JP2007252420A - Human body muscle evaluation device - Google Patents

Human body muscle evaluation device Download PDF

Info

Publication number
JP2007252420A
JP2007252420A JP2006077129A JP2006077129A JP2007252420A JP 2007252420 A JP2007252420 A JP 2007252420A JP 2006077129 A JP2006077129 A JP 2006077129A JP 2006077129 A JP2006077129 A JP 2006077129A JP 2007252420 A JP2007252420 A JP 2007252420A
Authority
JP
Japan
Prior art keywords
light
human body
polarized light
muscle
polarization angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006077129A
Other languages
Japanese (ja)
Inventor
Masato Kinoshita
雅登 木下
長生 ▲濱▼田
Osao Hamada
Junji Ikeda
順治 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2006077129A priority Critical patent/JP2007252420A/en
Publication of JP2007252420A publication Critical patent/JP2007252420A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To noninvasively evaluate human body muscles under the skin by polarization. <P>SOLUTION: The human body muscle evaluation device estimates the condition of the muscles of a human body by irradiating the muscles of the human body with light and analyzing transmitted or reflected light. The device comprises a polarized light irradiation means for irradiating the skin of the human body with polarized light, a polarized light measurement means for measuring the light quantity distribution of a polarization angle for the light transmitted through or reflected from the human body, and an analysis means for estimating the condition of the muscles under the skin of the human body by analyzing the light quantity distribution of the polarization angle. The human body muscles are evaluated by utilizing polarization properties that muscle tissue itself has. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は光を用いて皮膚下の人体筋肉を非侵襲的に評価する人体筋肉評価装置に関するものである。   The present invention relates to a human body muscle evaluation apparatus that non-invasively evaluates human body muscles under the skin using light.

光を人体に照射することで非侵襲的に人体の状態を測定することについては各種のものが提供されており、特に偏光を利用するものとしては生体に磁場をかけ透過光の偏光面の角度変化を計測することでヘモグロビンを測定するものが特許文献1に示されており、また直線偏光成分の旋光角を解析してグルコース濃度を計測することが特許文献2に示されている。   Various types of non-invasive measurement of the state of the human body by irradiating the human body with light are provided, and in particular for using polarized light, the angle of the plane of polarization of transmitted light by applying a magnetic field to the living body. Patent Document 1 discloses that hemoglobin is measured by measuring a change, and Patent Document 2 discloses that a glucose concentration is measured by analyzing an optical rotation angle of a linearly polarized light component.

しかし、前者は組織が本来持っている偏光特性を用いるものではなく、また後者は体内の特定成分の偏光現象を利用したものである上に、これらは皮膚下の人体筋肉が偏光に対して及ぼす影響についての記載などない。
特開平4−194729号公報 特開2004−113434号公報
However, the former does not use the intrinsic polarization characteristics of the tissue, and the latter uses the polarization phenomenon of specific components in the body, and these affect the polarization of human muscles under the skin. There is no description of the impact.
JP-A-4-194729 JP 2004-113434 A

本発明は上記の従来の問題点に鑑みて発明したものであって、皮膚下の人体筋肉を偏光によって非侵襲的に評価する人体筋肉評価装置を提供することを課題とするものである。   The present invention has been invented in view of the above-described conventional problems, and an object of the present invention is to provide a human body muscle evaluation apparatus that non-invasively evaluates human body muscles under the skin using polarized light.

上記課題を解決するために本発明に係る人体筋肉評価装置は、人体の筋肉に光を照射して透過又は反射した光を解析することにより人体の筋肉の状態を推定する人体筋肉評価装置であり、偏光した光を人体の皮膚に照射する偏光照射手段と、人体を透過又は反射した光について偏光角の光量分布を計測する偏光計測手段と、偏光角の光量分布を解析して人体の皮膚下の筋肉の状態を推定する解析手段とを備えていることに特徴を有している。   In order to solve the above problems, the human body muscle evaluation apparatus according to the present invention is a human body muscle evaluation apparatus that estimates the state of the human muscle by irradiating the muscle of the human body with light and analyzing the transmitted or reflected light. A polarized light irradiating means for irradiating the human skin with polarized light; a polarization measuring means for measuring the light quantity distribution of the polarization angle of the light transmitted or reflected by the human body; and analyzing the light quantity distribution of the polarization angle under the skin of the human body. And an analysis means for estimating the state of the muscle.

これは次の知見に基づくものである。すなわち、直線偏光であるレーザ光をサンプルに照射するとともに、サンプルを透過した光を偏光板(直線偏光板)を介して受光素子で受光するとともに、上記偏光板を回転ステージによって2°ステップで190°回転させたところ、図2に示す相対光強度データを得ることができた。ここで、サンプルとして用いたのは鶏の胸肉(厚み1.3mm、2.6mm、3.9mm)であり、図中◇が厚み1.3mmの場合、□が厚み2.6mm、△が厚み3.9mmの場合を、○はサンプルを介さずに直接レーザ光を受光した場合を示している。   This is based on the following knowledge. That is, the sample is irradiated with laser light that is linearly polarized light, and the light transmitted through the sample is received by the light receiving element through the polarizing plate (linear polarizing plate), and the polarizing plate is rotated by a rotating stage in 2 ° steps. When rotated, the relative light intensity data shown in FIG. 2 could be obtained. Here, chicken breast (thickness 1.3 mm, 2.6 mm, 3.9 mm) was used as a sample. When ◇ is 1.3 mm in the figure, □ is 2.6 mm in thickness and Δ is In the case of a thickness of 3.9 mm, ◯ indicates a case where laser light is directly received without passing through a sample.

図2の縦軸は相対光強度(光量)を示しており、強度1は受光側の偏光板が無い時の受光光量である。レーザ光は直線偏光であることから、偏光板の回転に伴い受光光量がサインカーブ状に変化している。そして鶏のむね肉(筋肉)を透過した光の光量変化はサンプルを介していない場合(図中○)に比して光量だけでなく位相がずれていることから、筋肉を通過することに伴って偏光角度変化が起きていることがわかる。つまりは筋肉組織そのものが偏光特性を持っていることがわかる。このような偏光特性を持っていることの理由は定かではないが、本発明はこの点を利用して人体筋肉評価を行うものである。   The vertical axis in FIG. 2 indicates the relative light intensity (light quantity), and the intensity 1 is the received light quantity when there is no polarizing plate on the light receiving side. Since the laser light is linearly polarized light, the amount of received light changes in a sine curve with the rotation of the polarizing plate. And the change in the amount of light transmitted through the chicken breast (muscle) is out of phase as well as the amount of light compared to the case where it does not pass through the sample (○ in the figure). It can be seen that the polarization angle change occurs. In other words, it can be seen that the muscle tissue itself has polarization characteristics. The reason for having such a polarization characteristic is not clear, but the present invention uses this point to evaluate human muscles.

この時、偏光照射手段が500nm〜2000nmの波長の光を照射するものであれば、血液で吸収されにくく、これ故に血液の影響を受けがたくなるために推定精度を向上させることができる。   At this time, if the polarized light irradiating means irradiates light having a wavelength of 500 nm to 2000 nm, it is difficult to be absorbed by blood, and therefore it is difficult to be influenced by blood, so that the estimation accuracy can be improved.

また、偏光照射手段が複数種類の波長の光を照射するものであれば、照射波長の種類を考慮して解析することで推定精度を向上させることができる。   Further, if the polarized light irradiating means emits light of a plurality of types of wavelengths, the estimation accuracy can be improved by analyzing in consideration of the types of irradiation wavelengths.

また、偏光照射手段がライン状の光を照射するものであれば、照射部位を広範囲にすることができるために偏った解析となる虞を少なくすることができ、従って推定精度を向上させることができる。   Moreover, if the polarized light irradiating means irradiates the line-shaped light, it is possible to reduce the possibility of a biased analysis because the irradiation site can be widened, and therefore the estimation accuracy can be improved. it can.

偏光照射手段がパルス光を照射するものであり、偏光計測手段は偏光角の光量分布の時間変化を計測するものであり、解析手段が偏光角の光量分布について時間変化を考慮して解析をするものであることが好ましい。時間変化を考慮して解析することで推定精度を向上させることができる。   The polarized light irradiating means emits pulsed light, the polarized light measuring means measures the time change of the light distribution of the polarization angle, and the analyzing means analyzes the light distribution of the polarization angle in consideration of the time change. It is preferable. The estimation accuracy can be improved by analyzing in consideration of the time change.

また、解析手段が予め測定した皮膚又は爪による偏光角の光量分布データから皮膚又は爪による影響を除去して解析を行うものであれば、皮膚や爪による偏光の影響を除去できるために、筋肉の状態を推定する精度を向上させることができる。   If the analysis means removes the influence of the skin or the nail from the light distribution data of the polarization angle by the skin or the nail measured in advance, the influence of the polarization by the skin or the nail can be removed. The accuracy of estimating the state can be improved.

本発明においては、偏光というきわめて簡単に得ることができる光を利用して非侵襲で人体筋肉の状態を解析評価するものであり、疲労度合いや肉体年齢等等の情報を簡便に得ることができる。   In the present invention, the state of the human muscle is analyzed and evaluated non-invasively using light that can be obtained very easily, such as polarized light, and information such as the degree of fatigue and body age can be easily obtained. .

以下、本発明を実施形態に基いて説明すると、図1は本発明の実施の形態の一例を示しており、照射時間制御が可能な光源1と、光源1から出る光を直線偏光の光とする偏光板2と、偏光板2を経ることで直線偏光となった光を人体9の表面に照射した際の反射光もしくは透過光を受光する受光素子4と、該受光素子4の直前に配した偏光板3と、この偏光板3をモータ駆動で光軸まわりに回転させる回転ステージ5、そして受光素子4から得られる光量計測データと回転ステージ5によって偏光板3を回転させる際の偏光角度制御データとで構成される偏光角毎の光量データである偏光角光量分布データを基に解析を行う解析手段6を備えている。光源1と偏光板2とからなる偏光照射手段は、レーザ光出力手段で構成してもよい。   Hereinafter, the present invention will be described based on an embodiment. FIG. 1 shows an example of an embodiment of the present invention. A light source 1 capable of irradiation time control, and light emitted from the light source 1 is converted into linearly polarized light. A polarizing plate 2 that passes through the polarizing plate 2, a light receiving element 4 that receives reflected or transmitted light when the surface of the human body 9 is irradiated with light that has been linearly polarized, and is disposed immediately before the light receiving element 4. The polarizing plate 3, the rotating stage 5 that rotates the polarizing plate 3 around the optical axis by motor driving, the light amount measurement data obtained from the light receiving element 4, and the polarization angle control when the polarizing plate 3 is rotated by the rotating stage 5 Analyzing means 6 for performing analysis based on polarization angle light quantity distribution data, which is light quantity data for each polarization angle composed of data. The polarized light irradiation means composed of the light source 1 and the polarizing plate 2 may be constituted by a laser light output means.

上記光源1としては、500〜2000nmの範囲内の波長の光を好適に用いることができる。人体9の皮膚下に存在する血液、殊に酸化ヘモグロビンの吸光度が図3に示すように500nm以下にピークを持つために、上記波長の光を用いることによって真皮層にある血管の光吸収がノイズとなってしまうことを避けることができる。   As the light source 1, light having a wavelength in the range of 500 to 2000 nm can be suitably used. As shown in FIG. 3, the absorbance of blood existing under the skin of the human body 9, particularly oxyhemoglobin, has a peak at 500 nm or less, so that the light absorption of blood vessels in the dermis layer is caused by noise by using light of the above wavelength. Can be avoided.

そして受光素子4の前に配置した偏光板3の偏光角度を切り替えながら各偏光角度毎の光量を計測して、前記偏光角光量分布データを求め、解析手段6においてこの偏光角光量分布データを元に筋肉状態を解析評価するわけである。   Then, the light amount for each polarization angle is measured while switching the polarization angle of the polarizing plate 3 disposed in front of the light receiving element 4 to obtain the polarization angle light amount distribution data. Therefore, the muscle condition is analyzed and evaluated.

ここにおいて、偏光照射手段で人体9に照射された光は皮膚表面での反射や筋肉内部での反射が起きるが、皮膚表面で反射した光は照射した直線偏光成分と同じ偏光角度となる。従って、同じ偏光角度の光は除外することで皮膚表面からの反射光を無視することができる。   Here, the light irradiated to the human body 9 by the polarized light irradiation means is reflected on the skin surface or reflected inside the muscle, but the light reflected on the skin surface has the same polarization angle as the irradiated linearly polarized light component. Therefore, the light reflected from the skin surface can be ignored by excluding light having the same polarization angle.

また、筋肉内部を透過した筋肉の深さ方向毎の光量低下について複数の波長を用いて測定したところ、図4に示すように深さ4mm程度までの範囲であれば、ほぼ直線的な光量低下となる。図中イは波長670nmの光と鶏肉(ささみ)、波長670nmと豚肉、波長810nmと鶏肉を用いて測定した場合を示している。   Further, when the amount of light decrease in the depth direction of the muscle transmitted through the muscle was measured using a plurality of wavelengths, as shown in FIG. It becomes. In the figure, a indicates a case of measurement using light of 670 nm wavelength and chicken (sasami), wavelength of 670 nm and pork, and wavelength of 810 nm and chicken.

更に、入射角度を変えながら、偏光角度が直交する2つの光(垂直偏光と水平偏光)について筋肉の深さ方向(1mmと2mmと3mmと4mm)における光量低下を測定した結果を図5に示す。縦軸は相対光強度であり、強度1は受光側の偏光板が無い時の受光光量である。深さ1mmでの水平偏光と垂直偏光、深さ2mmでの水平偏光と垂直偏光、深さ3mmでの水平偏光と垂直偏光、深さ4mmでの水平偏光と垂直偏光の計8つのデータを図で示しているが、各入射角度において水平偏光及び垂直偏光の相対光強度がほぼ同一である上に、特定の筋肉組織ではその厚さに関わらず、偏光角度がある特定の傾向を示していることがわかる。   Further, FIG. 5 shows the results of measuring the light amount decrease in the muscle depth direction (1 mm, 2 mm, 3 mm, and 4 mm) for two lights (vertical polarized light and horizontal polarized light) having orthogonal polarization angles while changing the incident angle. . The vertical axis represents the relative light intensity, and the intensity 1 represents the amount of received light when there is no polarizing plate on the light receiving side. 8 types of data: horizontal and vertical polarization at 1 mm depth, horizontal and vertical polarization at 2 mm depth, horizontal and vertical polarization at 3 mm depth, horizontal and vertical polarization at 4 mm depth Although the relative light intensity of horizontal polarization and vertical polarization is substantially the same at each incident angle, the specific muscular tissue shows a certain tendency of the polarization angle regardless of its thickness. I understand that.

これらの点を踏まえて筋肉の状態の評価に際しては、前述のように、皮膚表面からの反射光は照射した直線偏光と同じ角度であるため、この角度の光量データは除外する。また、皮下組織の影響を除くことも必要であるが、これは角質層、真皮層、脂肪層を経て内部組織にいたる皮下組織の各構成部の偏光角度特性を予め調べておくことで対処することができる。   Based on these points, when evaluating the state of the muscle, as described above, the reflected light from the skin surface has the same angle as the irradiated linearly polarized light, and thus the light quantity data at this angle is excluded. In addition, it is necessary to eliminate the influence of the subcutaneous tissue, but this is dealt with by examining in advance the polarization angle characteristics of each component of the subcutaneous tissue that passes through the stratum corneum, dermis layer, and fat layer to the internal tissue. be able to.

たとえば、照射した光量をL0、皮膚表面での反射光をLaとし、また、各構成部の偏光角度と光量を
角質層:偏光角度=α1、光量値=L1
真皮層:偏光角度=α2、光量値=L2
脂肪層:偏光角度=α3、光量値=L3
と定義すると、光が通過した距離(深さ方向の距離)の違いによりその光量低下率は図4に示すような特性を示しているため、
角質層厚さ:L1/(L0−La)で求めた光量低下率から推定
真皮層厚さ:L2/(L0−La)で求めた光量低下率から推定
筋組織厚さ:L3/(L0−La)で求めた光量低下率から推定
で、各層の厚みを求めることができる。
For example, the amount of light irradiated is L0, the reflected light on the skin surface is La, and the polarization angle and light amount of each component are the stratum corneum: polarization angle = α1, light amount value = L1
Dermal layer: polarization angle = α2, light quantity value = L2
Fat layer: polarization angle = α3, light quantity value = L3
, The light quantity reduction rate due to the difference in the distance that the light has passed (distance in the depth direction) shows the characteristics as shown in FIG.
The stratum corneum thickness: estimated from the light quantity reduction rate obtained by L1 / (L0-La) The dermis layer thickness: estimated from the light quantity reduction rate obtained by L2 / (L0-La): L3 / (L0- The thickness of each layer can be obtained by estimation from the light amount reduction rate obtained in La).

なお、指先に関しては角質層がほとんどなく、かわりに爪があることから、爪の偏光角度データを除外するとともに、爪による光量低下を事前に計測しておくことにより指先の皮下組織の厚み計測ができる。ちなみに、爪による光量低下率をkとすると、
角質層厚さ:L1/(L0−La)×1/kで求めた光量低下率から推定
真皮層厚さ:L2/(L0−La )×1/kで求めた光量低下率から推定
筋組織厚さ:L3/(L0−La )×1/kで求めた光量低下率から推定
で、各層の厚みを求めることができる。
As for the fingertip, there is almost no stratum corneum and there is a nail instead.Thus, the polarization angle data of the nail is excluded, and the thickness measurement of the subcutaneous tissue of the fingertip can be performed by measuring the light amount decrease by the nail in advance. it can. By the way, if the light intensity reduction rate by the nail is k,
The stratum corneum layer thickness: Estimated from the light intensity reduction rate obtained by L1 / (L0−La) × 1 / k The dermis layer thickness: Estimated from the light intensity reduction rate obtained by L2 / (L0−La) × 1 / k Thickness: The thickness of each layer can be obtained by estimation from the light amount reduction rate obtained by L3 / (L0−La) × 1 / k.

また、血管の影響に関しては前述のように照射する段階でカットしているが、皮下組織構成成分は特定波長の光を吸収することから、この影響で厚みによる光量低下以外の光量低下を起こす場合がある。殊に角質層のように非常に薄い層においては厚みによる光量低下が小さいため、特に影響が出てくる。このために、角質層の吸収波長を予め調べておき、その吸収波長を照射光源の波長からカットしておくことで厚み推定の誤差をできるだけ低減することが好ましい。具体的にはメラニンは567nmをピークとする光吸収(図6参照)を起こすために、照射する偏光は波長1000nm以上を使用することで、メラニンの吸光による影響を避けることができる。   In addition, as for the influence of blood vessels, it is cut at the stage of irradiation as described above, but the subcutaneous tissue constituents absorb light of a specific wavelength, so this effect causes a light quantity decrease other than a light quantity decrease due to thickness There is. In particular, an extremely thin layer such as a stratum corneum is particularly affected because the decrease in the amount of light due to the thickness is small. For this reason, it is preferable to reduce the thickness estimation error as much as possible by examining the absorption wavelength of the stratum corneum in advance and cutting the absorption wavelength from the wavelength of the irradiation light source. Specifically, since melanin causes light absorption having a peak at 567 nm (see FIG. 6), the influence of light absorption of melanin can be avoided by using polarized light with a wavelength of 1000 nm or more.

なお、偏光の照射に際しては、ライン状の光を照射するとともにCCD等の2次元の受光素子4で受光することでライン方向の構造推定ができる。照射する偏光をスポット光とし、その光をミラーで走査することによって皮膚表面で2次元の照射を行って3次元の構造推定を行うようにしてもよい。   In addition, when irradiating polarized light, the structure in the line direction can be estimated by irradiating linear light and receiving light by a two-dimensional light receiving element 4 such as a CCD. The polarized light to be irradiated may be spot light, and the light may be scanned with a mirror to perform two-dimensional irradiation on the skin surface to perform three-dimensional structure estimation.

また、偏光角光量分布データに基づく筋肉状態評価は静的なものに限らず、時間的な変化を含めた偏光角光量分布データを用いることで、動的状態の評価も行うことができる。この場合、受光側の偏光角度を筋肉状態の計測に最適な角度に決定後、照射光源をパルス光とし、この照射タイミングと同期をとった計測を行うことで、筋肉の伸縮による厚み変化を計測することができる。   Further, the muscle state evaluation based on the polarization angle light amount distribution data is not limited to a static one, and the dynamic state can also be evaluated by using the polarization angle light amount distribution data including temporal changes. In this case, after determining the polarization angle on the light-receiving side to be the optimum angle for measuring the muscle state, the irradiation light source is set to pulsed light, and measurement is performed in synchronization with this irradiation timing to measure thickness changes due to muscle expansion and contraction. can do.

偏光照射手段及び受光素子4として、ある波長の光のみを使用するのではなく、一定の範囲内に分布している波長の光を全て利用することができるものを用いる時には、その照射波長分布を考慮して解析するようにしてもよい。   When using polarized light irradiation means and light receiving element 4 that can use all light having a wavelength distributed within a certain range, rather than using only light having a certain wavelength, the irradiation wavelength distribution is You may make it analyze in consideration.

解析手段6による解析評価としては、筋肉の状態(伸縮度や疲労度等)の評価に限るものではない。たとえば、ストレスが及ぼす影響として肩こりがあるが、筋肉の血行不良によってもたらされる肩こりは、筋収縮があまり起きていない状況にある。したがって、偏光を人体9の肩部分に照射して肩の筋組織の収縮状況をモニタすることにより、ストレスの代替現象である肩こりからストレス度を計測・評価することができる。   The analysis evaluation by the analysis means 6 is not limited to the evaluation of the muscle state (stretching degree, fatigue degree, etc.). For example, there is a stiff shoulder as an effect of stress, but the stiff shoulder caused by poor circulation of muscles is in a state where muscle contraction does not occur much. Therefore, the degree of stress can be measured and evaluated from the stiff shoulder, which is an alternative phenomenon of stress, by irradiating the shoulder portion of the human body 9 with polarized light and monitoring the contraction of the shoulder muscle tissue.

本発明の実施の形態の一例のブロック図である。It is a block diagram of an example of an embodiment of the invention. 筋肉による偏光角度毎の相対光強度を示す説明図である。It is explanatory drawing which shows the relative light intensity for every polarization angle by a muscle. 酸化ヘモグロビンの吸光度の説明図である。It is explanatory drawing of the light absorbency of oxyhemoglobin. 筋肉内部での光量低下の説明図である。It is explanatory drawing of the light quantity fall inside a muscle. 筋肉内部での偏光角度毎の相対光強度を示す説明図である。It is explanatory drawing which shows the relative light intensity for every polarization angle inside a muscle. メラニンの吸光度の説明図である。It is explanatory drawing of the light absorbency of melanin.

符号の説明Explanation of symbols

1 光源
2 偏光板
3 偏光板
4 受光素子
5 回転ステージ
6 解析手段
DESCRIPTION OF SYMBOLS 1 Light source 2 Polarizing plate 3 Polarizing plate 4 Light receiving element 5 Rotating stage 6 Analysis means

Claims (6)

人体の筋肉に光を照射して透過又は反射した光を解析することにより人体の筋肉の状態を推定する人体筋肉評価装置であり、偏光した光を人体の皮膚に照射する偏光照射手段と、人体を透過又は反射した光について偏光角の光量分布を計測する偏光計測手段と、偏光角の光量分布を解析して人体の皮膚下の筋肉の状態を推定する解析手段とを備えていることを特徴とする人体筋肉評価装置。   A human muscle evaluation apparatus that estimates the state of a human muscle by irradiating light to the human muscle and analyzing the transmitted or reflected light, a polarized light irradiation means for irradiating the human skin with polarized light, and the human body Polarization measuring means for measuring the light amount distribution of the polarization angle with respect to the light transmitted or reflected, and an analysis means for analyzing the light amount distribution of the polarization angle to estimate the state of muscles under the skin of the human body Human body muscle evaluation device. 偏光照射手段は波長が500nm〜2000nmの光を照射するものであることを特徴とする請求項1記載の人体筋肉評価装置。   2. The human muscle evaluation apparatus according to claim 1, wherein the polarized light irradiation means irradiates light having a wavelength of 500 nm to 2000 nm. 偏光照射手段は複数種類の波長の光を照射するものであることを特徴とする請求項1または2に記載の人体筋肉評価装置。   The human body muscle evaluation apparatus according to claim 1 or 2, wherein the polarized light irradiation means irradiates light of a plurality of types of wavelengths. 偏光照射手段はライン状の光を照射するものであることを特徴とする請求項1〜3のいずれか1項に記載の人体筋肉評価装置。   The human body muscle evaluation apparatus according to any one of claims 1 to 3, wherein the polarized light irradiation means irradiates line-shaped light. 偏光照射手段はパルス光を照射するものであり、偏光計測手段は偏光角の光量分布の時間変化を計測するものであり、解析手段は偏光角の光量分布について時間変化を考慮して解析をするものであることを特徴とする請求項1〜4のいずれか1項に記載の人体筋肉評価装置。   The polarized light irradiating means irradiates pulsed light, the polarized light measuring means measures the time change of the light amount distribution of the polarization angle, and the analyzing means analyzes the light amount distribution of the polarization angle in consideration of the time change. The human body muscle evaluation apparatus according to any one of claims 1 to 4, wherein the apparatus is a human muscle evaluation apparatus. 解析手段は予め測定した皮膚又は爪による偏光角の光量分布データから皮膚又は爪による影響を除去して解析を行うものであることを特徴とする請求項1〜5のいずれか1項に記載の人体筋肉評価装置。   6. The analysis device according to claim 1, wherein the analysis unit performs an analysis by removing the influence of the skin or the nail from the light amount distribution data of the polarization angle of the skin or the nail measured in advance. Human muscle evaluation device.
JP2006077129A 2006-03-20 2006-03-20 Human body muscle evaluation device Withdrawn JP2007252420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006077129A JP2007252420A (en) 2006-03-20 2006-03-20 Human body muscle evaluation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006077129A JP2007252420A (en) 2006-03-20 2006-03-20 Human body muscle evaluation device

Publications (1)

Publication Number Publication Date
JP2007252420A true JP2007252420A (en) 2007-10-04

Family

ID=38627270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006077129A Withdrawn JP2007252420A (en) 2006-03-20 2006-03-20 Human body muscle evaluation device

Country Status (1)

Country Link
JP (1) JP2007252420A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009240676A (en) * 2008-03-31 2009-10-22 Fujifilm Corp Optical system, method, and program
KR101421122B1 (en) 2013-01-30 2014-07-22 국방과학연구소 Prediction Method of Muscle Fatigue and Prediction System of Muscle Fatigue
WO2020019473A1 (en) * 2018-07-26 2020-01-30 中国科学院苏州生物医学工程技术研究所 Device and method for high-throughput polarization imaging of zebrafish

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009240676A (en) * 2008-03-31 2009-10-22 Fujifilm Corp Optical system, method, and program
KR101421122B1 (en) 2013-01-30 2014-07-22 국방과학연구소 Prediction Method of Muscle Fatigue and Prediction System of Muscle Fatigue
WO2020019473A1 (en) * 2018-07-26 2020-01-30 中国科学院苏州生物医学工程技术研究所 Device and method for high-throughput polarization imaging of zebrafish

Similar Documents

Publication Publication Date Title
US10980458B2 (en) Photoacoustic apparatus and control method thereof
US7322972B2 (en) In vivo port wine stain, burn and melanin depth determination using a photoacoustic probe
Ahn et al. High-resolution functional photoacoustic monitoring of vascular dynamics in human fingers
Deán-Ben et al. Functional optoacoustic imaging of moving objects using microsecond-delay acquisition of multispectral three-dimensional tomographic data
JP5463545B2 (en) Concentration determination apparatus, concentration determination method and program
US20150342508A1 (en) Non-invasive optical measurement of blood analyte
US20120275262A1 (en) Section-illumination photoacoustic microscopy with ultrasonic array detection
JP5691687B2 (en) Inspection device
JP6025888B2 (en) Photoacoustic apparatus, apparatus and method
JP3966796B2 (en) Blood glucose measuring device
CN111956234A (en) Accurate blood oxygen saturation measuring method and device based on photoacoustic technology
JP2006042955A (en) In vivo material optometric device
JP5838517B2 (en) Concentration determination device, concentration determination method
JP2007252420A (en) Human body muscle evaluation device
WO2019225612A1 (en) Blood vessel detection device and method therefor
JP2013022338A (en) Biological component measuring device and biological component measuring method
JP4586680B2 (en) Method for preparing calibration curve for quantitative analysis of in-vivo components, and quantitative analyzer using the calibration curve
US10548520B2 (en) Non-invasive optical measurement of blood analyte
JP4925278B2 (en) Optical biological information measuring method and apparatus
JP6218908B2 (en) Method
JP6419281B2 (en) Information processing apparatus and method
JP5761708B2 (en) Concentration determination method and concentration determination apparatus
RU2368310C1 (en) Method of dactylagraphic identification of human personality
JP2017060640A (en) Determination method and determination device
TWI615131B (en) Image based oxygen saturation measuring device and method thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090602