JP2007254577A - Polyamide porous membrane and method for producing the same - Google Patents

Polyamide porous membrane and method for producing the same Download PDF

Info

Publication number
JP2007254577A
JP2007254577A JP2006080259A JP2006080259A JP2007254577A JP 2007254577 A JP2007254577 A JP 2007254577A JP 2006080259 A JP2006080259 A JP 2006080259A JP 2006080259 A JP2006080259 A JP 2006080259A JP 2007254577 A JP2007254577 A JP 2007254577A
Authority
JP
Japan
Prior art keywords
polyamide
solution
phase
gel
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006080259A
Other languages
Japanese (ja)
Other versions
JP4841985B2 (en
Inventor
Nobuyuki Tanaka
信行 田中
Kaur Randhawa Jaspreet
コア ランドハワ ジャスプリート
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunma University NUC
Original Assignee
Gunma University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunma University NUC filed Critical Gunma University NUC
Priority to JP2006080259A priority Critical patent/JP4841985B2/en
Publication of JP2007254577A publication Critical patent/JP2007254577A/en
Application granted granted Critical
Publication of JP4841985B2 publication Critical patent/JP4841985B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a polyamide porous membrane that has a function as a scaffold for large cells, microorganism raise, catalyst, etc., by developing a honeycomb porous structure having a larger diameter on a porous membrane surface layer and to provide a method for producing the same. <P>SOLUTION: The method for producing a polyamide porous membrane comprises dissolving a polyamide in an alcohol solution of calcium chloride to prepare a solution of polyamide, allowing a container into which the solution is poured and which has an opening part at 0-40°C at 60-100% relative humidity for 3-5 days, evaporating a solvent contained in the solution, humidifying the solution, to form a gel-like thin film on the surface of the solution, adding water from the surface of the gel-like thin film to develop a three-phase structure of a solid phase-gel phase-solution phase on the gel-like thin film part in contact with water, taking out only the gel phase from the realized three-phase structure to the outside of the container, coating a substrate with the gel phase, immersing the substrate coated with the gel phase in water, to coagulate the coated membrane part. The surface layer has a function as a scaffold and the polyamide porous membrane is suitable for culture of large cells, microorganism raise, etc., and is produced in a relatively short time without wasting a polyamide. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、表層にハニカム多孔構造を発現させ、スカホールド機能(scaffold function)を持たせたポリアミド多孔質膜及びその製造方法に関するものである。   The present invention relates to a porous polyamide film having a honeycomb porous structure on the surface layer and having a scaffold function, and a method for producing the same.

ポリアミド多孔質膜は、ポリアミドのメタルハライド・アルコール溶液から、吸湿を伴う溶液凝固をとおして容易に調製することができる。
また、このような多孔質膜として、ハニカム状多孔性高分子薄膜とその構造制御、並びにこのハニカム状多孔性高分子薄膜を使用した生体組織工学への応用展開が紹介されている(例えば、非特許文献1参照。)。この非特許文献1によると、テンプレート法により多孔質膜を作製することで、規則的にマイクロメーターサイズの孔の開いた高分子薄膜が形成することができることが開示されている。また、上記方法により作製したハニカム状多孔性高分子薄膜を細胞培養基板として使用することで、細胞に組織形成を促し、秩序構造を持った細胞集合体を作らせることができることが開示されている。
社団法人高分子学会行事委員会企画、株式会社エヌ・ティー・エス編集企画部編集製作、「ポリマーフロンティア21シリーズ17 スペシャリティポリマー −要求特性を満たすナノレベルの材料設計−」、初版第一刷、株式会社エヌ・ティー・エス、2003年5月29日発行、p.113〜148
The polyamide porous membrane can be easily prepared from a polyamide metal halide / alcohol solution through solution coagulation with moisture absorption.
In addition, as such a porous membrane, a honeycomb-like porous polymer thin film, its structure control, and application development to biological tissue engineering using this honeycomb-like porous polymer thin film are introduced (for example, non-porous). (See Patent Document 1). According to this Non-Patent Document 1, it is disclosed that a polymer thin film having regularly micrometer-sized pores can be formed by producing a porous film by a template method. Further, it is disclosed that by using a honeycomb-like porous polymer thin film produced by the above method as a cell culture substrate, cells can be promoted to form a tissue, and a cell aggregate having an ordered structure can be made. .
Organized by the Society of Polymer Science, Inc., edited by NTS Editorial Planning Department, “Polymer Frontier 21 Series 17 Specialty Polymers-Nano-level Material Design that Meets Required Properties”, First Edition, First Printing, Stock Company NTS, issued on May 29, 2003, p. 113-148

しかしながら非特許文献1に示される多孔性高分子薄膜では、その表面に孔径1〜10μmの範囲にある多孔を持つハニカム構造の膜しか紹介されておらず、この孔径にあわない大きな細胞や微生物飼育、触媒等のスカホールドとしての機能に欠けていた。   However, in the porous polymer thin film shown in Non-Patent Document 1, only a honeycomb-structured film having a pore having a pore diameter in the range of 1 to 10 μm is introduced on its surface, and large cells and microorganisms that do not meet this pore diameter are introduced. It lacked the function as a scaffold for catalysts and the like.

本発明の目的は、多孔質膜表層により大きな孔径を有するハニカム多孔構造を発現させることにより、大きな細胞や微生物飼育、触媒等のスカホールドとしての機能を持たせた、ポリアミド多孔質膜及びその製造方法を提供することにある。
本発明の別の目的は、比較的短時間に製造することができるポリアミド多孔質膜の製造方法を提供することにある。
An object of the present invention is to provide a porous polyamide membrane having a function as a scaffold for large cells, microorganism breeding, catalysts, etc. by producing a honeycomb porous structure having a large pore diameter on the surface of the porous membrane, and production thereof It is to provide a method.
Another object of the present invention is to provide a method for producing a porous polyamide membrane that can be produced in a relatively short time.

請求項1に係る発明は、表層が孔径5〜50μmのハニカム多孔構造を有し、内部が三次元網目状に形成され、かつ網目内部の空孔が連続気孔構造を有し、ハニカム多孔構造と網目状構造が連通して形成されたことを特徴とするポリアミド多孔質膜である。
請求項2に係る発明は、請求項1に係る発明であって、ポリアミドがポリカプロラクタム、ポリヘキサメチレンアジポアミド又はポリヘキサメチレンセバカミドであるポリアミド多孔質膜である。
In the invention according to claim 1, the surface layer has a honeycomb porous structure with a pore diameter of 5 to 50 μm, the inside is formed in a three-dimensional network, and the pores inside the network have a continuous pore structure, It is a polyamide porous film characterized in that a network structure is formed in communication.
The invention according to claim 2 is the polyamide porous membrane according to claim 1, wherein the polyamide is polycaprolactam, polyhexamethylene adipamide or polyhexamethylene sebacamide.

請求項3に係る発明は、塩化カルシウムのアルコール溶液にポリアミドを溶解してポリアミド溶解液を調製する工程と、上部に開口部を有する容器に調製したポリアミド溶解液を注入する工程と、ポリアミド溶解液を注入した開口部を有する容器を、0〜40℃の温度、60〜100%の相対湿度下で、3〜5日間静置することにより、ポリアミド溶解液中に含まれる溶媒を蒸発させ、かつポリアミド溶解液を吸湿させることにより、ポリアミド溶解液表面にゲル状の薄膜を形成する工程と、容器内部のポリアミド溶解液表面に形成されたゲル状の薄膜の表面の上から水を添加して、添加した水と接するゲル状の薄膜部分に固体相−ゲル相−溶液相の三相構造を出現させる工程と、容器内部のポリアミド溶解液表面に出現させた三相構造のうちゲル相のみを容器外に取出す工程と、取出したゲル相を基材に塗布する工程と、ゲル相を塗布した基材を水中に浸漬して塗布した膜部分を凝固させる工程とを含むポリアミド多孔質膜の製造方法である。
請求項4に係る発明は、請求項3に係る発明であって、溶解液の調製が、塩化カルシウムのアルコール溶液にポリアミドを溶解した後、24時間以上100日以下の期間熟成することにより行われるポリアミド多孔質膜の製造方法である。
請求項5に係る発明は、請求項3に係る発明であって、溶解液表面の上から添加する水が純水、アルコール系水溶液又は金属塩化物系水溶液であるポリアミド多孔質膜の製造方法である。
請求項6に係る発明は、請求項3に係る発明であって、ポリアミドがポリカプロラクタム、ポリヘキサメチレンアジポアミド又はポリヘキサメチレンセバカミドであるポリアミド多孔質膜の製造方法である。
The invention according to claim 3 includes a step of preparing a polyamide solution by dissolving polyamide in an alcohol solution of calcium chloride, a step of injecting the prepared polyamide solution into a container having an opening at the top, and a polyamide solution The container having the opening filled with the solution is allowed to stand for 3 to 5 days at a temperature of 0 to 40 ° C. and a relative humidity of 60 to 100% to evaporate the solvent contained in the polyamide solution, and A process of forming a gel-like thin film on the surface of the polyamide solution by absorbing the polyamide solution, and adding water from above the surface of the gel-like thin film formed on the surface of the polyamide solution in the container, A process of causing a solid phase-gel phase-solution phase to appear in the gel-like thin film part in contact with the added water, and a three-phase structure appearing on the surface of the polyamide solution inside the container. Porous polyamide including a step of taking out only the gel phase out of the container, a step of applying the taken out gel phase to the substrate, and a step of solidifying the applied membrane part by immersing the substrate coated with the gel phase in water It is a manufacturing method of a membrane.
The invention according to claim 4 is the invention according to claim 3, wherein the solution is prepared by aging for a period of 24 hours to 100 days after dissolving the polyamide in the alcohol solution of calcium chloride. It is a manufacturing method of a polyamide porous membrane.
The invention according to claim 5 is the method according to claim 3, wherein the water added from above the surface of the solution is pure water, an alcoholic aqueous solution or a metal chloride aqueous solution. is there.
The invention according to claim 6 is the method according to claim 3, wherein the polyamide is polycaprolactam, polyhexamethylene adipamide, or polyhexamethylene sebacamide.

本願請求項1に係るポリアミド多孔質膜は、表層が孔径5〜50μmのハニカム多孔構造を有し、内部が三次元網目状に形成され、かつ網目内部の空孔が連続気孔構造を有し、ハニカム多孔構造と網目状構造が連通して形成されたことを特徴とする。   The polyamide porous membrane according to claim 1 of the present invention has a honeycomb porous structure with a surface diameter of 5 to 50 μm, the inside is formed in a three-dimensional network, and the pores inside the network have a continuous pore structure, A honeycomb porous structure and a network structure are formed in communication with each other.

本願請求項3に係る製造方法は、塩化カルシウムのアルコール溶液にポリアミドを溶解してポリアミド溶解液を調製する工程と、上部に開口部を有する容器に調製したポリアミド溶解液を注入する工程と、ポリアミド溶解液を注入した開口部を有する容器を、0〜40℃の温度、60〜100%の相対湿度下で、3〜5日間静置することにより、ポリアミド溶解液中に含まれる溶媒を蒸発させ、かつポリアミド溶解液を吸湿させることにより、ポリアミド溶解液表面にゲル状の薄膜を形成する工程と、容器内部のポリアミド溶解液表面に形成されたゲル状の薄膜の表面の上から水を添加して、添加した水と接するゲル状の薄膜部分に固体相−ゲル相−溶液相の三相構造を出現させる工程と、容器内部のポリアミド溶解液表面に出現させた三相構造のうちゲル相のみを容器外に取出す工程と、取出したゲル相を基材に塗布する工程と、ゲル相を塗布した基材を水中に浸漬して塗布した膜部分を凝固させる工程とを含む。   A manufacturing method according to claim 3 of the present invention includes a step of dissolving a polyamide in an alcohol solution of calcium chloride to prepare a polyamide solution, a step of injecting the prepared polyamide solution into a container having an opening on the top, and a polyamide. By leaving the container having the opening into which the solution is injected at a temperature of 0 to 40 ° C. and a relative humidity of 60 to 100% for 3 to 5 days, the solvent contained in the polyamide solution is evaporated. Further, water is added from above the surface of the gel-like thin film formed on the surface of the polyamide solution inside the container and the step of forming a gel-like thin film on the surface of the polyamide solution by absorbing the polyamide solution. The step of causing a three-phase structure of a solid phase-gel phase-solution phase to appear in the gel-like thin film portion in contact with the added water, and the three phases appearing on the surface of the polyamide solution inside the container The step of taking out only the gel phase out of the container, the step of applying the taken out gel phase to the base material, and the step of solidifying the applied film part by immersing the base material coated with the gel phase in water Including.

本発明のポリアミド多孔質膜の表層に形成されたハニカム多孔構造が、孔径5〜50μmの範囲内に制御されているため、この孔径にあった大きな細胞や微生物飼育、触媒などのスカホールドとしての機能を持たせることができる。   Since the honeycomb porous structure formed in the surface layer of the polyamide porous membrane of the present invention is controlled within a pore diameter range of 5 to 50 μm, it serves as a scaffold for large cells, microbial breeding, catalysts, etc. suitable for this pore diameter. Can have a function.

以下、本発明の最良の実施の形態について説明する。
本発明のポリアミドは、ポリカプロラクタム(ナイロン6)、ポリヘキサメチレンアジポアミド(ナイロン66)又はポリヘキサメチレンセバカミド(ナイロン610)のいずれかである。ポリアミドとしては粒子状もしくは綿状のものが用いられる。先ず、このポリアミドを塩化カルシウムのアルコール溶液に溶解してポリアミド溶解液を調製する。アルコール溶液は、メチルアルコール又はエチルアルコール100重量%に対して塩化カルシウム15〜30重量%、好ましくは19〜25重量%を添加混合して調製される。19〜25重量%の濃度にすると、ポリカプロラクタムがよく溶けて排除体積のない理想的な形態をとることができる。ポリアミドはアルコール100重量%に対して6〜9重量%添加する。ポリアミドの添加量が下限値未満では膜にならずに豆腐状になってしまう不具合があり、上限値(25重量%)を越えるほど膜が脆くなる不具合がある。ポリアミド溶解液は、塩化カルシウムのアルコール溶液にポリアミドを溶解した後、直ちにポリアミド多孔質膜の製造に使用してもよいが、24時間以上100日以下の期間熟成すると、アルコール、カルシウムイオン、そしてポリアミドのアミド基との間の相互作用が安定し、好ましい。
The best mode of the present invention will be described below.
The polyamide of the present invention is either polycaprolactam (nylon 6), polyhexamethylene adipamide (nylon 66) or polyhexamethylene sebacamide (nylon 610). As the polyamide, a particulate or cotton-like one is used. First, this polyamide is dissolved in an alcohol solution of calcium chloride to prepare a polyamide solution. The alcohol solution is prepared by adding and mixing 15 to 30% by weight, preferably 19 to 25% by weight of calcium chloride with respect to 100% by weight of methyl alcohol or ethyl alcohol. When the concentration is 19 to 25% by weight, the polycaprolactam can be dissolved well and can take an ideal form with no excluded volume. Polyamide is added in an amount of 6 to 9% by weight based on 100% by weight of alcohol. When the amount of polyamide added is less than the lower limit, there is a problem that the film does not become a film but becomes tofu-like, and when the upper limit (25% by weight) is exceeded, the film becomes brittle. The polyamide solution may be used immediately after the polyamide is dissolved in an alcohol solution of calcium chloride for the production of a polyamide porous membrane. However, when it is aged for a period of 24 hours to 100 days, alcohol, calcium ions and polyamide The interaction with the amide group is stable and preferable.

次いで、上記調製したポリアミド溶解液を上部に開口部を有する容器(例えばガラスシリンダー)に所定量注入する。ポリアミド溶解液を注入した開口部を有する容器を、0〜40℃の温度、60〜100%の相対湿度下で、3〜5日間静置する。静置する容器の開口部には蓋等はせず、そのまま容器上部を開放した状態にしておく。上記静置は恒温恒湿に保たれたデシケータ中に容器を収容することが好ましい。温度が下限値未満ではデシケータ中の調湿水が凍結してしまう不具合があり、上限値を越えるとポリアミド溶解液中に気泡が生じる不具合がある。また相対湿度が下限値未満では吸湿に時間がかかる不具合がある。好ましい温度は10〜30℃、より好ましい温度は25℃である。また好ましい相対湿度は80〜100%、より好ましい相対湿度は100%である。ポリアミド溶解液を容器内で静置することにより、溶解液表面から溶媒であるアルコールの蒸発とともに、吸湿が始まる。ポリアミド溶解液を注入した容器の静置は、上記温度条件並びに上記湿度条件によって、溶媒であるアルコールの蒸発や吸湿度合いが変化するため、静置時間も多少前後するが、3〜5日間程度静置することが好ましい。上記期間ポリアミド溶解液を注入した容器を静置することにより、ポリアミド溶解液表面にゲル状の薄膜が形成される。   Next, a predetermined amount of the prepared polyamide solution is poured into a container (for example, a glass cylinder) having an opening at the top. A container having an opening into which a polyamide solution is injected is allowed to stand for 3 to 5 days at a temperature of 0 to 40 ° C. and a relative humidity of 60 to 100%. Do not put a lid or the like on the opening of the container to be left standing, but leave the upper part of the container open. In the standing, it is preferable that the container is housed in a desiccator kept at a constant temperature and humidity. If the temperature is lower than the lower limit, there is a problem that the humidity-controlled water in the desiccator freezes. If the temperature exceeds the upper limit, there is a problem that bubbles are generated in the polyamide solution. Further, when the relative humidity is less than the lower limit, there is a problem that it takes time to absorb moisture. A preferable temperature is 10 to 30 ° C, and a more preferable temperature is 25 ° C. Moreover, a preferable relative humidity is 80 to 100%, and a more preferable relative humidity is 100%. By allowing the polyamide solution to stand in the container, moisture absorption begins with evaporation of alcohol as a solvent from the surface of the solution. The standing of the container into which the polyamide solution has been poured varies depending on the temperature condition and the humidity condition, and the evaporation time and moisture absorption of the solvent change. It is preferable to place them. A gel-like thin film is formed on the surface of the polyamide solution by leaving the container into which the polyamide solution has been poured for the period.

次に、図1に示すように、容器11内部のポリアミド溶解液12表面に形成されたゲル状の薄膜の表面の上から水13を添加する。ここでゲル状薄膜に添加する水13は、純水に限らず、アルコール系水溶液又は金属塩化物系水溶液でもよい。これらの水溶液を用いると得られる多孔質体の独立孔のサイズや表面層のメッシュ数に影響を及ぼす効果がある。ゲル状の薄膜表面の上から水13を添加して、しばらくすると、添加した水13と接するゲル状の薄膜部分に固体相16−ゲル相17−溶液相12の三相構造が出現する。図1の符号14は水と三相構造との界面である。出現した三相構造を構成するゲル相17では、スピノーダル分解(Spinodal Decomposition)と相分離がゲル相の下部と上部でそれぞれ生じ、上部で多孔が形作られる。なお、容器内部のポリアミド溶解液表面に形成されたゲル状の薄膜の表面の上から水を添加せず、100%の相対湿度に保たれたデシケータ中に容器を収容し、この状態を長時間保つことによって、ポリアミド溶解液のほとんどをゲル相にすることもできる。このように出現させたゲル相を用いても本発明のポリアミド多孔質膜を製造することができる。   Next, as shown in FIG. 1, water 13 is added from above the surface of the gel-like thin film formed on the surface of the polyamide solution 12 inside the container 11. Here, the water 13 added to the gel thin film is not limited to pure water but may be an alcoholic aqueous solution or a metal chloride aqueous solution. Use of these aqueous solutions has an effect of affecting the size of the independent pores of the porous body and the number of meshes of the surface layer. When water 13 is added from above the surface of the gel-like thin film and after a while, a three-phase structure of solid phase 16 -gel phase 17 -solution phase 12 appears in the gel-like thin film portion in contact with the added water 13. Reference numeral 14 in FIG. 1 denotes an interface between water and a three-phase structure. In the gel phase 17 constituting the emerging three-phase structure, spinodal decomposition and phase separation occur at the lower and upper portions of the gel phase, respectively, and a porosity is formed at the upper portion. The container is housed in a desiccator kept at 100% relative humidity without adding water from the surface of the gel-like thin film formed on the surface of the polyamide solution inside the container. By keeping it, most of the polyamide solution can be made into a gel phase. The polyamide porous membrane of the present invention can also be produced using the gel phase that has appeared in this manner.

次に、容器内部のポリアミド溶解液表面に出現させた三相構造のうち、ゲル相のみを容器外に取出す。取出したゲル相には添加した水と溶解液とが含まれている。続いて、容器外に取出したゲル相をゲルの流動を利用して所望の厚さ、例えば0.02〜0.5mm、好ましくは0.02〜0.1mmの厚さで基材表面に塗布する。使用する基材としては、表面が平滑であり、後に続く工程で形成した膜を基材表面から剥離し易い材料が選ばれる。具体的にはスライドガラスのような取扱いが容易な材料が好適である。基材に塗布するゲル相の厚さは、特に制限されず、多孔質膜の用途に応じて、塗布する厚さを調整することができる。基材表面にゲル相を塗布した後は、10秒〜10分間、好ましくは10秒〜1分間、室温下、相対湿度40〜60%で、ゲル相を塗布した基材を放置する。ここでゲル相を塗布した基材を放置したのは、ゲル成分間相互作用の準安定化のためである。   Next, only the gel phase is taken out of the container out of the three-phase structure that appears on the surface of the polyamide solution inside the container. The extracted gel phase contains added water and a solution. Subsequently, the gel phase taken out from the container is applied to the surface of the base material at a desired thickness, for example, 0.02 to 0.5 mm, preferably 0.02 to 0.1 mm, using the flow of the gel. To do. As the substrate to be used, a material having a smooth surface and easily peeling the film formed in the subsequent process from the substrate surface is selected. Specifically, a material such as a slide glass that can be easily handled is suitable. The thickness of the gel phase applied to the substrate is not particularly limited, and the applied thickness can be adjusted according to the use of the porous membrane. After applying the gel phase to the substrate surface, the substrate coated with the gel phase is allowed to stand at room temperature and relative humidity of 40 to 60% for 10 seconds to 10 minutes, preferably 10 seconds to 1 minute. The reason why the base material coated with the gel phase is left is to metastabilize the interaction between the gel components.

放置した後は、ゲル相を塗布した基材を室温の水中に浸漬する。基材を水中に浸漬すると塗布したゲル相が凝固して、ゲル相の表層にハニカム多孔構造が形成される。基材の水中への浸漬は、5〜30分間、好ましくは10〜30分間が好適である。浸漬時間が下限値未満ではゲル相の凝固が十分に進まず、上限値を越えても得られる多孔質膜の性質は変わらない。塗布したゲル相が凝固したら、水中で、ゲル相が凝固して形成した膜を基材から剥離する。剥離した凝固膜を水洗した後に、乾燥することにより、本発明のポリアミド多孔質膜が得られる。   After standing, the substrate coated with the gel phase is immersed in water at room temperature. When the substrate is immersed in water, the applied gel phase solidifies and a honeycomb porous structure is formed on the surface layer of the gel phase. The substrate is immersed in water for 5 to 30 minutes, preferably 10 to 30 minutes. If the immersion time is less than the lower limit, the gel phase does not sufficiently solidify, and even if the upper limit is exceeded, the properties of the porous film obtained do not change. When the applied gel phase is solidified, the film formed by the solidification of the gel phase is peeled off from the substrate in water. The polyamide porous membrane of the present invention is obtained by washing the peeled coagulated membrane with water and drying it.

得られた本発明のポリアミド多孔質膜は、表層が孔径5〜50μmのハニカム多孔構造を有し、内部が三次元網目状に形成され、かつ網目内部の空孔が連続気孔構造を有し、ハニカム多孔構造と網目状構造が連通して形成される。表層のハニカム多孔構造が孔径5〜50μmの範囲内に制御されているため、この孔径にあった大きな細胞や微生物飼育、触媒などのスカホールドとしての機能を持たせることができる。   The resulting polyamide porous membrane of the present invention has a honeycomb porous structure with a surface layer having a pore diameter of 5 to 50 μm, the inside is formed in a three-dimensional network, and the pores inside the network have a continuous pore structure, A honeycomb porous structure and a network structure are formed in communication. Since the honeycomb structure of the surface layer is controlled within the range of the pore diameter of 5 to 50 μm, it can have a function as a scaffold for large cells, microbial breeding, catalysts, etc. suitable for this pore diameter.

次に本発明の実施例を詳しく説明する。
<実施例1>
メチルアルコール100ccに塩化カルシウム20gを溶解して塩化カルシウムのメタノール溶液を得た。この溶液に綿状のポリヘキサメチレンアジポアミド6.7gを加えて溶解してポリヘキサメチレンアジポアミド溶解液を調製した。内径30mm、高さ60mmのガラスシリンダーの中に、上記調製したポリヘキサメチレンアジポアミド溶解液を32cc注入した。この溶解液の入ったガラスシリンダーを温度30℃、相対湿度100%のデシケータ内に収容し、約5日間静置した。静置後のガラスシリンダー内のポリヘキサメチレンアジポアミド溶解液を観察したところ、シリンダー内の溶解液の容量が約20ccに減少し、溶解液表面にはゲル状の薄膜が形成されていた。
次いで、ガラスシリンダー内部のポリヘキサメチレンアジポアミド溶解液表面に形成されたゲル状の薄膜の表面の上から30℃の純水を約10cc添加した。ゲル状の薄膜表面の上から水を添加した後、しばらくすると、添加した水と接するゲル状の薄膜部分に固体相−ゲル相−溶液相の三相構造が出現した。
Next, embodiments of the present invention will be described in detail.
<Example 1>
20 g of calcium chloride was dissolved in 100 cc of methyl alcohol to obtain a methanol solution of calcium chloride. To this solution, 6.7 g of cotton-like polyhexamethylene adipamide was added and dissolved to prepare a polyhexamethylene adipamide solution. 32 cc of the polyhexamethylene adipamide solution prepared above was injected into a glass cylinder having an inner diameter of 30 mm and a height of 60 mm. The glass cylinder containing the solution was housed in a desiccator having a temperature of 30 ° C. and a relative humidity of 100%, and was left to stand for about 5 days. When the polyhexamethylene adipamide solution in the glass cylinder after standing was observed, the volume of the solution in the cylinder was reduced to about 20 cc, and a gel-like thin film was formed on the surface of the solution.
Next, about 10 cc of pure water at 30 ° C. was added from the surface of the gel-like thin film formed on the surface of the polyhexamethylene adipamide solution in the glass cylinder. After adding water from the surface of the gel-like thin film, after a while, a three-phase structure of solid phase-gel phase-solution phase appeared in the gel-like thin film portion in contact with the added water.

次に、ガラスシリンダー内部のポリヘキサメチレンアジポアミド溶解液表面に出現させた三相構造のうち、ゲル相のみを容器外に取出した。続いて、容器外に取出したゲル相を平均厚さ約0.05mmでスライドガラス表面に塗布した。スライドガラス表面にゲル相を塗布した後は、10〜30秒間、室温下、相対湿度約50%で、ゲル相を塗布したスライドガラスを放置した。
放置した後は、ゲル相を塗布したスライドガラスを室温の水中に浸漬し、約10分間保持することにより、塗布したゲル相を凝固させ、ゲル相の表層にハニカム多孔構造を形成させた。塗布したゲル相が凝固したら、水中で、ゲル相が凝固して形成した膜をスライドガラスから剥離した。剥離した凝固膜を水洗した後に、乾燥することにより、ポリヘキサメチレンアジポアミド多孔質膜を得た。
Next, only the gel phase was taken out of the container out of the three-phase structure that appeared on the surface of the polyhexamethylene adipamide solution in the glass cylinder. Subsequently, the gel phase taken out from the container was applied to the surface of the slide glass with an average thickness of about 0.05 mm. After the gel phase was applied to the surface of the slide glass, the slide glass coated with the gel phase was allowed to stand for 10 to 30 seconds at room temperature and a relative humidity of about 50%.
After being allowed to stand, the slide glass coated with the gel phase was immersed in water at room temperature and held for about 10 minutes to solidify the coated gel phase and form a honeycomb porous structure on the surface layer of the gel phase. When the applied gel phase solidified, the film formed by the solidification of the gel phase was peeled off from the slide glass in water. The peeled solidified film was washed with water and dried to obtain a polyhexamethylene adipamide porous film.

得られたポリヘキサメチレンアジポアミド多孔質膜の走査電子顕微鏡(Scanning Electron Microscope;SEM)写真を図2及び図3に示す。図3は図2の部分拡大図である。図2及び図3から明らかなように、得られた膜の表層にはハニカム多孔構造が形成されていることが確認された。また、このハニカム多孔構造の孔径は約10〜20μmの範囲内であった。また、表層のハニカム多孔構造の孔からは、膜内部の構造が三次元網目状になっていることが確認され、このハニカム多孔構造と三次元網目状構造とは連通して形成されていた。   Scanning Electron Microscope (SEM) photographs of the obtained polyhexamethylene adipamide porous membrane are shown in FIGS. FIG. 3 is a partially enlarged view of FIG. As apparent from FIGS. 2 and 3, it was confirmed that a honeycomb porous structure was formed on the surface layer of the obtained film. Further, the pore diameter of this honeycomb porous structure was in the range of about 10 to 20 μm. Further, it was confirmed from the pores of the honeycomb porous structure on the surface layer that the structure inside the film was in a three-dimensional network, and the honeycomb porous structure and the three-dimensional network were formed in communication.

<実施例2>
メチルアルコール100ccに塩化カルシウム20gを溶解して塩化カルシウムのメタノール溶液を得た。この溶液にポリカプロラクタム6.7gを加えて溶解してポリカプロラクタム溶解液を調製した。内径30mm、高さ60mmのガラスシリンダーの中に、上記調製したポリカプロラクタム溶解液を32cc注入した。この溶解液の入ったガラスシリンダーを温度30℃、相対湿度100%のデシケータ内に収容し、約5日間静置した。静置後のガラスシリンダー内のポリカプロラクタム溶解液を観察したところ、シリンダー内の溶解液の容量が約20ccに減少し、溶解液表面にはゲル状の薄膜が形成されていた。
次いで、ガラスシリンダー内部のポリカプロラクタム溶解液表面に形成されたゲル状の薄膜の表面の上から30℃の純水を約10cc添加した。ゲル状の薄膜表面の上から水を添加した後、しばらくすると、添加した水と接するゲル状の薄膜部分に固体相−ゲル相−溶液相の三相構造が出現した。
<Example 2>
20 g of calcium chloride was dissolved in 100 cc of methyl alcohol to obtain a methanol solution of calcium chloride. To this solution, 6.7 g of polycaprolactam was added and dissolved to prepare a polycaprolactam solution. 32 cc of the prepared polycaprolactam solution was injected into a glass cylinder having an inner diameter of 30 mm and a height of 60 mm. The glass cylinder containing the solution was housed in a desiccator having a temperature of 30 ° C. and a relative humidity of 100%, and was left to stand for about 5 days. When the polycaprolactam solution in the glass cylinder after standing was observed, the volume of the solution in the cylinder was reduced to about 20 cc, and a gel-like thin film was formed on the surface of the solution.
Next, about 10 cc of pure water at 30 ° C. was added from the surface of the gel-like thin film formed on the surface of the polycaprolactam solution in the glass cylinder. After adding water from the surface of the gel-like thin film, after a while, a three-phase structure of a solid phase-gel phase-solution phase appeared in the gel-like thin film portion in contact with the added water.

次に、ガラスシリンダー内部のポリカプロラクタム溶解液表面に出現させた三相構造のうち、ゲル相のみを容器外に取出した。続いて、容器外に取出したゲル相を平均厚さ約0.05mmでスライドガラス表面に塗布した。スライドガラス表面にゲル相を塗布した後は、10〜30秒間、室温下、相対湿度約50%で、ゲル相を塗布したスライドガラスを放置した。
放置した後は、ゲル相を塗布したスライドガラスを室温の水中に浸漬し、約10分間保持することにより、塗布したゲル相を凝固させ、ゲル相の表層にハニカム多孔構造を形成させた。塗布したゲル相が凝固したら、水中で、ゲル相が凝固して形成した膜をスライドガラスから剥離した。剥離した凝固膜を水洗した後に、乾燥することにより、ポリカプロラクタム多孔質膜を得た。
Next, only the gel phase was taken out of the container out of the three-phase structure that appeared on the surface of the polycaprolactam solution in the glass cylinder. Subsequently, the gel phase taken out from the container was applied to the surface of the slide glass with an average thickness of about 0.05 mm. After the gel phase was applied to the surface of the slide glass, the slide glass coated with the gel phase was left for 10 to 30 seconds at room temperature and a relative humidity of about 50%.
After being allowed to stand, the slide glass coated with the gel phase was immersed in room temperature water and held for about 10 minutes to solidify the coated gel phase and form a honeycomb porous structure on the surface layer of the gel phase. When the applied gel phase solidified, the film formed by the solidification of the gel phase was peeled off from the slide glass in water. The peeled solidified film was washed with water and dried to obtain a polycaprolactam porous film.

得られたポリカプロラクタム多孔質膜の走査電子顕微鏡(SEM)写真を図4及び図5に示す。図5は図4の部分拡大図である。図4及び図5から明らかなように、得られた膜の表層にはハニカム多孔構造が形成されていることが確認された。また、このハニカム多孔構造の孔径は約20〜50μmの範囲内であった。また、表層のハニカム多孔構造の孔からは、膜内部の構造が三次元網目状になっていることが確認され、このハニカム多孔構造と三次元網目状構造とは連通して形成されていた。実施例1の図2と比べて表層のハニカム多孔構造の孔径は大きく、内部の三次元網目状構造は細かい傾向が見られた。   Scanning electron microscope (SEM) photographs of the obtained polycaprolactam porous membrane are shown in FIGS. FIG. 5 is a partially enlarged view of FIG. As apparent from FIGS. 4 and 5, it was confirmed that a honeycomb porous structure was formed on the surface layer of the obtained film. Moreover, the pore diameter of this honeycomb porous structure was in the range of about 20 to 50 μm. Further, it was confirmed from the pores of the honeycomb porous structure on the surface layer that the structure inside the film was in a three-dimensional network, and the honeycomb porous structure and the three-dimensional network were formed in communication. Compared to FIG. 2 of Example 1, the pore diameter of the honeycomb structure of the surface layer was large, and the internal three-dimensional network structure tended to be fine.

本発明のポリアミド多孔質膜の製造方法における固体相−ゲル相−溶液相の三相構造を示す図である。It is a figure which shows the three-phase structure of the solid phase-gel phase-solution phase in the manufacturing method of the polyamide porous membrane of this invention. 実施例1における多孔質膜の走査電子顕微鏡写真図である。1 is a scanning electron micrograph of a porous film in Example 1. FIG. 図2の部分拡大写真図である。FIG. 3 is a partially enlarged photograph view of FIG. 2. 実施例2における多孔質膜の走査電子顕微鏡写真図である。3 is a scanning electron micrograph of a porous film in Example 2. FIG. 図4の部分拡大写真図である。It is the elements on larger scale photograph of FIG.

符号の説明Explanation of symbols

11 容器
12 ポリアミド溶解液
13 水
14 水と三相構造との界面
16 固体相
17 ゲル相
DESCRIPTION OF SYMBOLS 11 Container 12 Polyamide solution 13 Water 14 Interface of water and three-phase structure 16 Solid phase 17 Gel phase

Claims (6)

表層が孔径5〜50μmのハニカム多孔構造を有し、
内部が三次元網目状に形成され、かつ網目内部の空孔が連続気孔構造を有し、
前記ハニカム多孔構造と前記網目状構造が連通して形成されたことを特徴とするポリアミド多孔質膜。
The surface layer has a honeycomb porous structure with a pore diameter of 5 to 50 μm,
The inside is formed in a three-dimensional network, and the pores inside the network have a continuous pore structure,
A polyamide porous film, wherein the honeycomb porous structure and the network structure are formed to communicate with each other.
ポリアミドがポリカプロラクタム、ポリヘキサメチレンアジポアミド又はポリヘキサメチレンセバカミドである請求項1記載のポリアミド多孔質膜。   The polyamide porous membrane according to claim 1, wherein the polyamide is polycaprolactam, polyhexamethylene adipamide, or polyhexamethylene sebacamide. 塩化カルシウムのアルコール溶液にポリアミドを溶解してポリアミド溶解液(12)を調製する工程と、
上部に開口部を有する容器(11)に前記調製したポリアミド溶解液(12)を注入する工程と、
前記ポリアミド溶解液(12)を注入した開口部を有する容器(11)を、0〜40℃の温度、60〜100%の相対湿度下で、3〜5日間静置することにより、前記ポリアミド溶解液中に含まれる溶媒を蒸発させ、かつ前記ポリアミド溶解液を吸湿させることにより、前記ポリアミド溶解液表面にゲル状の薄膜を形成する工程と、
前記容器(11)内部のポリアミド溶解液表面に形成されたゲル状の薄膜の表面の上から水(13)を添加して、添加した水(13)と接するゲル状の薄膜部分に固体相(16)−ゲル相(17)−溶液相の三相構造を出現させる工程と、
前記容器(11)内部のポリアミド溶解液表面に出現させた三相構造のうちゲル相(17)のみを容器外に取出す工程と、
前記取出したゲル相(17)を基材に塗布する工程と、
前記ゲル相(17)を塗布した基材を水中に浸漬して塗布した膜部分を凝固させる工程と
を含むポリアミド多孔質膜の製造方法。
A step of preparing a polyamide solution (12) by dissolving polyamide in an alcohol solution of calcium chloride;
Injecting the prepared polyamide solution (12) into a container (11) having an opening at the top;
A container (11) having an opening filled with the polyamide solution (12) is allowed to stand for 3 to 5 days at a temperature of 0 to 40 ° C. and a relative humidity of 60 to 100%, thereby dissolving the polyamide. Forming a gel-like thin film on the surface of the polyamide solution by evaporating the solvent contained in the solution and absorbing the polyamide solution;
Water (13) is added from above the surface of the gel-like thin film formed on the surface of the polyamide solution inside the container (11), and the solid phase (in the gel-like thin film portion in contact with the added water (13) ( 16)-a step of causing a three-phase structure of gel phase (17)-solution phase to appear;
A step of taking out only the gel phase (17) out of the three-phase structure that appeared on the surface of the polyamide solution inside the container (11);
Applying the extracted gel phase (17) to a substrate;
Immersing the substrate coated with the gel phase (17) in water to solidify the coated membrane portion, and a method for producing a porous polyamide membrane.
溶解液の調製が、塩化カルシウムのアルコール溶液にポリアミドを溶解した後、24時間以上100日以下の期間熟成することにより行われる請求項3記載のポリアミド多孔質膜の製造方法。   The method for producing a porous polyamide membrane according to claim 3, wherein the solution is prepared by aging for a period of 24 hours to 100 days after the polyamide is dissolved in an alcohol solution of calcium chloride. 溶解液表面の上から添加する水が純水、アルコール系水溶液又は金属塩化物系水溶液である請求項3記載のポリアミド多孔質膜の製造方法。   The method for producing a porous polyamide membrane according to claim 3, wherein water added from above the surface of the solution is pure water, an alcohol-based aqueous solution or a metal chloride-based aqueous solution. ポリアミドがポリカプロラクタム、ポリヘキサメチレンアジポアミド又はポリヘキサメチレンセバカミドである請求項3記載のポリアミド多孔質膜の製造方法。
The method for producing a porous polyamide membrane according to claim 3, wherein the polyamide is polycaprolactam, polyhexamethylene adipamide, or polyhexamethylene sebacamide.
JP2006080259A 2006-03-23 2006-03-23 Method for producing polyamide porous membrane Expired - Fee Related JP4841985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006080259A JP4841985B2 (en) 2006-03-23 2006-03-23 Method for producing polyamide porous membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006080259A JP4841985B2 (en) 2006-03-23 2006-03-23 Method for producing polyamide porous membrane

Publications (2)

Publication Number Publication Date
JP2007254577A true JP2007254577A (en) 2007-10-04
JP4841985B2 JP4841985B2 (en) 2011-12-21

Family

ID=38629134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006080259A Expired - Fee Related JP4841985B2 (en) 2006-03-23 2006-03-23 Method for producing polyamide porous membrane

Country Status (1)

Country Link
JP (1) JP4841985B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2504561C2 (en) * 2011-03-22 2014-01-20 Учреждение Российской академии наук Институт высокомолекулярных соединений РАН Method of producing porous film material
CN107312185A (en) * 2017-07-31 2017-11-03 贵阳时代沃顿科技有限公司 A kind of polyamide solution system and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103967075B (en) * 2013-01-29 2016-02-24 北京大学 Porous fine denier nylon fiber catchments application

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03275740A (en) * 1990-03-27 1991-12-06 Asahi Chem Ind Co Ltd Production of cellular polyamide
JP2001113143A (en) * 1999-10-15 2001-04-24 Ube Ind Ltd Porous polymide film for filter and filter using it
JP2001126534A (en) * 1999-10-28 2001-05-11 Ube Ind Ltd Low dielectric constant film
JP2001162146A (en) * 1999-12-06 2001-06-19 Ube Ind Ltd Carrier film for filtration
JP2004175104A (en) * 2002-11-12 2004-06-24 Daicel Chem Ind Ltd Producing method for porous film, and porous film
JP2005152526A (en) * 2003-11-28 2005-06-16 Zeon Medical Inc Cell proliferation suppression film and medical implement
JP2006104409A (en) * 2004-10-08 2006-04-20 Gunma Univ Polyamide porous body, method for producing the same and method of using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03275740A (en) * 1990-03-27 1991-12-06 Asahi Chem Ind Co Ltd Production of cellular polyamide
JP2001113143A (en) * 1999-10-15 2001-04-24 Ube Ind Ltd Porous polymide film for filter and filter using it
JP2001126534A (en) * 1999-10-28 2001-05-11 Ube Ind Ltd Low dielectric constant film
JP2001162146A (en) * 1999-12-06 2001-06-19 Ube Ind Ltd Carrier film for filtration
JP2004175104A (en) * 2002-11-12 2004-06-24 Daicel Chem Ind Ltd Producing method for porous film, and porous film
JP2005152526A (en) * 2003-11-28 2005-06-16 Zeon Medical Inc Cell proliferation suppression film and medical implement
JP2006104409A (en) * 2004-10-08 2006-04-20 Gunma Univ Polyamide porous body, method for producing the same and method of using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2504561C2 (en) * 2011-03-22 2014-01-20 Учреждение Российской академии наук Институт высокомолекулярных соединений РАН Method of producing porous film material
CN107312185A (en) * 2017-07-31 2017-11-03 贵阳时代沃顿科技有限公司 A kind of polyamide solution system and preparation method thereof

Also Published As

Publication number Publication date
JP4841985B2 (en) 2011-12-21

Similar Documents

Publication Publication Date Title
US4933081A (en) Asymmetric micro-porous membrane containing a layer of minimum size pores below the surface thereof
Tan et al. Polyvinylidene fluoride (PVDF) hollow fibre membranes for ammonia removal from water
JP4201350B2 (en) Method for producing a polymer film for use as a fuel cell
US4761232A (en) Macroporous substrate containing microporous matrix
Mao et al. Hierarchical mesoporous metal–organic frameworks for enhanced CO2 capture
ATE540749T1 (en) METHOD FOR CONTINUOUSLY PRODUCING A MICROPOROUS MEMBRANE AND USE THEREOF IN THE PROCESS FOR SEPARATING AND PURIFYING NUCLEIC ACID
JP4841985B2 (en) Method for producing polyamide porous membrane
JP2007167495A5 (en)
CN110237716A (en) It is a kind of with the interfacial polymerization composite nanometer filtering film in situ of excellent permeability and separation performance, preparation method and application
KR920007677A (en) Deposition method
CN108365163A (en) Continuous three-dimensional porous copper current collector and preparation method thereof
KR20090049122A (en) Manufacturing method of polyethersulfone membrane with highly asymmetric structure and its product
CN109078506B (en) Permeable membrane, method for producing the same, and water treatment apparatus
Arya Drying induced phase separation in multicomponent polymeric coatings—Simulation study
CN1236844C (en) Method for preparing hydrophilic microporous material
TWI465618B (en) Method to prepare a controllable skin layer hollow fiber membrane is developed and applies for dehydration of organic solution
RU2005110391A (en) SEMI-PERMEABLE ACETATE CELLULOSE MEMBRANE AND METHOD FOR PRODUCING IT
JP4257430B2 (en) Method for using polyamide porous body and method for producing the same
JPS5980305A (en) Preparation of ultrafiltration membrane
JPS63141610A (en) Production of microporous membrane
Park et al. Development of a porous scaffold-manufacturing method by blending silk fibroin and agarose polymer solutions
JPH0676510B2 (en) Polysulfone porous membrane
JPH09285723A (en) Asymmetric film of polyether sulfone and its production
KR100429355B1 (en) Composition including polyethylene glycol for preparing microporous polyethersulfone membrane and method for preparing microporous membrane using the same
KR101791220B1 (en) Preparation Method for Polymer Film with 3-D Network Structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110920

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111005

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees