JP2005002419A - Method for producing steel material with little alumina cluster - Google Patents

Method for producing steel material with little alumina cluster Download PDF

Info

Publication number
JP2005002419A
JP2005002419A JP2003167694A JP2003167694A JP2005002419A JP 2005002419 A JP2005002419 A JP 2005002419A JP 2003167694 A JP2003167694 A JP 2003167694A JP 2003167694 A JP2003167694 A JP 2003167694A JP 2005002419 A JP2005002419 A JP 2005002419A
Authority
JP
Japan
Prior art keywords
steel
alumina
steel material
molten steel
mgo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003167694A
Other languages
Japanese (ja)
Other versions
JP3990653B2 (en
Inventor
Toshiaki Mizoguchi
利明 溝口
Yoshiyuki Uejima
良之 上島
Katsumi Kondo
克巳 近藤
Yoji Yasui
洋二 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003167694A priority Critical patent/JP3990653B2/en
Publication of JP2005002419A publication Critical patent/JP2005002419A/en
Application granted granted Critical
Publication of JP3990653B2 publication Critical patent/JP3990653B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel material which does not cause sliver flaw of a thin sheet for car and house electric appliance, defective quality of a thick plate for structural use, a reduction in low temperature toughness of the wear resistant thick plate and has little surface flaw and inner defect such as UST defect at welded part of a steel pipe for oil well pipe, etc., by preventing the coarse alumina cluster causing a defective product from being formed inside the molten steel and on the surface of Ar bubble. <P>SOLUTION: Mg/T.O (in a mass ratio) is made to be 0.01 to <0.5 by adding Mg into the molten steel after deoxidizing with Al or Al-Si. Oxide base inclusions in the steel material mainly contains Al<SB>2</SB>O<SB>3</SB>and MgO and the content of MgO by mass% is desirable to be 0.1-15%. Low melting point oxides of FeO and FeO-Al<SB>2</SB>O<SB>3</SB>existing as binder between the alumina grains of the cluster is reduced with Mg and thus, the coagulation and the coalesce of the alumina grains in the molten steel and on the Ar bubble surface, are restrained. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、自動車用鋼板、構造用・耐摩耗鋼用厚板や油井管用鋼管等に適したアルミナクラスターの少ない鋼材に関するものである。
【0002】
【従来の技術】
【特許文献1】特開平4−333359号公報
【特許文献2】特開平7−54103号公報
【特許文献3】特開平9−192799公報
【非特許文献1】材料とプロセス,4(1991),p.1214(広田ら)
【非特許文献2】鉄と鋼,(1995), p.17(安中ら)
【非特許文献3】ISIJ Int., 37(1997), p.936 (H. Yin et al.)
【0003】鋼板などの圧延鋼材は、一般的に転炉で溶製された未脱酸の溶鋼をAlで脱酸するアルミキルド鋼として製造されている。脱酸時に生成するアルミナは硬質で、クラスター化しやすく、数100 μm以上の介在物として残留する。したがって、溶鋼からの除去が不十分な場合、薄板での熱延、冷延時のスリバー疵(線状疵)、構造用厚板での材質不良、耐摩耗鋼用厚板での低温靭性低下や油井管用鋼管での溶接部UST 欠陥不良等の原因となる。
【0004】
このアルミナを溶鋼から除去する方法として、(1) 脱酸後に、アルミナの凝集、合体による溶鋼からの浮上、分離時間をできるだけ長くとるように転炉での出鋼時に脱酸剤のAlを投入する方法や、(2) 二次精錬法のひとつであるCAS やRH処理で溶鋼の強攪拌を行い、アルミナの浮上、分離を促進する方法や、(3) 溶鋼中へのCaの添加によってアルミナを低融点介在物のCaO−Alに形態制御し無害化する方法等が行われていた。
【0005】
ところが、前記(1) 、(2) の方法によるアルミナの浮上分離対策では限界があって、数100 μm 以上の介在物を完全に除去できないため、スリバー疵を防止できないという問題があった。 (3)のCaによる酸化物系介在物の改質は、介在物の低融点化によってクラスター生成が防止でき微細化する。しかし、前記の非特許文献1によれば、アルミナを溶鋼中で液相のカルシウムアルミネートにするためには[Ca]/[T.O] を0.7 〜1.2 の範囲に制御する必要がある。そのためには、例えばT.O が40ppm で28〜48ppm という多量のCaを添加する必要がある。一方、タイヤ用のスチールコードや弁バネ材では、介在物を圧延加工時に変形しやすい低融点のCaO−SiO−Al(−MnO)系に制御し、無害化することが一般的に良く知られている。しかしながら、これらの方法では通常Caを安価なCaSi合金で添加するため、Siの上限の厳しい自動車用鋼板や缶用冷延鋼板では実用化されていないのが現状である。
【0006】
CeやLa等のREM を利用した溶鋼の脱酸では、▲1▼Alキルドを前提とし、Al脱酸後にREM をアルミナの改質剤として使用する方法や、▲2▼Alを使用しないでREM を単独、またはCa、Mg等と組み合わせて脱酸する方法が知られている。
【0007】
Alキルド鋼でアルミナクラスターを低減する方法として、前記の特許文献1には、Alキルド鋼の溶製に際し、溶鋼中に0.1kg/t−s(100ppmに相当)以上の金属Mg添加して、鋼中に存在するアルミナ系介在物をAl−MgO系介在物に形態制御し、鋼中に微細分散させることにより、アルミナ系介在物のクラスターに起因する製品欠陥を防止するとともに、鋳造時のノズル閉塞を防止する鋼中介在物の無害化方法が示されている。また、前記の特許文献2には、質量%でC:1.2%以下、Al:0.01〜0.1%、T.O:005%以下を含有し、T.O×0.5≦T.Mg< T.O×7.0の関係を満足するMgを含有させることを特徴とする酸化物系介在物超微細分散鋼が開示されている。
【0008】
これらの方法では、AlをMgで還元することによって、Al・MgO(MgOを28%含有)もしくはMgOに形態制御して、一つ一つのAl粒子を微細化する。しかし、Al・MgO粒子自体は合体し易く、アルミナクラスターの生成を抑制することは困難であった。また、過剰にMgを添加すると溶鋼上部のスラグとの反応によって、多量のAl・MgOが生成し、溶鋼清浄性が悪化するため、連鋳浸漬ノズルが閉塞し易くなるという問題があった。さらにMgは蒸発し易く歩留まりが悪いため、多量のMg合金を添加する必要があり、製造コストも増加する。また、Caによるアルミナの改質と同様に、通常Mgの添加は安価なSiMg合金でするため、Si上限の厳しい自動車用鋼板や缶用冷延鋼板では適用が困難であった。
【0009】
一方、アルミナ粒子のクラスター化にはいくつかの生成機構が提案されている。例えば、前記の特許文献3では溶鋼中のPがAl粒子の凝集合体を促進していると考え、Caを添加して、nCaO・mPとし、AlのバインダーであるPの結合力を低下させることにより、浸漬ノズルへのAl付着が防止できることが示されている。また、前記の非特許文献2によれば、連続鋳造で浸漬ノズルの閉塞防止のために用いているArガスに捕捉されたアルミナ粒子が、冷延鋼板に発生するスリバー疵の原因であると推察している。さらに、前記の非特許文献3は、気泡に捕捉されたアルミナ粒子がキャピラリー効果により気泡表面で凝集合体するという観察結果を示している。このように、アルミナクラスターの微視的な生成機構についても解明されつつあるが、クラスター化防止のための具体的方法が明らかでなかったため、アルミナクラスターによる介在物欠陥を、要求される品質レベルまで低減することが困難であった。
【0010】
【発明が解決しようとする課題】
本発明は上記のような従来の問題点を有利に解決するためになされたものであり、薄板、厚板、鋼管、形鋼、棒鋼等の鋼材において製品欠陥の原因となる粗大なアルミナクラスターの生成を溶鋼中およびAr気泡表面で防止することにより、自動車、家電用途の薄板のスリバー疵、構造用厚板の材質不良、耐摩耗用厚板の低温靭性低下、油井管用鋼管の溶接部UST 欠陥等の表面疵や内部欠陥が少ない鋼材の製造方法を提供することを目的として完成されたものである。
【0011】
【課題を解決するための手段】
発明者は上記課題を解決するため、実験および検討を重ね、その成果として、▲1▼クラスターのアルミナ粒子間にはFeO および FeO・Alの低融点酸化物がバインダーとして存在すること、▲2▼このバインダーを適当な量のMgで還元することによって、溶鋼中およびAr気泡表面でのアルミナ粒子の凝集・合体が抑制されることが分かった。本発明は上記の知見に基づいて完成されたものであり、Al脱酸またはAl−Si脱酸した溶鋼中にMgを添加することにより、質量比率でMg/T.Oを0.01以上0.5未満とすることを特徴とするものである。また鋼材中の酸化系介在物を、AlとMgOが主成分で、質量%でMgOの含有率を0.1〜15%とすることが好ましい。
【0012】
なお、鋼の成分は質量%でC:0.0005〜1.5%、Si:0.005〜1.2%、Mn:0.05 〜3.0%、P:0.001 〜0.1%、S:0.0001〜0.05%、Al:0.005〜1.5%とし、あるいはさらに(a) Cu:0.1〜1.5%、Ni:0.1〜10.0% 、Cr:0.1〜10.0%、Mo:0.05〜1.5%の1種または2種以上、または(b)Nb:0.005 〜0.1%、V:0.005 〜0.3%、Ti:0.001〜0.25%の1種または2種以上、または(c)B:0.0005 〜0.005%の(a) 、(b) 、(c) 何れか一つまたは二つ以上を含有し、残部がFe及び不可避的不純物とすることが好ましい。
【0013】
さらに、鋳片のスライム抽出で得られるアルミナクラスターの最大径が100 μm以下であることが好ましく、また、鋳片のスライム抽出で得られる20μm以上のアルミナクラスターの個数が2個/kg以下であることが好ましい。
【0014】
【発明の実施の形態】
以下に本発明の好ましい実施の形態を示す。
本発明ではAl脱酸またはAl−Si 脱酸した溶鋼中に、Mgを添加することにより、質量比率でMg/T.Oを0.01以上0.5未満とする。これにより、クラスターのアルミナ粒子間にバインダーとして存在するFeO および FeO・Alの低融点酸化物がMgで還元され、溶鋼中およびAr気泡表面でのアルミナ粒子の凝集・合体が抑制される。図1に示すように、Mg/T.Oが0.01以上0.5未満の組成範囲において、アルミナ粒子同士の凝集合体を抑制でき、粗大なアルミナクラスターの生成が防止できる。Mg/T.Oの上限を0.5未満とする理由は、0.5以上のMgを添加すると通常Al脱酸と同程度の粗大なAl・MgOクラスターが生成する。またスラグとの反応によってAl・MgOが多量に生成するため溶鋼清浄性が悪化し、連鋳浸漬ノズルを閉塞させるからである。また下限を0.01とするのは、これ未満ではアルミナ粒子のクラスター化防止効果が得られないためである。ここでT.Oは鋼中の総酸素量で溶存酸素と介在物中酸素の合計を意味する。
【0015】
請求項2において、AlとMgOを主成分と酸化系介在物中のMgOの含有率を0.1〜15%としたのは、これ以上では介在物が凝集・合体し易くなり、粗大クラスターが生成されるためであり、またこれ未満ではMg添加の効果がなくなり、アルミナ粒子のクラスター化が防止できないためである。
【0016】
なお、本発明におけるAl脱酸、Al−Si 脱酸で製造される鋼材とは、質量%でC:0.0005〜1.5%、Si:0.005〜1.2%、Mn:0.05 〜3.0%、P:0.001 〜0.1%、S:0.0001〜0.05% 、Al:0.005〜1.5%、T.O ≦80ppm とし、あるいはさらに(a) Cu:0.1〜1.5%、Ni:0.1〜10.0% 、Cr:0.1〜10.0% 、Mo:0.05 〜1.5%の1種または2種以上、または(b)Nb:0.005 〜0.1%、V:0.005 〜0.3%、Ti:0.001〜0.25% の1種または2種以上、または(c)B:0.0005 〜0.005%の(a) 、(b) 、(c) 何れか一つまたは二つ以上を含有し、残部がFe及び不可避的不純物からなる炭素鋼であり、鋼材に必要な圧延を加えることにより、薄板、厚板、鋼管、形鋼、棒鋼等へ適用できる。この範囲が好ましい理由は以下の通りである。
【0017】
Cは鋼の強度を最も安定して向上させる基本的な元素であるため、所望する材料の強度によって含有量を0.0005〜1.5 %の範囲で調整する。強度あるいは硬度確保のためには0.0005%以上含有させることが望ましいが、1.5 %より多いと靭性が損なわれるので1.5 %以下がよい。
【0018】
Siを0.005 〜1.2 %としたのは、0.005%未満では予備処理が必要となって精錬に大きなコスト負担をかけ経済性を損ねることとなり、1.2 %より多いとメッキ不良が発生し、表面性状や耐食性を劣化するためである。
【0019】
Mnを0.05〜3.0 %としたのは、0.05%未満では精錬時間が長くなって、経済性を損ねることになり、3.0 %より多いと鋼材の加工性が大きく劣化するためである。
【0020】
Pを0.001 〜0.1 %したのは、0.001%未満では溶銑予備処理に時間とコストがかかり経済性を損ねることとなり、0.1 %より多いと鋼材の加工性が大きく劣化するためである。
【0021】
Sを0.0001〜0.05%としたのは、0.0001%未満では溶銑予備処理に時間とコストがかかり経済性を損ねることとなり、0.05%より多いと鋼材の加工性と耐食性が大きく劣化するためである。
【0022】
Alを0.005 〜1.5 %としたのは、0.005%未満ではAlN としてNをトラップし、固溶Nを減少させることができない。また、1.5 %より多いと表面性状と加工性が劣化するので1.5 %以下が良い。
【0023】
T.O を80ppm 以下としたのは、80ppm より多いとアルミナ粒子の衝突頻度が増加するため、クラスターが粗大化する場合が有るためである。また、アルミナの改質に必要なREM の添加量が増大するため、コストがかかり経済性も損ねる。ここで、T.O は鋼中の総酸素量で溶存酸素と介在物中酸素の合計を示す。
【0024】
以上が基本成分系であるが、本発明では、これらの他にそれぞれの用途に応じて、(a) Cu、Ni、Cr、Moの1種以上、 (b)Nb、V 、Tiの1種以上、 (c)B の(a)、(b) 、(c) 何れか一つまたは二つ以上を含有させることができる。
【0025】
Cu、Ni、Cr、Moは何れも鋼の焼入れ性を向上させる元素であって、Cu、NiおよびCrは0.1%以上、Moは0.05%以上含有させることによって、強度向上効果を示すが、Cuは1.5 およびMoは1.5%、NiおよびCrは10%を超えて添加すると靭性および加工性を損なうおそれがあるため、Cuは0.1 〜1.5%、NiおよびCrはそれぞれ0.1〜10%、Moは0.05〜1.5%の範囲に限定する。
【0026】
Nb、V 、Tiはいずれも析出強化により鋼の強度を向上させる元素であって、NbおよびV は0.005%以上、Tiは0.001%以上含有させることによって、強度向上効果を示すが、Nbは0.1%、V は0.3%、Tiは0.25%を超えて添加すると靭性を損なうおそれがあるため、Nbは0.005 〜0.1%、V は0.005 〜0.3%、Tiは0.001 〜0.25%の範囲に限定する。
【0027】
Bは鋼の焼入れ性を向上させ、強度を高める元素であって、0.0005%以上含有させることによって、強度向上効果を示すが、0.005%を超えて添加するとBの析出物を増加させ靭性を損なうおそれがあるため、0.0005〜0.005%の範囲に限定する。
【0028】
Caの併用は、アルミナ表面を部分溶解し合体しやすくするため、Mg添加によるアルミナクラスターの生成抑制効果を却って低下させる。従ってスラグや耐火物からのCaの侵入は極力防止するのが望ましい。
【0029】
さらに、鋳片のスライム抽出で得られるアルミナクラスターの最大径が100 μm以下としたのは、100 μm より大きいと製品での表面欠陥や内部欠陥に繋がるためである。また、鋳片のスライム抽出で得られる20μm以上のアルミナクラスターの個数が2個/kg以下としたのは、2個/kgより多いと圧延後に表面欠陥や内部欠陥に繋がるためである。
【0030】
溶鋼中へのMgの添加は、例えば二次精錬装置のCAS やRHを使って、溶鋼のAl脱酸後に行う。Mg は純金属、他金属との合金のいずれでも良く、形状は塊状、粒状、またはワイヤー等であっても良い。添加量は微量なので、溶鋼中Mg濃度を均一にするため、RH槽内での還流溶鋼中への添加や取鍋添加後のArガス等での攪拌が望ましい。また、タンディッシュ、鋳型内溶鋼へMgを添加することもできる。次に本発明の実施例を示す。
【0031】
【実施例】
270tの転炉において吹錬後、所定の炭素濃度に調整して出鋼した。2次精錬で目標の溶鋼成分に調整し、Al脱酸後、MgをSi−10%Mg合金、Si−3%Mg合金として添加した。その結果を表1、表2に示す。また比較例を表3、表4に示す。表2は表1の続き、表4は表3の続きである。表中の溶鋼を垂直曲げ型連続鋳造機により、鋳片寸法が245mm 厚×1200〜2200mm幅、鋳造速度が1.0 〜1.8m/min、タンディッシュ内溶鋼温度が1520〜1580℃の条件で鋳片を製造した。その後、鋳片に熱間圧延、酸洗、さらに必要に応じて冷間圧延を実施し、品質調査を行った。熱間圧延後の板厚は2〜100mm、冷間圧延後の板厚は0.2〜1.8mm であった。
【0032】
鋳片から採取したサンプルの最大クラスター径、クラスター個数、平均介在物組成や欠陥発生率等は、表2、表4に示すとおりで、本発明がアルミナクラスター起因の製品欠陥を大幅に低減して優れた生産性を示すものであることが確認できた。
【0033】
なお、表中における*1〜*7の意味は以下のとおりである。
*1: MgとT.OはMg添加から1分後に採取した溶鋼サンプルの分析値。
*2: Si10Mg: Si−10%Mg合金、Si3Mg:Si−3%Mg合金。
*3: 鋳片断面から任意抽出した10個の介在物組成の平均値。組成はEDS付SEMで同定した。
*4: 最大クラスター径の測定方法は、重量1kg ±0.1kg の鋳片からスライム電解抽出(最小メッシュ20μm を使用)した介在物を実体顕微鏡で写真撮影( 40倍)し、写真撮影した介在物の長径と短径の平均値を全ての介在物で求めてその平均値の最大値を最大介在物径とした。クラスター個数は重量1±0.1kg のスライム電解抽出(最小メッシュ20μm を使用)した介在物であり、光学顕微鏡(100 倍)で観察した20μm以上の全ての介在物個数を1kg単位個数に換算した。
*5: 欠陥発生率は、以下の式による。
薄板は板表面でのスリバー疵発生率(=スリバー疵総長/コイル長×100,%)。
厚板は製品板でのUST 欠陥発生率あるいはセパレーション発生率(=欠陥発生板数/検査総板数×100,%)。シャルピー試験後の破面観察でセパレーション発生有無を確認した。
なお、表2の厚板材欠陥発生率では、欠陥がUST 欠陥の場合は (UST)、セパレーション欠陥の場合は(SPR)と記述した。
鋼管は油井管溶接部でのUST 欠陥発生率(=欠陥発生管数/検査総管数×100, %)。
*6: −20℃での圧延方向におけるV ノッチシャルピー衝撃試験値。試験片5本の平均値。
*7: 室温における製品板の板厚方向絞り値(=引張り試験後の破断部分の断面積/試験前の試験片断面積×100,%)。
【0034】
【表1】

Figure 2005002419
【0035】
【表2】
Figure 2005002419
【0036】
【表3】
Figure 2005002419
【0037】
【表4】
Figure 2005002419
【0038】
【発明の効果】
以上の説明から明らかなように、本発明によればクラスターのアルミナ粒子間にバインダーとして存在するFeO および FeO・Alの低融点酸化物がMgで還元され、溶鋼中およびAr気泡表面でのアルミナ粒子の凝集・合体が抑制される。このため、Al脱酸、Al−Si 脱酸鋼で、最終製品における表面疵や内部欠陥の原因となる粗大アルミナクラスターの生成を防止できる。よって、本発明は従来のAl脱酸鋼やAl−Si 脱酸鋼における問題点を一掃したアルミナクラスターの少ない鋼材の製造方法として、産業の発展に寄与するところは極めて大である。さらに本発明によって、連続鋳造における溶鋼中アルミナの浸漬ノズルへの付着も防止可能である。したがって、浸漬ノズル閉塞防止に対する効果も大きい。
【図面の簡単な説明】
【図1】Mg/T.Oと最大アルミナクラスター径の関係を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a steel material with few alumina clusters suitable for automobile steel sheets, structural and wear-resistant steel plate, oil well pipe steel pipes, and the like.
[0002]
[Prior art]
[Patent Document 1] JP-A-4-333359 [Patent Document 2] JP-A-7-54103 [Patent Document 3] JP-A-9-192799 [Non-Patent Document 1] Materials and Processes, 4 (1991), p. 1214 (Hirota et al.)
[Non-patent document 2] Iron and steel, (1995), p. 17 (Annaka et al.)
[Non-Patent Document 3] ISIJ Int. , 37 (1997), p. 936 (H. Yin et al.)
[0003] Rolled steel materials such as steel plates are generally manufactured as aluminum killed steels in which undeoxidized molten steel melted in a converter is deoxidized with Al. Alumina produced during deoxidation is hard and easily clustered, and remains as inclusions of several hundred μm or more. Therefore, when removal from molten steel is insufficient, hot rolling with thin plates, sliver rods (wire rods) during cold rolling, poor material quality with structural planks, low temperature toughness reduction with wear-resistant steel planks, It causes weld defect UST defects in oil well pipe steel pipes.
[0004]
As a method of removing this alumina from molten steel, (1) after deoxidation, Al is added as a deoxidizing agent when leaving the steel in the converter so that the alumina aggregates, floats from the molten steel by coalescence, and the separation time is as long as possible. (2) A method in which molten steel is strongly stirred by CAS or RH treatment, which is one of the secondary refining methods, to promote the floating and separation of alumina, and (3) Alumina by adding Ca to the molten steel. Has been carried out, for example, by making the form of CaO—Al 2 O 3 of inclusions of low melting point controlled to be harmless.
[0005]
However, there is a limit to the measures for floating and separating alumina by the methods (1) and (2), and there is a problem that inclusions of several hundred μm or more cannot be completely removed, so that sliver flaws cannot be prevented. The modification of the oxide inclusions by Ca in (3) can prevent the formation of clusters and reduce the size by reducing the melting point of the inclusions. However, according to Non-Patent Document 1 described above, in order to convert alumina into liquid phase calcium aluminate in molten steel, [Ca] / [T. O] must be controlled in the range of 0.7 to 1.2. For this purpose, for example, T.W. It is necessary to add a large amount of Ca of O 2 at 40 ppm and 28 to 48 ppm. On the other hand, in steel cords and valve spring materials for tires, it is common to make inclusions harmless by controlling the inclusions to a low melting point CaO—SiO 2 —Al 2 O 3 (—MnO) system that easily deforms during rolling. Well known. However, in these methods, since Ca is usually added as an inexpensive CaSi alloy, the present situation is that it has not been put to practical use in automotive steel plates and can cold-rolled steel plates with a strict upper limit of Si.
[0006]
In deoxidation of molten steel using REM such as Ce and La, (1) Al killing is premised, REM is used as an alumina modifier after Al deoxidation, and (2) REM without using Al. Is known, or a method of deoxidizing in combination with Ca, Mg or the like.
[0007]
As a method for reducing alumina clusters in Al killed steel, the above-mentioned Patent Document 1 describes that when melting Al killed steel, 0.1 kg / ts (corresponding to 100 ppm) or more of metal Mg is added to the molten steel. In addition, by controlling the form of alumina inclusions present in steel to Al 2 O 3 —MgO inclusions and finely dispersing them in the steel, product defects caused by clusters of alumina inclusions are prevented, A method for detoxifying inclusions in steel to prevent nozzle clogging during casting is shown. In Patent Document 2, C: 1.2% or less, Al: 0.01 to 0.1% by mass%, T.I. O: 005% or less; O × 0.5 ≦ T. Mg <T. An oxide-based inclusion ultrafine dispersion steel characterized by containing Mg satisfying the relationship of O × 7.0 is disclosed.
[0008]
In these methods, Al 2 O 3 is reduced with Mg to control the form of Al 2 O 3 .MgO (containing 28% MgO) or MgO, and each Al 2 O 3 particle is refined. To do. However, Al 2 O 3 .MgO particles themselves are easy to coalesce and it is difficult to suppress the formation of alumina clusters. Further, when Mg is added excessively, a large amount of Al 2 O 3 .MgO is generated due to the reaction with the slag at the top of the molten steel, and the cleanliness of the molten steel is deteriorated. It was. Furthermore, since Mg easily evaporates and the yield is poor, it is necessary to add a large amount of Mg alloy, which increases the manufacturing cost. Further, similarly to the modification of alumina with Ca, addition of Mg is usually an inexpensive SiMg alloy, so that it was difficult to apply it to automobile steel plates and can cold-rolled steel plates with strict Si upper limits.
[0009]
On the other hand, several generation mechanisms have been proposed for clustering alumina particles. For example, in the above-mentioned Patent Document 3, it is considered that P 2 O 5 in molten steel promotes agglomeration and coalescence of Al 2 O 3 particles, Ca is added to form nCaO · mP 2 O 5, and Al 2 O 3 It has been shown that Al 2 O 3 adhesion to the immersion nozzle can be prevented by reducing the bonding strength of P 2 O 5 which is a binder. Moreover, according to the said nonpatent literature 2, it is guessed that the alumina particle capture | acquired by Ar gas used for the blockage | prevention of the immersion nozzle by continuous casting is the cause of the sliver flaw which generate | occur | produces in a cold-rolled steel plate. is doing. Further, Non-Patent Document 3 described above shows an observation result that the alumina particles trapped in the bubbles aggregate and coalesce on the surface of the bubbles due to the capillary effect. Although the microscopic formation mechanism of alumina clusters is being elucidated in this way, since the specific method for preventing clustering has not been clarified, inclusion defects due to alumina clusters are reduced to the required quality level. It was difficult to reduce.
[0010]
[Problems to be solved by the invention]
The present invention has been made in order to advantageously solve the above-described conventional problems, and it is possible to obtain coarse alumina clusters that cause product defects in steel materials such as thin plates, thick plates, steel pipes, shaped steels, and steel bars. By preventing formation at the surface of molten steel and Ar bubbles, thin sliver rods for automobiles and household appliances, poor structural plate materials, low-temperature toughness of wear-resistant thick plates, welded UST defects in oil well pipes The present invention has been completed for the purpose of providing a method for producing a steel material with few surface defects and internal defects.
[0011]
[Means for Solving the Problems]
In order to solve the above problems, the inventor repeated experiments and examinations. As a result, (1) low melting point oxides of FeO and FeO.Al 2 O 3 exist as binders between the alumina particles of the cluster. {Circle around (2)} It was found that agglomeration and coalescence of alumina particles in molten steel and on the surface of Ar bubbles was suppressed by reducing this binder with an appropriate amount of Mg. The present invention has been completed on the basis of the above-mentioned findings. By adding Mg to Al deoxidized or Al-Si deoxidized molten steel, Mg / T. O is 0.01 or more and less than 0.5. Moreover, it is preferable that the oxidation type inclusions in the steel material are mainly composed of Al 2 O 3 and MgO, and the content of MgO is 0.1% to 15% by mass%.
[0012]
In addition, the component of steel is the mass% C: 0.0005-1.5%, Si: 0.005-1.2%, Mn: 0.05-3.0%, P: 0.001-0. 1%, S: 0.0001-0.05%, Al: 0.005-1.5%, or (a) Cu: 0.1-1.5%, Ni: 0.1-10. 1% or more of 0%, Cr: 0.1 to 10.0%, Mo: 0.05 to 1.5%, or (b) Nb: 0.005 to 0.1%, V: 0 0.005 to 0.3%, Ti: 0.001 to 0.25%, or (c) B: 0.0005 to 0.005% (a), (b), ( c) It is preferable that any one or two or more are contained and the balance is Fe and inevitable impurities.
[0013]
Furthermore, it is preferable that the maximum diameter of the alumina cluster obtained by slime extraction of the slab is 100 μm or less, and the number of alumina clusters of 20 μm or more obtained by slime extraction of the slab is 2 pieces / kg or less. It is preferable.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described.
In the present invention, by adding Mg to Al deoxidized or Al-Si deoxidized molten steel, Mg / T. O is 0.01 or more and less than 0.5. As a result, the low melting point oxides of FeO and FeO.Al 2 O 3 existing as binders between the alumina particles of the cluster are reduced with Mg, and aggregation and coalescence of alumina particles in the molten steel and on the surface of Ar bubbles are suppressed. . As shown in FIG. In the composition range where O is 0.01 or more and less than 0.5, aggregation and coalescence of alumina particles can be suppressed, and formation of coarse alumina clusters can be prevented. Mg / T. The reason why the upper limit of O is less than 0.5 is that when 0.5 or more of Mg is added, coarse Al 2 O 3 .MgO clusters of the same degree as Al deoxidation are usually generated. Further, because a large amount of Al 2 O 3 .MgO is generated by reaction with the slag, the molten steel cleanliness is deteriorated and the continuous casting immersion nozzle is closed. The lower limit is set to 0.01 because the effect of preventing clustering of alumina particles cannot be obtained if the lower limit is less than this. T. O is the total amount of oxygen in the steel and means the total of dissolved oxygen and oxygen in inclusions.
[0015]
According to claim 2, it had a content of MgO of Al 2 O 3 and MgO main component oxide-based inclusions was 0.1 to 15 percent, tends inclusions are aggregated, coalesced with more, This is because coarse clusters are generated, and if it is less than this, the effect of Mg addition is lost and clustering of alumina particles cannot be prevented.
[0016]
In addition, the steel materials manufactured by Al deoxidation and Al-Si deoxidation in the present invention are C: 0.0005 to 1.5%, Si: 0.005 to 1.2%, and Mn: 0 in mass%. .05 to 3.0%, P: 0.001 to 0.1%, S: 0.0001 to 0.05%, Al: 0.005 to 1.5%, T.I. O ≦ 80 ppm, or (a) Cu: 0.1 to 1.5%, Ni: 0.1 to 10.0%, Cr: 0.1 to 10.0%, Mo: 0.05 to 1 1% or 2 or more of 5%, or (b) Nb: 0.005 to 0.1%, V: 0.005 to 0.3%, Ti: 0.001 to 0.25% Or two or more, or (c) B: 0.0005 to 0.005% (a), (b), (c) any one or two or more, the balance being Fe and inevitable impurities This carbon steel can be applied to a thin plate, a thick plate, a steel pipe, a shape steel, a steel bar, etc. by applying necessary rolling to the steel material. The reason why this range is preferable is as follows.
[0017]
Since C is a basic element that improves the strength of steel most stably, the content is adjusted in the range of 0.0005 to 1.5% depending on the strength of the desired material. In order to ensure strength or hardness, it is desirable to contain 0.0005% or more, but if it exceeds 1.5%, the toughness is impaired, so 1.5% or less is preferable.
[0018]
The reason why Si is 0.005 to 1.2% is that if it is less than 0.005%, a pretreatment is required, which imposes a large cost burden on refining and impairs economic efficiency. If it exceeds 1.2%, plating is performed. This is because defects occur and surface properties and corrosion resistance deteriorate.
[0019]
The reason why Mn is set to 0.05 to 3.0% is that, if it is less than 0.05%, the refining time becomes long and the economic efficiency is impaired. If it exceeds 3.0%, the workability of the steel material is greatly deteriorated. It is to do.
[0020]
The reason why P is 0.001 to 0.1% is that if it is less than 0.001%, the hot metal pretreatment takes time and cost, and the economic efficiency is impaired. If it exceeds 0.1%, the workability of the steel material is greatly deteriorated. It is to do.
[0021]
If S is 0.0001 to 0.05%, if less than 0.0001%, the hot metal pretreatment takes time and cost, and the economic efficiency is impaired. If it exceeds 0.05%, the workability and corrosion resistance of the steel material are impaired. This is because of a significant deterioration.
[0022]
The reason why Al is 0.005 to 1.5% is that when it is less than 0.005%, N is trapped as AlN and solid solution N cannot be reduced. On the other hand, if it exceeds 1.5%, surface properties and workability deteriorate, so 1.5% or less is preferable.
[0023]
T.A. The reason why O 2 is set to 80 ppm or less is that if it exceeds 80 ppm, the collision frequency of alumina particles increases, and the cluster may become coarse. Further, since the amount of REM added for reforming alumina is increased, cost is increased and economic efficiency is also impaired. Here, T.W. O represents the total amount of dissolved oxygen and inclusion oxygen in terms of the total amount of oxygen in the steel.
[0024]
The above is the basic component system, but in the present invention, in addition to these, (a) one or more of Cu, Ni, Cr, and Mo, (b) one of Nb, V, and Ti, depending on each application As described above, (c) any one or two or more of (a), (b) and (c) of B 1 can be contained.
[0025]
Cu, Ni, Cr, and Mo are all elements that improve the hardenability of the steel, and Cu, Ni, and Cr contain 0.1% or more, and Mo contains 0.05% or more. As shown, Cu is 1.5 and Mo is 1.5%, and Ni and Cr are added in excess of 10%, so that the toughness and workability may be impaired. And Cr is limited to 0.1 to 10%, and Mo is limited to a range of 0.05 to 1.5%.
[0026]
Nb, V, and Ti are all elements that improve the strength of the steel by precipitation strengthening. Nb and V are 0.005% or more, and Ti is contained by 0.001% or more. , Nb is 0.1%, V is 0.3%, and if Ti is added over 0.25%, the toughness may be impaired, so Nb is 0.005 to 0.1% and V is 0.005. -0.3%, Ti is limited to the range of 0.001-0.25%.
[0027]
B is an element that improves the hardenability of the steel and increases the strength. By adding 0.0005% or more, it shows an effect of improving the strength. However, if added over 0.005%, the precipitate of B increases. Therefore, the toughness may be impaired, so the content is limited to 0.0005 to 0.005%.
[0028]
The combined use of Ca lowers the effect of suppressing the formation of alumina clusters due to the addition of Mg in order to facilitate partial dissolution and coalescence of the alumina surface. Therefore, it is desirable to prevent Ca from entering from slag and refractory as much as possible.
[0029]
Further, the reason that the maximum diameter of the alumina cluster obtained by slime extraction of the slab is 100 μm or less is that when it is larger than 100 μm, it leads to surface defects and internal defects in the product. The reason why the number of alumina clusters of 20 μm or more obtained by the slime extraction of the slab was 2 / kg or less is that when it exceeds 2 / kg, it leads to surface defects and internal defects after rolling.
[0030]
Addition of Mg into the molten steel is performed after Al deoxidation of the molten steel using, for example, CAS or RH of a secondary refining apparatus. Mg may be a pure metal or an alloy with another metal, and the shape may be a lump, granule, wire, or the like. Since the addition amount is very small, in order to make the Mg concentration in the molten steel uniform, addition to the refluxing molten steel in the RH tank or stirring with Ar gas after addition of the ladle is desirable. Moreover, Mg can also be added to tundish and molten steel in a mold. Next, examples of the present invention will be described.
[0031]
【Example】
After blowing in a 270 t converter, the steel was adjusted to a predetermined carbon concentration and produced. It adjusted to the target molten steel component by secondary refining, Mg was added as Si-10% Mg alloy and Si-3% Mg alloy after Al deoxidation. The results are shown in Tables 1 and 2. Comparative examples are shown in Tables 3 and 4. Table 2 is a continuation of Table 1, and Table 4 is a continuation of Table 3. The molten steel in the table was subjected to a vertical bending type continuous casting machine, and the slab size was 245 mm thick × 1200 to 2200 mm wide, the casting speed was 1.0 to 1.8 m / min, and the molten steel temperature in the tundish was 1520 to 1580 ° C. The slab was manufactured. Thereafter, the slab was hot-rolled, pickled, and further cold-rolled as necessary to conduct a quality survey. The plate thickness after hot rolling was 2 to 100 mm, and the plate thickness after cold rolling was 0.2 to 1.8 mm.
[0032]
The maximum cluster diameter, number of clusters, average inclusion composition, defect generation rate, etc. of the samples taken from the slab are as shown in Tables 2 and 4, and the present invention greatly reduces product defects caused by alumina clusters. It was confirmed that the product exhibited excellent productivity.
[0033]
The meanings of * 1 to * 7 in the table are as follows.
* 1: Mg and T.I. O is the analytical value of the molten steel sample taken 1 minute after the addition of Mg.
* 2: Si10Mg: Si-10% Mg alloy, Si3Mg: Si-3% Mg alloy.
* 3: Average value of 10 inclusion compositions arbitrarily extracted from the slab cross section. The composition was identified by SEM with EDS.
* 4: The maximum cluster diameter is measured using a stereomicroscope (40x magnification) of inclusions extracted from a slab weighing 1 kg ± 0.1 kg with a slime electrolytic extraction (using a minimum mesh of 20 μm). The average value of the major axis and the minor axis of the object was obtained for all the inclusions, and the maximum value of the average value was taken as the maximum inclusion diameter. The number of clusters is inclusion of 1 ± 0.1 kg of slime electro-extracted (using a minimum mesh of 20 μm), and all inclusions of 20 μm or more observed with an optical microscope (100 times) were converted to 1 kg units. .
* 5: Defect occurrence rate is according to the following formula.
For thin plates, the occurrence rate of sliver wrinkles on the plate surface (= total sliver wrinkles / coil length x 100,%).
Thick plate is UST defect generation rate or separation generation rate on product plate (= number of defective plates / total number of inspection plates × 100,%). The occurrence of separation was confirmed by observation of the fracture surface after the Charpy test.
In addition, in the thick plate material defect occurrence rate of Table 2, it was described as (UST) when the defect was a UST defect, and (SPR) when it was a separation defect.
For steel pipes, UST defect rate at oil well pipe welds (= number of defect-generated pipes / total number of inspection pipes x 100,%).
* 6: V-notch Charpy impact test value in the rolling direction at −20 ° C. Average value of 5 test pieces.
* 7: Thickness direction drawing value of the product plate at room temperature (= cross-sectional area of the fractured portion after the tensile test / cross-sectional area of the test piece before the test × 100,%).
[0034]
[Table 1]
Figure 2005002419
[0035]
[Table 2]
Figure 2005002419
[0036]
[Table 3]
Figure 2005002419
[0037]
[Table 4]
Figure 2005002419
[0038]
【The invention's effect】
As is clear from the above description, according to the present invention, the low melting point oxides of FeO and FeO.Al 2 O 3 existing as binders between the alumina particles of the clusters are reduced with Mg, and in the molten steel and on the surface of the Ar bubbles. Aggregation and coalescence of alumina particles are suppressed. For this reason, Al deoxidation and Al-Si deoxidized steel can prevent generation of coarse alumina clusters that cause surface defects and internal defects in the final product. Therefore, the present invention contributes greatly to the development of the industry as a method for producing a steel material with few alumina clusters that eliminates the problems associated with conventional Al deoxidized steel and Al—Si deoxidized steel. Further, according to the present invention, it is possible to prevent adhesion of alumina in molten steel to the immersion nozzle in continuous casting. Accordingly, the effect of preventing the immersion nozzle from being blocked is great.
[Brief description of the drawings]
FIG. 1 shows Mg / T. It is a graph which shows the relationship between O and the maximum alumina cluster diameter.

Claims (8)

Al脱酸またはAl−Si脱酸した溶鋼中にMgを添加することにより、質量比率でMg/T.Oを0.01以上0.5未満とすることを特徴とするアルミナクラスターの少ない鋼材の製造方法。By adding Mg to Al deoxidized or Al-Si deoxidized molten steel, Mg / T. A method for producing a steel material with few alumina clusters, wherein O is 0.01 or more and less than 0.5. 鋼材中の酸化物系介在物をAlとMgOが主成分で、質量%でMgOの含有率を0.1〜15%としたことを特徴とする請求項1に記載のアルミナクラスターの少ない鋼材の製造方法。The oxide-based inclusions in the steel material are mainly composed of Al 2 O 3 and MgO, and the content of MgO is 0.1 to 15% by mass%. A method for producing a small amount of steel. 鋼材成分を質量%で、C:0.0005〜1.5%、Si:0.005〜1.2%、Mn:0.05〜3.0%、P:0.001〜0.1%、S:0.0001〜0.05%、Al:0.005〜1.5%、T.O:80ppm以下で、残部がFe及び不可避的不純物としたことを特徴とする請求項1または2に記載のアルミナクラスターの少ない鋼材の製造方法。Steel material component in mass%, C: 0.0005-1.5%, Si: 0.005-1.2%, Mn: 0.05-3.0%, P: 0.001-0.1% , S: 0.0001 to 0.05%, Al: 0.005 to 1.5%, T.I. The method for producing a steel material with few alumina clusters according to claim 1 or 2, wherein O: 80 ppm or less, with the balance being Fe and inevitable impurities. 質量%で、Cu:0.1〜1.5%、Ni:0.1〜10.0%、Cr: 0.1〜10.0%、Mo:0.05〜1.5%の1種または2種以上を更に含有させることを特徴とする請求項3に記載のアルミナクラスターの少ない鋼材の製造方法。In mass%, Cu: 0.1 to 1.5%, Ni: 0.1 to 10.0%, Cr: 0.1 to 10.0%, Mo: 0.05 to 1.5% Or the 2 or more types is further contained, The manufacturing method of the steel materials with few alumina clusters of Claim 3 characterized by the above-mentioned. 質量%で、Nb:0.005〜0.1%、V:0.005〜0.3%、Ti: 0.001〜0.25%の1種または2種以上を更に含有させることを特徴とする請求項3または4に記載のアルミナクラスターの少ない鋼材の製造方法。It is characterized by further containing one or more of Nb: 0.005 to 0.1%, V: 0.005 to 0.3%, Ti: 0.001 to 0.25% in mass%. The manufacturing method of steel materials with few alumina clusters of Claim 3 or 4. 質量%で、B:0.0005〜0.005%を更に含有させることを特徴とする請求項3または4または5に記載のアルミナクラスターの少ない鋼材の製造方法。The method for producing a steel material with few alumina clusters according to claim 3, wherein B: 0.0005 to 0.005% is further contained in mass%. 鋳片のスライム抽出で得られるアルミナクラスターの最大径を100μm以下としたことを特徴とする請求項1〜6の何れかに記載のアルミナクラスターの少ない鋼材の製造方法。The method for producing a steel material with few alumina clusters according to any one of claims 1 to 6, wherein the maximum diameter of the alumina clusters obtained by slime extraction of a slab is 100 µm or less. 鋳片のスライム抽出で得られる20μm以上のアルミナクラスターの個数を2個/kg以下とすることを特徴とする請求項7に記載のアルミナクラスターの少ない鋼材の製造方法。The method for producing a steel material with less alumina clusters according to claim 7, wherein the number of alumina clusters of 20 µm or more obtained by slime extraction of a slab is 2 pieces / kg or less.
JP2003167694A 2003-06-12 2003-06-12 Manufacturing method of steel material with few alumina clusters Expired - Fee Related JP3990653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003167694A JP3990653B2 (en) 2003-06-12 2003-06-12 Manufacturing method of steel material with few alumina clusters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003167694A JP3990653B2 (en) 2003-06-12 2003-06-12 Manufacturing method of steel material with few alumina clusters

Publications (2)

Publication Number Publication Date
JP2005002419A true JP2005002419A (en) 2005-01-06
JP3990653B2 JP3990653B2 (en) 2007-10-17

Family

ID=34093432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003167694A Expired - Fee Related JP3990653B2 (en) 2003-06-12 2003-06-12 Manufacturing method of steel material with few alumina clusters

Country Status (1)

Country Link
JP (1) JP3990653B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006218512A (en) * 2005-02-10 2006-08-24 Kobe Steel Ltd Continuously cast slab for thin steel sheet having excellent surface property, and its production method
JP2007254818A (en) * 2006-03-23 2007-10-04 Nippon Steel Corp Continuous cast slab of aluminum-killed steel and producing method therefor
CN100439551C (en) * 2006-06-28 2008-12-03 宝山钢铁股份有限公司 High-grade highly carbon-dioxide resistant chloride ion corrosion oil annular tube steel and method for manufacturing the same
WO2014175377A1 (en) 2013-04-24 2014-10-30 新日鐵住金株式会社 Low-oxygen-purified steel and low-oxygen-purified steel product
JP2020002406A (en) * 2018-06-26 2020-01-09 日本製鉄株式会社 Manufacturing method of steel

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006218512A (en) * 2005-02-10 2006-08-24 Kobe Steel Ltd Continuously cast slab for thin steel sheet having excellent surface property, and its production method
JP4485969B2 (en) * 2005-02-10 2010-06-23 株式会社神戸製鋼所 Manufacturing method of continuous cast slab slab for thin steel sheet with excellent surface properties
JP2007254818A (en) * 2006-03-23 2007-10-04 Nippon Steel Corp Continuous cast slab of aluminum-killed steel and producing method therefor
JP4516923B2 (en) * 2006-03-23 2010-08-04 新日本製鐵株式会社 Continuously cast slab of aluminum killed steel and method for producing the same
CN100439551C (en) * 2006-06-28 2008-12-03 宝山钢铁股份有限公司 High-grade highly carbon-dioxide resistant chloride ion corrosion oil annular tube steel and method for manufacturing the same
WO2014175377A1 (en) 2013-04-24 2014-10-30 新日鐵住金株式会社 Low-oxygen-purified steel and low-oxygen-purified steel product
KR20150131392A (en) 2013-04-24 2015-11-24 신닛테츠스미킨 카부시키카이샤 Low-oxygen-purified steel and low-oxygen-purified steel product
US10526686B2 (en) 2013-04-24 2020-01-07 Nippon Steel Corporation Low-oxygen clean steel and low-oxygen clean steel product
JP2020002406A (en) * 2018-06-26 2020-01-09 日本製鉄株式会社 Manufacturing method of steel
JP7087723B2 (en) 2018-06-26 2022-06-21 日本製鉄株式会社 Steel manufacturing method

Also Published As

Publication number Publication date
JP3990653B2 (en) 2007-10-17

Similar Documents

Publication Publication Date Title
JP4430284B2 (en) Steel material with few alumina clusters
JP7119642B2 (en) steel manufacturing method
JP7087727B2 (en) Steel manufacturing method
JP4022175B2 (en) Manufacturing method of steel material with few alumina clusters
JP7087723B2 (en) Steel manufacturing method
JP7087724B2 (en) Steel manufacturing method
JP4430341B2 (en) Steel material with few alumina clusters
JP7119641B2 (en) steel manufacturing method
JP3984567B2 (en) Manufacturing method of steel material with few alumina clusters
JP4246553B2 (en) Steel material with few alumina clusters and its manufacturing method
CN115244199A (en) Stainless steel, stainless steel material, and method for producing stainless steel
KR100886046B1 (en) Method for producing extremely low carbon steel sheet and extremely low carbon cast piece having excellent surface characteristics, workability and formability
JP7087728B2 (en) Steel manufacturing method
JP3990653B2 (en) Manufacturing method of steel material with few alumina clusters
JP4430285B2 (en) Manufacturing method of steel material with few alumina clusters
JP7087725B2 (en) Steel manufacturing method
WO2004111277A1 (en) Steel product reduced in alumina cluster
CN112368402B (en) Method for producing steel
JP7087726B2 (en) Steel manufacturing method
JP4299757B2 (en) Thin steel plate and slab excellent in surface properties and internal quality, and method for producing the same
JP2021004407A (en) Steel and method for producing the same
JP4025718B2 (en) Extremely low carbon steel sheet excellent in surface properties, workability and formability, and method for producing the same
JP2003119546A (en) Steel for thin sheet with little defect due to inclusion
CN117230276A (en) Composite additive for forming core-shell structure inclusion, preparation and smelting method
JP2020002461A (en) Manufacturing method of killed steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070720

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 3990653

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees