JP2007254818A - Continuous cast slab of aluminum-killed steel and producing method therefor - Google Patents

Continuous cast slab of aluminum-killed steel and producing method therefor Download PDF

Info

Publication number
JP2007254818A
JP2007254818A JP2006080630A JP2006080630A JP2007254818A JP 2007254818 A JP2007254818 A JP 2007254818A JP 2006080630 A JP2006080630 A JP 2006080630A JP 2006080630 A JP2006080630 A JP 2006080630A JP 2007254818 A JP2007254818 A JP 2007254818A
Authority
JP
Japan
Prior art keywords
rem
steel
oxide
mass
molten steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006080630A
Other languages
Japanese (ja)
Other versions
JP4516923B2 (en
Inventor
Katsuhiro Fuchigami
勝弘 淵上
Takashi Morohoshi
隆 諸星
Masamitsu Wakao
昌光 若生
Takeo Nakanishi
健雄 中西
Masahiko Adachi
真彦 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006080630A priority Critical patent/JP4516923B2/en
Publication of JP2007254818A publication Critical patent/JP2007254818A/en
Application granted granted Critical
Publication of JP4516923B2 publication Critical patent/JP4516923B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To further surely solve such problem caused by alumina cluster as a nozzle-clogging etc., when a continuous cast slab of aluminum-killed steel is produced. <P>SOLUTION: When the steel slab is produced by continuously casting after adding REM into the molten steel deoxidized with Al, the addition of the REM is performed by using Fe-Si-REM alloy containing ≤30 mass% REM and having ≤10mm grain size at ≤25g/min/ton of the molten steel of additional speed. In the steel slab produced in such way, as the number ratio of oxide-base inclusion of 1-10μm grain size interposed in the steel slab, the oxide-base inclusion of 0.5-15 mass% REM oxide concentration is ≥30%, the oxide-base inclusion exceeding 15 mass% REM oxide concentration is <10% and the rest is the oxide-base inclusion of <0.5 mass% REM oxide concentration. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は,例えば機械構造用の圧延,鍛造素材や自動車用鋼板等に用いられるアルミキルド鋼の連続鋳造鋼片とその製造方法に関する。   The present invention relates to a continuous cast slab of aluminum killed steel used for, for example, rolling for machine structures, forging materials, automobile steel plates, and the like, and a method for producing the same.

一般に,機械構造用の圧延,鍛造素材や自動車用鋼板等に用いられるアルミキルド鋼を鋳造する場合には,まず,高炉から出銑された溶銑を転炉で脱炭して出鋼する。次いで,出鋼した溶鋼中に脱酸元素としてのAlを添加し,添加したAlを溶鋼中の酸素と反応させて脱酸する。そして,脱酸後に連続鋳造を行い,連続鋳造鋳片を製造する。このように,Alで十分に脱酸してから鋳造することにより,溶鋼が鋳造される際にガスを発生せずに静かに凝固するため,内部に気泡や欠陥を含まない高品質な鋳片を製造することができる。   In general, when casting aluminum killed steel used for rolling for machine structures, forging materials, automobile steel plates, etc., first, the hot metal discharged from the blast furnace is decarburized in a converter to be steel output. Next, Al as a deoxidizing element is added to the discharged molten steel, and the added Al is reacted with oxygen in the molten steel for deoxidation. Then, continuous casting is performed after deoxidation to produce a continuous cast slab. In this way, by casting after deoxidizing sufficiently with Al, the molten steel is solidified without generating gas when casting, so high quality slabs without bubbles or defects inside Can be manufactured.

ところがアルミキルド鋼においては,脱酸元素であるAlが酸素と反応して生じるアルミナ(Al)が,互いに凝集して巨大なアルミナクラスターを形成する。このアルミナクラスターは,溶鋼を取鍋からタンディッシュに注入するノズル(いわゆる鍋ノズル),溶鋼をタンディッシュから鋳型に注入するノズル(いわゆる浸漬ノズル)等のノズルを詰まらせ,鋳造を困難にし,また,付着物除去のために鋳造速度を低下させ,生産効率を低下させてしまう。また,製造された鋳片中には相当量のアルミナクラスターが残存するため,品質が低下してしまう。更に,浸漬ノズルが詰まった状態で鋳造を続けると,浸漬ノズルからの吐出流に偏りが発生し,溶鋼上に配置されているモールドパウダーを巻き込み,製品欠陥の要因となる。 However, in aluminum killed steel, alumina (Al 2 O 3 ) produced by reaction of Al, which is a deoxidizing element, with oxygen aggregates to form a huge alumina cluster. This alumina cluster clogs nozzles such as a nozzle that pours molten steel from the ladle into the tundish (so-called pan nozzle) and a nozzle that pours molten steel from the tundish into the mold (so-called immersion nozzle), making casting difficult, , The casting speed is reduced to remove the deposits, and the production efficiency is lowered. Moreover, since a considerable amount of alumina clusters remain in the manufactured slab, the quality deteriorates. Furthermore, if casting is continued with the submerged nozzle clogged, the discharge flow from the submerged nozzle will be biased, and the mold powder placed on the molten steel will be involved, resulting in product defects.

そこで,上述したアルミナクラスターに起因する問題を解決するために,特許文献1には,Al脱酸した溶鋼中にREM(ランタノイド元素及びSc,YをまとめてREMと呼ぶ)を添加して,アルミナクラスターの少ない鋼材を得る方法が開示されている。   Therefore, in order to solve the problems caused by the above-described alumina clusters, Patent Document 1 discloses that REM (lanthanoid elements and Sc, Y are collectively referred to as REM) is added to Al deoxidized molten steel to obtain alumina. A method for obtaining a steel material with few clusters is disclosed.

特開2004−52076号公報JP 2004-52076 A

Alで脱酸した溶鋼にREMを添加すると,溶鋼中のアルミナ粒子の凝集合体を抑制し,アルミナ粒子が凝集して形成されるアルミナクラスターの量を低減することができる。かかる効果は,アルミキルド鋼を鋳造して得た鋼片中に介在する酸化物系介在物のREM酸化物濃度が0.5質量%未満となるようでは不十分であり,アルミナ粒子のクラスター化が十分に防止できない。一方,酸化物系介在物中のREM酸化物濃度が15質量%を超えるようになると,酸化物系介在物の凝集合体が却ってしやすくなり,粗大クラスターを生成してしまう。そのため上記特許文献1では,酸化物系介在物(平均介在物組成)をAlとREM酸化物が主成分で,重量%でREM酸化物の含有量を0.5〜15重量%の範囲としている。 When REM is added to molten steel deoxidized with Al, aggregation and coalescence of alumina particles in molten steel can be suppressed, and the amount of alumina clusters formed by aggregation of alumina particles can be reduced. Such an effect is insufficient if the REM oxide concentration of the oxide inclusions present in the steel slab obtained by casting the aluminum killed steel is less than 0.5% by mass, and the clustering of alumina particles does not occur. It cannot be prevented sufficiently. On the other hand, when the REM oxide concentration in the oxide inclusions exceeds 15% by mass, the oxide inclusions are easily aggregated and coalesced to generate coarse clusters. Therefore, in Patent Document 1, the oxide inclusions (average inclusion composition) are mainly composed of Al 2 O 3 and REM oxide, and the content of REM oxide is 0.5 to 15% by weight in weight%. The range.

しかしながら,特許文献1のように酸化物系介在物のREM酸化物濃度を規制しても,いまだノズル詰まり等の問題を発生する場合があり,アルミナクラスターに起因する種々の問題を更に解決することが望まれていた。   However, even if the REM oxide concentration of oxide inclusions is regulated as in Patent Document 1, problems such as nozzle clogging may still occur, and various problems caused by alumina clusters will be further solved. Was desired.

本発明の目的は,アルミキルド鋼の連続鋳造鋼片を製造するにあたり,ノズル詰まりなどといったアルミナクラスターに起因する問題をより確実に回避することにある。   An object of the present invention is to more reliably avoid problems caused by alumina clusters such as nozzle clogging in the production of continuously cast steel pieces of aluminum killed steel.

本発明者らは,上記課題を解決するために更なる考察を進め,Al脱酸後にREMを添加して製造したアルミキルド鋼の連続鋳造鋼片からサンプルを採取して,サンプル中に含まれる個々の酸化物系介在物のREM酸化物濃度を測定し,そのばらつきを調べた。その結果,鋼片中に介在する酸化物系介在物のREM酸化物濃度は,各酸化物系介在物毎に一定ではなくてばらついており,しかも,Al脱酸後の溶鋼に添加されるREMの添加方法によって,鋼片中の各酸化物系介在物のREM酸化物濃度が,大きくばらついたり,逆にばらつきが小さくなることが判明した。   In order to solve the above-mentioned problems, the present inventors proceeded with further consideration, collected a sample from a continuous cast steel slab of aluminum killed steel manufactured by adding REM after deoxidizing Al, and included each sample contained in the sample. The REM oxide concentration of the oxide inclusions was measured and the variation was investigated. As a result, the REM oxide concentration of the oxide inclusions present in the steel slab is not constant for each oxide inclusion and varies, and the REM added to the molten steel after Al deoxidation. It has been found that the REM oxide concentration of each oxide inclusion in the steel slab varies widely or, on the contrary, the variation becomes small.

そして,ノズル詰まり等の問題を解決するためには,連続鋳造鋼片中の酸化物系介在物のREM酸化物濃度(平均濃度)を0.5〜15質量%の範囲にするだけでは不十分であり,更に,鋼片中に介在する粒径1〜10μmの酸化物系介在物の個数比率において,REM酸化物濃度0.5〜15質量%の酸化物系介在物が30%以上,REM酸化物濃度15質量%を超える酸化物系介在物が10%未満,残りがREM酸化物濃度0.5質量%未満の酸化物系介在物となるような分布に規制することが必要であるという知見を得た。また,このような連続鋳造鋼片を得るためには,Al脱酸後の溶鋼に対して行われるREMの添加を,粒径が10mm以下,質量%でREMを30%以下含有するFe−Si−REM合金を用いて,溶鋼1tonあたり25g/min以下の添加速度で行うことが必要であるという知見を得た。   And in order to solve problems such as nozzle clogging, it is not sufficient to set the REM oxide concentration (average concentration) of the oxide inclusions in the continuous cast steel slab in the range of 0.5 to 15% by mass. Furthermore, in the number ratio of oxide inclusions having a particle diameter of 1 to 10 μm interposed in the steel slab, oxide inclusions having a REM oxide concentration of 0.5 to 15% by mass are 30% or more, REM It is necessary to regulate the distribution so that oxide inclusions exceeding 15% by mass of oxide are less than 10%, and the rest are oxide inclusions having a REM oxide concentration of less than 0.5% by mass. Obtained knowledge. Moreover, in order to obtain such a continuous cast steel piece, the addition of REM performed on molten steel after Al deoxidation is performed by adding Fe-Si containing a particle size of 10 mm or less, mass% and REM of 30% or less. -It was found that it was necessary to use a REM alloy at an addition rate of 25 g / min or less per ton of molten steel.

かかる知見に基き,本発明によれば,Alで脱酸した溶鋼にREMを添加した後,連続鋳造して鋼片を製造する方法であって,前記REMの添加を,粒径が10mm以下,質量%でREMを30%以下含有するFe−Si−REM合金を用いて,溶鋼1tonあたり25g/min以下の添加速度で行うことを特徴とする,連続鋳造鋼片の製造方法が提供される。   Based on such knowledge, according to the present invention, after adding REM to molten steel deoxidized with Al, a method of continuously casting to produce a steel slab, the addition of the REM is performed with a particle size of 10 mm or less, There is provided a method for producing a continuous cast steel slab characterized by using an Fe-Si-REM alloy containing 30% or less of REM by mass% at an addition rate of 25 g / min or less per 1 ton of molten steel.

なお,前記REMの添加を,RH脱ガス装置で行うようにしても良い。   Note that the addition of the REM may be performed by an RH degasser.

また本発明によれば,Alで脱酸した溶鋼にREMを添加した後,連続鋳造した鋼片であって,鋼片中に介在する粒径1〜10μmの酸化物系介在物の個数比率において,REM酸化物濃度0.5〜15質量%の酸化物系介在物が30%以上,REM酸化物濃度15質量%を超える酸化物系介在物が10%未満,残りがREM酸化物濃度0.5質量%未満の酸化物系介在物であることを特徴とする,アルミキルド鋼の連続鋳造鋼片が提供される。   Further, according to the present invention, a steel piece continuously cast after adding REM to molten steel deoxidized with Al, in the number ratio of oxide inclusions having a particle diameter of 1 to 10 μm interposed in the steel piece. 30% or more of oxide inclusions having a REM oxide concentration of 0.5 to 15% by mass, less than 10% of oxide inclusions having a REM oxide concentration of more than 15% by mass, and the rest having a REM oxide concentration of 0.1%. An aluminum killed steel continuous cast slab characterized by being less than 5% by mass of oxide inclusions is provided.

本発明によれば,Al脱酸後の溶鋼に対して行われるREMの添加を所定の条件で行うことにより,ノズル詰まり等の発生をより確実に回避してアルミキルド鋼の連続鋳造鋼片を好適に製造することが可能となる。こうして製造された連続鋳造鋼片は,鋼片中に介在する粒径1〜10μmの酸化物系介在物の個数比率において,REM酸化物濃度0.5〜15質量%の酸化物系介在物が30%以上,REM酸化物濃度15質量%を超える酸化物系介在物が10%未満,残りがREM酸化物濃度0.5質量%未満の酸化物系介在物となり,アルミナクラスターの残存量が低く品質に優れる。   According to the present invention, the addition of REM performed on molten steel after Al deoxidation is performed under predetermined conditions, so that the occurrence of nozzle clogging and the like can be more reliably avoided, and an aluminum killed steel continuous cast steel slab is suitable. Can be manufactured. The continuously cast steel slab thus produced contains oxide inclusions having a REM oxide concentration of 0.5 to 15% by mass in the ratio of the number of oxide inclusions having a particle size of 1 to 10 μm interposed in the steel slab. Less than 10% of oxide inclusions with a REM oxide concentration of more than 15% by mass and less than 10%, and the remainder becomes oxide inclusions with a REM oxide concentration of less than 0.5% by mass, and the remaining amount of alumina clusters is low. Excellent quality.

以下,本発明の好ましい実施の形態について説明する。
本発明では,Alで脱酸した溶鋼にREMを添加した後,連続鋳造して鋼片を製造するにあたり,REMの添加を,粒径が10mm以下,質量%でREMを30%以下含有するFe−Si−REM合金を用いて,溶鋼1tonあたり25g/min以下の添加速度で行う。REMを添加することによって,溶鋼中のアルミナ粒子の凝集合体を抑制し,アルミナ粒子が凝集により形成されるアルミナクラスターの量を低減することができる。なお,本発明におけるREM(Rare Earth Metal;希土類金属)とは,原子番号57のLaから原子番号71のLuまでのランタノイド元素及びSc,Yをさす。
Hereinafter, preferred embodiments of the present invention will be described.
In the present invention, when REM is added to molten steel deoxidized with Al and then continuously casted to produce a steel slab, REM is added to Fe containing 30% or less of REM at a particle size of 10 mm or less by mass. -Using a Si-REM alloy, the addition rate is 25 g / min or less per ton of molten steel. By adding REM, agglomeration and coalescence of alumina particles in molten steel can be suppressed, and the amount of alumina clusters formed by aggregation of alumina particles can be reduced. The REM (rare earth metal) in the present invention refers to lanthanoid elements and Sc, Y from La having atomic number 57 to Lu having atomic number 71.

本発明で製造される鋼片は,好ましくは質量%でC:0.0005〜1.5%,Si:0.005〜1.2%,Mn:0.05〜3.0%,P:0.001〜0.1%,S:0.0001〜0.05%,Al:0.005〜1.5%を含有し,あるいはさらにNb:0.005〜0.1%,Ti:0.001〜0.25%を含有し,残部がFe及び不可避的不純物からなる炭素鋼であり,鋼片に必要な圧延を加えることにより,薄板,厚板,鋼管,形鋼,棒鋼等へ適用できる。この範囲が好ましい理由は以下の通りである。   The steel slab manufactured by the present invention is preferably C: 0.0005-1.5%, Si: 0.005-1.2%, Mn: 0.05-3.0%, P: 0.001 to 0.1%, S: 0.0001 to 0.05%, Al: 0.005 to 1.5%, or Nb: 0.005 to 0.1%, Ti: 0 Carbon steel containing 0.001 to 0.25%, the balance being Fe and inevitable impurities, applied to thin plates, thick plates, steel pipes, sections, steel bars, etc. by applying necessary rolling to the steel pieces it can. The reason why this range is preferable is as follows.

Cは鋼の強度を最も安定して向上させる基本的な元素であるため,所望する材料の強度によって含有量を0.0005〜1.5%の範囲で調整する。強度あるいは硬度確保のためには0.0005%以上含有させることが望ましいが,1.5%より多いと靭性が損なわれるので1.5%以下がよい。   Since C is a basic element that improves the strength of steel most stably, the content is adjusted in the range of 0.0005 to 1.5% depending on the strength of the desired material. In order to ensure strength or hardness, it is desirable to contain 0.0005% or more, but if it exceeds 1.5%, the toughness is impaired, so 1.5% or less is preferable.

Siを0.005〜1.2%としたのは,0.005%未満では予備処理が必要となって精錬に大きなコスト負担をかけ経済性を損ねることとなり,1.2%より多いとメッキ不良が発生し,表面性状や耐食性を劣化するためである。   If Si is 0.005 to 1.2%, pre-treatment is required if it is less than 0.005%, which imposes a large cost burden on refining and impairs economic efficiency. This is because defects occur and surface properties and corrosion resistance deteriorate.

Mnを0.05〜3.0%としたのは,0.05%未満では精錬時間が長くなって,経済性を損ねることになり,3.0%より多いと鋼材の加工性が大きく劣化するためである。   The reason why Mn is set to 0.05 to 3.0% is that if it is less than 0.05%, the refining time becomes long and the economic efficiency is impaired. If it exceeds 3.0%, the workability of the steel material is greatly deteriorated. It is to do.

Pを0.001〜0.1%としたのは,0.001%未満では溶銑予備処理に時間とコストがかかり経済性を損ねることとなり,0.1%より多いと鋼材の加工性が大きく劣化するためである。   If the P content is less than 0.001%, the hot metal pretreatment will take time and cost and the economic efficiency will be impaired. If it exceeds 0.1%, the workability of the steel will be increased. This is because it deteriorates.

Sを0.0001〜0.05%としたのは,0.0001%未満では溶銑予備処理に時間とコストがかかり経済性を損ねることとなり,0.05%より多いと鋼材の加工性と耐食性が大きく劣化するためである。   S is set to 0.0001 to 0.05%. If it is less than 0.0001%, the hot metal pretreatment takes time and cost, which impairs the economy. If it exceeds 0.05%, the workability and corrosion resistance of the steel material are reduced. This is because of a significant deterioration.

Alを0.005〜1.5%としたのは,0.005%未満ではAlNとしてNをトラップし,固溶Nを減少させることができない。また,1.5%より多いと表面性状と加工性が劣化するので1.5%以下が良い。   The reason why Al is 0.005 to 1.5% is that if it is less than 0.005%, N is trapped as AlN, and solid solution N cannot be reduced. Further, if it exceeds 1.5%, the surface properties and workability deteriorate, so 1.5% or less is preferable.

以上が基本成分系であるが,本発明では,これらの他にそれぞれの用途に応じて,例えばNb,Tiを含有させるても良い。   The above is the basic component system, but in the present invention, Nb and Ti, for example, may be contained in addition to these according to the respective applications.

Nb,Tiはいずれも析出強化により鋼の強度を向上させる元素であって,Nbは0.005%以上,Tiは0.001%以上含有させることによって,強度向上効果を示すが,Nbは0.1%,Tiは0.25%を超えて添加すると靭性を損なうおそれがあるため,Nbは0.005〜0.1%,Tiは0.001〜0.25%の範囲とする。   Nb and Ti are elements that improve the strength of the steel by precipitation strengthening. Nb contains 0.005% or more, and Ti contains 0.001% or more. However, Nb is 0%. .1% and Ti exceeding 0.25% may impair toughness, so Nb is in the range of 0.005 to 0.1% and Ti is in the range of 0.001 to 0.25%.

本発明では,先ず,溶鋼を転炉等の製鋼炉から取鍋に出鋼し,所定の合金元素を添加した後,Alを添加してAl脱酸を施す。こうしてAl脱酸後の溶鋼にREMを添加した後,連続鋳造して鋼片を製造する。
ここで,溶鋼中へのREMの添加条件は,次の通りとする。即ち,溶鋼中へREMを添加すると,REMを添加した領域でREM濃度が局所的に高くなり,そのままでは,REM酸化物濃度が高い酸化物介在物が過剰に生成されてしまう。これを回避する対策として,(1)溶鋼中へ添加するREM合金中のREM成分濃度を低くすること,(2)添加するREM合金のサイズを小さくすること,(3)REM合金の添加速度を遅くすること,(4)攪拌力が大きい領域にREM合金を添加することが挙げられる。そこで本発明では,粒径が10mm以下,質量%でREMを30%以下含有するFe−Si−REM合金を用いて,溶鋼1tonあたり25g/min以下の添加速度で添加を行う。
In the present invention, first, molten steel is discharged from a steelmaking furnace such as a converter into a ladle, a predetermined alloy element is added, Al is then added, and Al deoxidation is performed. In this way, REM is added to the molten steel after Al deoxidation, and then steel pieces are manufactured by continuous casting.
Here, the conditions for adding REM to the molten steel are as follows. That is, when REM is added into molten steel, the REM concentration locally increases in the region where REM is added, and as such, excessive oxide inclusions with a high REM oxide concentration are generated. Measures to avoid this include (1) reducing the REM component concentration in the REM alloy added to the molten steel, (2) reducing the size of the REM alloy to be added, and (3) the rate of addition of the REM alloy. For example, slowing down and (4) adding a REM alloy to a region where the stirring force is large can be mentioned. Therefore, in the present invention, the addition is performed at an addition rate of 25 g / min or less per 1 ton of molten steel, using an Fe—Si-REM alloy having a particle size of 10 mm or less, mass%, and 30% or less of REM.

REM合金の添加場所は,攪拌力が最も大きいRH脱ガス装置の真空槽内における還流溶鋼中とし,溶鋼中に添加したREMが速やかに攪拌されて,濃度が均一にされることが望ましい。その他,取鍋でREMを添加後,Arガス等で攪拌することなども考えられる。   It is desirable that the REM alloy is added to the refluxing molten steel in the vacuum tank of the RH degassing apparatus having the largest stirring power, and the REM added to the molten steel is rapidly stirred to make the concentration uniform. In addition, after adding REM with a ladle, stirring with Ar gas or the like is also conceivable.

そして,REMを添加した後,溶鋼を取鍋からタンディッシュに注入し,鋳型内に溶鋼を注入して連続鋳造を行う。こうして,鋳型内に注入された溶鋼を冷却凝固して鋳片を製造することができる。   Then, after adding REM, the molten steel is poured from the ladle into the tundish, and the molten steel is poured into the mold to perform continuous casting. Thus, the molten steel poured into the mold can be cooled and solidified to produce a slab.

以上の条件で連続鋳造を行うことにより,ノズル詰まり等の発生を回避して清浄性に優れたアルミキルド鋼の連続鋳造鋼片を安定して製造することが可能となる。こうして製造されたアルミキルド鋼の連続鋳造鋼片にあっては,鋼片中に介在する粒径1〜10μmの酸化物系介在物の個数比率において,REM酸化物濃度0.5〜15質量%の酸化物系介在物が30%以上,REM酸化物濃度15質量%を超える酸化物系介在物が10%未満,残りがREM酸化物濃度0.5質量%未満の酸化物系介在物となり,アルミナクラスターの残存量が低く品質に優れたものとなる。   By performing continuous casting under the above conditions, it becomes possible to stably produce a continuous cast steel slab of aluminum killed steel excellent in cleanliness by avoiding nozzle clogging and the like. In the continuously cast steel slab of aluminum killed steel thus manufactured, the REM oxide concentration is 0.5 to 15% by mass in the number ratio of oxide inclusions having a particle size of 1 to 10 μm interposed in the slab. Oxide inclusions of 30% or more, REM oxide concentration exceeding 15% by mass is less than 10%, and the remainder becomes oxide inclusions having a REM oxide concentration of less than 0.5% by mass. The remaining amount of the cluster is low and the quality is excellent.

本発明を,実施例と比較例を用いて説明する。以下の実施例と比較例では,表1に示す成分のアルミキルド鋼(鋼種A,B)を用いた。   The present invention will be described using examples and comparative examples. In the following examples and comparative examples, aluminum killed steel (steel types A and B) having the components shown in Table 1 was used.

Figure 2007254818
Figure 2007254818

まず,REM合金を添加して,ノズル詰まり(鍋ノズル及び浸漬ノズル)の状況について調査した。対象とした鋼種は,最も浸漬ノズル詰まりが発生しやすい表1の鋼種Aとした。使用したREM合金は,Fe−Si−30%REM合金,粒径10mmのものを用い,合金の添加速度については制御しなかった。REM濃度が溶鋼換算濃度として8ppmとなるようにREM合金を添加した。溶鋼換算濃度とは,あらかじめわかっている溶鋼重量(kg)と添加REM量(REM合金中のREM濃度(%)×REM合金量(kg)/100)から求める。今回,試験を行った溶鋼の重量は370tonであり,連々鋳数は8である。   First, REM alloy was added and the situation of nozzle clogging (pan nozzle and immersion nozzle) was investigated. The target steel type was steel type A in Table 1, which is most likely to clog the immersion nozzle. The REM alloy used was an Fe-Si-30% REM alloy having a particle size of 10 mm, and the addition rate of the alloy was not controlled. The REM alloy was added so that the REM concentration was 8 ppm as the molten steel equivalent concentration. The molten steel equivalent concentration is obtained from the previously known molten steel weight (kg) and the amount of added REM (REM concentration (%) in REM alloy × REM alloy amount (kg) / 100). The weight of the molten steel tested this time is 370 tons, and the number of castings is 8 in a row.

試験の結果,タンディッシュの浸漬ノズル詰まりは発生しないが,取鍋の鍋ノズル詰まりが発生する場合があることがわかった。そこで,鍋ノズル及び浸漬ノズルの両方詰まりが発生しなかった場合と,浸漬ノズルは詰まりが発生せず鍋ノズルのみが詰まりが発生した場合の酸化物系介在物(鋳片中の1〜10μm)の組成を比較した。   As a result of the test, it was found that clogging of the immersion nozzle in the tundish does not occur, but clogging of the ladle nozzle in the ladle may occur. Therefore, oxide inclusions when both the pan nozzle and the immersion nozzle are not clogged and when the immersion nozzle is not clogged and only the pan nozzle is clogged (1 to 10 μm in the slab) The compositions were compared.

その結果,図1に示すように,鍋ノズル及び浸漬ノズルの両方詰まりが発生しなかった場合は,REM酸化物濃度0.5〜15質量%の酸化物系介在物の個数比率が30%以上,REM酸化物濃度15質量%超の酸化物系介在物個数比率が10%未満であるのに対して,鍋ノズル詰まりが発生した場合は,REM酸化物濃度15質量%超の酸化物系介在物の個数比率が10%以上であることがわかった。   As a result, as shown in FIG. 1, when the clogging of both the pan nozzle and the immersion nozzle did not occur, the number ratio of oxide inclusions having a REM oxide concentration of 0.5 to 15% by mass was 30% or more. When the REM oxide concentration exceeds 15% by mass, the number ratio of oxide inclusions is less than 10%. It was found that the number ratio of the objects was 10% or more.

この結果から,鋳片中の酸化物系介在物(粒径1〜10μm)のREM酸化物濃度0.5〜15質量%の酸化物系介在物の個数比率が30%以上,REM酸化物濃度15質量%超の酸化物系介在物の個数比率が10%未満であれば,浸漬ノズル及び鍋ノズルとも詰まりが生じないことを知見した。   From this result, the number ratio of oxide inclusions having a REM oxide concentration of 0.5 to 15% by mass of oxide inclusions (particle size of 1 to 10 μm) in the slab is 30% or more, REM oxide concentration It was found that if the number ratio of oxide inclusions exceeding 15 mass% is less than 10%, clogging does not occur in both the immersion nozzle and the pan nozzle.

同一REM添加量において鍋ノズル詰まりの発生有無の違いは,REM合金添加時の溶鋼中のREM濃度のばらつきによって酸化物系介在物中のREM酸化物濃度分布の差が生じたことが原因であると推察される。これは,REM合金添加時に局所的にREM成分濃度が高い領域ができ,そこで生成した過剰なREM酸化物濃度の高い介在物が鍋ノズル詰まりの主要因であること考えられる。これを回避する対策としては,先にも説明したとおり,(1)溶鋼中へ添加するREM合金中のREM成分濃度を低くすること,(2)添加するREM合金のサイズを小さくすること,(3)REM合金の添加速度を遅くすること,(4)攪拌力が大きい領域にREM合金を添加することが挙げられる。本発明では,粒径が10mm以下,質量%でREMを30%以下含有するFe−Si−REM合金を用いて,溶鋼1tonあたり25g/min以下の添加速度で添加を行うが,次にこれらの限定理由についての実施例を示す。   The difference in the presence or absence of pan nozzle clogging at the same REM addition amount is due to the difference in the REM oxide concentration distribution in the oxide inclusions due to the variation in the REM concentration in the molten steel when the REM alloy was added. It is guessed. This is considered to be due to the fact that when the REM alloy is added, a region where the concentration of the REM component is locally high is formed, and the inclusions with an excessively high REM oxide concentration formed there are the main causes of the clogging of the pan nozzle. As measures to avoid this, as described above, (1) reducing the REM component concentration in the REM alloy added to the molten steel, (2) reducing the size of the REM alloy to be added, ( 3) Decreasing the rate of addition of the REM alloy, and (4) adding the REM alloy to a region where the stirring force is large. In the present invention, an Fe-Si-REM alloy having a particle size of 10 mm or less, mass%, and 30% or less of REM is added at an addition rate of 25 g / min or less per ton of molten steel. An example of the reason for limitation will be described.

ここで,REM合金のREM成分濃度が高い場合には,溶鋼に溶けた直後は溶鋼との混合が進むまでは局所的に高濃度のREM成分が存在する領域があり,この局所的な高濃度領域を避けるためにはREM合金中のREM成分濃度を低下させる必要がある。また,REM合金の粒径に関しては,合金添加後に直ちに溶解させ均一化するためには粒径の小さいものが有利である。さらに,REM合金の添加速度については,例えREM合金の粒径を小さくしたとしても,分散させずに一度(ほぼ同時)にまとめてREM合金を添加した場合は,粒径の大きいREM合金を添加した場合と大きな差はない。そのため,REM合金の添加速度を遅くして,粒径の小さいREM合金を分散して添加しなければならない。   Here, when the REM component concentration of the REM alloy is high, there is a region where a high concentration of REM component exists locally until mixing with the molten steel immediately after melting in the molten steel. In order to avoid the region, it is necessary to reduce the concentration of the REM component in the REM alloy. Further, regarding the particle size of the REM alloy, it is advantageous to have a small particle size in order to immediately dissolve and homogenize the alloy after the addition of the alloy. Furthermore, regarding the addition rate of the REM alloy, even if the particle size of the REM alloy is reduced, if the REM alloy is added all at once (almost simultaneously) without being dispersed, the REM alloy having a larger particle size is added. There is no big difference from the case. Therefore, it is necessary to slow down the addition rate of the REM alloy and add the REM alloy having a small particle size in a dispersed manner.

これらの3条件(REM成分濃度,粒径,添加速度)は密接に関係しているため,適正範囲を求めることを検討した。REM添加量は溶鋼換算濃度で8ppm一定とし,REM合金中のREM成分濃度,REM合金の粒径,REM合金の添加速度について検討した。前記3条件を種々変更して,鍋詰まりの発生率を整理した結果を表2に示す。   Since these three conditions (REM component concentration, particle size, addition rate) are closely related, it was examined to obtain an appropriate range. The amount of REM added was fixed at 8 ppm in terms of molten steel, and the REM component concentration in the REM alloy, the particle size of the REM alloy, and the addition rate of the REM alloy were examined. Table 2 shows the results of variously changing the above three conditions and arranging the occurrence rate of pot clogging.

Figure 2007254818
Figure 2007254818

表2に示したように,鍋ノズル詰まりの発生がない条件は,REM合金中のREM成分濃度が30質量%以下,REM合金の粒径が10mm以下,REM合金添加速度が溶鋼1ton当たり25g/min以下の場合である。これらの条件であれば鋳片中の酸化物系介在物(粒径1〜10μm)は,REM酸化物濃度0.5〜15質量%の酸化物系介在物個数比率が30%以上,REM酸化物濃度15質量%超の酸化物系介在物個数比率が10%未満となる。   As shown in Table 2, the conditions in which the pan nozzle clogging does not occur are as follows: the REM component concentration in the REM alloy is 30% by mass or less, the particle size of the REM alloy is 10 mm or less, and the REM alloy addition rate is 25 g / ton of molten steel. This is the case of min or less. Under these conditions, the oxide inclusions in the slab (particle size 1 to 10 μm) have a REM oxide concentration of 0.5 to 15% by mass, and the number ratio of oxide inclusions is 30% or more. The number ratio of oxide inclusions having an object concentration of more than 15% by mass is less than 10%.

REM合金添加量は,REM合金添加速度(g/min/ton)及び溶鋼量(ton)と添加時間(min)から決まる。実際には,添加速度一定で添加時間によってREM添加量を制御するか,ホッパーなどからあらかじめ所定量のREM合金を切り出し,添加速度を溶鋼1ton当たり25g/min以下に制御しても構わない。ここでは,後者の方法により制御した。なおREM合金を添加する量としては,REM成分の溶鋼換算濃度で3〜10ppmが好ましい。   The REM alloy addition amount is determined from the REM alloy addition rate (g / min / ton), the molten steel amount (ton), and the addition time (min). Actually, the amount of REM added may be controlled by adding time at a constant rate of addition, or a predetermined amount of REM alloy may be cut out in advance from a hopper or the like, and the rate of addition may be controlled to 25 g / min or less per 1 ton of molten steel. Here, the latter method was used for control. The amount of REM alloy added is preferably 3 to 10 ppm in terms of molten steel equivalent concentration of the REM component.

次に,表1に示す成分のアルミキルド鋼(鋼種A,B)の溶鋼をRH脱ガス装置で二次精錬した。その際,真空槽内に吸上げられた溶鋼に,適宜REMを添加した。添加したREMとその添加条件,鋳造条件等を表3に示す。なお,各鋼種A,Bの成分についてばらつきがあるのは,各鋼種A,Bとして,それぞれ複数のアルミキルド鋼を用いたからであり,実施例で使用した複数のアルミキルド鋼の成分のばらつきが,表1の範囲にあったことを示している。なお,溶鋼鍋の溶鋼量は370tonであり,連々鋳数は8とした。   Next, molten steel of aluminum killed steel (steel types A and B) having the components shown in Table 1 was secondarily refined with an RH degasser. At that time, REM was appropriately added to the molten steel sucked into the vacuum chamber. Table 3 shows the added REM, its addition conditions, casting conditions, and the like. The reason why the components of each steel type A and B vary is that a plurality of aluminum killed steels are used for each of the steel types A and B, and the variations of the components of the plurality of aluminum killed steels used in the examples are as follows. It was shown that it was in the range of 1. The amount of molten steel in the molten steel pan was 370 tons, and the number of castings was 8 continuously.

Figure 2007254818
Figure 2007254818

本発明例ではREM濃度が10質量%または30質量%であるFe−Si−REM合金を添加した。比較例は,REM濃度が30質量%のFe−Si−REM合金を添加した場合と,濃度100%のREMを添加した場合と,REM(もしくはREM合金)を添加しなかった場合を示した。なお,REM(もしくはREM合金)の添加は,ホッパーから真空槽へ投入することによって行った。REM(もしくはREM合金)の添加時期は,脱酸用のAlを溶鋼に添加してから2分経過後である。   In the present invention example, an Fe-Si-REM alloy having a REM concentration of 10% by mass or 30% by mass was added. The comparative example showed the case where the REM density | concentration of 30 mass% Fe-Si-REM alloy was added, the case where 100% density | concentration REM was added, and the case where REM (or REM alloy) was not added. In addition, REM (or REM alloy) was added by putting it into a vacuum chamber from a hopper. The addition time of REM (or REM alloy) is 2 minutes after adding deoxidation Al to molten steel.

その後,真空槽から取鍋に戻された溶鋼を,取鍋からタンディッシュ経由で鋳型に進行させ,連続鋳造を行い,鍋ノズルまたは浸漬ノズルにノズル詰まりが発生したかどうかを確認した。連続鋳造する際の鋳造速度は,1.3m/min〜1.5m/min,鋳造サイズは,鋳造厚280(mm)×鋳造幅1700mm,1800mm,1900mmとした。また,浸漬ノズル内に吹込む不活性ガス(Ar)の量は,1Nl/min,2〜2.5Nl/min,2.5〜3Nl/min,3Nl/minである。鋳型内では,介在物の除去を容易化するために電磁ブレーキ及び電磁撹拌を適用した。なお,各本発明例と各比較例の鋳造中のノズル詰まりの発生有無を表4に示す。   After that, the molten steel returned from the vacuum tank to the ladle was advanced from the ladle to the mold via the tundish, and continuous casting was performed to check whether the nozzle clogging occurred in the pan nozzle or the immersion nozzle. The casting speed for continuous casting was 1.3 m / min to 1.5 m / min, and the casting size was casting thickness 280 (mm) × casting width 1700 mm, 1800 mm, 1900 mm. The amount of inert gas (Ar) blown into the immersion nozzle is 1 Nl / min, 2 to 2.5 Nl / min, 2.5 to 3 Nl / min, 3 Nl / min. In the mold, an electromagnetic brake and electromagnetic stirring were applied to facilitate the removal of inclusions. Table 4 shows whether nozzle clogging occurred during casting in each of the inventive examples and the comparative examples.

Figure 2007254818
Figure 2007254818

また,製造された各鋳片中に介在する粒径1〜10μmの酸化物系介在物について,REM酸化物濃度0.5〜15質量%の酸化物系介在物と,REM酸化物濃度15質量%を超える酸化物系介在物と,REM酸化物濃度0.5質量%未満の酸化物系介在物の各個数比率を表4に示した。   In addition, for oxide inclusions having a particle diameter of 1 to 10 μm interposed in each slab produced, oxide inclusions having a REM oxide concentration of 0.5 to 15% by mass and REM oxide concentration of 15 masses Table 4 shows the respective number ratios of oxide inclusions exceeding 50% and oxide inclusions having a REM oxide concentration of less than 0.5% by mass.

なお,鋳片内での酸化物介在物は,鋳片厚み中心部の中心偏析帯では凝固中に新たな介在物が生成される可能性があるため,鋳片厚み中心部の中心偏析帯を除いた部分からサンプルを採取する。実施例では,鋳片の1/4幅,1/4厚の部分からサンプル採取した。採取したサンプルは,SEMを用いて,1×1mmの領域の円相当直径で1〜10μmのサイズの介在物を特定し,その後,EPMAを用いて波長分散型検出により,介在物の組成を同定した。なお,EPMAでのREM酸化物検出限界は0.5質量%である。同定した介在物組成を用いて,各々の介在物組成の比率を求めた。 Note that oxide inclusions in the slab may generate new inclusions during solidification in the central segregation zone at the center of the slab thickness. Take a sample from the removed part. In the example, a sample was taken from a ¼ width and ¼ thickness portion of the slab. The collected sample is identified by SEM using inclusions with a circle equivalent diameter of 1 × 1 mm 2 and a size of 1 to 10 μm. Thereafter, the inclusion composition is determined by wavelength dispersion type detection using EPMA. Identified. The REM oxide detection limit in EPMA is 0.5% by mass. The ratio of each inclusion composition was calculated | required using the identified inclusion composition.

ノズル詰まりは,溶鋼を取鍋からタンディッシュに注入する鍋ノズルと,タンディッシュから鋳型に注入する浸漬ノズルとの場合を個別に記載した。なお,表4に示すSN開度指標は,詰まりが生じていない理想的な浸漬ノズルの開口状態(1とする)に対して,実際のノズル開口率を示す値(開口面積の比)であり,この値が大きければ大きいほど浸漬ノズルがより詰まっていることを示す間接的な指標である。このSN開度指標が1.1以下であれば,浸漬ノズルに詰まりが生じていないと判定することができ,このSN開度指標が1.1を超えると浸漬ノズルが詰り出したと判定し,浸漬ノズル上方から棒つつきを行って内部付着物除去を行う。棒つつきを行った場合は,そのチャージ(何番目の溶鋼鍋を注入時か)を明記した。また,鍋ノズル詰りは,溶鋼鍋からタンディッシュへの溶鋼注入の際に鍋ノズル上部取り付けているSNの開口率を100%(全開)としてもタンディッシュへの溶鋼供給速度が連続鋳造のスループットに追従できない状態になった場合とした。キャスト中に鍋ノズル詰りが発生した場合に,鍋ノズル詰り有としている。   As for nozzle clogging, the case of the pan nozzle that pours molten steel from the ladle into the tundish and the case of the immersion nozzle that pours the molten steel from the tundish into the mold are individually described. The SN opening index shown in Table 4 is a value (ratio of opening area) indicating an actual nozzle opening ratio with respect to an ideal immersion nozzle opening state (1) where clogging does not occur. This is an indirect index indicating that the larger this value is, the more clogged the immersion nozzle is. If the SN opening index is 1.1 or less, it can be determined that the submerged nozzle is not clogged. If the SN opening index exceeds 1.1, it is determined that the submerged nozzle has clogged. , Remove the internal deposits by sticking from above the immersion nozzle. In the case of stick pricking, the charge (the number of the molten steel pan when pouring) was specified. In addition, when the molten steel is poured from the molten steel pan to the tundish, the pan nozzle clogging is possible even if the opening rate of the SN attached to the top of the pan nozzle is 100% (fully open), the molten steel supply rate to the tundish is the throughput of continuous casting. Suppose that it was impossible to follow. When a pan nozzle clogging occurs during casting, the pan nozzle is clogged.

表3,4に示すように,本発明例の測定データ1〜5では,浸漬ノズル及び鍋ノズル詰まりともなく良好な結果が得られている。特に測定データ1〜3は好ましい態様であるREM合金添加量3〜10ppm範囲内にあり,SN開度指標の変化も小さく良好な結果が得られた。一方,比較例の測定データ6では,REM合金中のREM濃度が100%であるため,REM合金添加時に局所的にREM濃度が高くなり,酸化物系介在物中のREM酸化物濃度が15質量%超のものの個数比率が10%以上となり,鍋ノズルの詰まりが発生した。比較例の測定データ7では,REM合金添加速度が25g/minを超えているため,比較例の測定データ8では,添加するREM合金粒径が10mmを超えているため,REM合金添加時に局所的にREM濃度が高くなり,酸化物系介在物中のREM酸化物濃度が15質量%超のものの個数比率が10%以上となり,鍋ノズルの詰まりが発生した。また,比較例の測定データ9は,通常のAl−K鋼でありREM添加を全く行わなかったものであり,キャストの後半で浸漬ノズル詰まりが発生し,棒つつきが行われた。   As shown in Tables 3 and 4, in the measurement data 1 to 5 of the examples of the present invention, good results were obtained without clogging of the immersion nozzle and the pan nozzle. In particular, the measurement data 1 to 3 are in the range of 3 to 10 ppm of REM alloy addition, which is a preferred embodiment, and the change in the SN opening index is small and good results are obtained. On the other hand, in the measurement data 6 of the comparative example, since the REM concentration in the REM alloy is 100%, the REM concentration locally increases when the REM alloy is added, and the REM oxide concentration in the oxide inclusions is 15 mass. More than 10%, the pan ratio was over 10% and the pan nozzle was clogged. In the measurement data 7 of the comparative example, the REM alloy addition rate exceeds 25 g / min. In the measurement data 8 of the comparative example, the particle size of the REM alloy to be added exceeds 10 mm. In addition, the REM concentration increased, the number ratio of the REM oxide concentration in the oxide inclusions exceeding 15% by mass was 10% or more, and the pan nozzle was clogged. Moreover, the measurement data 9 of the comparative example is a normal Al—K steel, which was not subjected to REM addition at all, so that the immersion nozzle was clogged in the latter half of the casting, and stick pricking was performed.

本発明は,アルミキルド鋼の連続鋳造に有用である。   The present invention is useful for continuous casting of aluminum killed steel.

鋳片中の酸化物系介在物のREM酸化物濃度と酸化物系介在物の個数比率の分布を示すグラフである。It is a graph which shows distribution of the REM oxide density | concentration of the oxide type inclusion in a slab, and the number ratio of an oxide type inclusion.

Claims (3)

Alで脱酸した溶鋼にREMを添加した後,連続鋳造して鋼片を製造する方法であって,
前記REMの添加を,粒径が10mm以下,質量%でREMを30%以下含有するFe−Si−REM合金を用いて,溶鋼1tonあたり25g/min以下の添加速度で行うことを特徴とする,連続鋳造鋼片の製造方法。
A method for producing a steel slab by continuously casting REM after adding REM to molten steel deoxidized with Al,
The addition of the REM is performed at an addition rate of 25 g / min or less per 1 ton of molten steel using a Fe-Si-REM alloy having a particle size of 10 mm or less, mass%, and 30% or less of REM. Manufacturing method of continuous cast steel slab.
前記REMの添加を,RH脱ガス装置で行うことを特徴とする,請求項1に記載の連続鋳造鋼片の製造方法。 The method for producing a continuous cast steel slab according to claim 1, wherein the REM is added by an RH degasser. Alで脱酸した溶鋼にREMを添加した後,連続鋳造した鋼片であって,
鋼片中に介在する粒径1〜10μmの酸化物系介在物の個数比率において,REM酸化物濃度0.5〜15質量%の酸化物系介在物が30%以上,REM酸化物濃度15質量%を超える酸化物系介在物が10%未満,残りがREM酸化物濃度0.5質量%未満の酸化物系介在物であることを特徴とする,アルミキルド鋼の連続鋳造鋼片。
A steel piece continuously cast after adding REM to molten steel deoxidized with Al,
In the number ratio of oxide inclusions having a particle diameter of 1 to 10 μm interposed in the steel slab, oxide inclusions having a REM oxide concentration of 0.5 to 15% by mass are 30% or more, and REM oxide concentration is 15% by mass. A continuous cast steel slab of aluminum killed steel, characterized in that oxide inclusions exceeding 10% are less than 10%, and the rest are oxide inclusions having a REM oxide concentration of less than 0.5% by mass.
JP2006080630A 2006-03-23 2006-03-23 Continuously cast slab of aluminum killed steel and method for producing the same Active JP4516923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006080630A JP4516923B2 (en) 2006-03-23 2006-03-23 Continuously cast slab of aluminum killed steel and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006080630A JP4516923B2 (en) 2006-03-23 2006-03-23 Continuously cast slab of aluminum killed steel and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007254818A true JP2007254818A (en) 2007-10-04
JP4516923B2 JP4516923B2 (en) 2010-08-04

Family

ID=38629342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006080630A Active JP4516923B2 (en) 2006-03-23 2006-03-23 Continuously cast slab of aluminum killed steel and method for producing the same

Country Status (1)

Country Link
JP (1) JP4516923B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008261014A (en) * 2007-04-12 2008-10-30 Kobe Steel Ltd Method for adding rare earth element into molten steel
WO2013058131A1 (en) * 2011-10-20 2013-04-25 新日鐵住金株式会社 Bearing steel and method for producing same
US10350676B2 (en) * 2013-04-23 2019-07-16 Nippon Steel & Sumitomo Metal Corporation Spring steel with excellent fatigue resistance and method of manufacturing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004052076A (en) * 2002-07-23 2004-02-19 Nippon Steel Corp Steel material having little alumina cluster
JP2004052077A (en) * 2002-07-23 2004-02-19 Nippon Steel Corp Method for producing steel material having little alumina cluster
JP2005002422A (en) * 2003-06-12 2005-01-06 Nippon Steel Corp Method for producing steel material with little alumina cluster
JP2005002420A (en) * 2003-06-12 2005-01-06 Nippon Steel Corp Steel having little alumina cluster, and its production method
JP2005002425A (en) * 2003-06-12 2005-01-06 Nippon Steel Corp Steel material with little alumina cluster
JP2005002419A (en) * 2003-06-12 2005-01-06 Nippon Steel Corp Method for producing steel material with little alumina cluster

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004052076A (en) * 2002-07-23 2004-02-19 Nippon Steel Corp Steel material having little alumina cluster
JP2004052077A (en) * 2002-07-23 2004-02-19 Nippon Steel Corp Method for producing steel material having little alumina cluster
JP2005002422A (en) * 2003-06-12 2005-01-06 Nippon Steel Corp Method for producing steel material with little alumina cluster
JP2005002420A (en) * 2003-06-12 2005-01-06 Nippon Steel Corp Steel having little alumina cluster, and its production method
JP2005002425A (en) * 2003-06-12 2005-01-06 Nippon Steel Corp Steel material with little alumina cluster
JP2005002419A (en) * 2003-06-12 2005-01-06 Nippon Steel Corp Method for producing steel material with little alumina cluster

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008261014A (en) * 2007-04-12 2008-10-30 Kobe Steel Ltd Method for adding rare earth element into molten steel
WO2013058131A1 (en) * 2011-10-20 2013-04-25 新日鐵住金株式会社 Bearing steel and method for producing same
KR20140069169A (en) * 2011-10-20 2014-06-09 신닛테츠스미킨 카부시키카이샤 Bearing steel and method for producing same
JP5652555B2 (en) * 2011-10-20 2015-01-14 新日鐵住金株式会社 Bearing steel and manufacturing method thereof
KR101616656B1 (en) 2011-10-20 2016-04-28 신닛테츠스미킨 카부시키카이샤 Bearing steel and method for producing same
US9732407B2 (en) 2011-10-20 2017-08-15 Nippon Steel & Sumitomo Metal Corporation Bearing steel and method for producing same
US10350676B2 (en) * 2013-04-23 2019-07-16 Nippon Steel & Sumitomo Metal Corporation Spring steel with excellent fatigue resistance and method of manufacturing the same

Also Published As

Publication number Publication date
JP4516923B2 (en) 2010-08-04

Similar Documents

Publication Publication Date Title
CA2686301C (en) Compact strip or thin slab processing of boron/titanium steels
EP2141254B1 (en) Steel ingot for forging and integral crankshaft
US6585799B1 (en) Cast steel piece and steel product excellent in forming characteristics and method for treatment of molted steel therefor and method for production thereof
JP4762725B2 (en) Continuous cast slab for thin steel sheet and method for producing the same, thin steel plate and method for producing the same, and rolling method
TWI394843B (en) Melt Method of Ti - containing Very Low Carbon Steel and Manufacturing Method of Ti - containing Very Low Carbon Steel Casting
JP7260731B2 (en) High purity steel and its refining method
JP4516923B2 (en) Continuously cast slab of aluminum killed steel and method for producing the same
JP3870614B2 (en) Cold-rolled steel sheet having excellent surface properties and internal quality and method for producing the same
CN111032248B (en) Method for continuously casting steel and method for manufacturing thin steel plate
JP2008264802A (en) Method of continuous casting
JP4780084B2 (en) Titanium killed steel material with good surface properties and method for producing the same
JP4160103B1 (en) Steel ingot for forging
JP5089267B2 (en) Integrated crankshaft
JP5056826B2 (en) Steel for continuous casting and method for producing the same
JP7087725B2 (en) Steel manufacturing method
WO2010008017A1 (en) Process for production of cast slab of low-carbon steel
JP7087724B2 (en) Steel manufacturing method
JP4299757B2 (en) Thin steel plate and slab excellent in surface properties and internal quality, and method for producing the same
JP2008266706A (en) Method for continuously casting ferritic stainless steel slab
JP6843066B2 (en) Miniaturization of crystal grains in iron-based materials
JP2002105527A (en) Method for producing high cleanliness steel
JP4710180B2 (en) Manufacturing method of high cleanliness steel
RU2228235C2 (en) Steel casting (variants) and steel material with improved workability, method for processing melt steel (variants) and method for making steel casting and steel material
JP4477971B2 (en) Low carbon steel sheet, low carbon steel slab and method for producing the same
KR100362659B1 (en) A method of manufacturing medium carbon steel plate for offshore structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100517

R151 Written notification of patent or utility model registration

Ref document number: 4516923

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350