WO2004111277A1 - Steel product reduced in alumina cluster - Google Patents

Steel product reduced in alumina cluster Download PDF

Info

Publication number
WO2004111277A1
WO2004111277A1 PCT/JP2004/000139 JP2004000139W WO2004111277A1 WO 2004111277 A1 WO2004111277 A1 WO 2004111277A1 JP 2004000139 W JP2004000139 W JP 2004000139W WO 2004111277 A1 WO2004111277 A1 WO 2004111277A1
Authority
WO
WIPO (PCT)
Prior art keywords
rem
steel
steel material
alumina
less
Prior art date
Application number
PCT/JP2004/000139
Other languages
French (fr)
Japanese (ja)
Inventor
Toshiaki Mizoguchi
Yoshiyuki Ueshima
Jun Yamaguchi
Yu Watanabe
Akira Mikasa
Hirotsugu Yasui
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003167831A external-priority patent/JP4430341B2/en
Priority claimed from PCT/JP2003/009274 external-priority patent/WO2004009854A1/en
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Publication of WO2004111277A1 publication Critical patent/WO2004111277A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0006Adding metallic additives
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese

Definitions

  • the present invention relates to a steel material having a small amount of alumina clusters suitable for a steel plate for automobiles, a structural steel plate, a thick plate for wear-resistant steel, a steel tube for oil country tubular goods, and the like.
  • Rolled steel such as steel sheet is generally produced as aluminum-killed steel by deoxidizing undeoxidized molten steel in a converter with A1.
  • Alumina generated during deoxidation is hard, easily clustered, and remains in the molten steel as inclusions of several hundred meters or more.
  • the method of removing this alumina from the molten steel is as follows: (1) During dewatering in a converter, so that the time for alumina to coagulate, coalesce, float and separate from the molten steel is as long as possible after deoxidation. (2) CAS (Composition Ajustment by Sealed Argon) which is one of the secondary purification methods
  • the flotation separation method of alumina by the above methods (1) and (2) cannot completely remove inclusions of several hundreds / zm or more, and cannot prevent slipper flaws generated on the steel sheet surface. .
  • the inclusions can be reduced in melting point to prevent the formation of clusters and to make the inclusions finer.
  • T.O total oxygen content in molten steel, the sum of dissolved oxygen and oxygen in inclusions
  • 28-48 ppm C a Need to be added.
  • Japanese Patent Application Laid-Open No. 52-70918 discloses that after deoxidation of A 1 or A 1 —Si, Se, S b, La or C
  • the interfacial tension between the molten steel and the alumina cluster is controlled by adding at least one of e from 0.001 to 0.05% or by combining it with molten steel stirring.
  • a method for producing a clean steel with few nonmetallic inclusions, which removes an alumina cluster by floating separation, is disclosed.
  • Japanese Patent Application Laid-Open No. 2000-26842 also discloses that, after molten steel is deoxidized with A 1 and T i, Ca and Z or REM are added to the oxide-based steel.
  • the size of the inclusions was less 5 0 mu m
  • a cold-rolled steel sheet excellent in surface properties and internal quality, in which the content is 0 wt% and the Ti oxide content is 50 to 90 wt%, and a method for producing the same are disclosed.
  • Japanese Patent Application Laid-Open No. H11-13324-26 discloses that A1, killed steel with no alumina clusters and few defects is produced by complex deoxidation by Al, REM and Zr. There is disclosed a production method for producing the same.
  • Patent No. 1150222 discloses that molten steel is deoxidized with a CaO-containing flux and then contains an alloy containing one or more of Ca, Mg, and EM. For example, 100 to 200 ppm is added, and the method for producing steel for steel, which lowers the melting point of the inclusions and softens it, has been developed. It is shown.
  • Patent No. 1266683 also discloses that after adjusting T.O. (total oxygen content) to 100 ppm or less with a deoxidizing agent other than A1, such as Mn and Si, air A method for producing a wire rod having good ultrafine drawability, in which 50 to 500 ppm of EM is added for the purpose of preventing oxidation due to urea.
  • Japanese Unexamined 9 one '1 9 2 7 9 9 JP, aggregation P 2 O 5 in the molten steel is A 1 2 0 3 particles, thought to promote coalescence, the C a molten steel pressurized to, yielding n C a O 'mP 2 O 5, by lowering the bonding force p 2 o 5 is Painda one a 1 2 0 3, of a 1 2 ⁇ 3 to immersion nozzle It is disclosed that adhesion can be prevented.
  • H.Y ineta 1. (ISIJI nt., 37 (1977), p. 936) showed that the alumina particles trapped in the bubbles caused the cavitation effect on the surface of the bubbles. The observation result of aggregation and coalescence is disclosed.
  • the present invention has been made in order to advantageously solve the conventional problems as described above, and may cause product defects in the manufacture of steel materials such as thin plates, thick plates, steel pipes, section steels, and steel bars. Prevents the formation of coarse alumina clusters in molten steel and on the surface of Ar bubbles, resulting in slipper flaws on thin plates for automobiles and home appliances, poor material quality on structural plates, and low temperatures on wear-resistant plates. It has been completed with the objective of providing a steel material with less surface defects such as UST defects and reduced internal defects such as UST defects in welds in oil country tubular goods.
  • the present invention has been made based on the above findings, and the gist is as follows. '
  • REM rare earth elements
  • the content of REM oxide in oxide-based inclusions mainly composed of alumina and REM oxide is 0.5% by mass based on the oxide inclusions. Not less than 15%
  • a steel material with less alumina clusters A steel material with less alumina clusters.
  • Mass ratio of total REM to total oxygen (TO) in steel REM / TO is 0.05 or more and 0.5 or less
  • Alumina The content of REM oxide in oxide inclusions mainly composed of EM oxide is 0.5% or more and 15% or less by mass% based on the oxide inclusions.
  • a steel material having the least amount of alumina clusters having the least amount of alumina clusters.
  • the total amount of REM is 0.1 111 or more and less than 10 111, and the amount of solid solution REM is less than 1 ppm.
  • a steel material with less alumina clusters A steel material with less alumina clusters.
  • the steel material is represented by mass%, C: 0.005 to 1.5%, Si: 0.05 to 1.2%, Mn: 0.05 to 3.0% , P: 0.001 to 0.1%, S: 0.00001 to 0.05%, A1: 0.005 to: 0.5%, T.O: 800
  • the steel material according to any one of (1) to (3), wherein the steel material contains less than ppm, and the balance is Fe and unavoidable impurities.
  • the steel material is further represented by mass%, Cu: 0.1 to 1.5%, Ni: 0.1 to 10.0%, Cr: 0.1 to 10%.
  • said steel further contains, by mass 0/0, N b: 0. 0 0 5 ⁇ 0. 1%, V: 0. 0 0 5 ⁇ 0. 3%, T i: 0. 0 0 1 ⁇ 0.25 0 /.
  • the steel material having a small amount of alumina clusters according to the above (4) or (5) characterized by containing one or more of the following.
  • the number of alumina clusters of 20 ⁇ or more is two or less Zkg or less.
  • a steel material having a small amount of alumina clusters according to (8) is a steel material having a small amount of alumina clusters according to (8).
  • FIG. 1 is a diagram showing the relationship between the content of the REM oxide in the oxide-based inclusions and the diameter of the maximum alumina cluster.
  • FIG. 2 is a diagram showing the relationship between REMZT.O and the diameter of the largest alumina cluster.
  • Fig. 3 is a diagram showing the relationship between the total REM content in steel and the diameter of the largest alumina cluster.
  • Figure 4 is a diagram showing the relationship between the amount of solid-solution EM in steel and the state of clogging of the pan nozzle.
  • R EM rare earth elements
  • the content of the REM oxide in the oxide-based inclusions mainly composed of alumina and the REM oxide is set to 0.5 to 15% by mass%.
  • the content of the REM oxide in the oxide-based inclusions is preferably 2 to 12% by mass.
  • the rare earth element refers to La of atomic number 57 to Lu of atomic number 71.
  • the upper limit of the content of REM oxides in oxide inclusions is set to 15%, as shown in Fig. 1, when the content of REM oxides exceeds 15% and increases. This is because the substances tend to aggregate and coalesce, and coarse clusters are formed.
  • the lower limit of the above content was set to 0.5%, as shown in FIG. 1, similarly, when the content of the REM oxide was less than 0.5%, there was no effect of the addition of the REM oxide, and the alumina particles had no effect. Clustering cannot be prevented.
  • the present invention (2) in a molten steel deoxidized using A 1, such as A 1 deoxidation or A 1 -Si deoxidation, Ce,: L a
  • R EM rare earth elements
  • the content of R EM oxide in oxide inclusions Is set to 0.5 to 1.5 mass%
  • the mass ratio of all REM to total oxygen (TO) in the steel is set to 0.05 to 0.5.
  • REM / T.0 0.15 to 0.4.
  • the reason for setting the upper limit of R EM / T .O to 0.5 is that, as shown in Fig. 2, when R EM is added to exceed 0.5, clusters generated in ordinary A1 deoxidation are reduced. This is because a coarse RM oxide cluster of the same size is formed.
  • the reason for setting the lower limit of REMZT.O to 0.05 is that the addition of REM less than 0.05 has a sufficient effect of preventing clustering of alumina particles as shown in Fig. 2.
  • T.O indicates the total of dissolved oxygen and oxygen in inclusions in the total amount of oxygen in the steel, as described above.
  • the present invention (3) in the molten steel deoxidized using A 1 such as A 1 deoxidation or A 1 Si deoxidation, Ce, La, Add at least one rare earth metal (R EM) selected from Pr, Nd, etc. to make the total R EM 0.1-1! 1 or more and less than 10 111, and 1 ppm of solid solution R EM Less than
  • a 1 such as A 1 deoxidation or A 1 Si deoxidation, Ce, La
  • R EM rare earth metal
  • the aggregation and coalescence of the alumina particles can be suppressed, and the formation of coarse alumina clusters can be prevented.
  • the deterioration of the cleanliness of the molten steel due to the reaction with can be prevented.
  • the upper limit of the total REM is set to less than 1 O ppm.As shown in Fig. 3, at 1 O ppm or more, the concentration of REM oxide in oxide-based inclusions increases, and alumina particles aggregate and coalesce. This is because coarse clusters are generated.
  • the lower limit of the total REM was set to 0.1 ppm, as shown in Fig. 3, as shown in Fig. 3 below 0.1 ppm, there was no effect of the addition of REM, and the clustering of alumina particles could not be prevented. Because it is.
  • the total REM should be less than 5 ppm.
  • the reason why the solid-solution REM is less than 1 ppm is that if the concentration is 1 ppm or more, the slag and the solid-solution REM in the steel react at the molten steel stage, and a large amount of composite oxide consisting of REM oxide and alumina is generated. As a result, coarse clusters are formed and the cleanliness of the molten steel deteriorates.
  • the pot nozzle closes as shown in Fig. 4.
  • the steel material to be deoxidized using A 1 is, in mass%, C: 0.0005 to 1.5%, S i: 0.005 to 1.2%, Mn: 0.05 to 3.0%, P: 0.01 to 0.1%, S: 0.00001 to 0.05%, A1: 0.005 to 1.5%, T. 0: 80 ppm or less, and, if necessary, (a) Cu: 0.1-1.5%, Ni: 0.1 to 10.
  • C is a basic element for improving the strength of steel, its content is adjusted in the range of 0.0005 to 1.5% according to the desired strength. In order to ensure the desired strength or hardness, it is desirable to contain at least 0.005%, but if it exceeds 1.5%, toughness is impaired. Therefore, 1.5% or less is good.
  • Si is set to 0.005 to 1.2% if the value is less than 0.05%, a large cost burden is imposed on the reduction of the Si amount, and the economic efficiency is impaired. If the content is more than 2%, when plating is applied, a metal plating is generated, and the surface properties and corrosion resistance of the steel material are deteriorated.
  • Mn is set to 0.05 to 3.0% is that if it is less than 0.05%, the refining time becomes longer and the economic efficiency is impaired, whereas if it is more than 3.0%, the workability of the steel material is increased. Is greatly deteriorated.
  • P is set to 0.001 to 0.1% if it is less than 0.01%, it takes time and cost to pre-treat the hot metal, and the economic efficiency is impaired, while 0.1% If more, the workability of the steel material will be greatly deteriorated.
  • S is set to 0.00001 to 0.05%. If it is less than 0.001%, pretreatment of the hot metal takes time and costs, and the economic efficiency is impaired. If the content is more than 0.5%, the workability and corrosion resistance of the steel material are significantly deteriorated.
  • a 1 is set to 0.005 to .1.5% is that if it is less than 0.05%, N is trapped as A 1 N and solute N cannot be reduced. On the other hand, if it is more than 1.5%, the surface properties and workability of the steel material deteriorate.
  • the reason for setting T.O to 80 ppm or less is that if it is more than 80 ppm, the collision frequency of the alumina particles increases and the cluster becomes coarse. On the other hand, if T.O is more than 80 ppm, the amount of REM added required for reforming alumina increases, and economic efficiency is impaired.
  • the present invention comprises the above components as basic components. In addition to the basic components, one or more of (a) Cu, Ni, Cr, Mo, (B) One or more of Nb, V, Ti And (c) one or more of the three element groups of B can be selected and contained.
  • Cu, Ni, Cr, and Mo are all elements that improve the hardenability of steel, and Cu, Ni, and Cr are 0.1% or more, and Mo is 0%. By adding 0.5% or more, the strength of the steel material can be increased. ,
  • Nb, V, and Ti are all elements that improve the strength of the steel by precipitation strengthening.Nb and V are ⁇ .05% or more, and Ti is 0.0. By containing 0.1% or more, the strength of steel can be increased.
  • Nb exceeds 0.1%
  • V exceeds 0.3%
  • Ti exceeds 0.25%
  • the toughness may be impaired. Is 0.005 to 0.1%, V is 0.005 to 0.3%, and Ti is 0.0001 to 0.25%.
  • B is an element that improves the hardenability of the steel and increases the strength. By containing 0.0005% or more, the strength of the steel can be increased.
  • B is set to 0.0005% to 0.05%.
  • the maximum diameter of the alumina cluster obtained by extracting the slime of the pieces is preferably 100 / xm or less. This means that when the maximum diameter of the aluminum cluster is greater than 100 ⁇ , This is because it causes surface defects and internal defects to be formed after processing into products.
  • the number of alumina clusters of 20 m or more obtained by slime extraction of a piece is preferably two or less Z kg. This is because if the above number is more than 2 / 'kg, surface defects and internal defects may occur after rolling.
  • REM may be any of pure metals such as Ce and La, alloys of REM metals or alloys with other metals, and the shape may be massive, granular, or wire.
  • the amount of REM added is extremely small, in order to make the REM concentration in the molten steel uniform, it must be added to the refluxed molten steel in the RH type refining tank, or added in a ladle, and then Ar gas It is desirable to stir with such as. It is also possible to add REM to molten steel in a tundish or a type II.
  • the molten steel was blown in a converter of 270 t, and thereafter, the steel was adjusted to a predetermined carbon concentration and tapped.
  • the target molten steel composition in the secondary refining and deoxidizing in A 1; EM, Ce, La, misch metal (for example, mass 0 /. Ce: 45%, La : 35%, Pr: 6%, Nd: 9%, alloy composed of unavoidable impurities), or alloy of misted metal, Si and Fe (Fe-Si—30% REM) ).
  • Table 1 shows the resulting composition of molten steel.
  • the molten steel having the composition shown in Table 1 was produced by a vertical bending type continuous forming machine. Forging speed 1.0 to 1.8 m / min, temperature of molten steel in tundish 1520 to 1580 ° C, forging 245 mm thickness XI 200 to 220 mm A piece of width was manufactured.
  • the strip was subjected to hot rolling, pickling, and if necessary, cold rolling, and a quality survey was conducted.
  • the thickness after hot rolling is 2 to 100 mm, and the thickness after cold rolling is 0.2 mm.
  • REM is the sum of Ce, La, Pr, and Nd.
  • MM Missing metal. An alloy consisting of 45% by mass of Ce, 35% by mass of La, 6% by mass of Pr, 9% by mass of Nd, and unavoidable impurities by mass%.
  • MM S i R EM— S i — Fe alloy.
  • the method for measuring the maximum cluster diameter is as follows: Inclusions extracted from (1 ⁇ 0.1) kg pieces by slime electrolysis (using a minimum mesh of 20 ⁇ m) are photographed with a stereoscopic microscope ( Then, the average value of the major axis and minor axis of the photographed inclusion was calculated for all the inclusions, and the maximum value of the average was defined as the maximum cluster diameter.
  • the number of clusters is slime electrolysis from (1 ⁇ 0.1) kg pieces.
  • the number of inclusions extracted by the method (using a minimum mesh of 20 ⁇ m), and the number of all inclusions of 20 ⁇ or more observed with an optical microscope (100 ⁇ magnification) Is converted to the number of
  • the molten steel was blown in a converter of 270 t, and thereafter, the steel was adjusted to a predetermined carbon concentration and tapped.
  • the EM, Ce, La, and misted metal for example, mass 0 /. Ce: 45%, La : 35%, Pr: 6%, Nd: 9%, alloy consisting of unavoidable impurities
  • alloy of misch metal, Si and Fe Fe-Si—30% REM
  • the molten steel with the component composition shown in Table 3 was produced by a vertical bending type continuous forming machine at a forming speed of 1.0 to 1.8 mZmin and the molten steel temperature in the tundish.
  • Table 4 confirms that the present invention significantly reduces product defects caused by alumina clusters.
  • R EM (all R EM) is the sum of Ce, La, Pr, and Nd.
  • R EM and T.O are the analysis values of the molten steel sample collected within 1 minute after the addition of R EM.
  • MMS i REM—Si—Fe alloy.
  • Composition REM: 30%, Si: 30%, balance Fe.
  • the maximum cluster diameter measurement method is (1 ⁇ 0.1) kg kg
  • the inclusions extracted from the piece by slime electrolysis (using a minimum mesh of 20 ⁇ m) were photographed with a stereoscopic microscope ( ⁇ 40), and the average of the major and minor diameters of the photographed inclusions was calculated for all
  • the maximum value of the average value obtained from inclusions was defined as the maximum cluster diameter.
  • the number of clusters is the number of inclusions extracted (by using a minimum mesh of 20 ⁇ ) from pieces of (1 ⁇ 0.1) kg by slime electrolysis and observed with an optical microscope (100 ⁇ ). The number of all inclusions of 20 / ⁇ m or more was converted to the number per 1 kg.
  • the thickness of the inclusions on the inner wall of the immersion nozzle was measured. Based on the average value of the thickness at 10 points in the circumferential direction, the nozzle clogging status was classified into the following levels.
  • the molten steel was blown in a converter of 270 t, and thereafter, the steel was adjusted to a predetermined carbon concentration and tapped.
  • the target molten steel composition by secondary refining and deoxidizing with A1, REM, Ce, La, misch metal (for example, mass 0 /. Ce: 45%, La: 35%, Pr: 6%, Nd: 9%, alloy consisting of unavoidable impurities), or alloy of misted metal, Si and Fe ⁇ (Fe—Si—30% REM) was added in the form of Table 5 shows the resulting composition of molten steel.
  • the molten steel having the composition shown in Table 5 was produced by a vertical bending continuous casting machine at a forming speed of 1.0 to: 1.8 mZm in, and the temperature of the molten steel in the tundish was 150 to 180 ° C. Under these conditions, a piece having a thickness of 245 mm and a width of 1200 to 220 mm was produced.
  • the strip was subjected to hot rolling, pickling, and, if necessary, cold rolling, and a quality inspection was performed.
  • the thickness after hot rolling is 2 to 100 mm
  • the thickness after cold rolling is 0.2 to 1.8 mm.
  • the maximum diameter of one cluster, the number of clusters, the defect occurrence rate, the pot nozzle clogging status, etc. were investigated for the samples taken from the pieces. The results are as shown in Table 6.
  • Table 6 confirms that the present invention significantly reduces product defects caused by alumina clusters.
  • Total REM is the sum of REM present in inclusions and REM dissolved in steel.
  • a 1-g sample was cut out from the center of a molten steel sample 30 mm in diameter and 60 mm in height collected by a tundish, and then inductively coupled plasma-mass spectrometer (ICP-MS: Inductively Coupled Plasma M) ass S p REM (total of Ce, La, Pr, and Nd) was analyzed by ectrometry, and this was taken as the total REM.
  • ICP-MS Inductively coupled plasma-mass spectrometer
  • the lower limit of analysis of the mass spectrometer is 0.1 lpm.
  • Solid solution EM was analyzed as follows. That is, after the inclusions in the steel are discharged to the sample surface by cold crucible melting, the sample lg is cut out from the center of the sample without inclusions by a drill, and REM (C e, La, Pr, Nd) was analyzed, and this was defined as the solid-solution REM.
  • a 90 g steel slab was cut out from the center of a molten steel sample with a diameter of 30 mm and a height of 60 mm sampled with a tundish and melted with a cold crucible.
  • the dissolution was performed in Ar—2% H 2 gas.
  • the case where the EM element is qualitatively detected even below the lower limit of analysis is shown in the table as ⁇ 0.1 ppm.
  • the method for measuring the maximum cluster diameter is as follows: (1) 0.1 kg of a piece of slime was extracted by slime electrolysis (using a minimum mesh of 20 ⁇ m) and photographed with a stereomicroscope. Then, the average value of the major axis and minor axis of the photographed inclusion was calculated for all the inclusions, and the maximum value of the average was defined as the maximum cluster diameter.
  • the number of clusters is the number of inclusions extracted by using the slime electrolysis method (using a minimum mesh of 20 ⁇ m) from a piece of (1 ⁇ 0.1) kg, and observed with an optical microscope (100 times). The number of all inclusions of 20 ⁇ m or more was converted to the number per kg.
  • the present invention is to provide a steel material with few alumina clusters that has eliminated the conventional problems in steel deoxidized using A 1, and greatly contributes to industrial development.

Abstract

A steel product reduced in the inclusion of alumina clusters, which is produced by casting a molten steel prepared through the deoxidization using Al and then the addition of one or more of rare earth elements (REM) of Ce, La, Pr and Nd, characterized in that (a) the content of REM oxides in the oxide-based inclusions containing alumina and REM oxides as primary components is 0.5 to 15 mass % relative to said oxide-based inclusions, or (b) in addition to (a), the mass ratio of the total REM to the total oxygen (T.O), i.e., REM/T.O is 0.05 to 0.5, or (c) the total amount of REM is 0.1 ppm to less than 10 ppm, and the amount of REM forming a solid solution is less than 1 ppm.

Description

明 細 書 アルミナク ラスタ一の少ない鋼材 〔技術分野〕  Description Steel material with the lowest alumina cluster [Technical field]
本発明は、 自動車用鋼板、 構造用鋼板、 耐摩耗鋼用厚板、 油井管 用鋼管等に適したアルミナクラスターの少ない鋼材に関するもので める。  The present invention relates to a steel material having a small amount of alumina clusters suitable for a steel plate for automobiles, a structural steel plate, a thick plate for wear-resistant steel, a steel tube for oil country tubular goods, and the like.
〔背景技術〕 (Background technology)
鋼板などの圧延鋼材は、 一般的に転炉で溶製された未脱酸の溶鋼 を A 1 で脱酸し、 アルミキル ド鋼と して製造される。 脱酸時に生成 するアルミナは、 硬質で、 クラスタ一化しやすく、 溶鋼中に、 数 1 0 0 m以上の介在物と して残留する。  Rolled steel such as steel sheet is generally produced as aluminum-killed steel by deoxidizing undeoxidized molten steel in a converter with A1. Alumina generated during deoxidation is hard, easily clustered, and remains in the molten steel as inclusions of several hundred meters or more.
それ故、 この介在物の溶鋼からの除去が不十分な場合、 薄板での スリパー疵 (線状疵) 、 構造用厚板での材質不良、 耐摩耗鋼用厚板 での低温靭性低下、 油井管用鋼管での溶接部 U S T欠陥 (U 1 t r a S o n i c T e s t i n g 〔超音波探傷〕 で検知する欠陥) 等の原因となる。 さらに、 アルミナは、 連続铸造時に浸漬ノズルの 内壁に付着、 堆積し、 ノズル閉塞の原因となる。  Therefore, if these inclusions are not sufficiently removed from the molten steel, slipper flaws (linear flaws) on thin plates, poor material quality on structural plates, low-temperature toughness on wear-resistant steel plates, oil wells This may cause UST defects in welds in pipe steel pipes (defects detected by Ultrasonic Testing). Furthermore, alumina adheres and accumulates on the inner wall of the immersion nozzle during continuous production, causing nozzle clogging.
このアルミナを溶鋼から除去する方法と して、 ( 1 ) 脱酸後に、 アルミナが凝集、 合体して溶鋼から浮上、 分離する時間をできるだ け長く とれるよ うに、 転炉での出鋼時に、 脱酸剤の A 1 を投入する 方法、 ( 2 ) 二次精鍊法のひとつである C A S (C o m p o s i t i o n A d j u s t m e n t b y S e a l e d A r g o n The method of removing this alumina from the molten steel is as follows: (1) During dewatering in a converter, so that the time for alumina to coagulate, coalesce, float and separate from the molten steel is as long as possible after deoxidation. (2) CAS (Composition Ajustment by Sealed Argon) which is one of the secondary purification methods
B u b b 1 i n g ) や RH (R h e i n s t a h 1 H u t t e n w e r k e u n d H e r a u s ) 処理 (真空脱ガス処理) で 溶鋼を強攪拌してアルミナの浮上、 分離を促進する方法、 ( 3 ) 溶 鋼中へ C a を添加して、 アルミナを低融点介在物の C a O - A 12 o3 に改質し、 無害化する方法等が行われていた。 B ubb 1 ing) or RH (R heinstah 1 H uttenwerkeund Heraeus) (vacuum degassing) Floating of the alumina by strongly stirring the molten steel, a method to facilitate separation, (3) adding C a to soluble steel in, alumina C a O of the low melting point inclusions - reformed to A 1 2 o 3 There were methods of detoxification.
ところが、 前記 ( 1 ) と ( 2 ) の方法によるアルミナの浮上分離 策では、 数 1 0 0 /z m以上の介在物を完全に除去できず、 鋼板表面 に生じるスリパー疵を防止できないという問題がある。  However, the flotation separation method of alumina by the above methods (1) and (2) cannot completely remove inclusions of several hundreds / zm or more, and cannot prevent slipper flaws generated on the steel sheet surface. .
前記 ( 3 ) の方法による介在物の改質策によれば、 介在物を低融 点化して、 クラスターの生成を防止でき、 かつ、 微細化するこ とが できる。  According to the method for modifying inclusions by the method (3), the inclusions can be reduced in melting point to prevent the formation of clusters and to make the inclusions finer.
しかし、 城田ら (材料とプロセス、 4 ( 1 9 9 1 ) , p . 1 2 1 4、 参照) によれば、 溶鋼中で、 アルミナを液相のカルシウムアル ミネー トにするためには、 [C a ] / [ T . O] を 0. 7〜 1 . 2 の範囲に制御する必要がある。  However, according to Shirota et al. (Materials and Processes, 4 (1991), p. 124, 14), in molten steel, alumina must be converted into a liquid-phase calcium aluminate by [ It is necessary to control [Ca] / [TO] in the range of 0.7 to 1.2.
そのためには、 例えば、 T . O (溶鋼中の全酸素量で、 溶存酸素 と介在物中の酸素の合計) が 4 0 p p mの場合、 2 8〜4 8 p p m の多量の C a を、 溶鋼に添加する必要がある。  For example, if T.O (total oxygen content in molten steel, the sum of dissolved oxygen and oxygen in inclusions) is 40 ppm, a large amount of 28-48 ppm C a Need to be added.
一方、 タイヤ用のスチールコー ドや弁パネ材では、 介在物を、 圧 延加工時に変形しやすい低融点の C a O— S i 02 - A 12 03 ( -Mn O) 系の介在物に改質し、 無害化することが、 一般的に知ら れている。 On the other hand, in the steel cords and the valve panel material for tires, inclusions, rolling processing during deformable low melting point C a O- S i 0 2 - A 1 2 0 3 (-Mn O) type inclusions of It is generally known that the substance is reformed and rendered harmless.
しかしながら、 これらの方法においては、 通常、 C aを安価な C a S i 合金で添加するので、 S i量の上限値が厳しく管理される自 動車用鋼板や缶用冷延鋼板の製造で、 前記 ( 3 ) の方法は実用化さ れていない。  However, in these methods, since Ca is usually added with an inexpensive Ca Si alloy, the production of automobile steel sheets and canned cold-rolled steel sheets in which the upper limit of the Si amount is strictly controlled is performed. The method (3) has not been put to practical use.
C e、 L a等の R EMを利用する溶鋼の脱酸においては、 ( 1 ) A 1 キルドを前提と し、 A 1脱酸後に、 R EMをアルミナの改質剤 と して使用する方法や、 ( 2 ) A 1 を使用しないで、 R EMを、 単 独または C a、 M g等と組み合わせて、 脱酸剤と して使用する方法 が知られている。 In the deoxidation of molten steel using EM such as Ce, La, etc., (1) A1 killed is assumed, and after A1 deoxidation, EM is used as a modifier for alumina. Or (2) do not use A 1, It is known to use as a deoxidizing agent in combination with Germany or Ca, Mg, or the like.
A 1 キルドを前提にした方法として、 特開昭 5 2— 7 0 9 1 8号 公報には、 A 1脱酸または A 1 — S i脱酸後に、 S e、 S b、 L a または C eの一種以上を 0. 0 0 1〜0. 0 5 %添加することによ り、 または、 これと溶鋼攪拌と組み合わせることによって、 溶鋼ノ アルミナクラスタ一間の界面張力を制御し、 溶鋼中のアルミナクラ' スタ一を浮上分離させて除去する非金属介在物の少ない清浄鋼の製 造法が開示されている。  As a method based on the premise of A 1 killing, Japanese Patent Application Laid-Open No. 52-70918 discloses that after deoxidation of A 1 or A 1 —Si, Se, S b, La or C The interfacial tension between the molten steel and the alumina cluster is controlled by adding at least one of e from 0.001 to 0.05% or by combining it with molten steel stirring. A method for producing a clean steel with few nonmetallic inclusions, which removes an alumina cluster by floating separation, is disclosed.
また、 特開 2 0 0 1 — 2 6 8 4 2号公報には、 溶鋼を A 1 および T i で脱酸した後、 C aおよび Zまたは R EMを添加することによ り、 酸化物系介在物の大きさを 5 0 μ m以下とし、 かつ、 該介在物 組成を、 A 12 O 3 : 1 0〜 3 0 w t %、 C a酸化物および/また は R E M酸化物 : 5〜 3 0 w t %、 T i酸化物 : 5 0〜 9 0 w t % とする、 表面性状および内質に優れる冷延鋼板ならびにその製造方 法が開示されている。 Japanese Patent Application Laid-Open No. 2000-26842 also discloses that, after molten steel is deoxidized with A 1 and T i, Ca and Z or REM are added to the oxide-based steel. the size of the inclusions was less 5 0 mu m, and the composition of inclusions, a 1 2 O 3: 1 0~ 3 0 wt%, C a oxide and / or REM oxides: 5-3 A cold-rolled steel sheet excellent in surface properties and internal quality, in which the content is 0 wt% and the Ti oxide content is 50 to 90 wt%, and a method for producing the same are disclosed.
さ らに、 特開平 1 1 一 3 2 3 4 2 6号公報には、 A l、 R EMお よび Z r による複合脱酸によって、 アルミナクラスターがなく、 欠 陥の少ない清浄な A 1 キルド鋼を製造する製造方法が開示されてい る。  In addition, Japanese Patent Application Laid-Open No. H11-13324-26 discloses that A1, killed steel with no alumina clusters and few defects is produced by complex deoxidation by Al, REM and Zr. There is disclosed a production method for producing the same.
しかしながら、 これらの方法では、 アルミナクラスターを確実に 浮上分離させることが困難で、 介在物欠陥を、 要求される品質レべ ルまで低減することができなかった。  However, with these methods, it was difficult to reliably separate the alumina clusters by flotation, and inclusion defects could not be reduced to the required quality level.
A 1 を使用しない方法として、 特許 1 1 5 0 2 2 2号公報には、 溶鋼を C a O含有フラ ッ クスで脱酸した後、 C a、 M g、 R EMの 一種以上を含む合金を、 例えば、 1 0 0〜 2 0 0 p p m添加し、 介 在物を低融点化し、 かつ、 軟質化するスチール用鋼の製造方法が開 示されている。 As a method that does not use A 1, Patent No. 1150222 discloses that molten steel is deoxidized with a CaO-containing flux and then contains an alloy containing one or more of Ca, Mg, and EM. For example, 100 to 200 ppm is added, and the method for producing steel for steel, which lowers the melting point of the inclusions and softens it, has been developed. It is shown.
また、 特許 1 2 6 6 8 3 4号公報には、 M n、 S i等の A 1以外 の脱酸剤で T . O (全酸素量) を 1 0 0 p p m以下に調整した後、 空気による酸化を防止することを目的に R EMを 5 0〜5 0 0 p p m添加する、 極細伸線性の良好な線材の製造方法が示されている。  Patent No. 1266683 also discloses that after adjusting T.O. (total oxygen content) to 100 ppm or less with a deoxidizing agent other than A1, such as Mn and Si, air A method for producing a wire rod having good ultrafine drawability, in which 50 to 500 ppm of EM is added for the purpose of preventing oxidation due to urea.
しかしながら、 これらの方法では、 脱酸剤と して安価な A 1 を使 用しないので、 脱酸剤のコス トアップという問題が生じる。 また、 これらの方法において S i で脱酸する場合、 S i量の上限値が厳し く管理される薄板材用の溶鋼の脱酸に適用することは困難である。 一方、 ァノレミナ粒子のクラスター化については、 いくつかの生成 機構が提案されている。  However, these methods do not use inexpensive A1 as a deoxidizing agent, so that there is a problem that the cost of the deoxidizing agent is increased. Further, when deoxidizing with Si in these methods, it is difficult to apply the method to deoxidizing molten steel for thin sheet materials in which the upper limit of the Si amount is strictly controlled. On the other hand, several generation mechanisms have been proposed for clustering of anoremina particles.
例えば、 特開平 9一' 1 9 2 7 9 9号公報には、 溶鋼中の P 2 O 5が A 1203粒子の凝集、 合体を促進していると考え、 溶鋼に C aを添 加して、 n C a O ' mP2O5 を生成せしめ、 A 1203のパインダ 一である p2o5の結合力を低下させることにより、 浸漬ノズルへの A 12 Ο3の付着を防止できることが開示されている。 Attachment For example, Japanese Unexamined 9 one '1 9 2 7 9 9 JP, aggregation P 2 O 5 in the molten steel is A 1 2 0 3 particles, thought to promote coalescence, the C a molten steel pressurized to, yielding n C a O 'mP 2 O 5, by lowering the bonding force p 2 o 5 is Painda one a 1 2 0 3, of a 1 2 Ο 3 to immersion nozzle It is disclosed that adhesion can be prevented.
また、 安中ら (鉄と鋼、 ( 1 9 9 5 ) , p . 1 7 ) は、 連続錶造 において、 浸漬ノズルの閉塞防止のために用いる A rガスの気泡に 捕捉されたアルミナ粒子が、 冷延鋼板に発生するスリパー疵の原因 であると推察している。  Annaka et al. (Iron and steel, (1995), p. 17) reported that alumina particles trapped in Ar gas bubbles used to prevent clogging of immersion nozzles in continuous construction. It is speculated that this is the cause of the slipper flaws generated on the cold-rolled steel sheet.
さ らに、 H. Y i n e t a 1 . ( I S I J I n t . , 3 7 ( 1 9 9 7 ) , p . 9 3 6 ) は、 気泡に捕捉されたアルミナ粒子が 、 キヤビラ リ一効果により、 気泡表面で凝集、 合体するという観察 結果'を開示している。  In addition, H.Y ineta 1. (ISIJI nt., 37 (1977), p. 936) showed that the alumina particles trapped in the bubbles caused the cavitation effect on the surface of the bubbles. The observation result of aggregation and coalescence is disclosed.
このよ う に、 アルミナクラスターの生成機構が解明されつつある が、 クラスタ一化を防止するための具体的な方法は明らかでなく、 アルミナクラスターによる介在物欠陥を、 要求される品質レベルま で低減することは困難である。 . 〔発明の開示〕 As described above, the formation mechanism of alumina clusters is being elucidated, but the specific method for preventing cluster unification is not clear, and inclusion defects due to alumina clusters can be reduced to the required quality level. Is difficult to reduce. [Disclosure of the Invention]
本発明は、 上記のよ うな従来の問題点を有利に解決するためにな されたものであり、 薄板、 厚板、 鋼管、 形鋼、 棒鋼等の鋼材の製造 において、 製品欠陥の原因となる粗大なアルミナクラスターの生成 を、 溶鋼中および A r気泡表面で防止することにより、 自動車、 家 電用の薄板でのスリパー疵、 構造用厚板での材質不良、 耐摩耗用厚 板での低温靭性低下、 油井管用鋼管での溶接部 U S T欠陥等の表面 疵ゃ内部欠陥が少ない鋼材を提供することを目的として完成された ものである。  The present invention has been made in order to advantageously solve the conventional problems as described above, and may cause product defects in the manufacture of steel materials such as thin plates, thick plates, steel pipes, section steels, and steel bars. Prevents the formation of coarse alumina clusters in molten steel and on the surface of Ar bubbles, resulting in slipper flaws on thin plates for automobiles and home appliances, poor material quality on structural plates, and low temperatures on wear-resistant plates. It has been completed with the objective of providing a steel material with less surface defects such as UST defects and reduced internal defects such as UST defects in welds in oil country tubular goods.
本発明者は上記課題を解決するため、 実験および検討を重ね、 そ の成果と して、 ( i ) クラスターのアルミナ粒子間には、 F e Oお よび F e O · A 1203の低融点酸化物がパイ ンダ一として存在する こと、 ( ϋ ) このパインダ一を適当な量の R EMで還元することに より、 溶鋼中および A r気泡表面でのアルミナ粒子の凝集、 合体を 抑制できること、 および、 (iii) 固溶 R EMを必要量以上に鋼中に 残存させると、 溶鋼段階で、 溶鋼とスラグとの反応によって、 R E M酸化物とアルミナからなる複合酸化物が多量に生成し、 溶鋼の清 浄性が悪化すること、 が分かった。 Since the present inventors to solve the above problems, repeated experiments and studies, as a result of its, (i) is between alumina particles in clusters, F e O Contact and the F e O · A 1 2 0 3 The presence of low-melting-point oxide as a binder, (ϋ) Reduction of this binder with an appropriate amount of REM suppresses aggregation and coalescence of alumina particles in molten steel and on the surface of Ar bubbles. (Iii) If more than the required amount of solid solution EM is left in the steel, the reaction between the molten steel and slag in the molten steel stage generates a large amount of composite oxide consisting of REM oxide and alumina. However, it was found that the purity of molten steel deteriorated.
本発明は、 上記知見に基づいてなされたものであり、 その要旨は 以下のとおりである。 '  The present invention has been made based on the above findings, and the gist is as follows. '
( 1 ) A 1 を用いて脱酸し、 C e、 L a、 P rおよび N dの 1種 または 2種以上の希土類元素 (R EM) を添加した溶鋼を錶造した 鋼材であって、  (1) A steel material produced by deoxidizing using A 1 and adding molten steel to which one or more rare earth elements (REM) of Ce, La, Pr and Nd are added,
アルミナと R EM酸化物を主成分とする酸化物系介在物中の R E M酸化物の含有量が、 該酸化物介在物に対する質量%で、 0. 5 % 以上 1 5 %以下である The content of REM oxide in oxide-based inclusions mainly composed of alumina and REM oxide is 0.5% by mass based on the oxide inclusions. Not less than 15%
ことを特徴とするアルミナクラスターの少ない鋼材。 A steel material with less alumina clusters.
( 2 ) A 1 を用いて脱酸し、 C e、 L a、 P rおよび N dの 1種 または 2種以上の希土類元素 (R EM) を添加した溶鋼を錶造した 鋼材であって、  (2) A steel material obtained by deoxidizing using A1 and adding molten steel to which one or more rare earth elements (REM) of Ce, La, Pr and Nd are added,
鋼材中の全 R EMの全酸素 (T. O) に対する質量比 : R EM/ T . Oが 0. 0 5以上 0. 5以下であり、 かつ、  Mass ratio of total REM to total oxygen (TO) in steel: REM / TO is 0.05 or more and 0.5 or less, and
アルミナと: EM酸化物を主成分とする酸化物系介在物中の R E M酸化物の含有量が、 該酸化物介在物に対する質量%で、 0. 5 % 以上 1 5 %以下である  Alumina: The content of REM oxide in oxide inclusions mainly composed of EM oxide is 0.5% or more and 15% or less by mass% based on the oxide inclusions.
ことを特徴とするアルミナクラスタ一の少ない鋼材。 A steel material having the least amount of alumina clusters.
( 3 ) A 1 を用いて脱酸し、 C e、 L a、 P rおよび N dの 1種 または 2種以上の希土類元素 (R EM) を添加した溶鋼を铸造した 鋼材であって、  (3) A steel material prepared by deoxidizing using A 1 and adding molten steel to which one or more rare earth elements (REM) of Ce, La, Pr and Nd are added,
全 R EM量が 0. 1 111以上 1 0 111未満でぁり、 かつ、 固溶 R EM量が 1 p p m未満である  The total amount of REM is 0.1 111 or more and less than 10 111, and the amount of solid solution REM is less than 1 ppm.
ことを特徴とするアルミナクラスターの少ない鋼材。 A steel material with less alumina clusters.
( 4 ) 前記鋼材が、 質量%で、 C : 0. 0 0 0 5〜 1. 5 %、 S i : 0. 0 0 5〜 1 . 2 %、 Mn : 0. 0 5〜 3. 0 %、 P : 0. 0 0 1〜 0. 1 %、 S : 0. 0 0 0 1〜 0. 0 5 %、 A 1 : 0. 0 0 5〜: L . 5 %、 T . O : 8 0 p p m以下を含有し、 残部が F eお よび不可避的不純物からなることを特徴とする前記 ( 1 ) 〜 ( 3 ) のいずれかに記載のアルミナクラスターの少ない鋼材。  (4) The steel material is represented by mass%, C: 0.005 to 1.5%, Si: 0.05 to 1.2%, Mn: 0.05 to 3.0% , P: 0.001 to 0.1%, S: 0.00001 to 0.05%, A1: 0.005 to: 0.5%, T.O: 800 The steel material according to any one of (1) to (3), wherein the steel material contains less than ppm, and the balance is Fe and unavoidable impurities.
( 5 ) 前記鋼材が、 さ らに、 質量%で、 C u : 0. 1〜 1 . 5 % 、 N i : 0. 1〜 1 0. 0 %、 C r : 0. 1〜 1 0. 0 %、 M o : 0. 0 5〜 1. 5 %の 1種または 2種以上を含有することを特徴と する前記 ( 4) に記載のアルミナクラスターの少ない鋼材。 ( 6 ) 前記鋼材が、 さらに、 質量0 /0で、 N b : 0. 0 0 5〜 0. 1 %、 V : 0. 0 0 5〜 0. 3 %、 T i : 0. 0 0 1〜 0. 2 50/。 の 1種または 2種以上を含有することを特徴とする前記 ( 4) また は ( 5 ) に記載のアルミナクラスターの少ない鋼材。 (5) The steel material is further represented by mass%, Cu: 0.1 to 1.5%, Ni: 0.1 to 10.0%, Cr: 0.1 to 10%. The steel material having a small amount of alumina clusters according to the above (4), characterized in that it contains one or more of 0% and Mo: 0.05 to 1.5%. (6) said steel further contains, by mass 0/0, N b: 0. 0 0 5~ 0. 1%, V: 0. 0 0 5~ 0. 3%, T i: 0. 0 0 1 ~ 0.25 0 /. The steel material having a small amount of alumina clusters according to the above (4) or (5), characterized by containing one or more of the following.
( 7 ) 前記鋼材が、 さ らに、 質量%で、 Β : 0. 0 0 0 5〜 0. 0 0 5 %を含有することを特徴とする前記 ( 4 ) 〜 ( 6 ) のいずれ かに記載のアルミナクラスターの少ない鋼材。  (7) The steel according to any of (4) to (6), wherein the steel material further contains, by mass%, Β: 0.0005 to 0.0005%. A steel material having less alumina clusters as described.
( 8 ) 前記鋼材をスライム抽出して得られるアルミナクラスター の最大径が 1 0 0 μ πι以下であることを特徴とする前記 ( 1 ) 〜 ( 3 ) のいずれかに記載のアルミナクラスターの少ない鋼材。  (8) The steel material according to any one of (1) to (3), wherein the maximum diameter of the alumina cluster obtained by slime extraction of the steel material is 100 μππ or less. .
( 9 ) 前記アルミナクラスターにおいて、 2 0 μ ιη以上のアルミ ナクラスターの個数が 2個 Zk g以下であることを特徴とする前記 (9) In the alumina cluster, the number of alumina clusters of 20 μιη or more is two or less Zkg or less.
( 8 ) に記載のアルミナクラスターの少ない鋼材。 A steel material having a small amount of alumina clusters according to (8).
〔図面の簡単な説明〕 [Brief description of drawings]
図 1は、 酸化物系介在物中の R EM酸化物の含有量と、 最大アル ミナクラスターの径との関係を示す図である。  FIG. 1 is a diagram showing the relationship between the content of the REM oxide in the oxide-based inclusions and the diameter of the maximum alumina cluster.
図 2は、 R EMZT . Oと、 最大アルミ ナクラスターの径との関 係を示す図である。  FIG. 2 is a diagram showing the relationship between REMZT.O and the diameter of the largest alumina cluster.
図 3は、 鋼中の全 R EM量と、 最大アルミナクラスターの径との 関係を示す図である。  Fig. 3 is a diagram showing the relationship between the total REM content in steel and the diameter of the largest alumina cluster.
図 4は、 鋼中の固溶 R EM量と、 鍋ノズルの閉塞状況との関係を 示す図である。  Figure 4 is a diagram showing the relationship between the amount of solid-solution EM in steel and the state of clogging of the pan nozzle.
〔発明を実施するための最良の形態〕 [Best mode for carrying out the invention]
以下に、 本発明の好ましい実施の形態について説明する。  Hereinafter, preferred embodiments of the present invention will be described.
前記 ( 1 ) の本発明 (本発明 ( 1 ) ) では、 A 1脱酸または A 1 ― S i脱酸のような、 A 1 を用いて脱酸した溶鋼中に、 C e、 L a 、 P rおよび N d等から選択した 1種類以上の希土類元素 (R EM ) を添加して、 アルミナと R EM酸化物が主成分の酸化物系介在物 中の、 R EM酸化物の含有量を、 質量%で 0. 5〜 1 5 %とする。 In the present invention (1), (1), A 1 deoxidation or A 1 -Add one or more rare earth elements (R EM) selected from Ce, La, Pr, Nd, etc. to molten steel deoxidized using A1, such as Si deoxidation. The content of the REM oxide in the oxide-based inclusions mainly composed of alumina and the REM oxide is set to 0.5 to 15% by mass%.
この R EM酸化物の組成範囲において、 アルミナ粒子同士の凝集 、 合体を抑制でき、 粗大なアルミナクラスターの生成を防止するこ とができる。 酸化物系介在物中の R EM酸化物の含有量は、 質量% で 2〜 1 2 %とするのが好ましい。  Within the composition range of the EM oxide, it is possible to suppress aggregation and coalescence of alumina particles, and to prevent formation of coarse alumina clusters. The content of the REM oxide in the oxide-based inclusions is preferably 2 to 12% by mass.
なお、 本発明において、 希土類元素は原子番号 5 7の L aから原 子番号 7 1の L uまでをさす。  In the present invention, the rare earth element refers to La of atomic number 57 to Lu of atomic number 71.
酸化物系介在物中の R EM酸化物の含有量の上限を 1 5 %とする のは、 図 1に示すように、 R EM酸化物の含有量が 1 5 %を超えて 多くなると、 介在物が凝集、 合体しやすくなり、 粗大クラスターが 生成するからである。  The upper limit of the content of REM oxides in oxide inclusions is set to 15%, as shown in Fig. 1, when the content of REM oxides exceeds 15% and increases. This is because the substances tend to aggregate and coalesce, and coarse clusters are formed.
一方、 上記含有量の下限を 0. 5 %としたのは、 同じく、 図 1に 示すよ うに、 R EM酸化物の含有量が 0. 5 %未満では R EM添加 の効果がなく、 アルミナ粒子のクラスター化を防止できないからで める。  On the other hand, the lower limit of the above content was set to 0.5%, as shown in FIG. 1, similarly, when the content of the REM oxide was less than 0.5%, there was no effect of the addition of the REM oxide, and the alumina particles had no effect. Clustering cannot be prevented.
前記 ( 2 ) の本発明 (本発明 ( 2 ) ) では、 A 1脱酸または A 1 - S i脱酸のような、 A 1 を用いて脱酸した溶鋼中に、 C e、 : L a 、 P rおよび N d等から選択した 1種類以上の希土類元素 (R EM ) を添加して、 アルミナのクラスター化を確実に防止するため、 酸 化物系介在物中の R EM酸化物の含有量を 0. 5〜 1 . 5質量%と するとともに、 鋼中の全 R EMの全酸素 (T. O) に対する質量比 : R EM/T . Oを 0. 0 5〜 0. 5 とする。  In the present invention of the above (2) (the present invention (2)), in a molten steel deoxidized using A 1, such as A 1 deoxidation or A 1 -Si deoxidation, Ce,: L a The addition of one or more rare earth elements (R EM) selected from the group consisting of, Pr and N d to ensure the prevention of alumina clustering, the content of R EM oxide in oxide inclusions Is set to 0.5 to 1.5 mass%, and the mass ratio of all REM to total oxygen (TO) in the steel is set to 0.05 to 0.5.
さ らに、 アルミナのクラスター化をより確実にするためには、 R EM/T . 0 = 0. 1 5〜 0. 4 とすることが好ましい。 R EM/T . Oの上限を 0. 5 とする理由は、 図 2に示すように 、 R EMを 0. 5を超えるように添加すると、 通常の A 1脱酸にお いて生成するクラスターと同程度の大きさの粗大な R EM酸化物主 体のクラスターが生成するからである。 Further, in order to further ensure the clustering of alumina, it is preferable that REM / T.0 = 0.15 to 0.4. The reason for setting the upper limit of R EM / T .O to 0.5 is that, as shown in Fig. 2, when R EM is added to exceed 0.5, clusters generated in ordinary A1 deoxidation are reduced. This is because a coarse RM oxide cluster of the same size is formed.
—方、 R EMZT. Oの下限を 0. 0 5 とする理由は、 0. 0 5 未満となる R E Mの添加では、 同じく図 2に示すように、 アルミナ 粒子のクラスター化を防止する効果が充分に得られないからである なお、 T . Oは、 前述したように、 鋼中の全酸素量で溶存酸素と 介在物中酸素の合計を示す。  The reason for setting the lower limit of REMZT.O to 0.05 is that the addition of REM less than 0.05 has a sufficient effect of preventing clustering of alumina particles as shown in Fig. 2. As described above, T.O indicates the total of dissolved oxygen and oxygen in inclusions in the total amount of oxygen in the steel, as described above.
前記 ( 3 ) の本発明 (本発明 ( 3 ) ) では、 A 1脱酸または A 1 一 S i脱酸のような、 A 1 を用いて脱酸した溶鋼中に、 C e、 L a 、 P rおよび N d等から選択した 1種類以上の希土類金属 (R EM ) を添加して、 全 R EMを 0. 1 1!1以上 1 0 111未満とし、 かつ、 固溶 R EMを 1 p p m未満とする。  In the present invention of the above (3) (the present invention (3)), in the molten steel deoxidized using A 1 such as A 1 deoxidation or A 1 Si deoxidation, Ce, La, Add at least one rare earth metal (R EM) selected from Pr, Nd, etc. to make the total R EM 0.1-1! 1 or more and less than 10 111, and 1 ppm of solid solution R EM Less than
この全 R EM量および固溶 R EM量の組成範囲において、 アルミ ナ粒子同士の凝集、 合体を抑制して、 粗大アルミナクラスターの生 成を防止することができると ともに、 固溶 R EMとスラグとの反応 による溶鋼の清浄性の悪化を防止することができる。  In the composition ranges of the total REM amount and the solid solution REM amount, the aggregation and coalescence of the alumina particles can be suppressed, and the formation of coarse alumina clusters can be prevented. The deterioration of the cleanliness of the molten steel due to the reaction with can be prevented.
全 R EMを 5 p p m未満にすると、 より確実に、 粗大アルミナク ラスターの生成を防止することが可能となる。  By setting the total REM to less than 5 ppm, it is possible to more reliably prevent the formation of coarse alumina clusters.
全 R EMの上限を 1 O p p m未満としたのは、 図 3に示すよ うに 、 1 O p p m以上では、 酸化物系介在物中の R E M酸化物の濃度が 増加し、 アルミナ粒子が凝集、 合体しやすくなり、 粗大クラスター が生成するからである。 一方、 全 R EMの下限を 0. l p p mと し たのは、 同じく図 3に示すよ うに、 0. l p p m未満では R EM添 加の効果がなく、 アルミナ粒子がクラスター化するのを防止できな いからである。 As shown in Fig. 3, the upper limit of the total REM is set to less than 1 O ppm.As shown in Fig. 3, at 1 O ppm or more, the concentration of REM oxide in oxide-based inclusions increases, and alumina particles aggregate and coalesce. This is because coarse clusters are generated. On the other hand, the lower limit of the total REM was set to 0.1 ppm, as shown in Fig. 3, as shown in Fig. 3 below 0.1 ppm, there was no effect of the addition of REM, and the clustering of alumina particles could not be prevented. Because it is.
粗大アルミナクラスターの生成をより確実に防止するためには、 全 R EMを 5 p p m未満にするとよい。  To more reliably prevent the formation of coarse alumina clusters, the total REM should be less than 5 ppm.
固溶 R EMを 1 p p m未満とするのは、 1 p p m以上では、 溶鋼 段階において、 スラグと鋼中固溶 R EMが反応して、 R EM酸化物 とアルミナからなる複合酸化物が多量に生成し、 その結果、 粗大ク ラスターが生成して、 溶鋼の清浄性が悪化するから.である。 また、 固溶 R EMが 1 p p m以上では、 図 4に示すとおり、 鍋ノズルが閉 塞する。  The reason why the solid-solution REM is less than 1 ppm is that if the concentration is 1 ppm or more, the slag and the solid-solution REM in the steel react at the molten steel stage, and a large amount of composite oxide consisting of REM oxide and alumina is generated. As a result, coarse clusters are formed and the cleanliness of the molten steel deteriorates. When the solid solution REM is 1 ppm or more, the pot nozzle closes as shown in Fig. 4.
ここで、 本発明において、 A 1 を用いて脱酸する鋼材は、 質量% で、 C : 0. 0 0 0 5〜 1 . 5 %、 S i : 0. 0 0 5〜 1. 2 %、 M n : 0. 0 5〜 3. 0 %、 P : 0. 0 0 1〜 0. 1 %、 S : 0. 0 0 0 1〜 0. 0 5 %、 A 1 : 0. 0 0 5〜 1 . 5 %、 T. 0 : 8 0 p p m以下を含有し、 さ らに、 必要に応じ、 ( a ) C u : 0. 1 ― 1. 5 %、 N i : 0. 1〜 1 0. 0 %、 C r : 0. 1〜 1 0. 0 %、 M o : 0. 0 5〜: 1 . 5 %の 1種または 2種以上、 ( b ) N b : 0. 0 0 5〜 0. 1 %、 V : 0. 0 0 5〜 0. 3 %、 T i : 0. 0 0 1〜 0. 2 5 %の 1種または 2種以上、 及び、 ( c ) B : 0. 0 0 0 5 ~ 0. 0 0 5 %の 3つの元素群から選択される一つまたは 二つ以上の元素群を含有し、 残部が F eおよび不可避的不純物から なる溶鋼を铸造したものであり、 かつ、 必要な圧延を施すことによ り、 薄板、 厚板、 鋼管、 形鋼、 棒鋼等へ加工できるものである。 上記組成範囲が好ましい理由は、 以下のとおりである。  Here, in the present invention, the steel material to be deoxidized using A 1 is, in mass%, C: 0.0005 to 1.5%, S i: 0.005 to 1.2%, Mn: 0.05 to 3.0%, P: 0.01 to 0.1%, S: 0.00001 to 0.05%, A1: 0.005 to 1.5%, T. 0: 80 ppm or less, and, if necessary, (a) Cu: 0.1-1.5%, Ni: 0.1 to 10. 0%, Cr: 0.1 to 10.0%, Mo: 0.05 to: 1.5% or more of one or more types, (b) Nb: 0.005 to 0 1%, V: 0.005 to 0.3%, Ti: 0.01 to 0.25%, 1 or more kinds, and (c) B: 0.00 It is made of molten steel containing one or more element groups selected from the three element groups of 0 to 0.05%, with the balance being Fe and unavoidable impurities, and By performing the necessary rolling, it can be processed into thin plates, thick plates, steel pipes, sections, bars, etc. The reason that the above composition range is preferable is as follows.
Cは、 鋼の強度を向上させる基本的な元素であるので、 所望の強 度に応じて、 含有量を 0. 0 0 0 5〜 1 . 5 %の範囲で調整する。 所望の強度または硬度を確保するためには、 0. 0 0 0 5 %以上含 有させることが望ましいが、 1 . 5 %よ り多いと靭性が損なわれる ので、 1. 5 %以下がよい。 Since C is a basic element for improving the strength of steel, its content is adjusted in the range of 0.0005 to 1.5% according to the desired strength. In order to ensure the desired strength or hardness, it is desirable to contain at least 0.005%, but if it exceeds 1.5%, toughness is impaired. Therefore, 1.5% or less is good.
S i を 0. 0 0 5〜 1 . 2 %と したのは、 0. 0 0 5 %未満では 、 S i量の低減に大きなコス ト負担が生じ、 経済性が損なわれ、 一 方、 1 . 2 %よ り多いと、 メ ツキを施す際に、 メ ツキ木良が発生し 、 鋼材の表面性状や耐食性が劣化するからである。  The reason why Si is set to 0.005 to 1.2% is that if the value is less than 0.05%, a large cost burden is imposed on the reduction of the Si amount, and the economic efficiency is impaired. If the content is more than 2%, when plating is applied, a metal plating is generated, and the surface properties and corrosion resistance of the steel material are deteriorated.
Mnを 0. 0 5〜 3. 0 %と したのは、 0. 0 5 %未満では精鍊 時間が長く なつて、 経済性が損なわれ、 一方、 3. 0 %より多いと 、 鋼材の加工性が大きく劣化するからである。  The reason why Mn is set to 0.05 to 3.0% is that if it is less than 0.05%, the refining time becomes longer and the economic efficiency is impaired, whereas if it is more than 3.0%, the workability of the steel material is increased. Is greatly deteriorated.
Pを 0. 0 0 1〜 0. 1 %と したのは、 0. 0 0 1 %未満では、 溶銑の予備処理に時間とコス トがかかり、 経済性が損なわれ、 一方 、 0. 1 %よ り多いと、 鋼材の加工性が大きく劣化するからである  The reason why P is set to 0.001 to 0.1% is that if it is less than 0.01%, it takes time and cost to pre-treat the hot metal, and the economic efficiency is impaired, while 0.1% If more, the workability of the steel material will be greatly deteriorated.
Sを 0. 0 0 0 1〜 0. 0 5 %としたのは、 0. 0 0 0 1 %未満 では、 溶銑の予備処理に時間とコス トがかかり経済性が損なわれ、 一方、 0. 0 5 %より多いと、 鋼材の加工性と耐食性が大きく劣化 するからである。 The reason why S is set to 0.00001 to 0.05% is that if it is less than 0.001%, pretreatment of the hot metal takes time and costs, and the economic efficiency is impaired. If the content is more than 0.5%, the workability and corrosion resistance of the steel material are significantly deteriorated.
A 1 を 0. 0 0 5〜.1 . 5 %と したのは、 0. 0 0 5 %未満では 、 Nを A 1 Nと して トラップし、 固溶 Nを減少させることができず 、 一方、 1 . 5 %より多いと、 鋼材の表面性状と加工性が劣化する からである。  The reason that A 1 is set to 0.005 to .1.5% is that if it is less than 0.05%, N is trapped as A 1 N and solute N cannot be reduced. On the other hand, if it is more than 1.5%, the surface properties and workability of the steel material deteriorate.
T . Oを 8 0 p p m以下としたのは、 8 0 p p mよ り多いと、 ァ ルミナ粒子の衝突頻度が増加して、 クラスターが粗大化するからで ある。 また、 T . Oが 8 0 p p mよ り多いと、 アルミナの改質に必 要な R E Mの添加量が増大して、 経済性が損なわれることになる。 本発明は、 以上の成分を基本成分とするが、 この基本成分の他に 、 それぞれの用途に応じて、 ( a ) C u、 N i 、 C r、 M oの 1種 または 2種以上、 ( b ) N b、 V、 T i の 1種または 2種以上、 お よび、 ( c ) Bの 3つの元素群から、 いずれか一つまたは二つ以上 の元素群を選択して含有させることができる。 The reason for setting T.O to 80 ppm or less is that if it is more than 80 ppm, the collision frequency of the alumina particles increases and the cluster becomes coarse. On the other hand, if T.O is more than 80 ppm, the amount of REM added required for reforming alumina increases, and economic efficiency is impaired. The present invention comprises the above components as basic components. In addition to the basic components, one or more of (a) Cu, Ni, Cr, Mo, (B) One or more of Nb, V, Ti And (c) one or more of the three element groups of B can be selected and contained.
C u、 N i 、 C r、 M oは、 いずれも、 鋼の焼入れ性を向上させ る元素であって、 C u、 N i および C r は 0. 1 %以上、 また、 M oは 0. 0 5 %以上含有させることによ り、 鋼材の強度を高めるこ とができる。 ,  Cu, Ni, Cr, and Mo are all elements that improve the hardenability of steel, and Cu, Ni, and Cr are 0.1% or more, and Mo is 0%. By adding 0.5% or more, the strength of the steel material can be increased. ,
しかし、 C uおよび Moは 1. 5 %を超えて、 また、 N i および C r は 1 0 %を超えて添加すると、 靭性および加工性を損なうおそ れがあるので、 C uは 0. 1〜 1 , 5 %、 N i および C r はともに 0. 1 1 0 %、 M oは 0. 0 5〜: L . 5 %とする。  However, if Cu and Mo exceed 1.5%, and Ni and Cr exceed 10%, toughness and workability may be impaired. 1,5%, Ni and Cr are both 0.110%, and Mo is 0.05-5: L: 5%.
N b、 V、 T i は、 いずれも、 析出強化によ り鋼の強度を向上さ せる元素であって、 N bおよび Vは◦ . 0 0 5 %以上、 また、 T i は 0. 0 0 1 %以上含有させることによって、 鋼の強度を高めるこ とができる。  Nb, V, and Ti are all elements that improve the strength of the steel by precipitation strengthening.Nb and V are ◦ .05% or more, and Ti is 0.0. By containing 0.1% or more, the strength of steel can be increased.
しかし、 N bは 0. 1 %を超えて、 Vは 0. 3 %を超えて、 また 、 T i は 0. 2 5 %を超えて添加すると、 靭性を損なうおそれがあ るので、 N bは 0. 0 0 5〜 0. 1 %、 Vは 0. 0 0 5〜 0. 3 % 、 T i は 0. 0 0 1〜 0. 2 5 %とする。  However, if Nb exceeds 0.1%, V exceeds 0.3%, and Ti exceeds 0.25%, the toughness may be impaired. Is 0.005 to 0.1%, V is 0.005 to 0.3%, and Ti is 0.0001 to 0.25%.
Bは鋼の焼入れ性を向上させ、 強度を高める元素であって、 0. 0 0 0 5 %以上含有させることによって、 鋼の強度を高めることが できる。  B is an element that improves the hardenability of the steel and increases the strength. By containing 0.0005% or more, the strength of the steel can be increased.
しかし、 0. 0 0 5 %を超えて添加すると、 Bの析出物が増加し 、 靭性を損なうおそれがあるので、 Bは、 0. 0 0 0 5〜 0. 0 0 5 %とする。  However, if added in excess of 0.05%, the precipitates of B may increase and the toughness may be impaired. Therefore, B is set to 0.0005% to 0.05%.
さ らに、 本発明においては、 铸片のスライム抽出で得られるアル ミナクラスターの最大径は 1 0 0 /x m以下が好ましい。 これは、 ァ ルミナク ラスターの最大径が 1 0 0 μ πιよ り大きいと、 鋼材を鋼製 品に加工した後、 表面欠陥や内部欠陥を形成する原因となるからで ある。 Further, in the present invention, the maximum diameter of the alumina cluster obtained by extracting the slime of the pieces is preferably 100 / xm or less. This means that when the maximum diameter of the aluminum cluster is greater than 100 μππι, This is because it causes surface defects and internal defects to be formed after processing into products.
また、 本発明においては、 铸片のスライ ム抽出で得られる 2 0 m以上のアルミナクラスターの個数は 2個 Z k g以下が好ましい。 これは、 上記個数が 2個/' k gよ り多いと、 圧延後に、 表面欠陥や 内部欠陥が生じることがあるからである。  In the present invention, the number of alumina clusters of 20 m or more obtained by slime extraction of a piece is preferably two or less Z kg. This is because if the above number is more than 2 / 'kg, surface defects and internal defects may occur after rolling.
溶鋼中への R EMの添加は、 例えば、 二次精鍊装置の C A S式精 鍊装置や R H式精鍊装置を使って溶鋼を脱酸した後に行う。 : EM は、 C e、 L a等の純金属、 R EM金属の合金または他金属との合 金のいずれでもよく、 形状は、 塊状、 粒状、 または、 ワイヤー等で あってもよい。  The addition of REM to the molten steel is performed, for example, after deoxidizing the molten steel using a secondary refiner, a CAS refiner or an RH refiner. : EM may be any of pure metals such as Ce and La, alloys of REM metals or alloys with other metals, and the shape may be massive, granular, or wire.
R EMの添加量は極微量なので、 溶鋼中の R EM濃度を均一にす るため、 R H式精鍊槽内での還流溶鋼中へ添加したり、 または、 取 鍋で添加した後、 A rガス等で攪拌することが望ましい。 また、 タ ンディ ッシュ内または铸型内の溶鋼へ R EMを添加することもでき る。  Since the amount of REM added is extremely small, in order to make the REM concentration in the molten steel uniform, it must be added to the refluxed molten steel in the RH type refining tank, or added in a ladle, and then Ar gas It is desirable to stir with such as. It is also possible to add REM to molten steel in a tundish or a type II.
〔実施例〕 〔Example〕
(実施例 1 ) .  (Example 1).
溶鋼を 2 7 0 t の転炉において吹鍊し、 その後、 所定の炭素濃度 に調整して出鋼した。 2次精練で目標の溶鋼成分に調整し、 A 1 で 脱酸した後、 ; EMを、 C e、 L a、 ミ ッシュメタル (例えば、 質 量0/。で C e : 4 5 %、 L a : 3 5 %、 P r : 6 %、 N d : 9 %、 不 可避不純物からなる合金) 、 または、 ミ ッシュメタル、 S i および F eの合金 (F e— S i — 3 0 %R EM) の形態で添加した。 その 結果の溶鋼の成分組成を表 1に示す。 The molten steel was blown in a converter of 270 t, and thereafter, the steel was adjusted to a predetermined carbon concentration and tapped. After adjusting to the target molten steel composition in the secondary refining and deoxidizing in A 1; EM, Ce, La, misch metal (for example, mass 0 /. Ce: 45%, La : 35%, Pr: 6%, Nd: 9%, alloy composed of unavoidable impurities), or alloy of misted metal, Si and Fe (Fe-Si—30% REM) ). Table 1 shows the resulting composition of molten steel.
表 1 に示す成分組成の溶鋼を、 垂直曲げ型連続铸造機によ り、 铸 造速度 1. 0〜 1. 8 m/m i n、 タンディ ッシュ内溶鋼温度 1 5 2 0〜 1 5 8 0 °Cの条件で铸造し、 2 4 5 mm厚 X I 2 0 0〜 2 2 0 0 mm幅の錶片を製造した。 The molten steel having the composition shown in Table 1 was produced by a vertical bending type continuous forming machine. Forging speed 1.0 to 1.8 m / min, temperature of molten steel in tundish 1520 to 1580 ° C, forging 245 mm thickness XI 200 to 220 mm A piece of width was manufactured.
その後、 この铸片に、 熱間圧延、 酸洗、 さらに、 必要に応じて、 冷間圧延を施し、 品質調査を行った。 熱間圧延後の板厚は 2〜 1 0 0 mmであり、 冷間圧延後の板厚は 0. 2 mmである。  Thereafter, the strip was subjected to hot rolling, pickling, and if necessary, cold rolling, and a quality survey was conducted. The thickness after hot rolling is 2 to 100 mm, and the thickness after cold rolling is 0.2 mm.
铸片から採取したサンプルにっき、 最大クラスタ一径、 クラスタ 一個数、 平均介在物組成および欠陥発生率等を調査した。 その結果 は、 表 2に示すとおりである。  (4) The maximum diameter of one cluster, the number of clusters, the average inclusion composition, the defect occurrence rate, etc. were investigated for the samples taken from the pieces. The results are shown in Table 2.
表 2から、 本発明が、 アルミナクラスターに起因する製品欠陥を 大幅に低減するものであることを確認できる。  From Table 2, it can be confirmed that the present invention significantly reduces product defects caused by alumina clusters.
なお、 表 1 と表 2における * 1〜 * 7の意味は、 以下のとおりで める。  The meanings of * 1 to * 7 in Tables 1 and 2 are as follows.
* 1 : R EMは、 C e、 L a、 P r、 N dの合計である。  * 1: REM is the sum of Ce, La, Pr, and Nd.
* 2 : MM : ミ ッシュメ タル。 質量%で、 C e : 4 5 %、 L a : 3 5 %、 P r : 6 %、 N d : 9 %、 および、 不可避不純物からなる 合金。 MM S i : R EM— S i — F e合金。 組成は R EM : 3 0 % 、 S i : 3 0 %、 残部 F e。  * 2: MM: Missing metal. An alloy consisting of 45% by mass of Ce, 35% by mass of La, 6% by mass of Pr, 9% by mass of Nd, and unavoidable impurities by mass%. MM S i: R EM— S i — Fe alloy. Composition: REM: 30%, Si: 30%, balance Fe.
* 3 : 鏡片断面から任意抽出した 1 0個の介在物の組成の平均値 。 組成は、 E D X付き S EM ( S c a n n i n g E l e c t r o n M i c r o s c o p e ) で同定した。  * 3: Average value of the composition of 10 inclusions arbitrarily extracted from the mirror section. The composition was identified by SEM with EDX (ScanningElectntronMicroscope).
* 4 : 最大クラスタ一径の測定方法は、 ( 1 ± 0. 1 ) k gの铸 片からスライム電解法で抽出 (最小メ ッシュ 2 0 μ mを使用) した 介在物を実体顕微鏡で写真撮影 ( 4 0倍) し、 写真撮影した介在物 の長径と短径の平均値を全ての介在物で求めて、 その平均値の最大 値を最大クラスタ一径と した。  * 4: The method for measuring the maximum cluster diameter is as follows: Inclusions extracted from (1 ± 0.1) kg pieces by slime electrolysis (using a minimum mesh of 20 μm) are photographed with a stereoscopic microscope ( Then, the average value of the major axis and minor axis of the photographed inclusion was calculated for all the inclusions, and the maximum value of the average was defined as the maximum cluster diameter.
クラスター個数は、 ( 1 ± 0. 1 ) k gの錄片からスライム電解 法で抽出 (最小メ ッシュ 2 0 μ mを使用) した介在物の個数であり 、 光学顕微鏡 ( 1 0 0倍) で観察した 2 0 μ πι以上の全ての介在物 の個数を、 1 k g当たりの個数に換算したものである。 The number of clusters is slime electrolysis from (1 ± 0.1) kg pieces. The number of inclusions extracted by the method (using a minimum mesh of 20 μm), and the number of all inclusions of 20 μππι or more observed with an optical microscope (100 × magnification) Is converted to the number of
* 5 : 欠陥発生率は、 以下の式による。  * 5: The defect rate is calculated by the following formula.
薄板 : 板表面でのスリパー疵発生率 〔= (スリパー疵の総長/コ ィル長) X 1 0 0 (%) 〕 。  Thin plate: Slipper flaw generation rate on the plate surface [= (total length of slipper flaws / coil length) X 100 (%)].
厚板 : 製品板での U S T欠陥発生率またはセパレーショ ン発生率 [= (欠陥が発生した板の数 Z検査した板の総数) X I 0 0 (%) なお、 シャルピー試験後の破面観察で、 セパレーシヨ ン発生の有 無を確認した。  Thick plate: UST defect occurrence rate or separation occurrence rate on the product sheet [= (number of sheets with defects Z total number of sheets inspected) XI 0 0 (%) In addition, in the fracture surface observation after the Charpy test, It was confirmed whether separation occurred.
厚板の欠陥発生率の欄において、 欠陥が U S T欠陥の場合は (U S T) 、 セパレーシヨ ン欠陥の場合は (S P R) と記載した。  In the column of the defect occurrence rate of the thick plate, if the defect is a UST defect, (UST) is indicated, and if the defect is a separation defect, (SPR) is indicated.
鋼管 : 油井管溶接部での U S T欠陥発生率 〔= (欠陥.が発生した 管の数/検査した管の総数) X 1 0 0 (%) 〕 。  Steel pipe: UST defect occurrence rate at the welded portion of the oil country tubular goods [= (number of defective pipes / total number of inspected pipes) X 100 (%)].
* 6 : 一 2 0 °Cでの圧延方向における Vノ ッチシャルピー衝擊試 験値。 試験片 5本の平均値。  * 6: V-notch Charpy impact test value in the rolling direction at 120 ° C. Average value of 5 test pieces.
* 7 : 室温における製品板の板厚方向の絞り値 〔= (引張り試験 後の破断部分の断面積/試験前の試験片の断面積) X I 0 0 (%) * 7: Aperture value in the thickness direction of the product plate at room temperature [= (cross-sectional area of fractured part after tensile test / cross-sectional area of test specimen before test) X I 0 0 (%)
} o } o
91 91
Figure imgf000018_0001
Figure imgf000018_0001
6ειοοο請 zdf/iDd LLZWi OZ OAV 表 2 6ειοοο contract zdf / iDd LLZWi OZ OAV Table 2
No. 介在物組成 *3、inass% 最大クラスタ-径 クラス -個数 欠陥発生率 衝搫吸収 板厚方向 No. Inclusion composition * 3, inass% Maximum cluster-diameter Class-number Defect incidence Impact absorption Plate thickness direction
A1203 REM酸化物 #4、 μ *4、個/ kg *5、 % エネ/レキ、、^承6、 J 絞り値 *7、% 発明例 A1 96.3 0.5 62 1.2 0.20 一 発明例 A2 96.6 2.4 ≤20 0.0 0.11 '- - 発明例 A3 94.3 3.9 ≤20 0.0 0.08 - 一 発明例 A4 84.8 6.4 ≤20 0.0 0.26 - ― 発明例 A5 90.3 7.3 ≤20 0.0 0.18 - 発明例 A6 87.1 9.8 ≤20 0.0 0.22 - 一A1 2 0 3 REM oxides # 4, mu * 4, number / kg * 5,% Energy / gravel ,, ^ Seung 6, J aperture * 7,% Invention Example A1 96.3 0.5 62 1.2 0.20 one invention example A2 96.6 2.4 ≤20 0.0 0.11 '--Invention A3 94.3 3.9 ≤20 0.0 0.08-One Invention A4 84.8 6.4 ≤20 0.0 0.26--Invention A5 90.3 7.3 ≤20 0.0 0.18-Invention A6 87.1 9.8 ≤20 0.0 0.22- one
A7 87.8 11.3 ≤20 0.0 0.25 ― 一 発明例 A8 83.8 14.4 52 0.7 0.10 ― - 発明例 A9 90.7 0.5 65 2.0' 0.23 ― - 発明例 A10 91.0 6.6 ≤20 0.0 0.26 - - 発明例 All 96.2 0.6 48 1.1 0.21 - 一 発明例 A12 96.8 2.3 ≤20 0.0 0.20 A7 87.8 11.3 ≤20 0.0 0.25--Invention example A8 83.8 14.4 52 0.7 0.10--Invention example A9 90.7 0.5 65 2.0 '0.23--Invention example A10 91.0 6.6 ≤20 0.0 0.26--Invention example All 96.2 0.6 48 1.1 0.21- I Invention example A12 96.8 2.3 ≤20 0.0 0.20
発明例 A13 94.3 3.9 ≤20 0.0 0.09 - 一 発明例 A14 84.8 6.4 ≤20 0.0 0.15 ― 発明例 A15 91.6 6.0 ≤20 0.0 0.11 - - 発明例 A16 88.4 8.4 ≤20 0.0 0.12 一 - 発明例 A17 90.0 9.0 ≤20 0.0 0.16 一 一 発明例 A18 87.1 11.1 ≤20 0.0 0.08 - 一 発明例 A19 78.6 12.6 31 0.1 0.11 一 一Invention example A13 94.3 3.9 ≤20 0.0 0.09-One Invention example A14 84.8 6.4 ≤20 0.0 0.15-Invention example A15 91.6 6.0 ≤20 0.0 0.11--Invention example A16 88.4 8.4 ≤20 0.0 0.12 One-Invention example A17 90.0 9.0 ≤20 0.0 0.16 1-1 Invention example A18 87.1 11.1 ≤20 0.0 0.08--Invention example A19 78.6 12.6 31 0.1 0.11 1-1
A20 82.8 14.8 42 0.8 0.12 - 発明例 A21 94.9 1.9 43 1.0 一 39.8 一 発明例 A22 96.6 2.4 ≤20 0.0 - 40.2 - 発明例 A23 93.1 5.1 ≤20 0.0 一 36.5 ― 発明例 A24 84.3 6.9 ≤20 0.0 9. l(UST) - 一 発明例 A25 86.0 11.6 23 0.1 4.8(SPR) ― ― 発明例 A26 82.4 14.4 43 0.6 一 58.5 発明例 A27 98.5 0.5 59 1.0 0 - 一 発明例 A28 93.7 4.5 ≤20 0.0 0.0 - 一 発明例 A29 83.3 7.9 ≤20 0.0 0.2 - 一 発明例 A30 85.0 12.6 46 0.2 0.1 - - 発明例 A31 83.5 13.3 31 0.2 0.2 一 発明例 A32 84.0 15.0 65 1.2 0.2 - 一 比較例 Bl 98.2 0.0 172 5.6 0.8 - 一 比較例 B2 91.0 0.2 115 3.1 0.6 - ― 比較例 B3 80.4 17.3 105 3.5 1.2 - 一 比較例 B4 74.9 22.0 284 7.5 1.4 - ― 比較例 B5 83.7 13.1 152 3.3 0.7 一 A20 82.8 14.8 42 0.8 0.12-Invention example A21 94.9 1.9 43 1.0-1 39.8-1 Invention example A22 96.6 2.4 ≤20 0.0-40.2-Invention example A23 93.1 5.1 ≤20 0.0-1 36.5-Invention example A24 84.3 6.9 ≤20 0.0 9. l (UST)-one invention A25 86.0 11.6 23 0.1 4.8 (SPR)--invention A26 82.4 14.4 43 0.6 one 58.5 invention A27 98.5 0.5 59 1.0 0-one invention A28 93.7 4.5 ≤20 0.0 0.0-one invention A29 83.3 7.9 ≤20 0.0 0.2-One Invention A30 85.0 12.6 46 0.2 0.1--Invention A31 83.5 13.3 31 0.2 0.2 One Invention A32 84.0 15.0 65 1.2 0.2-One Comparative Bl 98.2 0.0 172 5.6 0.8-One Comparative B2 91.0 0.2 115 3.1 0.6--Comparative example B3 80.4 17.3 105 3.5 1.2-One Comparative example B4 74.9 22.0 284 7.5 1.4--Comparative example B5 83.7 13.1 152 3.3 0.7 One
比較例 B6 99.0 0.0 181 6.8 一 21.6  Comparative Example B6 99.0 0.0 181 6.8 1 21.6
比較例 B7 98.0 0.2 103 2.5 26.5 Comparative Example B7 98.0 0.2 103 2.5 26.5
比較例 B8 72.1 19.2 172 4.8 22.3  Comparative Example B8 72.1 19.2 172 4.8 22.3
比較例 B9 99.0 0.0 186 7.3 21.5(UST)  Comparative Example B9 99.0 0.0 186 7.3 21.5 (UST)
比較例 BIO 98.0 0.2 108 3.0 13.6(SPR)  Comparative example BIO 98.0 0.2 108 3.0 13.6 (SPR)
比較例 Bll 72.1 19.2 167 4.3 31.0 比較例 B12 97.6 0.0 126 5.7 1.2  Comparative example Bll 72.1 19.2 167 4.3 31.0 Comparative example B12 97.6 0.0 126 5.7 1.2
比較例 B13 91.1 0.2 101 2.9 1.4  Comparative Example B13 91.1 0.2 101 2.9 1.4
比較例 B14 80.7 16.9 168 3.7 1.1 (実施例 2 ') Comparative Example B14 80.7 16.9 168 3.7 1.1 (Example 2 ')
溶鋼を 2 7 0 t の転炉において吹鍊し、 その後、 所定の炭素濃度 に調整して出鋼した。 2次精練で目標の溶鋼成分に調整し、 A 1 で 脱酸した後、 R EMを、 C e、 L a、 ミ ッシュメタル (例えば、 質 量0/。で C e : 4 5 %、 L a : 3 5 %、 P r : 6 %、 N d : 9 %、 不 可避不純物からなる合金) 、 または、 ミ ッシュメ タル、 S i および F eの合金 ( F e— S i — 3 0 % R E M) の形態で添加した。 その 結果の溶鋼の成分組成を表 3に示す。 The molten steel was blown in a converter of 270 t, and thereafter, the steel was adjusted to a predetermined carbon concentration and tapped. After adjusting to the target molten steel composition in the secondary refining and deoxidizing in A1, the EM, Ce, La, and misted metal (for example, mass 0 /. Ce: 45%, La : 35%, Pr: 6%, Nd: 9%, alloy consisting of unavoidable impurities) or alloy of misch metal, Si and Fe (Fe-Si—30% REM) ). Table 3 shows the resulting composition of molten steel.
表 3に示す成分組成の溶鋼を、 垂直曲げ型連続铸造機によ り、 铸 造速度 1. 0〜 1 . 8 mZm i n、 タンディ ッシュ内溶鋼温度 1 5 The molten steel with the component composition shown in Table 3 was produced by a vertical bending type continuous forming machine at a forming speed of 1.0 to 1.8 mZmin and the molten steel temperature in the tundish.
2 0〜 1 5 8 0 °Cの条件で铸造し、 2 4 5 mm厚 X I 2 0 0〜 2 2 0 0 mm幅の錶片を製造した。 It was manufactured under the condition of 20 to 580 ° C. to produce a piece having a thickness of 245 mm and a width of 200 to 220 mm.
錶片から採取したサンプルにっき、 最大クラスタ一径、 クラスタ 一個数、 铸造後の浸漬ノズルの閉塞状況等を調査した。 その結果は 、 表 4に示すとおりである。  (4) The maximum diameter of one cluster, the number of clusters, and the clogging status of the immersion nozzle after fabrication were investigated for the sample taken from the piece. The results are as shown in Table 4.
表 4から、 本発明が、 アルミナクラスターに起因する製品欠陥を 大幅に低減するものであることを確認できる。  Table 4 confirms that the present invention significantly reduces product defects caused by alumina clusters.
なお、 表 3 と表 4における * 1〜 * 4の意味は、 以下のとおりで ある。  The meanings of * 1 to * 4 in Tables 3 and 4 are as follows.
* 1 : R EM (全 R EM) は、 C e、 L a、 P r、 N dの合計で ある。 R EMと T . Oは、 R EM添加から 1分までの間に採取した 溶鋼サンプルの分析値。  * 1: R EM (all R EM) is the sum of Ce, La, Pr, and Nd. R EM and T.O are the analysis values of the molten steel sample collected within 1 minute after the addition of R EM.
* 2 : MM : ミ ッシュメ タル。 質量%で、 C e : 4 5 %、 L a : * 2: MM: Missing metal. In mass%, Ce: 45%, La:
3 5 %、 P r : 6 %、 N d : 9 %、 および、 不可避不純物からなる 合金。 MMS i : R EM— S i — F e合金。 組成は R EM : 3 0 % 、 S i : 3 0 %、 残部 F e。 An alloy consisting of 35%, Pr: 6%, Nd: 9%, and unavoidable impurities. MMS i: REM—Si—Fe alloy. Composition: REM: 30%, Si: 30%, balance Fe.
* 3 : 最大クラスタ一径の測定方法は、 ( 1 ± 0. 1 ) k gの铸 片からスライム電解法で抽出 (最小メ ッシュ 2 0 μ mを使用) した 介在物を実体顕微鏡で写真撮影 ( 4 0倍) し、 写真撮影した介在物 の長径と短径の平均値を全ての介在物で求めて、 その平均値の最大 値を最大クラスタ一径と した。 * 3: The maximum cluster diameter measurement method is (1 ± 0.1) kg kg The inclusions extracted from the piece by slime electrolysis (using a minimum mesh of 20 μm) were photographed with a stereoscopic microscope (× 40), and the average of the major and minor diameters of the photographed inclusions was calculated for all The maximum value of the average value obtained from inclusions was defined as the maximum cluster diameter.
クラスター個数は、 ( 1 ± 0. 1 ) k gの铸片からスライム電解 法で抽出 (最小メ ッシュ 2 0 μ πιを使用) した介在物の個数であり 、 光学顕微鏡 ( 1 0 0倍) で観察した 2 0 /Ζ m以上の全ての介在物 の個数を、 1 k g当たりの個数に換算したものである。  The number of clusters is the number of inclusions extracted (by using a minimum mesh of 20 μπι) from pieces of (1 ± 0.1) kg by slime electrolysis and observed with an optical microscope (100 ×). The number of all inclusions of 20 / Ζm or more was converted to the number per 1 kg.
* 4 : 铸造後に、 浸漬ノズルの内壁に付着して介在物の厚みを測 定した。 円周方向における 1 0点の厚みの平均値から、 ノズル閉塞 状況を以下のように、 レベル分けした。  * 4: After fabrication, the thickness of the inclusions on the inner wall of the immersion nozzle was measured. Based on the average value of the thickness at 10 points in the circumferential direction, the nozzle clogging status was classified into the following levels.
〇 : 付着厚さ 1 mm未満  〇: Adhesion thickness less than 1 mm
△ : 付着厚さ l 〜 5 mm  △: Adhesion thickness l to 5 mm
X : 付着厚さ 5 mm超 X: Adhesion thickness more than 5 mm
表 3 Table 3
Figure imgf000022_0001
表 4
Figure imgf000022_0001
Table 4
No. 最大クラスタ -径 クラスタ-個数 浸漬ノス'ル *3, μ m *3、個 /kg 閉塞状況 *4 発明例 A1 62 1.2 O 発明例 A2 ≤20 0.0 O 発明例 A3 ≤20 0.0 〇 発明例 A4 ≤20 0.0 O 発明例 A5 ≤20 0.0 〇 発明例 A6 ≤20 0.0 O 発明例 A7 ≤2Q 0.0 O 発明例 A8 52 0.7 〇 発明例 A9 65 0.9 〇 発明例 A10 ≤20 0.0 〇 発明例 All 48 1.1 〇 発明例 A12 ≤20 0.0 〇 発明例 A13 ≤20 0.0 〇 発明例 A14 ≤Z0 0.0 〇 発明例 A15 ≤20 0.0 O 発明例 A16 ≤20 0.0 〇 発明例 A17 ≤20 0.0 〇 発明例 A18 ≤20 0.0 o 発明例 A19 31 0.1 〇 発明例 A20 42 0.8 〇 発明例 A21 43 1.0 〇 発明例 A22 ≤20 0.0 〇 発明例 A23 ≤20 0.0 〇 発明例 A24 ≤20 0.0 〇 発明例 A25 23 0.1 o 発明例 A26 43 0.6 o 発明例 A27 59 1.0 〇 発明例 A28 ≤20 0.0 〇 発明例 A29 ≤20 0.0 〇 発明例 A30 46 0.2 〇 発明例 A31 31 0.2 o 発明例 A32 65 1.2 〇 比較例 Bl 172 5.6 X 比較例 B2 115 3.1 △ 比較例 B3 105 3.5 △ 比較例 B4 284 7.5 X 比較例 B5 181 6.8 X 比較例 B6 103 2.5 Δ 比較例 Β7 172 4.8 X 比較例 B8 176 6.3 X 比較例 B9 98 2.0 △ 比較例 BIO 177 5.3 X 比較例 Bll 126 5.7 X 比較例 B12 101 2.9 Δ 比較例 B13 168 3.7 X (実施例 3 ) No. Maximum cluster-diameter Cluster-number Immersion nozzle * 3, μm * 3, pieces / kg Blocking status * 4 Invention example A1 62 1.2 O Invention example A2 ≤20 0.0 O Invention example A3 ≤20 0.0 〇 Invention example A4 ≤20 0.0 O Invention A5 ≤20 0.0 発 明 Invention A6 ≤20 0.0 O Invention A7 ≤2Q 0.0 O Invention A8 52 0.7 〇 Invention A9 65 0.9 発 明 Invention A10 ≤20 0.0 〇 Invention All 48 1.1発 明 Invention A12 ≤20 0.0 〇 Invention A13 ≤20 0.0 〇 Invention A14 ≤Z0 0.0 発 明 Invention A15 ≤20 0.0 O Invention A16 ≤20 0.0 〇 Invention A17 ≤20 0.0 〇 Invention A18 ≤20 0.0 o Invention example A19 31 0.1 〇 Invention example A20 42 0.8 〇 Invention example A21 43 1.0 発 明 Invention example A22 ≤20 0.0 〇 Invention example A23 ≤20 0.0 発 明 Invention example A24 ≤20 0.0 〇 Invention example A25 23 0.1 o Invention example A26 43 0.6 o Invention A27 59 1.0 〇 Invention A28 ≤20 0.0 発 明 Invention A29 ≤20 0.0 発 明 Invention A30 46 0.2 発 明 Invention A31 31 0.2 o Invention A32 65 1.2 〇 Comparative Bl 172 5.6 X Comparative B2 115 3.1 △ Comparative example B3 105 3.5 △ Comparative example B4 284 7.5 X Comparative example B5 181 6.8 X Comparative example B6 103 2.5 Δ Comparative example Β7 172 4.8 X Comparative example B8 176 6.3 X Comparative example B9 98 2.0 △ Comparative example BIO 177 5.3 X Comparative example Bll 126 5.7 X Comparative Example B12 101 2.9 Δ Comparative example B13 168 3.7 X (Example 3)
溶鋼を 2 7 0 t の転炉において吹鍊し、 その後、 所定の炭素濃度 に調整して出鋼した。 2次精練で目標の溶鋼成分に調整し、 A 1 で 脱酸した後、 R E Mを、 C e、 L a、 ミ ッシュメタル (例えば、 質 量0 /。で C e : 4 5 %、 L a : 3 5 %、 P r : 6 %、 N d : 9 %、 不 可避不純物からなる合金) 、 または、 ミ ッシュメタル、 S i および F eの合金 · ( F e— S i — 3 0 % R E M) の形態で添加した。 その 結果の溶鋼の成分組成を表 5に示す。 The molten steel was blown in a converter of 270 t, and thereafter, the steel was adjusted to a predetermined carbon concentration and tapped. After adjusting to the target molten steel composition by secondary refining and deoxidizing with A1, REM, Ce, La, misch metal (for example, mass 0 /. Ce: 45%, La: 35%, Pr: 6%, Nd: 9%, alloy consisting of unavoidable impurities), or alloy of misted metal, Si and Fe · (Fe—Si—30% REM) Was added in the form of Table 5 shows the resulting composition of molten steel.
表 5に示す成分組成の溶鋼を、 垂直曲げ型連続铸造機によ り、 铸 造速度 1. 0〜: I . 8 mZm i n、 タンディ ッシュ内溶鋼温度 1 5 2 0〜 1 5 8 0 °Cの条件で錶造し、 2 4 5 mm厚 x 1 2 0 0〜2 2 0 0 mm幅の錶片を製造した。  The molten steel having the composition shown in Table 5 was produced by a vertical bending continuous casting machine at a forming speed of 1.0 to: 1.8 mZm in, and the temperature of the molten steel in the tundish was 150 to 180 ° C. Under these conditions, a piece having a thickness of 245 mm and a width of 1200 to 220 mm was produced.
その後、 この铸片に、 熱間圧延、 酸洗、 さ らに、 必要に応じて、 冷間圧延を施し、 品質調査を行った。 熱間圧延後の板厚は 2〜 1 0 0 mmであり、 冷間圧延後の板厚は 0. 2〜 1. 8 mmである。 铸片から採取したサンプルにっき、 最大クラスタ一径、 クラスタ 一個数、 欠陥発生率、 鍋ノズル閉塞状況等を調査した。 その結果は 、 表 6に示すとおりである。  Thereafter, the strip was subjected to hot rolling, pickling, and, if necessary, cold rolling, and a quality inspection was performed. The thickness after hot rolling is 2 to 100 mm, and the thickness after cold rolling is 0.2 to 1.8 mm. (4) The maximum diameter of one cluster, the number of clusters, the defect occurrence rate, the pot nozzle clogging status, etc. were investigated for the samples taken from the pieces. The results are as shown in Table 6.
表 6から、 本発明が、 アルミナクラスターに起因する製品欠陥を 大幅に低減するものであることを確認できる。  Table 6 confirms that the present invention significantly reduces product defects caused by alumina clusters.
なお、 表 5 と表 6における * 1〜* 7の意味は、 以下のとおりで ある。 '  The meanings of * 1 to * 7 in Tables 5 and 6 are as follows. '
* 1 : 全 R EMは、 介在物中に存在する R EMと、 鋼中に固溶す る R EMの合計である。 タンディ ッシュで採取した直径 3 0 mm X 高さ 6 0 mmの溶鋼サンプル中央部から、 試料 1 gを ドリルで切り 出し、 誘導結合プラズマ一質量分析装置 ( I C P— M S : I n d u c t i v e l y C o u p l e d P l a s m a M a s s S p e c t r o m e t r y) で、 R EM (C e、 L a、 P r、 N dの合 計) を分析し、 これを全 R EMと した。 * 1: Total REM is the sum of REM present in inclusions and REM dissolved in steel. A 1-g sample was cut out from the center of a molten steel sample 30 mm in diameter and 60 mm in height collected by a tundish, and then inductively coupled plasma-mass spectrometer (ICP-MS: Inductively Coupled Plasma M) ass S p REM (total of Ce, La, Pr, and Nd) was analyzed by ectrometry, and this was taken as the total REM.
なお、 質量分析装置の分析下限は各元素 0. l p p mである。 The lower limit of analysis of the mass spectrometer is 0.1 lpm.
* 2 : 固溶 R EMは以下の通り分析した。 すなわち、 コールドク ルーシプル溶解で鋼中介在物をサンプル表面に排出した後、 介在物 のないサンプル中央部から、 試料 l gを ドリルで切り出し、 I C P 一 MSで R EM (C e、 L a、 P r、 N dの合計) を分析し、 これ を固溶 R E Mと した。 * 2: Solid solution EM was analyzed as follows. That is, after the inclusions in the steel are discharged to the sample surface by cold crucible melting, the sample lg is cut out from the center of the sample without inclusions by a drill, and REM (C e, La, Pr, Nd) was analyzed, and this was defined as the solid-solution REM.
タンディ ッシュで採取した直径 3 0 mm X高さ 6 0 mmの溶鋼サ ンプル中央部から、 9 0 gの鋼片を切出し、 これをコールドクルー シブルで溶解した。 溶解は A r — 2 %H2 ガス中で実施した。 分析 下限未満でも R EM元素が定性的に検出される場合を < 0. 1 p p mと表中に示した。 A 90 g steel slab was cut out from the center of a molten steel sample with a diameter of 30 mm and a height of 60 mm sampled with a tundish and melted with a cold crucible. The dissolution was performed in Ar—2% H 2 gas. The case where the EM element is qualitatively detected even below the lower limit of analysis is shown in the table as <0.1 ppm.
なお、 コールドクルーシブル溶解の詳細は、 例えば、 CAMP— I S I J , 1 4 ( 2 0 0 1 ) , p . 8 1 7で報告されている。  The details of cold crucible lysis are reported in, for example, CAMP-ISIJ, 14 (201), p. 817.
* 3 : 最大クラスタ一径の測定方法は、 ( 1士 0. 1 ) k gの铸 片からスライム電解法で抽出 (最小メ ッシュ 2 0 μ mを使用) した 介在物を実体顕微鏡で写真撮影 ( 4 0倍) し、 写真撮影した介在物 の長径と短径の平均値を全ての介在物で求めて、 その平均値の最大 値を最大クラスタ一径と した。  * 3: The method for measuring the maximum cluster diameter is as follows: (1) 0.1 kg of a piece of slime was extracted by slime electrolysis (using a minimum mesh of 20 μm) and photographed with a stereomicroscope. Then, the average value of the major axis and minor axis of the photographed inclusion was calculated for all the inclusions, and the maximum value of the average was defined as the maximum cluster diameter.
クラスター個数は、 ( 1 ± 0. 1 ) k gの鏺片からスライム電解 法で抽出 (最小メ ッシュ 2 0 μ mを使用) した介在物の個数であり 、 光学顕微鏡 ( 1 0 0倍) で観察した 2 0 μ m以上の全ての介在物 の個数を、 1 k g当たりの個数に換算したものである。  The number of clusters is the number of inclusions extracted by using the slime electrolysis method (using a minimum mesh of 20 μm) from a piece of (1 ± 0.1) kg, and observed with an optical microscope (100 times). The number of all inclusions of 20 μm or more was converted to the number per kg.
* 4 : 欠陥発生率は、 以下の式による。  * 4: The defect rate is calculated by the following formula.
薄板 : 板表面でのスリパー疵発生率 〔 = (スリパー疵の総長ノコ ィル長) X 1 0 0 (%) 〕 。 厚板 : 製品板での U S T欠陥発生率またはセパレーシヨ ン発生率 〔= (欠陥が発生した板の数 Ζ検査した板の総数) X I 0 0 (%) なお、 シャルピー試験後の破面観察で、 セパレーシヨ ン発生の有 無を確認した。 Thin plate: Slipper flaw generation rate on the plate surface [= (total length of slipper flaw coil length) X 100 (%)]. Thick plate: UST defect occurrence rate or separation occurrence rate on product sheet [= (number of sheets with defects 総 数 total number of inspected sheets) XI 0 0 (%) In addition, in the fracture surface observation after the Charpy test, It was confirmed whether separation occurred.
厚板の欠陥発生率の欄において、 欠陥が U S T欠陥の場合は (U S T) 、 セパレーシヨン欠陥の場合は ( S P R) と記載した。  In the column of the defect occurrence rate of the thick plate, if the defect is a UST defect, (UST) is indicated, and if the defect is a separation defect, (SPR) is indicated.
鋼管 : 油井管溶接部での U S Τ欠陥発生率 〔= (欠陥が発生した 管の数 Ζ検査した管の総数) X I 0 0 (%) 〕 。  Steel pipe: U S で defect occurrence rate [= (number of defective pipes 総 数 total number of inspected pipes) X I 00 (%)] at the welded portion of the oil country tubular goods.
* 5 : - 2 0 °Cでの圧延方向における Vノ ツチシャルビ一衝撃試 験値。 試験片 5本の平均値。  * 5: V-notch impact test value in the rolling direction at-20 ° C. Average value of 5 test pieces.
* 6 : 室温における製品板の板厚方向の絞り値 〔- (引張り試験 後の破断部分の断面積 Z試験前の試験片の断面積) X I 0 0 (%)  * 6: Draw value in the thickness direction of the product plate at room temperature [-(Cross-sectional area of fractured part after tensile test Z Cross-sectional area of test specimen before test) X I 0 0 (%)
* 7 : 鍋ノズル閉塞状況は、 〇が閉塞なし、 △が閉塞はあったが 铸造速度の低下には至らなかった、 Xが閉塞によつて铸造速度を低 下させた、 である。 * 7: Pot nozzle clogging conditions were as follows: な し was not blocked, △ was blocked but 铸 did not reduce the production speed, and X decreased the production speed due to blockage.
Z Z
Figure imgf000027_0001
Cl000/l700Zdf/X3d ■ n請 OA 表 6
Figure imgf000027_0001
Cl000 / l700Zdf / X3d ■ n contract OA Table 6
No. 最大クラス 径 タラスタ-個数 欠陥発生率 衝擊吸収 板厚方向 鍋ノス'ル閉塞 *3, μ m *3、fli/kg *4、% エネルキ' - *5、 J 絞り値 *6、% 状況 *7 発明例 A1 ぐ 20 0.0 0.20 一 - 〇 発明例 A2 ぐ 20 0.0 0.11 - - O 発明例 A3 ぐ 20 0.0 0.08 - - o 発明例 A4 25 0.2 0.26 - 〇 発明例 A5 46 0.7 0.18 一 o 発明例 A6 81 1.6 0.22 一 o 発明例 A7 42 0.6 0.25 一 - o 発明例 A8 ぐ 20 0.0 0.10 一 - o 発明例 A9 23 0.1 0.23 - 一 o 発明例 A10 <20 0.0 0.26 - - 〇 発明例 All 31 0.4 0.21 - - o 発明例 A12 ぐ 20 0.0 0.20 一 - 〇 発明例 A13 ぐ 20 0.0 0.09 ― - o 発明例 A14 21 0.2 0: 15 - 〇 発明例 A15 65 1.1 0.11 - 〇 発明例 M6 21 0.3 0.12 一 o 発明例 A17 48 0.5 0.16 - - 〇 発明例 A18 ぐ 20 0.0 0.08 - - o 発明例 A19 ぐ 20 0.0 0.11 一 一 o 発明例 A20 ぐ 20 0.0 0.12 - o 発明例 A21 24 0.4 - 39.8 一 o 発明例 A22 ぐ 20 0.0 - 40.2 - o 発明例 A23 < 20 0.0 - 36.5 - 〇 発明例 A24 25 0.3 4.6(UST) 一 - 〇 発明例 A25 49 0.7 9.3(SPR) - - o 発明例 A26 93 1.8 - 58.5 〇 発明例 A27 38 0.5 0.00 - - 〇 発明例 A28 ぐ 20 0.0 0.00 一 - 〇 発明例 A29 ぐ 20 0.0 0.20 - 〇 発明例 A30 ぐ 20 0.0 0.10 一 〇 発明例 A31 27 0.2 0.20 一 - 〇 発明例 A32 ぐ 20 0.0 0.20 一 - 〇 比較例 Bl 152 5.6 0.80 - 一 Δ 比較例 B2 115 3.1 0.60 - - Δ 比較例 B3 127 2.5 0.56 - - △ 比較例 B4 158 3.9 0.60 - - X 比較例 B5 232 3.3 0.70 - - X 比較例 B6 134 6.8 一 21.6 , 一 厶 比較例 B7 193 2.5 ' - 26.5 厶 比較例 B8 155 4.8 22.3 X 比較例 B9 122 2.1 16.3(UST) Δ 比較例 BIO 201 3.0 23.6(SP ) X 比較例 Bll 172 4.3 31.0 Δ 比較例 B12 166 5.7 1.7 Δ 比較例 B13 120 2.9 1.4 X 比較例 B14 152 3.5 1.6 厶 比較例 B15 217 3.7 1.1 X 〔産業上の利用可能性〕 No. Maximum class diameter Turaster-Number of defects Occurrence of absorption Impact absorption Plate thickness direction Pot nozzle's occlusion * 3, μm * 3, fli / kg * 4,% Energy '-* 5, J Aperture value * 6,% Status * 7 Invention example A1 200.0 0.20 1-〇 Invention example A2 20 0.0 0.11--O Invention example A3 200.0 0.08--o Invention example A4 25 0.2 0.26-〇 Invention example A5 46 0.7 0.18 1 o Invention example A6 81 1.6 0.22 one o Invention example A7 42 0.6 0.25 one-o Invention example A8 20 0.0 0.10 one-o Invention example A9 23 0.1 0.23-one o Invention example A10 <20 0.0 0.26--〇 Invention example All 31 0.4 0.21 --o Invention example A12 200.0 0.20 1-〇 Invention example A13 20 0.0 0.09--o Invention example A14 21 0.2 0: 15-発 明 Invention example A15 65 1.1 0.11-発 明 Invention example M6 21 0.3 0.12 1 o Invention Example A17 48 0.5 0.16--〇 Inventive example A18 20 20 0.0 0.08--o Inventive example A19 20 0.0 0.11 11 o Inventive example A20 20 0.0 0.12-o Inventive example A21 24 0.4-39.8 1 o Inventive example A22 20 0.0-40.2-o Invention example A23 <20 0.0-36.5-〇 Invention example A24 2 5 0.3 4.6 (UST) 1-〇 Invention A25 49 0.7 9.3 (SPR)--o Invention A26 93 1.8-58.5 発 明 Invention A27 38 0.5 0.00--〇 Invention A28 200.0 0.00 1-〇 Invention A29 gu 20 0.0 0.20-〇 Invention example A30 gu 20 0.0 0.10 one 一 Invention example A31 27 0.2 0.20 one-発 明 Invention example A32 gu 20 0.0 0.20 one-比較 Comparative example Bl 152 5.6 0.80-one Δ Comparative example B2 115 3.1 0.60 --Δ Comparative example B3 127 2.5 0.56--△ Comparative example B4 158 3.9 0.60--X Comparative example B5 232 3.3 0.70--X Comparative example B6 134 6.8 1 21.6, 1mm Comparative example B7 193 2.5 '-26.5 Example B8 155 4.8 22.3 X Comparative B9 122 2.1 16.3 (UST) Δ Comparative BIO 201 3.0 23.6 (SP) X Comparative Bll 172 4.3 31.0 Δ Comparative B12 166 5.7 1.7 Δ Comparative B13 120 2.9 1.4 X Comparative B14 152 3.5 1.6 mm Comparative Example B15 217 3.7 1.1 X [Industrial applicability]
本発明によれば、 A 1 を用いて脱酸した鋼材であって、 最終製品 において、 粗大なアルミナクラスターに起因する表面疵ゃ内部欠陥 が極めて少ない鋼材を得ることができる。  According to the present invention, it is possible to obtain a steel material that has been deoxidized using A 1 and that has very few surface flaws and internal defects due to coarse alumina clusters in the final product.
さらに、 本発明によれば、 連続铸造において、 溶鋼中のアルミナ が浸漬ノズルへ付着するのを防止することができる。  Further, according to the present invention, it is possible to prevent the alumina in the molten steel from adhering to the immersion nozzle in the continuous production.
よって、 本発明は、 A 1 を用いて脱酸した鋼における従来の問題 点を一掃したアルミナクラスターの少ない鋼材を提供するものであ り、 産業の発展に寄与するところが極めて大である。  Therefore, the present invention is to provide a steel material with few alumina clusters that has eliminated the conventional problems in steel deoxidized using A 1, and greatly contributes to industrial development.

Claims

請 求 の 範 囲 The scope of the claims
1. A 1 を用いて脱酸し、 C e、 L a、 P rおよび N dの 1種ま たは 2種以上の希土類元素 (R EM) を添加した溶鋼を鍀造した鋼 材であって、 1. A steel material that has been deoxidized using A1 and made of molten steel to which one or more rare earth elements (REM) of Ce, La, Pr, and Nd have been added. hand,
アルミナとの EM酸化物を主成分とする酸化物系介在物中の R E M酸化物の含有量が、 該酸化物介在物に対する質量%で、 0. 5 % 以上 1 5 %以下である  The content of the REM oxide in the oxide inclusions mainly composed of the EM oxide with alumina is 0.5% or more and 15% or less in mass% based on the oxide inclusions.
ことを特徴とするアルミナクラスターの少ない鋼材。 . A steel material with less alumina clusters. .
2. A 1 を用いて脱酸し、 C e、 L a、 P rおよび N dの 1種ま たは 2種以上の希土類元素 (R EM) を添加した溶鋼を铸造した鋼 材であって、  2. A steel material which is deoxidized using A1 and is made of molten steel to which one or more rare earth elements (REM) of Ce, La, Pr and Nd are added. ,
鋼材中の全 R EMの全酸素 (T. O) に対する質量比 : R EM/ T . Oが 0. 0 5以上 0. 5以下であり、 かつ、  Mass ratio of total REM to total oxygen (TO) in steel: REM / TO is 0.05 or more and 0.5 or less, and
アルミナと R EM酸化物を主成分とする酸化物系介在物中の R E M酸化物の含有量が、 該酸化物介在物に対する質量%で、 0. 5 % 以上 1 5 %以下である  The content of the REM oxide in the oxide-based inclusions mainly composed of alumina and the REM oxide is 0.5% or more and 15% or less by mass% based on the oxide inclusions.
ことを特徴とするアルミナクラスターの少ない鋼材。 A steel material with less alumina clusters.
3. A 1 を用いて脱酸し、 C e、 L a、 P rおよび N dの 1種ま たは 2種以上の希土類元素 (R EM) を添加した溶鋼を錶造した鋼 材であって、  3. A steel material that has been deoxidized using A1 and forged into molten steel to which one or more rare earth elements (REM) of Ce, La, Pr, and Nd have been added. hand,
全 R EM量が 0. 1 p p m以上 1 0 p p m未満であり、 かつ、 固溶 R EM量が 1 p p m未満である  The total amount of REM is at least 0.1 ppm and less than 10 ppm, and the amount of solid solution REM is less than 1 ppm
ことを特徴とするアルミナクラスターの少ない鋼材。 A steel material with less alumina clusters.
4. 前記鋼材が、 質量%で、 C : 0. 0 0 0 5〜 1. 5 %、 S i : 0. 0 0 5〜 1 . 2 %、 Mn : 0. 0 5〜 3. 0 %、 P : 0. 0 0 1〜 0. 1 %、 S : 0. 0 0 0 1〜 0. 0 5 %、 A 1 : 0. 0 0 5〜; L . 5 %、 T . O : 8 0 p p m以下を含有し、 残部が F eおよ び不可避的木純物からなることを特徴とする請求の範囲 1〜 3のい ずれかに記載のアルミナクラスターの少ない鋼材。 4. The steel material is represented by mass%, C: 0.005 to 1.5%, Si: 0.05 to 1.2%, Mn: 0.05 to 3.0%, P: 0.001 to 0.1%, S: 0.01 to 0.05%, A1: 0.00 5 to; L. 5%, T. O: 80 ppm or less, with the balance being Fe and inevitable wood pure matter. A steel material having less alumina clusters as described.
5. 前記鋼材が、 さらに、 質量%で、 C u : 0. :!〜 1. 5 %、 N i : 0. 1〜 1 0. 0 %、 C r : 0. 1〜: L O . 0 %、 M o : 0 . 0 5〜 1. 5 %の 1種または 2種以上を含有することを特徴とす る請求の範囲 4に記載のアルミナクラスターの少ない鋼材。  5. The steel material further contains, by mass%, Cu: 0:! To 1.5%, Ni: 0.1 to 10.0%, Cr: 0.1 to: LO 0.0%. 5. The steel material having a small amount of alumina clusters according to claim 4, comprising one or more of Mo: 0.05 to 1.5%.
6. 前記鋼材が、 さらに、 質量%で、 N b : 0. 0 0 5〜 0. 1 %、 V : 0. 0 0 5〜 0. 3 %、 T i : 0. 0 0 1〜 0. 2 5 %の 1種または 2種以上を含有することを特徴とする請求の範囲 4また は 5に記載のアルミナクラスターの少ない鋼材。  6. The steel material further contains, by mass%, Nb: 0.05 to 0.1%, V: 0.05 to 0.3%, Ti: 0.001 to 0. 6. The steel material having a small amount of alumina clusters according to claim 4 or 5, wherein the steel material contains 25% of one or more kinds.
7. 前記鋼材が、 さ ら.に、 質量%で、 B : 0. 0 0 0 5〜 0. 0 0 5 %を含有することを特徴とする請求の範囲 4〜 6のいずれかに 記載のアルミナク ラスターの少ない鋼材。  7. The steel according to any one of claims 4 to 6, wherein the steel material further contains B: 0.0005 to 0.005% by mass%. Steel material with less alumina cluster.
8. 前記鋼材をスライム抽出して得られるアルミナクラスターの 最大径が 1 0 0 μ πι以下であることを特徵とする請求の範囲 1〜 3 のいずれかに記載のアルミナクラスタ の少ない鋼材。  8. The steel material according to any one of claims 1 to 3, wherein the maximum diameter of the alumina cluster obtained by slime extraction of the steel material is 100 µππ or less.
9. 前記アルミナクラスターにおいて、 2 0 μ πι以上のアルミナ クラスターの個数が 2個/ k g以下であることを特徴とする請求の 範囲 8に記載のアルミナクラスターの少ない鋼材。  9. The steel material having a small amount of alumina clusters according to claim 8, wherein in the alumina clusters, the number of alumina clusters of 20 μπι or more is 2 / kg or less.
PCT/JP2004/000139 2003-06-12 2004-01-13 Steel product reduced in alumina cluster WO2004111277A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-167831 2003-06-12
JP2003167831A JP4430341B2 (en) 2003-06-12 2003-06-12 Steel material with few alumina clusters
JPPCT/JP03/09274 2003-07-22
PCT/JP2003/009274 WO2004009854A1 (en) 2002-07-23 2003-07-22 Steel product reduced in amount of alumina cluster

Publications (1)

Publication Number Publication Date
WO2004111277A1 true WO2004111277A1 (en) 2004-12-23

Family

ID=33554234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/000139 WO2004111277A1 (en) 2003-06-12 2004-01-13 Steel product reduced in alumina cluster

Country Status (1)

Country Link
WO (1) WO2004111277A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011049755A1 (en) * 2009-10-19 2011-04-28 Ati Properties, Inc. High hardness, high toughness iron-base alloys and methods for making same
US9121088B2 (en) 2007-08-01 2015-09-01 Ati Properties, Inc. High hardness, high toughness iron-base alloys and methods for making same
US9182196B2 (en) 2011-01-07 2015-11-10 Ati Properties, Inc. Dual hardness steel article
CN105694351A (en) * 2016-01-27 2016-06-22 太仓捷公精密金属材料有限公司 Wear-resistant hardware product
US9657363B2 (en) 2011-06-15 2017-05-23 Ati Properties Llc Air hardenable shock-resistant steel alloys, methods of making the alloys, and articles including the alloys
EP3221485A1 (en) * 2014-11-18 2017-09-27 L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Materials of construction for use in high pressure hydrogen storage in a salt cavern
CN111235350A (en) * 2019-11-20 2020-06-05 首钢水城钢铁(集团)有限责任公司 Strengthening method for adding vanadium-titanium balls in construction steel bar smelting process
CN113549808A (en) * 2021-06-01 2021-10-26 包头钢铁(集团)有限责任公司 Production method of rare earth microalloyed Q355B low-alloy high-strength structural steel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10183229A (en) * 1996-12-20 1998-07-14 Kawasaki Steel Corp Production of high carbon steel wire rod
JPH11323426A (en) * 1998-05-18 1999-11-26 Kawasaki Steel Corp Production of high clean steel
US6117389A (en) * 1997-09-29 2000-09-12 Kawasaki Steel Corporation Titanium killed steel sheet and method
JP2001026842A (en) * 1999-07-09 2001-01-30 Kawasaki Steel Corp Cold rolled steel sheet excellent in surface property and internal property and its production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10183229A (en) * 1996-12-20 1998-07-14 Kawasaki Steel Corp Production of high carbon steel wire rod
US6117389A (en) * 1997-09-29 2000-09-12 Kawasaki Steel Corporation Titanium killed steel sheet and method
JPH11323426A (en) * 1998-05-18 1999-11-26 Kawasaki Steel Corp Production of high clean steel
JP2001026842A (en) * 1999-07-09 2001-01-30 Kawasaki Steel Corp Cold rolled steel sheet excellent in surface property and internal property and its production

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9593916B2 (en) 2007-08-01 2017-03-14 Ati Properties Llc High hardness, high toughness iron-base alloys and methods for making same
US8444776B1 (en) 2007-08-01 2013-05-21 Ati Properties, Inc. High hardness, high toughness iron-base alloys and methods for making same
US9121088B2 (en) 2007-08-01 2015-09-01 Ati Properties, Inc. High hardness, high toughness iron-base alloys and methods for making same
US9951404B2 (en) 2007-08-01 2018-04-24 Ati Properties Llc Methods for making high hardness, high toughness iron-base alloys
AU2010308415B2 (en) * 2009-10-19 2014-05-15 Ati Properties, Inc. High hardness, high toughness iron-base alloys and methods for making same
WO2011049755A1 (en) * 2009-10-19 2011-04-28 Ati Properties, Inc. High hardness, high toughness iron-base alloys and methods for making same
US10113211B2 (en) 2011-01-07 2018-10-30 Ati Properties Llc Method of making a dual hardness steel article
US9182196B2 (en) 2011-01-07 2015-11-10 Ati Properties, Inc. Dual hardness steel article
US10858715B2 (en) 2011-01-07 2020-12-08 Ati Properties Llc Dual hardness steel article
US9657363B2 (en) 2011-06-15 2017-05-23 Ati Properties Llc Air hardenable shock-resistant steel alloys, methods of making the alloys, and articles including the alloys
EP3221485A1 (en) * 2014-11-18 2017-09-27 L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Materials of construction for use in high pressure hydrogen storage in a salt cavern
CN105694351A (en) * 2016-01-27 2016-06-22 太仓捷公精密金属材料有限公司 Wear-resistant hardware product
CN111235350A (en) * 2019-11-20 2020-06-05 首钢水城钢铁(集团)有限责任公司 Strengthening method for adding vanadium-titanium balls in construction steel bar smelting process
CN111235350B (en) * 2019-11-20 2021-09-17 首钢水城钢铁(集团)有限责任公司 Strengthening method for adding vanadium-titanium balls in construction steel bar smelting process
CN113549808A (en) * 2021-06-01 2021-10-26 包头钢铁(集团)有限责任公司 Production method of rare earth microalloyed Q355B low-alloy high-strength structural steel

Similar Documents

Publication Publication Date Title
WO2004009854A1 (en) Steel product reduced in amount of alumina cluster
JP7119642B2 (en) steel manufacturing method
JP7087727B2 (en) Steel manufacturing method
WO2004111277A1 (en) Steel product reduced in alumina cluster
JP7087723B2 (en) Steel manufacturing method
JP7087724B2 (en) Steel manufacturing method
JP4430341B2 (en) Steel material with few alumina clusters
JP7087728B2 (en) Steel manufacturing method
JP4022175B2 (en) Manufacturing method of steel material with few alumina clusters
JP3984567B2 (en) Manufacturing method of steel material with few alumina clusters
CN112368402B (en) Method for producing steel
JP4246553B2 (en) Steel material with few alumina clusters and its manufacturing method
JP7119641B2 (en) steel manufacturing method
JP4430285B2 (en) Manufacturing method of steel material with few alumina clusters
JP7087726B2 (en) Steel manufacturing method
JP7087725B2 (en) Steel manufacturing method
JP3990653B2 (en) Manufacturing method of steel material with few alumina clusters
JP7256381B2 (en) Manufacturing method of killed steel

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 86/DELNP/2006

Country of ref document: IN

122 Ep: pct application non-entry in european phase