JP2007252127A - Independent operation detection device for synchronous generator - Google Patents

Independent operation detection device for synchronous generator Download PDF

Info

Publication number
JP2007252127A
JP2007252127A JP2006074383A JP2006074383A JP2007252127A JP 2007252127 A JP2007252127 A JP 2007252127A JP 2006074383 A JP2006074383 A JP 2006074383A JP 2006074383 A JP2006074383 A JP 2006074383A JP 2007252127 A JP2007252127 A JP 2007252127A
Authority
JP
Japan
Prior art keywords
frequency
synchronous generator
operation detection
detection device
control signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006074383A
Other languages
Japanese (ja)
Other versions
JP4631762B2 (en
Inventor
Toru Jintsugawa
亨 神通川
Shinsuke Nii
真介 仁井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2006074383A priority Critical patent/JP4631762B2/en
Publication of JP2007252127A publication Critical patent/JP2007252127A/en
Application granted granted Critical
Publication of JP4631762B2 publication Critical patent/JP4631762B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the deterioration of power quality in system linkage and also prevent an influence from being exerted upon the other control device or the like by enabling independent operation detection without constantly imparting the micro variation of a certain cycle to a voltage set value of an automatic voltage adjusting circuit of a synchronous generator, and to exactly detect the independent operation of the synchronous generator in the system linkage at the side of a private generating set. <P>SOLUTION: The independent operation detection device 1 comprises: a frequency detector 11 that detects a machine rotation frequency of the synchronous generator; a frequency variation amount operation part 12 that extracts a frequency error signal from the machine rotation frequency; a phase adjustment part 13 that oscillates a component of a specified natural frequency; a frequency relay 14 that detects that the frequency error signal has reached a prescribed value or higher; a proportional gain 15 that determines a code (positive/negative) and the magnitude of a control signal to be output; an output limiter 16 that limits the magnitude of the control signal; and a timer 17 that measures a time elapsed from a state that the frequency error signal has reached the prescribed value or higher. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は系統に連系される同期発電機の単独運転を検出して系統から切り離す同期発電機用単独運転検出装置に関する。   The present invention relates to an isolated operation detection device for a synchronous generator that detects the isolated operation of a synchronous generator linked to the system and disconnects the synchronous generator from the system.

従来、同期発電機用単独運転検出装置は、分散型電源を、逆潮流有りの条件下で高圧配電系統に連系する場合に、この分散型電源の単独運転を防止するために使用されている。
現在開発されている同期発電機用単独運転検出装置としては、例えば特許文献1に開示されているような無効電力変動方式のものがある。即ち、この無効電力変動方式の単独運転検出装置は、同期発電機の自動電圧調整回路(AVR)の電圧設定値に対し、微少変動量発生器によって、一定周期の微少変動(AVR電圧設定値変動量)を常時与えておくものである。このように構成することにより、この同期発電機には微少の電圧変動が発生することがあるが、系統との連系状態では同期化力によって周波数変化が抑制される。しかし、この同期発電機が単独運転に移行した時には、この同期発電機の端子電圧及び周波数に周期的な変動が発生することになる。そこで、周波数変動量演算部は、PTにより検出する連系点電圧により、周波数変動量Δfをディジタル演算等で検出するように構成し、この周波数変動量Δfが所定の一定値を越えたことを判定部が判定した時に、この同期発電機が単独運転に移行したと判定し、この判定により、遮断器のトリップ指令を発生し、同期発電機を系統から切り離す。
Conventionally, a synchronous generator isolated operation detection device has been used to prevent the distributed power supply from operating independently when the distributed power supply is connected to a high voltage distribution system under conditions of reverse power flow. .
As an isolated operation detecting device for a synchronous generator currently developed, there is a reactive power fluctuation method as disclosed in Patent Document 1, for example. That is, this reactive power fluctuation type isolated operation detection device uses a minute fluctuation amount generator to generate a small fluctuation (AVR voltage setting value fluctuation) with respect to the voltage setting value of the automatic voltage regulator circuit (AVR) of the synchronous generator. (Quantity) is always given. With this configuration, a slight voltage fluctuation may occur in the synchronous generator, but the frequency change is suppressed by the synchronization force in the interconnection state with the system. However, when the synchronous generator shifts to a single operation, periodic fluctuations occur in the terminal voltage and frequency of the synchronous generator. Therefore, the frequency fluctuation amount calculation unit is configured to detect the frequency fluctuation amount Δf by digital calculation or the like based on the interconnection point voltage detected by PT, and the fact that the frequency fluctuation amount Δf exceeds a predetermined constant value. When the determination unit makes a determination, it is determined that the synchronous generator has shifted to a single operation. By this determination, a trip command for the circuit breaker is generated and the synchronous generator is disconnected from the system.

また、その他の同期発電機用単独運転検出装置としては、例えば特許文献2に開示されているようなQCモード周波数シフト方式のものがある。即ち、このQCモード周波数シフト方式の単独運転検出装置は、同期発電機の周波数の変化率を検出し、周波数変化率が正の場合には同期発電機の電圧を下げ方向に変化させ、周波数変化率が負の場合には同期発電機の電圧を上げ方向に変化させるように、電圧動揺信号を自動電圧調整回路(AVR)の電圧設定値に与えておくものである。このように構成することにより、この同期発電機は周波数変動を常時助長するように作用するが、系統との連系状態では同期化力によって周波数変化が抑制される。しかし、この同期発電機が単独運転に移行した時には、周波数変動が拡大することになる。そこで、周波数変動量演算部は、PTにより検出する連系点電圧により、周波数変動量Δfをディジタル演算等で検出するように構成し、この周波数変動量Δfが所定の一定値を越えたことを判定部が判定した時に、この同期発電機が単独運転に移行したと判定し、この判定により、遮断器のトリップ指令を発生し、同期発電機を系統から切り離す。
特開平11−41820号公報 特開2002−281674号公報
As another example of the synchronous generator isolated operation detection device, there is a QC mode frequency shift method disclosed in Patent Document 2, for example. That is, the QC mode frequency shift type isolated operation detection device detects the rate of change of the frequency of the synchronous generator, and when the frequency change rate is positive, the voltage of the synchronous generator is changed in the downward direction to change the frequency. When the rate is negative, the voltage fluctuation signal is given to the voltage setting value of the automatic voltage regulator circuit (AVR) so that the voltage of the synchronous generator is changed in the upward direction. By configuring in this way, this synchronous generator acts to constantly promote frequency fluctuations, but frequency changes are suppressed by the synchronization force in the interconnected state with the system. However, when this synchronous generator shifts to a single operation, the frequency fluctuation is expanded. Therefore, the frequency fluctuation amount calculation unit is configured to detect the frequency fluctuation amount Δf by digital calculation or the like based on the interconnection point voltage detected by PT, and the fact that the frequency fluctuation amount Δf exceeds a predetermined constant value. When the determination unit makes a determination, it is determined that the synchronous generator has shifted to a single operation. By this determination, a trip command for the circuit breaker is generated and the synchronous generator is disconnected from the system.
JP 11-41820 A JP 2002-281684 A

しかしながら、上記背景技術で述べた特許文献1に開示されている従来の同期発電機用単独運転検出装置にあっては、単独運転を短時間で検出するためにはAVR電圧設定値変動量を大きくすれば良いことが周知であるが、反面、このAVR電圧設定値の変動量により、系統連系時の電圧変動も大きくなり、結果的に電力品質の低下を招くと共に、他の制御機器などへの影響を与える恐れがあるという問題点があった。   However, in the conventional synchronous generator isolated operation detection device disclosed in Patent Document 1 described in the background art above, in order to detect the isolated operation in a short time, the AVR voltage set value fluctuation amount is increased. Although it is well known that, it is well known, however, the fluctuation amount of the AVR voltage setting value also increases the voltage fluctuation at the time of grid connection, resulting in a decrease in power quality and to other control devices. There was a problem that there is a risk of affecting.

この問題点は、発電機容量が大きい場合や、同期発電機が配電用変電所から遠方に連系される場合に一層大きくなる。即ち、このような場合、要求される単独運転検出時間を満たすように決められたAVR電圧設定値変動量に対して、系統連系時の電圧変動量がその許容値を上回ることがあるからである。   This problem becomes even greater when the generator capacity is large or when the synchronous generator is connected far away from the distribution substation. That is, in such a case, the voltage fluctuation amount at the time of grid connection may exceed the allowable value with respect to the AVR voltage set value fluctuation amount determined so as to satisfy the required isolated operation detection time. is there.

一方、特許文献2に開示されている従来の同期発電機用単独運転検出装置にあっては、特許文献1におけるAVR電圧設定値変動量のような常時変動を印加しないため、系統連系時において電圧変動を生じさせることは無い。しかしながら、特許文献2における同期発電機用単独運転検出装置は周波数変動を常時助長するように作用するため、単独運転発生時に生じる周波数変動だけでなく、系統連系中の周波数外乱(系統周波数の常時変動、力率用コンデンサの投入・開放、他の発電設備の並列・解列、等)をも助長し、同期発電機の安定性を低下させる。特に長亘長電線に連系する場合、同期発電機の安定運転に支障をきたす可能性があるという問題点があった。   On the other hand, the conventional synchronous generator isolated operation detection device disclosed in Patent Document 2 does not apply constant fluctuations such as the AVR voltage set value fluctuation amount in Patent Document 1; There is no voltage fluctuation. However, since the synchronous generator isolated operation detection device in Patent Document 2 acts so as to always promote frequency fluctuations, not only frequency fluctuations that occur when isolated operations occur, but also frequency disturbances in the grid interconnection (always on the system frequency). Fluctuation, insertion / release of power factor capacitors, parallel / disconnection of other power generation facilities, etc.), and reduce the stability of synchronous generators. In particular, there is a problem that there is a possibility that the stable operation of the synchronous generator may be hindered when connecting to a long and long electric wire.

本発明は、上記従来の問題点に鑑みてなされたものであって、同期発電機の自動電圧調整回路(AVR)の電圧設定値に対して一定周期の微少変動(AVR電圧設定値変動量)を常時与えることなく単独運転検出が可能として、系統連系中の電力品質の低下、他の制御機器などへの影響を防ぐと共に、系統連系中の周波数外乱を助長することなく単独運転検出が可能として、系統連系中の同期発電機の安定性の低下を防ぎ、系統連系中の同期発電機の単独運転を自家発電設備側で確実に検出して保護することができる同期発電機用単独運転検出装置を提供することを目的としている。   The present invention has been made in view of the above-described conventional problems, and a minute fluctuation (AVR voltage set value fluctuation amount) with a constant period with respect to the voltage set value of the automatic voltage regulator circuit (AVR) of the synchronous generator. It is possible to detect isolated operation without constantly giving power, preventing deterioration of power quality during grid connection, impact on other control devices, etc., and isolated operation detection without promoting frequency disturbance in grid connection. As possible, for the synchronous generator that prevents the stability of the synchronous generator in the grid connection from being lowered and can detect and protect the independent operation of the synchronous generator in the grid connection on the private power generation equipment side. The object is to provide an isolated operation detection device.

上記課題を解決するために、本発明に係る同期発電機用単独運転検出装置は、遮断器を介して系統電源と連系される同期発電機と共に設置される同期発電機用単独運転検出装置において、前記同期発電機の機械回転周波数または端子電圧周波数を検出する周波数検出手段と、前記周波数検出器で検出した周波数信号から周波数偏差信号を抽出する周波数変動量演算手段と、単独運転移行時に発生する前記同期発電機固有の動揺周波数成分である最高感度周波数を発振させるように前記周波数偏差信号の位相を調整したものを、制御信号として出力する位相調整手段と、前記制御信号の符号及び大きさを調整する制御量調整手段と、前記制御量調整手段から出力された制御信号の大きさを制限する制御信号制限手段と、前記制御信号制限手段から出力された制御信号を前記同期発電機の自動電圧調整回路の電圧指令値に補正信号として加算する手段と、連系点の周波数変動量が整定値を超えたときに前記同期発電機の単独運転として判定する手段と、を具備したことを特徴とする同期発電機用単独運転検出装置を提供するものである。   In order to solve the above problems, a synchronous generator isolated operation detection device according to the present invention is a synchronous generator isolated operation detection device installed together with a synchronous generator linked to a system power supply via a circuit breaker. A frequency detecting means for detecting a mechanical rotation frequency or a terminal voltage frequency of the synchronous generator; a frequency variation calculating means for extracting a frequency deviation signal from the frequency signal detected by the frequency detector; Phase adjustment means for outputting as a control signal the phase of the frequency deviation signal adjusted so as to oscillate the maximum sensitivity frequency that is the oscillation frequency component unique to the synchronous generator, and the sign and magnitude of the control signal. A control amount adjusting unit for adjusting, a control signal limiting unit for limiting the magnitude of a control signal output from the control amount adjusting unit, and the control signal limiting unit. Means for adding the output control signal as a correction signal to the voltage command value of the automatic voltage adjustment circuit of the synchronous generator, and the synchronous generator is operated independently when the frequency fluctuation amount at the interconnection point exceeds the set value And an independent operation detecting device for a synchronous generator.

また、前記同期発電機用単独運転検出装置において、前記最高感度周波数は、Mを発電機慣性定数[s]とし、Δgovをガバナ調定率[%]とし、TMを原動機時定数[s]とする時、(1)式であることを特徴とする。   In the synchronous generator isolated operation detection device, the highest sensitivity frequency is such that M is a generator inertia constant [s], Δgov is a governor settling rate [%], and TM is a prime mover time constant [s]. (1).

以上説明したように、本発明の同期発電機用単独運転検出装置によれば、系統へ流出する有効電力と無効電力とが共にゼロ近傍となるような環境、即ち、単独運転検出が最も困難な条件下においても、短時間で確実に同期発電機の単独運転の検出が可能であり、しかも系統連系中には不要な無効電力変動(電圧変動)を生じさせることもないので、系統連系中の電力品質の低下を防ぐと共に、他の制御機器に対して連鎖的な悪影響を与えることがなく、系統連系中の周波数外乱を助長することがないため、系統連系中の同期発電機の安定性が低下することがない同期発電機用単独運転検出装置を提供することができる効果がある。   As described above, according to the synchronous generator isolated operation detection device of the present invention, the environment where both the active power and reactive power flowing out to the system are near zero, that is, the isolated operation detection is the most difficult. Even under conditions, synchronous generators can be detected reliably in a short time, and unnecessary reactive power fluctuations (voltage fluctuations) do not occur during grid connection. Synchronous generator in the grid connection because it prevents the deterioration of the power quality in the system, does not have a cascading adverse effect on other control devices, and does not promote the frequency disturbance in the grid connection There is an effect that it is possible to provide a synchronous generator isolated operation detection device in which the stability of the generator does not decrease.

以下、本発明の同期発電機用単独運転検出装置の最良の実施形態について、図面を参照して詳細に説明する。
図1は、本発明の実施形態に係る同期発電機用単独運転検出装置を含む電源系統の全体構成を示す構成図である。
BEST MODE FOR CARRYING OUT THE INVENTION The best mode for carrying out an independent operation detection device for a synchronous generator according to the present invention will be described in detail below with reference to the drawings.
FIG. 1 is a configuration diagram showing an overall configuration of a power supply system including an isolated operation detection device for a synchronous generator according to an embodiment of the present invention.

図1に示す電源系統は、無限大電源、上位系、配電用変電所、開放点遮断器、特別高圧電線を経て分散型電源施設に至るものであり、この分散型電源施設には、主要な構成要素である同期発電機の他、本発明の実施形態に係る同期発電機用単独運転検出装置である単独運転検出装置1が設置されている。   The power system shown in FIG. 1 extends to an infinite power source, a host system, a distribution substation, an open circuit breaker, and a special high-voltage wire to a distributed power facility. In addition to the synchronous generator that is a component, an isolated operation detection device 1 that is an isolated operation detection device for a synchronous generator according to an embodiment of the present invention is installed.

単独運転検出装置1は、同期発電機の機械回転周波数(または端子電圧周波数)を検出する周波数検出器11(周波数検出手段)と、機械回転周波数(または端子電圧周波数)から周波数偏差信号を抽出する周波数変動量演算部12(周波数変動量演算手段)と、特定の固有周波数(後述する最高感度周波数)成分を発振させる位相調整部13(位相調整手段)と、周波数偏差信号が所定値以上になったことを検出する周波数リレー14(判定手段)と、出力する制御信号の符号(正負)と大きさとを決定する比例ゲイン15(制御量調整手段)と、前記制御信号の大きさを制限する出力リミッタ16(制御信号制限手段)と、周波数偏差信号が所定値以上となった状態の経過時間を計測するタイマー17(判定手段)と、を備えて構成される。   The isolated operation detection device 1 extracts a frequency deviation signal from the frequency detector 11 (frequency detection means) that detects the mechanical rotation frequency (or terminal voltage frequency) of the synchronous generator and the mechanical rotation frequency (or terminal voltage frequency). The frequency fluctuation amount calculation unit 12 (frequency fluctuation amount calculation unit), the phase adjustment unit 13 (phase adjustment unit) that oscillates a specific natural frequency (maximum sensitivity frequency described later) component, and the frequency deviation signal become a predetermined value or more. A frequency relay 14 (determination means) for detecting this, a proportional gain 15 (control amount adjustment means) for determining the sign (positive / negative) and magnitude of the output control signal, and an output for limiting the magnitude of the control signal. And a limiter 16 (control signal limiting means) and a timer 17 (determination means) that measures the elapsed time when the frequency deviation signal is equal to or greater than a predetermined value. .

以下、図1を参照し、単独運転検出装置1の各構成要素の動作を説明する。
周波数検出器11は、同期発電機の機械回転周波数f(または同期発電機の端子電圧周波数)を検出する。
Hereinafter, the operation of each component of the isolated operation detection device 1 will be described with reference to FIG.
The frequency detector 11 detects the mechanical rotation frequency f of the synchronous generator (or the terminal voltage frequency of the synchronous generator).

周波数変動量演算部12は、機械回転周波数f(または同期発電機の端子電圧周波数)から周波数偏差信号Δfを抽出する。
位相調整部13は、周波数変動量演算部12からの周波数偏差信号Δfを入力し、特定の固有周波数(後述する最高感度周波数)成分を発振するように調整されており、比例ゲイン15及び出力リミッタ16を介して、周波数偏差信号Δfから制御信号を生成する。
The frequency variation calculation unit 12 extracts a frequency deviation signal Δf from the machine rotation frequency f (or the terminal voltage frequency of the synchronous generator).
The phase adjustment unit 13 receives the frequency deviation signal Δf from the frequency variation calculation unit 12 and is adjusted so as to oscillate a specific natural frequency (maximum sensitivity frequency described later) component, and includes a proportional gain 15 and an output limiter. 16 is used to generate a control signal from the frequency deviation signal Δf.

周波数リレー14は、周波数偏差信号Δfが所定の設定値を超えたことを検出する(なお、周波数リレー14は、周波数検出器11からの周波数fを入力信号とし、そこから周波数変動率df/dtを求め、この周波数変動率df/dtが所定の設定値を超えたことを検出するように構成することも可能である)。   The frequency relay 14 detects that the frequency deviation signal Δf has exceeded a predetermined set value (note that the frequency relay 14 uses the frequency f from the frequency detector 11 as an input signal, from which the frequency fluctuation rate df / dt It is also possible to determine that the frequency variation rate df / dt exceeds a predetermined set value).

比例ゲイン15は、制御信号の符号(正負)及び大きさを調整して出力リミッタ16に伝達する。
出力リミッタ16は、制御信号の大きさを制限する。
The proportional gain 15 adjusts the sign (positive / negative) and magnitude of the control signal and transmits it to the output limiter 16.
The output limiter 16 limits the magnitude of the control signal.

なお、単独運転検出装置1から出力される前記制御信号は、前記同期発電機の自動電圧調整回路(AVR)の電圧指令値に加算される。このように構成することにより、前記制御信号の内、特定の固有周波数(後述する最高感度周波数)成分は、前記同期発電機と単独運転検出装置1との間で正帰還されることになる。   The control signal output from the isolated operation detection device 1 is added to the voltage command value of the automatic voltage regulator circuit (AVR) of the synchronous generator. With this configuration, a specific natural frequency (maximum sensitivity frequency described later) component of the control signal is positively fed back between the synchronous generator and the independent operation detection device 1.

タイマー17は、周波数偏差信号Δfが所定値以上に達した状態の経過時間を計測し、この経過時間が所定の設定時間以上に達した時に、単独運転検出遮断器トリップ信号を出力する(なお、タイマー17は、周波数変動率df/dtに基づいて単独運転の検出・判定を行うように構成することも可能である)。   The timer 17 measures the elapsed time when the frequency deviation signal Δf reaches a predetermined value or more, and outputs an isolated operation detection breaker trip signal when the elapsed time reaches a predetermined set time or longer (note that The timer 17 can also be configured to detect and determine isolated operation based on the frequency variation rate df / dt).

なお、この単独運転検出遮断器トリップ信号は、同期発電機の出力系統に介入する遮断器をトリップさせて、電路を開放させる機能を有する。
図2は、本発明の実施形態に係る同期発電機用単独運転検出装置の1例としての動作特性を示す制御ブロック図を示す。
This isolated operation detection breaker trip signal has a function of tripping a breaker intervening in the output system of the synchronous generator to open the electric circuit.
FIG. 2 is a control block diagram showing operating characteristics as an example of the synchronous generator isolated operation detection device according to the embodiment of the present invention.

以下、図2を参照して、本発明の実施形態に係る同期発電機用単独運転検出装置の動作特性を説明する。
単独運転移行時の周波数fは、或る固有の周波数で振動する(以下、この周波数を「最高感度周波数」と呼称する)。
Hereinafter, with reference to FIG. 2, the operation characteristics of the synchronous generator isolated operation detection device according to the embodiment of the present invention will be described.
The frequency f at the time of the transition to the isolated operation vibrates at a specific frequency (hereinafter, this frequency is referred to as “maximum sensitivity frequency”).

Mを発電機慣性定数[s]とし、Δgovをガバナ調定率[%]とし、TMを原動機時定数[s]とすると、最高感度周波数fs[Hz]は、(1)式で表せる。   When M is the generator inertia constant [s], Δgov is the governor adjustment rate [%], and TM is the prime mover time constant [s], the maximum sensitivity frequency fs [Hz] can be expressed by the equation (1).

単独運転の範囲内にある負荷と、同期発電機の出力とがほぼ釣り合った状態で、同期発電機が単独運転に移行した場合、連系点の電圧v、周波数fは殆ど変化しないため、このままでは、周波数リレー14は、単独運転に移行したことを検出できず、よって、単独運転が継続してしまう。   When the synchronous generator shifts to single operation in a state where the load within the range of the single operation and the output of the synchronous generator are almost balanced, the voltage v and frequency f at the interconnection point hardly change. Then, the frequency relay 14 cannot detect the shift to the single operation, and thus the single operation continues.

しかし、ここで、単独運転検出装置1は、単独運転移行時に発生する僅かな最高感度周波数の初期振動を周波数検出器11により検出して、以上の構成要素により制御信号に変換し、前記同期発電機との間で正帰還させることにより、増幅効果を得て、発電機の単独運転を確実に検出することができる。   However, here, the isolated operation detection device 1 detects the initial vibration of the slightest sensitivity frequency generated at the time of transition to the isolated operation by the frequency detector 11 and converts it into a control signal by the above components, and the synchronous power generation By performing positive feedback with the generator, it is possible to obtain an amplification effect and reliably detect a single operation of the generator.

しかも、最高感度周波数以外の周波数帯域の入力信号は正帰還しないため、連系時の周波数変動(系統周波数の常時変動、力率改善用コンデンサの投入・開放、他の発電設備等の並列・解列、等)には応答せず、よって、連系中の無効電力(あるいは電圧)の過大変動を発生させることがなく、系統連系中の周波数外乱を助長することがなく、系統連系中の同期発電機の安定性が低下することがない同期発電機用単独運転検出装置を実現することができる。   In addition, input signals in frequency bands other than the highest sensitivity frequency are not positively fed back, so frequency fluctuations during grid connection (always fluctuations in the system frequency, insertion / release of power factor improvement capacitors, parallel / solution of other power generation equipment, etc.) Column, etc.), therefore, no excessive fluctuation of reactive power (or voltage) in the interconnection is generated, no frequency disturbance in the grid interconnection is promoted, It is possible to realize a synchronous generator isolated operation detection device in which the stability of the synchronous generator is not lowered.

図3は、図1に示した電源系統において、同期発電機が単独系統に移行した場合(開放点遮断器開放)の1例としての線形動作特性を表すブロック図を示す。
但し、同期発電機には制動巻線の効果、電機子抵抗、電機子鎖交磁束の微分、飽和を無視した過渡モデルを採用し、周波数リレー、遮断器等の保護装置、リミッタ等の非線形要素は無視している。
FIG. 3 is a block diagram showing a linear operating characteristic as an example of the case where the synchronous generator is shifted to a single system in the power supply system shown in FIG. 1 (open circuit breaker opened).
However, the synchronous generator adopts a transient model that ignores the effects of braking windings, armature resistance, armature flux linkage differentiation, and saturation, and uses non-linear elements such as frequency relays, circuit breakers, limiters, etc. Is ignored.

また、Mは慣性定数、Dは固有制動トルク係数、T'doはd軸開路過渡時定数、Wω(s)は単独運転検出装置1のブロック、GA(s)はAVRブロック(励磁機も含む)、GGov(s) はガバナブロック、Δωは角周波数変動、ΔVtは端子電圧変動、ΔVrefは電圧設定値変動、ΔEfdは界磁電圧変動、Δe’qは内部電圧変動、ΔTe は電気トルク変動、ΔTm は機械トルク変動、sはラプラス演算子を、それぞれ示している(図3に示す角周波数ωは、周波数fと同等と見做して構わない)。   M is an inertia constant, D is an intrinsic braking torque coefficient, T'do is a d-axis open circuit transient time constant, Wω (s) is a block of the independent operation detection device 1, and GA (s) is an AVR block (including an exciter). ), GGov (s) is a governor block, Δω is angular frequency variation, ΔVt is terminal voltage variation, ΔVref is voltage set value variation, ΔEfd is field voltage variation, Δe′q is internal voltage variation, ΔTe is electric torque variation, ΔTm represents a mechanical torque fluctuation, and s represents a Laplace operator (the angular frequency ω shown in FIG. 3 may be regarded as equivalent to the frequency f).

なお、図3に示すK2 ,K3 ,K6は、それぞれ同期機特性定数であり、(2)式〜(7)式で求められる。   In addition, K2, K3, and K6 shown in FIG. 3 are synchronous machine characteristic constants, respectively, and are obtained by equations (2) to (7).

id0:電機子電流d軸成分
iq0:電機子電流q軸成分
ed0:端子電圧d軸成分
eq0:端子電圧q軸成分
xd:d軸同期リアクタンス
xd':d軸過渡リアクタンス
xq:q軸同期リアクタンス
Eqo':d軸磁束鎖交数に比例した電圧
ここで、Rl,Xlを、負荷のインピーダンスとすると、(5)式〜(7)式が得られる。
id0: Armature current d-axis component
iq0: Armature current q-axis component
ed0: Terminal voltage d-axis component
eq0: Terminal voltage q-axis component
xd: d-axis synchronous reactance
xd ': d-axis transient reactance
xq: q-axis synchronous reactance
Eqo ': Voltage proportional to the d-axis flux linkage number Here, when Rl and Xl are impedances of the load, equations (5) to (7) are obtained.

今、図3において、電力系統安定化機能を有する単独運転検出装置1を経由したΔωからΔTeまでの伝達関数Gω(s)は、(8)式及び(9)式で表せる。なお、Wω(s)は単独運転検出装置1の伝達関数(補償関数)であり、GR(s)はAVR制御系を含む界磁回路の伝達関数(被補償関数)である。   Now, in FIG. 3, the transfer function Gω (s) from Δω to ΔTe via the isolated operation detection device 1 having the power system stabilization function can be expressed by the equations (8) and (9). Wω (s) is a transfer function (compensation function) of the isolated operation detection device 1, and GR (s) is a transfer function (compensated function) of a field circuit including the AVR control system.

図4は、図1に示した電源系統において、同期発電機が単独系統に移行した場合(開放点遮断器開放)の1例としての伝達関数特性を表すブロック図を示す。
同図は、単独運転検出装置1を経由したΔωからΔTeまでの伝達関数ブロックGω(s)を示しており、単独運転検出装置1を経由したΔωからΔTeまでの伝達関数において、対象とする最高感度周波数fs [Hz]の位相が180[deg](または−180[deg])になるように単独運転検出装置1の位相調整部13の制御ブロック定数を調整する。なお、比例ゲイン15の比例ゲイン値、及び出力リミッタ部16のリミッタ値は、最高感度周波数fs における制御効果、また他の周波数領域への影響を考慮して設定する。
FIG. 4 is a block diagram showing transfer function characteristics as an example of the case where the synchronous generator is shifted to a single system in the power supply system shown in FIG. 1 (open circuit breaker opened).
This figure shows a transfer function block Gω (s) from Δω to ΔTe via the isolated operation detection device 1, and the highest target in the transfer function from Δω to ΔTe via the isolated operation detection device 1. The control block constant of the phase adjustment unit 13 of the isolated operation detection device 1 is adjusted so that the phase of the sensitivity frequency fs [Hz] is 180 [deg] (or -180 [deg]). The proportional gain value of the proportional gain 15 and the limiter value of the output limiter unit 16 are set in consideration of the control effect at the maximum sensitivity frequency fs and the influence on other frequency regions.

この実施形態によれば、単独運転検出装置1は最高感度周波数fs に対して負の制動トルクを与えることになり、単独運転移行時に同期発電機に発生する最高感度周波数fs [Hz]の電力動揺に対しては、固有周波数変動(最高感度周波数)成分のみを増大(発振)させる正帰還伝達関数を実現することで単独運転を検出することが可能となる。   According to this embodiment, the isolated operation detection device 1 gives a negative braking torque with respect to the maximum sensitivity frequency fs, and the power fluctuation of the maximum sensitivity frequency fs [Hz] generated in the synchronous generator at the time of transition to the isolated operation. On the other hand, it is possible to detect an isolated operation by realizing a positive feedback transfer function that increases (oscillates) only the natural frequency fluctuation (maximum sensitivity frequency) component.

図5は、図1に示した電源系統において、同期発電機用単独運転検出装置が無効の場合の単独運転移行時の周波数波形を示すグラフである。
図1に示した本発明の実施形態に係る同期発電機用単独運転検出装置(単独運転検出装置1)を含む電源系統の構成において、開放点潮流が概ね零になるように負荷を調整しておき、また、開放点の遮断器を無事故で開放したところ、その結果として、図5のグラフに示す周波数波形が得られた。
FIG. 5 is a graph showing a frequency waveform at the time of transition to an independent operation when the synchronous generator isolated operation detection device is disabled in the power supply system shown in FIG. 1.
In the configuration of the power supply system including the synchronous generator isolated operation detection device (independent operation detection device 1) according to the embodiment of the present invention shown in FIG. 1, the load is adjusted so that the open-circuit power flow is substantially zero. In addition, when the breaker at the open point was opened without any accident, the frequency waveform shown in the graph of FIG. 5 was obtained as a result.

図6は、図1に示した電源系統において、同期発電機用単独運転検出装置が有効の場合の単独運転移行時の周波数波形を示すグラフである。
図1に示した本発明の実施形態に係る同期発電機用単独運転検出装置(単独運転検出装置1)を含む電源系統の構成において、単独運転検出装置1が有効の場合の単独運転移行時の周波数波形(図6)からは、図5に示す波形では単独運転移行後の周波数が単独運転検出不可能な微小変化で収束してしまっているのに対し、図6に示す周波数波形では単独運転移行後の周波数変化が増大しており、単独運転移行後の最高感度周波数fs の振動が単独運転検出装置1により、効果的に正帰還されていることを示している。このことから本実施形態に係る同期発電機用単独運転検出装置により、短時間で確実に単独運転検出が可能であることが分る。
FIG. 6 is a graph showing the frequency waveform at the time of transition to the isolated operation when the synchronous generator isolated operation detection device is effective in the power supply system shown in FIG. 1.
In the configuration of the power supply system including the synchronous generator isolated operation detection device (independent operation detection device 1) according to the embodiment of the present invention shown in FIG. From the frequency waveform (FIG. 6), in the waveform shown in FIG. 5, the frequency after the transition to isolated operation has converged with a minute change that cannot be detected in isolated operation, whereas in the frequency waveform shown in FIG. The frequency change after the transition increases, indicating that the vibration of the highest sensitivity frequency fs after the transition to the single operation is effectively positively fed back by the single operation detection device 1. From this, it can be seen that the isolated operation detection device for a synchronous generator according to the present embodiment can reliably detect the isolated operation in a short time.

本発明の実施形態に係る同期発電機用単独運転検出装置を含む電源系統の全体構成を示す構成図である。It is a block diagram which shows the whole structure of the power supply system containing the independent operation detection apparatus for synchronous generators concerning embodiment of this invention. 本発明の実施形態に係る同期発電機用単独運転検出装置の1例としての動作特性を示す制御ブロック図を示す。The control block diagram which shows the operation characteristic as an example of the independent operation detection apparatus for synchronous generators concerning embodiment of this invention is shown. 図1に示した電源系統において、同期発電機が単独系統に移行した場合(開放点遮断器開放)の1例としての線形動作特性を表すブロック図を示す。In the power supply system shown in FIG. 1, the block diagram showing the linear operation characteristic as an example when a synchronous generator transfers to a single system (open-circuit breaker open) is shown. 図1に示した電源系統において、同期発電機が単独系統に移行した場合(開放点遮断器開放)の1例としての伝達関数特性を表すブロック図を示す。In the power supply system shown in FIG. 1, the block diagram showing the transfer function characteristic as an example when a synchronous generator transfers to a single system (open-circuit breaker open) is shown. 図1に示した電源系統において、同期発電機用単独運転検出装置が無効の場合の単独運転移行時の周波数波形を示すグラフである。2 is a graph showing frequency waveforms at the time of transition to an isolated operation when the synchronous generator isolated operation detection device is disabled in the power supply system shown in FIG. 1. 図1に示した電源系統において、同期発電機用単独運転検出装置が有効の場合の単独運転移行時の周波数波形を示すグラフである。2 is a graph showing a frequency waveform at the time of transition to isolated operation when the synchronous generator isolated operation detection device is valid in the power supply system shown in FIG. 1.

符号の説明Explanation of symbols

1 単独運転検出装置(本発明の同期発電機用単独運転検出装置)
11 周波数検出器
12 周波数変動量演算部
13 移送調整部
14 周波数リレー
15 比例ゲイン
16 出力リミッタ
17 タイマー
1 Single operation detection device (single operation detection device for synchronous generator of the present invention)
DESCRIPTION OF SYMBOLS 11 Frequency detector 12 Frequency variation calculation part 13 Transfer adjustment part 14 Frequency relay 15 Proportional gain 16 Output limiter 17 Timer

Claims (2)

遮断器を介して系統電源と連系される同期発電機と共に設置される同期発電機用単独運転検出装置において、
前記同期発電機の機械回転周波数または端子電圧周波数を検出する周波数検出手段と、
前記周波数検出器で検出した周波数信号から周波数偏差信号を抽出する周波数変動量演算手段と、
単独運転移行時に発生する前記同期発電機固有の動揺周波数成分である最高感度周波数を発振させるように前記周波数偏差信号の位相を調整したものを、制御信号として出力する位相調整手段と、
前記制御信号の符号及び大きさを調整する制御量調整手段と、
前記制御量調整手段から出力された制御信号の大きさを制限する制御信号制限手段と、
前記制御信号制限手段から出力された制御信号を前記同期発電機の自動電圧調整回路の電圧指令値に補正信号として加算する手段と、
連系点の周波数変動量が整定値を超えたときに前記同期発電機の単独運転として判定する手段と、
を具備したことを特徴とする同期発電機用単独運転検出装置。
In the synchronous generator isolated operation detection device installed together with the synchronous generator connected to the system power supply via the circuit breaker,
A frequency detection means for detecting a mechanical rotation frequency or a terminal voltage frequency of the synchronous generator;
A frequency variation calculating means for extracting a frequency deviation signal from the frequency signal detected by the frequency detector;
Phase adjustment means for outputting as a control signal what the phase of the frequency deviation signal is adjusted so as to oscillate the highest sensitivity frequency that is the oscillation frequency component unique to the synchronous generator that occurs at the time of transition to isolated operation;
Control amount adjusting means for adjusting the sign and magnitude of the control signal;
Control signal limiting means for limiting the magnitude of the control signal output from the control amount adjusting means;
Means for adding the control signal output from the control signal limiting means as a correction signal to the voltage command value of the automatic voltage regulator circuit of the synchronous generator;
Means for determining as an independent operation of the synchronous generator when the frequency fluctuation amount of the interconnection point exceeds a settling value;
An independent operation detection device for a synchronous generator, comprising:
前記最高感度周波数は、Mを発電機慣性定数[s]とし、Δgovをガバナ調定率[%]とし、TMを原動機時定数[s]とする時、(1)式であることを特徴とする請求項1記載の同期発電機用単独運転検出装置。
The maximum sensitivity frequency is expressed by equation (1) when M is a generator inertia constant [s], Δgov is a governor adjustment rate [%], and TM is a prime mover time constant [s]. The independent operation detection device for a synchronous generator according to claim 1.
JP2006074383A 2006-03-17 2006-03-17 Single operation detector for synchronous generator Active JP4631762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006074383A JP4631762B2 (en) 2006-03-17 2006-03-17 Single operation detector for synchronous generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006074383A JP4631762B2 (en) 2006-03-17 2006-03-17 Single operation detector for synchronous generator

Publications (2)

Publication Number Publication Date
JP2007252127A true JP2007252127A (en) 2007-09-27
JP4631762B2 JP4631762B2 (en) 2011-02-16

Family

ID=38595846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006074383A Active JP4631762B2 (en) 2006-03-17 2006-03-17 Single operation detector for synchronous generator

Country Status (1)

Country Link
JP (1) JP4631762B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09215204A (en) * 1996-02-06 1997-08-15 Tokyo Electric Power Co Inc:The Individual-operation detection method for synchronous generator
JPH11122821A (en) * 1997-10-09 1999-04-30 Shinko Electric Co Ltd Single operation detector and detecting method for synchronous generator
JP2000358331A (en) * 1999-06-14 2000-12-26 Meidensha Corp Individual operation detector for synchronous generator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09215204A (en) * 1996-02-06 1997-08-15 Tokyo Electric Power Co Inc:The Individual-operation detection method for synchronous generator
JPH11122821A (en) * 1997-10-09 1999-04-30 Shinko Electric Co Ltd Single operation detector and detecting method for synchronous generator
JP2000358331A (en) * 1999-06-14 2000-12-26 Meidensha Corp Individual operation detector for synchronous generator

Also Published As

Publication number Publication date
JP4631762B2 (en) 2011-02-16

Similar Documents

Publication Publication Date Title
US9133825B2 (en) Power oscillation damping by a converter-based power generation device
JP4053890B2 (en) Wind turbine operating method
JP5405567B2 (en) Generator network and local electrical system
Gkavanoudis et al. A combined fault ride-through and power smoothing control method for full-converter wind turbines employing supercapacitor energy storage system
Nanou et al. Assessment of communication-independent grid code compatibility solutions for VSC–HVDC connected offshore wind farms
KR101191695B1 (en) Control of a voltage source converter using synchronous machine emulation
CN109155604B (en) Equalizing reactive current between DFIG stator and grid-side inverter
US20130114302A1 (en) Method and apparatus for detecting islanding conditions of a distributed grid
JP2010187482A (en) Wind-power generation apparatus and control method thereof
CN101710815B (en) System and method for controlling low voltage ride through of grid side converter of double-feed induction wind driven generator in power grid three-phase short-circuit failure
WO2006030183A1 (en) Control of a doubly-fed induction generator
US20110140433A1 (en) Method of controlling a variable speed wind turbine
JP3302875B2 (en) Reactive power compensator for grid connection protection
JP4631762B2 (en) Single operation detector for synchronous generator
JP4631763B2 (en) Isolated operation detector for synchronous generator with power system stabilization function
US8970071B2 (en) Method and system for disconnecting a generator from a power system
JP3315298B2 (en) Power grid connection protection device
JP2000358331A (en) Individual operation detector for synchronous generator
JP3686273B2 (en) AC power system equipment
US11309815B2 (en) Control method for operating a synchronous machine
JP2005261070A (en) Distributed power supply control device
JPH09252541A (en) Single operation detector for synchronous generator
JP3397608B2 (en) Power grid connection protection device
Redfern et al. Field trials to demonstrate the performance of a new pole slipping protection
JP4202954B2 (en) Grid connection protection device for regular power generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101101

R150 Certificate of patent or registration of utility model

Ref document number: 4631762

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250