とS極を交互に増減させて、可動部材を往復駆動せしめるようにした構造のもの(原理は、例えば特開2003−339145号公報等に開示されて公知のものであるから、ここでは詳細な説明を省略する)の他、特開2000−213586号公報や特開2001−1765号公報等に開示された従来から公知の各種の電磁式アクチュエータが、何れも採用可能である。   Further, for example, the electromagnetic exciter 84 employed is not limited to the illustrated one, and specifically, for example, a permanent magnet is disposed on the stator side, and the mover side is disposed on the stator side. By using a movable member made of a ferromagnetic material, a structure in which the movable member is reciprocally driven by alternately increasing or decreasing the N pole and S pole on the stator side by a magnetic field generated by energizing the coil. In addition to those (the principle is disclosed in, for example, Japanese Patent Laid-Open No. 2003-339145, etc., detailed description is omitted here), Japanese Patent Laid-Open No. 2000-213586 and Japanese Patent Laid-Open No. 2001-1765 Any of various conventionally known electromagnetic actuators disclosed in Japanese Laid-open Patent Publications can be employed.

また、本発明は、例示の如きエンジンマウントの他、能動的な防振装置に対して広く適用可能であり、例えばFF型自動車用エンジンマウント等として採用されている円筒型のエンジンマウントにおいても、流体封入式能動型防振装置として実現する場合に適用可能であり、或いは例示の如きパワーユニットとボデー間等の二つの部材間に介装される防振連結体乃至は防振支持体の他、制振すべき振動対象物に対して取り付けられる制振器としても、同様に利用することが可能である。具体的には、かかる流体封入式の能動型制振器は、例えば前記実施形態に示されたエンジンマウントを、その第二の取付金具をブラケットにより制振対象物に対して固定する一方、第一の取付金具に対して、その取付板部に適当な質量のマス部材を装着することにより、能動的な制振装置を実現することが出来る。   In addition to the engine mount as illustrated, the present invention can be widely applied to an active vibration isolator. For example, in a cylindrical engine mount adopted as an engine mount for an FF type automobile, It can be applied when realized as a fluid-filled active vibration isolator, or in addition to an anti-vibration coupling body or an anti-vibration support body interposed between two members such as a power unit and a body as illustrated, It can be similarly used as a vibration damper attached to a vibration object to be damped. Specifically, such a fluid-filled active vibration damper includes, for example, the engine mount shown in the above-described embodiment, while fixing the second mounting bracket to the object to be vibration-damped with a bracket, An active vibration damping device can be realized by mounting a mass member having an appropriate mass on the mounting plate portion of one mounting bracket.

加えて、本発明は、自動車用のボデーマウントやメンバマウント等、或いは自動車以外の各種装置におけるマウントや制振器などの防振装置に対して、同様に適用可能である。
In addition, the present invention can be similarly applied to an anti-vibration device such as a body mount or a member mount for an automobile or a mount or a vibration damper in various apparatuses other than the automobile.

本発明の第一の実施形態としての自動車用エンジンマウントの縦断面図。The longitudinal cross-sectional view of the engine mount for motor vehicles as 1st embodiment of this invention. 同自動車用エンジンマウントの一部を構成する隔壁部材の平面図。The top view of the partition member which comprises a part of engine mount for the motor vehicles. 本発明の第二の実施形態としての自動車用エンジンマウントの要部の縦断面図。The longitudinal cross-sectional view of the principal part of the engine mount for motor vehicles as 2nd embodiment of this invention. 図3の自動車用エンジンマウントの一部を構成する隔壁部材の平面図。The top view of the partition member which comprises a part of engine mount for motor vehicles of FIG.

符号の説明Explanation of symbols

10:自動車用エンジンマウント、12:第一の取付金具、14:第二の取付金具、16:本体ゴム弾性体、62:加振板、84:電磁式加振器、132:仕切部材、136:ゴム弾性膜、140:通孔、142:受圧室、144:加振室
10: engine mount for automobile, 12: first mounting bracket, 14: second mounting bracket, 16: rubber elastic body of main body, 62: vibration plate, 84: electromagnetic vibrator, 132: partition member, 136 : Rubber elastic membrane, 140: Through hole, 142: Pressure receiving chamber, 144: Excitation chamber

Claims (5)

第一の取付部材と第二の取付部材を本体ゴム弾性体で連結して、壁部の一部が該本体ゴム弾性体で構成されて非圧縮性流体が封入された受圧室を形成すると共に、該第二の取付部材によって弾性支持された加振部材で壁部の一部が構成されて非圧縮性流体が封入された加振室を形成して、それら受圧室と加振室を仕切る仕切部材に両室を連通するフィルタオリフィスを形成する一方、該加振部材に加振駆動力を及ぼす電磁式アクチュエータを設けて、該電磁式アクチュエータによる該加振部材の加振力で該加振室に生ぜしめられる圧力変動を該フィルタオリフィスを通じて該受圧室に及ぼすことにより防振性能を能動的に制御するようにした電磁式能動型マウントにおいて、
前記受圧室と前記加振室を仕切る前記仕切部材の一部を弾性変位可能な弾性変位部材で構成して、該弾性変位部材に対して前記フィルタオリフィスを形成したことを特徴とする電磁式能動型マウント。
The first mounting member and the second mounting member are connected by a main rubber elastic body, and a pressure receiving chamber in which a part of the wall portion is configured by the main rubber elastic body and in which an incompressible fluid is sealed is formed. The vibration member elastically supported by the second mounting member forms a vibration chamber in which a part of the wall portion is formed and the incompressible fluid is enclosed, and the pressure receiving chamber and the vibration chamber are partitioned. A filter orifice that communicates both chambers is formed in the partition member, and an electromagnetic actuator that exerts an excitation driving force is provided on the excitation member, and the excitation force of the excitation member by the electromagnetic actuator is applied to the excitation member. In an electromagnetic active mount in which vibration isolation performance is actively controlled by applying pressure fluctuations generated in the chamber to the pressure receiving chamber through the filter orifice,
An electromagnetic active characterized in that a part of the partition member partitioning the pressure receiving chamber and the excitation chamber is constituted by an elastic displacement member capable of elastic displacement, and the filter orifice is formed with respect to the elastic displacement member. Mold mount.
前記仕切部材に透孔を形成すると共に、該透孔をゴム弾性膜で覆蓋することによって前記弾性変位部材を構成し、該ゴム弾性膜に通孔を形成することにより前記フィルタオリフィスを構成した請求項1に記載の電磁式能動型マウント。   A through hole is formed in the partition member, the elastic displacement member is formed by covering the through hole with a rubber elastic film, and the filter orifice is formed by forming a through hole in the rubber elastic film. Item 2. The electromagnetic active mount according to Item 1. 前記仕切部材に透孔を形成すると共に、該透孔に硬質の可動板を配設して、該可動板の外周縁部を、支持ゴム弾性体を介して、該仕切部材における該透孔の周縁部によって弾性的に支持せしめることにより前記弾性変位部材を構成し、該可動板に通孔を形成することにより前記フィルタオリフィスを構成した請求項1に記載の電磁式能動型マウント。   A through hole is formed in the partition member, and a hard movable plate is disposed in the through hole, and the outer peripheral edge of the movable plate is connected to the through hole of the partition member via a support rubber elastic body. 2. The electromagnetic active mount according to claim 1, wherein the elastic displacement member is configured to be elastically supported by a peripheral portion, and the filter orifice is configured by forming a through hole in the movable plate. 壁部の一部が可撓性膜で構成されて非圧縮性流体が封入された平衡室を形成すると共に、該平衡室を前記受圧室に連通せしめるオリフィス通路を形成した請求項1乃至3の何れか一項に記載の電磁式能動型マウント。   4. The wall according to claim 1, wherein a wall portion is formed of a flexible membrane to form an equilibrium chamber in which an incompressible fluid is enclosed, and an orifice passage is formed to connect the equilibrium chamber to the pressure receiving chamber. The electromagnetic active mount according to any one of the above. 前記第二の取付部材を円筒形状として、その一方の開口部側に前記第一の取付部材を配設し、該第一の取付部材と該第二の取付部材を前記本体ゴム弾性体で連結することによって該第二の取付部材の該一方の開口部を流体密に閉塞する一方、該第二の取付部材の他方の開口部側に前記加振部材を配設して、該加振部材を連結ゴム弾性体を介して該第二の取付部材で変位可能に支持せしめることにより該第二の取付部材の該他方の開口部を流体密に閉塞すると共に、該第一の取付部材と該加振部材の対向面間で軸直角方向に広がる前記仕切部材を該第二の取付部材で固定的に支持せしめることにより、該仕切部材を挟んだ両側に前記受圧室と前記加振室を形成し、更に該本体ゴム弾性体の外表面を外側から離隔して覆うようにして前記可撓性膜を配設することにより、該本体ゴム弾性体を挟んで該受圧室と反対側に平衡室を形成する一方、該加振部材を挟んで該加振室と反対側に前記電磁式アクチュエータを配して該第二の取付部材で支持せしめた請求項4に記載の電磁式能動型マウント。
The second mounting member has a cylindrical shape, the first mounting member is disposed on one opening side thereof, and the first mounting member and the second mounting member are connected by the main rubber elastic body. Thus, the one opening of the second mounting member is fluid-tightly closed, while the vibration member is disposed on the other opening side of the second mounting member, and the vibration member Is supported by the second mounting member so as to be displaceable via the connecting rubber elastic body, thereby fluidly closing the other opening of the second mounting member, and the first mounting member and the second mounting member. The pressure receiving chamber and the vibration chamber are formed on both sides of the partition member by fixedly supporting the partition member extending in the direction perpendicular to the axis between the opposing surfaces of the vibration member with the second mounting member. Further, the flexible membrane is formed so as to cover the outer surface of the main rubber elastic body so as to be separated from the outside. By arranging, an equilibrium chamber is formed on the opposite side of the pressure receiving chamber across the main rubber elastic body, while the electromagnetic actuator is disposed on the opposite side of the excitation chamber across the excitation member. The electromagnetic active mount according to claim 4, which is supported by the second mounting member.
JP2006081201A 2006-03-23 2006-03-23 Electromagnetic active mount Expired - Fee Related JP5002176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006081201A JP5002176B2 (en) 2006-03-23 2006-03-23 Electromagnetic active mount

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006081201A JP5002176B2 (en) 2006-03-23 2006-03-23 Electromagnetic active mount

Publications (2)

Publication Number Publication Date
JP2007255584A true JP2007255584A (en) 2007-10-04
JP5002176B2 JP5002176B2 (en) 2012-08-15

Family

ID=38630026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006081201A Expired - Fee Related JP5002176B2 (en) 2006-03-23 2006-03-23 Electromagnetic active mount

Country Status (1)

Country Link
JP (1) JP5002176B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010196719A (en) * 2009-02-23 2010-09-09 Tokai Rubber Ind Ltd Fluid-filled vibration damping device
US8100388B2 (en) 2008-05-29 2012-01-24 Hyundai Motor Company Electromagnetic active engine mount apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06117475A (en) * 1992-10-07 1994-04-26 Kurashiki Kako Co Ltd Vibration isolating mount device
JP2002188677A (en) * 2000-12-21 2002-07-05 Tokai Rubber Ind Ltd Liquid sealed type active vibro-isolating equipment
JP2004052872A (en) * 2002-07-18 2004-02-19 Honda Motor Co Ltd Active vibration control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06117475A (en) * 1992-10-07 1994-04-26 Kurashiki Kako Co Ltd Vibration isolating mount device
JP2002188677A (en) * 2000-12-21 2002-07-05 Tokai Rubber Ind Ltd Liquid sealed type active vibro-isolating equipment
JP2004052872A (en) * 2002-07-18 2004-02-19 Honda Motor Co Ltd Active vibration control device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8100388B2 (en) 2008-05-29 2012-01-24 Hyundai Motor Company Electromagnetic active engine mount apparatus
JP2010196719A (en) * 2009-02-23 2010-09-09 Tokai Rubber Ind Ltd Fluid-filled vibration damping device
US8573570B2 (en) 2009-02-23 2013-11-05 Tokai Rubber Industries, Ltd. Fluid-filled vibration damping device

Also Published As

Publication number Publication date
JP5002176B2 (en) 2012-08-15

Similar Documents

Publication Publication Date Title
JP4120828B2 (en) Fluid filled active vibration isolator
JP5568472B2 (en) Fluid filled vibration isolator
JP5719704B2 (en) Fluid filled active vibration isolator
JP5641525B2 (en) Fluid filled active vibration isolator
JP2011094750A (en) Fluid filled active type engine mount
JP2009150451A (en) Fluid encapsulated type vibration isolating device
JP2008202779A (en) Fluid filled engine mount
JP4158110B2 (en) Pneumatic switching type fluid-filled engine mount
JP5154213B2 (en) Fluid filled vibration isolator
JP5154217B2 (en) Leaf spring for vibration isolator and active fluid-filled vibration isolator, active vibration damper, and electromagnetic actuator using the same
JP5002176B2 (en) Electromagnetic active mount
JP2006275273A (en) Fluid sealed engine mount for automobile and power unit support mechanism using this engine mount
JP4258847B2 (en) Fluid filled active vibration isolator
JP2006266425A (en) Liquid filled active vibration damper
JP4158108B2 (en) Pneumatic switching type fluid-filled engine mount
JP2008163974A (en) Fluid filled vibration control device
JP4075062B2 (en) Active fluid filled vibration isolator
JP4158111B2 (en) Pneumatic switching type fluid-filled engine mount
JP2009052590A (en) Fluid filled engine mount
JP5154212B2 (en) Fluid filled vibration isolator
JP4088795B2 (en) Fluid filled active vibration isolator
JP4852030B2 (en) Active fluid filled vibration isolator
JP5038124B2 (en) Fluid filled vibration isolator
JP2009138847A (en) Fluid-sealed vibration control device
JP2009052591A (en) Fluid filled engine mount

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120521

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5002176

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees