JPH09215204A - Individual-operation detection method for synchronous generator - Google Patents
Individual-operation detection method for synchronous generatorInfo
- Publication number
- JPH09215204A JPH09215204A JP8019572A JP1957296A JPH09215204A JP H09215204 A JPH09215204 A JP H09215204A JP 8019572 A JP8019572 A JP 8019572A JP 1957296 A JP1957296 A JP 1957296A JP H09215204 A JPH09215204 A JP H09215204A
- Authority
- JP
- Japan
- Prior art keywords
- synchronous generator
- generator
- frequency
- relay
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Supply And Distribution Of Alternating Current (AREA)
- Control Of Eletrric Generators (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、同期発電機の単独
運転検出装置に係り、特に逆潮流有りの電力系統に連系
された同期発電機の単独運転検出装置に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stand-alone operation detection device for a synchronous generator, and more particularly to a stand-alone operation detection device for a synchronous generator connected to a power system with reverse power flow.
【0002】[0002]
【従来の技術】図18は電力系統の概略構成を示すもの
で、1は第1の電源としての商用電源側の配電変電所、
2(SG)は配電線3を介して配電変電所1に接続され
た第2の電源としての需要家側の同期発電機、4(CB
1)は配電線3に配設された系統連系点遮断器、5は受
電点遮断器である。2. Description of the Related Art FIG. 18 shows a schematic configuration of an electric power system. Reference numeral 1 is a distribution substation on a commercial power source side as a first power source,
2 (SG) is a consumer side synchronous generator as a second power source connected to the distribution substation 1 through the distribution line 3 and 4 (CB
Reference numeral 1) is a system interconnection point circuit breaker arranged on the distribution line 3, and 5 is a power receiving point circuit breaker.
【0003】かかる電力系統において、配電線に系統連
系された同期発電機が、系統連系点の遮断(配電変電所
の送り出し遮断器の開放)によって、単独運転状態にな
ると系統信頼度及び保安上の問題からこの状態を検出し
て、受電点の遮断器を開放しなければならない。これに
関する現在の技術は以下の通りである。In such a power system, when the synchronous generator system connected to the distribution line is in an independent operation state by shutting off the system interconnection point (opening the delivery breaker of the distribution substation), system reliability and safety are maintained. Due to the above problem, this condition must be detected and the circuit breaker at the power receiving point must be opened. The current technology in this regard is as follows.
【0004】(1)配電線送り出し遮断器の開放を配電
変電所で検出して、受電点の遮断器にトリップ信号を転
送する転送遮断方式。(1) A transfer cutoff system in which an open circuit breaker of the distribution line feed-out breaker is detected at a distribution substation and a trip signal is transferred to the breaker at the power receiving point.
【0005】(2)単独運転状態が検出されるべき同期
発電機の自動電圧調整器の電圧設定値に周期的微少変動
を与え、発電機周波数変動が一定値以上になったことに
よって同期発電機の単独運転状態を検出して、受電点の
遮断器を開放する方式(例えば特開平7−31197号
公報において開示されている同期発電機の単独運転検出
装置)。(2) A periodic minute fluctuation is given to the voltage setting value of the automatic voltage regulator of the synchronous generator for which the isolated operation state is to be detected, and the generator frequency fluctuation exceeds a certain value, so that the synchronous generator is generated. Of the isolated generator, and opens the circuit breaker at the power receiving point (for example, the independent generator detecting device for a synchronous generator disclosed in Japanese Patent Laid-Open No. 7-31197).
【0006】[0006]
【発明が解決しようとする課題】上記(1)の転送遮断
方式では、コストがかかり発電機を系統連系するメリッ
トが薄れることや、系統連系された発電機の台数が増加
すると配電変電所の転送遮断装置が増加し保守が煩雑に
なるなどの問題点がある。In the transfer cutoff method of the above (1), the cost is low and the merit of grid-connecting the generators diminishes, and if the number of grid-connected generators increases, the distribution substation However, there is a problem that the number of transfer blocking devices is increased and maintenance becomes complicated.
【0007】上記(2)の方式として、特開平7−31
197号公報に開示されている同期発電機の単独運転検
出装置では、同期発電機の自動電圧調整器の周期的微少
変動に対して、どういう大きさやどういう周期で変動さ
せ、また発電機の周波数変動がどういう値にすれば単独
運転検出機能を発揮できるかについては述べられておら
ず、系統短絡事故に対する単独運転検出装置の誤動作防
止対策が充分でなく、かつ単独運転検出装置の信頼性監
視機能が備わっていない。As a method of the above (2), Japanese Patent Laid-Open No. 7-31
The islanding operation detection device for a synchronous generator disclosed in Japanese Patent Publication No. 197 makes it possible to change the magnitude and the cycle with respect to the periodic minute fluctuation of the automatic voltage regulator of the synchronous generator, and the frequency fluctuation of the generator. It is not stated what value should be used to achieve the isolated operation detection function, there is not enough measures to prevent malfunction of the isolated operation detection device against a system short-circuit accident, and the reliability monitoring function of the isolated operation detection device is insufficient. Not equipped.
【0008】本発明は上述の問題点に鑑みてなされたも
ので、その目的は、誤動作防止対策が充分にして、高信
頼性の同期発電機の単独運転検出方法を提供することで
ある。The present invention has been made in view of the above-mentioned problems, and an object thereof is to provide a highly reliable method of detecting an isolated operation of a synchronous generator with sufficient malfunction prevention measures.
【0009】本発明が対象とするのは同期発電機の単独
運転検出機能(能動方式,受動方式)の中で能動方式に
関するものである。自家用発電設備を系統に連系する場
合の技術要件を通産省はガイドラインとして制定し、平
成5年3月このガイドラインに「逆潮流がある状態で低
圧線及び高圧一般配電線への連系要件」が追加された。
これにより、従来の転送遮断方式の他、単独運転検出機
能による分散型電源の逆潮流条件での系統連系が可能に
なった。本能動方式は同期発電機の自動電圧調整器(A
VR)の電圧設定値を常時一定周期で微少変動させて、
単独運転状態で生じる発電機周波数変動によりこの状態
を検出するもので、系統側連系点の遮断器が潮流零の条
件で遮断される最過酷の条件でも単独運転状態の検出を
可能にするものである。The present invention is directed to an active system among the islanding operation detection functions (active system, passive system) of the synchronous generator. The Ministry of International Trade and Industry has established a guideline for the technical requirements for connecting private power generation equipment to the grid. In March 1993, this guideline states that "requirements for interconnection to low-voltage lines and high-voltage general distribution lines with reverse power flow" added.
As a result, in addition to the conventional transfer cut-off method, it has become possible to connect the system under reverse power flow conditions of distributed power sources by the islanding detection function. This active system is an automatic voltage regulator (A
VR) voltage setting value is constantly fluctuated in a constant cycle,
This condition is detected by the generator frequency fluctuation that occurs in the islanding condition, and it is possible to detect the islanding condition even under the most severe conditions where the circuit breaker at the grid side is shut off under the condition of zero power flow. Is.
【0010】[0010]
【課題を解決するための手段】上記目的を達成するため
に、本発明の同期発電機の単独運転検出方法は、基本的
には、系統連系された同期発電機の自動電圧調整器(A
VR)に対して、その電圧設定値を常時一定周期で微少
変動させるための信号を出力する機能1と、単独運転状
態を最適な条件で検出するため発電機出力、発電機の機
器定数、その自動電圧調整器の伝達関数およびその調速
機の伝達関数とから機能1の信号に対して最適な微少変
動量と周期を演算して機能1に出力する機能2と、発電
機周波数の変動分を演算してその変動分が整定値以上に
なったことによって単独運転状態を検出する周波数リレ
ーである機能3を備えたことを特徴とする。In order to achieve the above object, the method for detecting an isolated operation of a synchronous generator according to the present invention is basically the automatic voltage regulator (A
VR), a function 1 for constantly outputting a signal to slightly change the voltage setting value in a constant cycle, a generator output for detecting an isolated operation state under optimum conditions, a device constant of the generator, Function 2 that calculates the optimum minute fluctuation amount and cycle for the signal of Function 1 from the transfer function of the automatic voltage regulator and the transfer function of the speed governor and outputs it to Function 1, and the fluctuation amount of the generator frequency Is calculated, and the variation is equal to or more than the set value, the function 3 which is a frequency relay for detecting the isolated operation state is provided.
【0011】単独運転の誤検出の防止策として、機能3
において低整定値を持つ第1段の周波数リレーと高整定
値を持つ第2段周波数リレーの2種類の周波数リレーを
設け、第1段リレー動作、第2段リレー不動作の条件が
成立してから一定期間だけ自動電圧調整器の電圧設定値
の微少変動量の大きさを増幅しその条件が成立してから
一定期間かつ第1段リレーと第2段リレーが共に動作し
た場合のみ単独運転を検出し、また、第1段、第2段の
リレーが共に動作した場合は微少変動量の大きさを増幅
せずに単独運転を検出することを特徴とする。As a measure for preventing the false detection of the islanding operation, the function 3
There are two types of frequency relays, a first-stage frequency relay with a low setpoint and a second-stage frequency relay with a high setpoint, and the conditions for the first-stage relay operation and the second-stage relay non-operation are met. From a certain period of time, the magnitude of the minute fluctuation amount of the voltage setting value of the automatic voltage regulator is amplified, and the independent operation is performed only when the first stage relay and the second stage relay are operated for a certain period after the condition is satisfied. In addition, when both the first-stage and the second-stage relays are operated, the isolated operation is detected without amplifying the magnitude of the minute fluctuation amount.
【0012】発電機が連系されていない系統の短絡事故
時の発電機の加速に対して単独運転状態の誤検出を系統
の短絡事故除去リレーとの時限協調によって防止するた
め、機能3において周波数の変動分が整定値以上になっ
た時間を積分しその値が一定時間以上になったことによ
って単独運転状態を検出することを特徴とする。In order to prevent erroneous detection of an isolated operation state against acceleration of the generator at the time of a short circuit accident in a system in which the generators are not interconnected, in order to prevent erroneous detection of the islanding accident by the short circuit accident elimination relay of the system, the frequency is set in Function 3. The feature is that the islanding state is detected by integrating the time when the fluctuation amount of is greater than or equal to the settling value and the value being greater than or equal to a certain time.
【0013】発電機が連系されていない系統の短絡事故
時の発電機の加速に対して単独運転状態の誤検出を防止
するため、機能3において短絡事故検出リレーの動作に
よって周波数リレーの出力信号をロックすることを特徴
とする。In order to prevent erroneous detection of the islanding state in response to acceleration of the generator at the time of a short circuit accident in a system in which the generator is not interconnected, the output signal of the frequency relay is operated by the operation of the short circuit accident detection relay in function 3. It is characterized by locking.
【0014】機能1に対して、発電機の系統連系条件を
系統連系用遮断器の開閉信号によって検出し、発電機が
系統連系されているときだけ自動電圧調整器に微少変動
信号を出力することを特徴とする。For function 1, the system interconnection condition of the generator is detected by the switching signal of the system interconnection breaker, and a small fluctuation signal is sent to the automatic voltage regulator only when the generator is system interconnection. It is characterized by outputting.
【0015】常時、発電機の無効電力出力の変動分を監
視することによって機能1の不良を検出することを特徴
とする。A feature of the present invention is that a failure of the function 1 is detected by constantly monitoring the fluctuation of the reactive power output of the generator.
【0016】機能1の自動電圧調整器の電圧整定値微少
変動による発電機の無効電力出力の変動分が単独運転時
に小さくなることによって機能1の不良が誤検出される
ことを防止するため、発電機の系統連系条件を系統連系
用遮断器の開閉信号によって検出し、発電機が系統連系
されているときだけ機能1の不良検出をすることを特徴
とする。In order to prevent the malfunction of the function 1 from being erroneously detected by reducing the fluctuation of the reactive power output of the generator due to the slight fluctuation of the voltage settling value of the automatic voltage regulator of the function 1 in the independent operation, It is characterized in that the system interconnection condition of the machine is detected by the open / close signal of the system interconnection breaker, and the failure of the function 1 is detected only when the generator is system interconnection.
【0017】[0017]
【発明の実施の形態】以下に本発明の実施の形態を図1
〜図6を参照しながら説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG.
This will be described with reference to FIG.
【0018】図1は本発明による同期電動機の単独運転
検出装置の実施の形態を示すもので、図1において6は
変圧器、7は配電線3に配設された変流器、8は計器用
変圧器、9は自動電圧調整器(AVR)である。FIG. 1 shows an embodiment of an isolated operation detecting apparatus for a synchronous motor according to the present invention. In FIG. 1, 6 is a transformer, 7 is a current transformer arranged on a distribution line 3, and 8 is an instrument. Transformer, 9 is an automatic voltage regulator (AVR).
【0019】また、図1において10は演算制御部であ
って、演算部11を有する。演算部11は、変流器7に
よる配電線3に流れる電流検出信号Iと計器用変圧器8
による電圧信号Vを入力とし、後述する発電機定数,自
動電圧調整器伝達関数および調速機伝達関数をもとに演
算して、最適な微少変動周波数やその大きさを算出す
る。Further, in FIG. 1, reference numeral 10 is a calculation control section, which has a calculation section 11. The calculation unit 11 is configured to detect the current detection signal I flowing through the distribution line 3 by the current transformer 7 and the instrument transformer 8
Based on the voltage signal V according to the above, the optimum minute fluctuation frequency and its magnitude are calculated by calculating based on a generator constant, an automatic voltage regulator transfer function and a speed governor transfer function which will be described later.
【0020】20は周波数リレー部であって、詳細には
図2に示す構成であり、電流検出信号Iと電圧検出信号
Vを入力として、第1段リレー動作信号,同期発電機2
の単独運転検出信号,リセット信号および不良検出信号
を出力する。30は外乱信号発生部であって、演算制御
部10の演算部11の演算出力信号である最適な微少変
動周波数信号を入力として外乱信号を発生する外乱信号
発生器31と、外乱信号発生器31の低ゲイン出力信
号,周波数リレー部20の第1段リレー動作信号,およ
びしゃ断器4と5の補助接点4bと5bの接点信号を入
力とするナンドゲート32と、外乱信号発生器31の高
ゲイン出力信号,第1段リレー動作信号および補助接点
4bと5bの接点信号を入力とするアンドゲート33お
よびナンドゲート32の出力信号とナンドゲート33の
出力信号をオア条件とするオアゲート34によって構成
されている。Reference numeral 20 denotes a frequency relay section, which has a configuration shown in detail in FIG. 2, and receives the current detection signal I and the voltage detection signal V as input, the first stage relay operation signal, and the synchronous generator 2.
It outputs the islanding operation detection signal, reset signal, and defect detection signal. Reference numeral 30 denotes a disturbance signal generator, which has a disturbance signal generator 31 for generating a disturbance signal by inputting an optimum minute fluctuation frequency signal, which is an arithmetic output signal of the arithmetic unit 11 of the arithmetic control unit 10, and a disturbance signal generator 31. Low-gain output signal, the first-stage relay operation signal of the frequency relay unit 20, and the contact signals of the auxiliary contacts 4b and 5b of the circuit breakers 4 and 5, and the high-gain output of the disturbance signal generator 31. A signal, the first stage relay operation signal, and the contact signals of the auxiliary contacts 4b and 5b are input to the AND gate 33, and the output signal of the NAND gate 32 and the OR gate 34 that sets the output signal of the NAND gate 33 as the OR condition.
【0021】図2は周波数リレー部20の構成を示すも
ので、同図において21aは計器用変圧器8の電圧検出
信号Vを入力とする第1段リレー、21bは同じく電圧
検出信号Vを入力とする第2段リレー、22aは第1段
リレー21aの出力を入力とする第1の積分タイマー、
22bは第2段リレー21bの出力信号を入力とする第
2の積分タイマーである。23aは第1の積分タイマー
22aと第2の積分タイマー22bの出力信号をナンド
条件とする第1のナンドゲート、24はナンドゲート2
3aのナンド出力信号を入力としてオンするオンディレ
イタイマー、25aおよび25bはオンディレイタイマ
ー24のオン出力信号を入力として一定時間オンして、
信号B1,B2を出力する第1のスイッチング増幅回路お
よび第2のスイッチング増幅回路である。26aは第2
のスイッチング増幅回路25b,第1の積分タイマー2
2aおよび第2の積分タイマー22bの出力信号をアン
ド条件とする第1のアンドゲート、27aはアンドゲー
ト26aの出力信号A1とナンドゲート23bの出力信
号A2を入力とする第1のオアゲートである。また、図
2において28は計器用変圧器8の電圧検出信号Vを入
力とする不足電圧リレー(UVR)、27bは第2のオ
アゲート、29は電流検出信号Iと電圧検出信号Vを入
力とする無効電力検出回路、26bは無効電力検出回路
(Q)29の出力信号としゃ断器4と5の補助接点4a
と4bの接点入力信号をアンド条件とする第2のアンド
ゲート、22cは第3の積分タイマーである。FIG. 2 shows the configuration of the frequency relay section 20. In the figure, 21a is a first-stage relay which receives the voltage detection signal V of the instrument transformer 8, and 21b is the same voltage detection signal V. The second-stage relay, 22a is a first integration timer that receives the output of the first-stage relay 21a as an input,
Reference numeral 22b is a second integration timer which receives the output signal of the second stage relay 21b. Reference numeral 23a is a first NAND gate that uses the output signals of the first integration timer 22a and the second integration timer 22b as a NAND condition, and 24 is a NAND gate 2
An on-delay timer that turns on the NAND output signal of 3a as an input, and 25a and 25b turn on for a certain period of time by using the on-output signal of the on-delay timer 24 as an input,
A first switching amplifier circuit and a second switching amplifier circuit that output signals B 1 and B 2 . 26a is the second
Switching amplifier circuit 25b, first integration timer 2
First AND gate for the 2a and the output signal of the second integrator timer 22b and AND condition, 27a is a first OR gate which receives the output signal A 2 of the output signal A 1 and the NAND gate 23b of the AND gate 26a . Further, in FIG. 2, 28 is an undervoltage relay (UVR) that receives the voltage detection signal V of the instrument transformer 8, 27b is a second OR gate, and 29 is the current detection signal I and the voltage detection signal V. The reactive power detection circuit 26b is an output signal of the reactive power detection circuit (Q) 29 and the auxiliary contacts 4a of the circuit breakers 4 and 5.
2c is a second AND gate that uses the contact input signals of 4 and 4b as an AND condition, and 22c is a third integration timer.
【0022】図1に示す同期発電機の単独運転検出装置
において、機能2である演算制御部10においては演算
部11が、配電線3すなわち電源1の電流検出信号Iと
電圧検出信号Vを入力として同期発電機2の発電機定
数,自動電圧調整器9の伝達関数および調速機(図示せ
ず)の伝達関数をもとに演算処理して最適な微少変動周
波数の大きさを算出する。In the isolated operation detecting apparatus for a synchronous generator shown in FIG. 1, in the arithmetic control unit 10 having the function 2, the arithmetic unit 11 inputs the current detection signal I and the voltage detection signal V of the distribution line 3, that is, the power source 1. Is calculated based on the generator constant of the synchronous generator 2, the transfer function of the automatic voltage regulator 9 and the transfer function of the speed governor (not shown) to calculate the optimum magnitude of the minute fluctuation frequency.
【0023】機能3である周波数リレー部20では、第
1段周波数リレー21aと第2段周波数リレー21b
は、それぞれ、電圧検出信号Vを入力して動作する。第
1の積分タイマー(T1)22aは第1段周波数リレー
21aの出力信号を、積分遅延して第1のナンドゲート
23a,第1のアンドゲート26bおよび第2のナンド
ゲート23bに導く。同様にして、第2の積分タイマー
(T2)22bは第2段周波数リレー21bの出力信号
を、積分遅延して第1のナンドゲート23a,第1のア
ンドゲート26aおよび第2のナンドゲート23bに導
く。第1のナンドゲート23aは第1の積分タイマー2
2aの出力有りのときのみ導通し、その出力信号をオン
ディレータイマー24に導く。オンディレータイマー2
4の出力信号は第1,第2のスイッチング増幅回路25
a,25bおよび第2のナンドゲート23bに導かれ
る。第1のスイッチング増幅回路25aは、入力有りで
一定時間オンになり、第1段周波数リレーだけ動作時の
微少変動量増幅信号を出力した第1段リレー動作信号を
機能1である外乱信号発生部30に出力する。第2のス
イッチング増幅回路25bもオンディレータイマー24
からの入力有りの時だけ一定時間オンし、その出力信号
を第1のナンドゲート26aに導く。第1のナンドゲー
ト26aは、第1の積分タイマー22aの出力,第2の
積分タイマー26bの出力および第2のスイッチング増
幅回路25bの出力が全て有りの状態で動作して出力信
号A1を第1のノアゲート27aに導く。第2のナンド
ゲート23bは、第1,第2の積分タイマー22a,2
2bの出力有りとオンディレータイマー24の出力無し
の条件で動作し、出力信号A2を第1のオアゲート27
aに導く。第1のノアゲート27aは第1のナンドゲー
ト26aの出力信号A1と第2のナンドゲート23bの
出力信号A2をオア条件として同期発電機2の単独運転
検出信号を遮断器4に導き制御する。In the frequency relay section 20 which is the function 3, the first stage frequency relay 21a and the second stage frequency relay 21b.
Operate by inputting the voltage detection signal V, respectively. The first integration timer (T 1 ) 22a delays the output signal of the first stage frequency relay 21a by integration and guides it to the first NAND gate 23a, the first AND gate 26b and the second NAND gate 23b. Similarly, the second integration timer (T 2 ) 22b delays the output signal of the second-stage frequency relay 21b by integration and guides it to the first NAND gate 23a, the first AND gate 26a, and the second NAND gate 23b. . The first NAND gate 23a is the first integration timer 2
It conducts only when the output of 2a is present, and guides its output signal to the on-delay timer 24. On-delay timer 2
The output signal of 4 is the first and second switching amplifier circuits 25.
a, 25b and the second NAND gate 23b. The first switching amplifier circuit 25a is turned on for a certain period of time with input, and outputs a minute fluctuation amount amplification signal when only the first-stage frequency relay is operating. Output to 30. The second switching amplifier circuit 25b is also an on-delay timer 24.
Is turned on for a certain period of time only when there is an input from, and its output signal is led to the first NAND gate 26a. The first NAND gate 26a operates in a state in which the output of the first integration timer 22a, the output of the second integration timer 26b, and the output of the second switching amplifier circuit 25b are all present to output the output signal A 1 to the first To the NOR gate 27a. The second NAND gate 23b is connected to the first and second integration timers 22a, 2
2b is output and the on-delay timer 24 is not output, and the output signal A 2 is output to the first OR gate 27.
lead to a. The first NOR gate 27a is controlled led to breaker 4 islanding operation detection signal of the synchronous generator 2 output signal A 2 of the output signal A 1 and the second NAND gate 23b of the first NAND gate 26a as OR condition.
【0024】また、機能3である周波数リレー部20に
おいて、不足電圧リレー28は、電圧検出信号Vを入力
として不足電圧を検出し、その出力信号を第2のオアゲ
ート27bに入力する。オアゲート27bは不足電圧リ
レー28の出力信号と、第1段周波数リレー21aの不
動作期間が一定値以上である条件と、第2段周波数リレ
ー21bの不動作期間が一定値以上であるという条件の
もとにリセット信号を出力する。無効電力検出リレー2
9は、電流検出信号Iと電圧検出信号Vを入力として、
その出力信号を第2のアンドゲート26bに導く。第2
のアンドゲート26bはさらに遮断器4の補助接点4a
の接点信号および遮断器5の補助接点5aの接点信号を
入力条件として外乱信号発生部30が不良であることを
示す検出信号を出力する。In the frequency relay unit 20 having the function 3, the undervoltage relay 28 receives the voltage detection signal V as an input, detects the undervoltage, and inputs the output signal to the second OR gate 27b. The OR gate 27b is provided with an output signal of the undervoltage relay 28, a condition that the inoperative period of the first stage frequency relay 21a is a certain value or more, and a condition that the inoperative period of the second stage frequency relay 21b is a certain value or more. The reset signal is originally output. Reactive power detection relay 2
9 receives the current detection signal I and the voltage detection signal V as inputs,
The output signal is led to the second AND gate 26b. Second
The AND gate 26b is further provided with the auxiliary contact 4a of the circuit breaker 4.
With the contact signal of 1 and the contact signal of the auxiliary contact 5a of the circuit breaker 5 as input conditions, a detection signal indicating that the disturbance signal generating unit 30 is defective is output.
【0025】外乱信号発生部30では、外乱信号発生器
31が演算制御部10の演算部11の出力信号を入力と
して低ゲインの外乱信号と高ゲインの外乱信号を出力す
る。ナンドゲート32は、外乱信号発生器31からの低
ゲイン外乱信号と、周波数リレー部20からの第1段周
波数リレー動作信号と、遮断器4の補助接点4bと遮断
器5の補助接点5bのそれぞれの接点信号を入力条件と
して出力信号をオアゲート34に導く。アンドゲート3
3は、外乱信号発生器31の高ゲイン外乱信号と、周波
数リレー部20の第1段周波数リレー動作信号と補助接
点4bと5bの接点信号を入力条件として、その出力信
号を自動電圧調整器9に電圧設定値微少変動信号として
入力する。In the disturbance signal generator 30, the disturbance signal generator 31 inputs the output signal of the arithmetic unit 11 of the arithmetic control unit 10 and outputs a low gain disturbance signal and a high gain disturbance signal. The NAND gate 32 supplies the low gain disturbance signal from the disturbance signal generator 31, the first-stage frequency relay operation signal from the frequency relay unit 20, the auxiliary contact 4b of the circuit breaker 4 and the auxiliary contact 5b of the circuit breaker 5, respectively. The output signal is guided to the OR gate 34 using the contact signal as an input condition. And gate 3
3 is a high gain disturbance signal of the disturbance signal generator 31, the first stage frequency relay operation signal of the frequency relay unit 20 and the contact signals of the auxiliary contacts 4b and 5b as input conditions, and the output signal thereof is the automatic voltage regulator 9 Input as a slight fluctuation signal to the voltage setting value.
【0026】外乱信号発生部30は、同期発電機2の自
動電圧調整器9の電圧設定値に対して一定周期の微少変
動を与えるもので、外乱信号発生器31により一定周期
の微少変動信号を発生する。その周期と大きさは演算制
御部10によって演算された最適な値とする。The disturbance signal generator 30 gives a minute fluctuation of a constant cycle to the voltage set value of the automatic voltage regulator 9 of the synchronous generator 2. The disturbance signal generator 31 generates a minute fluctuation signal of a constant cycle. Occur. The cycle and size are the optimum values calculated by the calculation control unit 10.
【0027】演算制御部10は、微少変動周期と大きさ
を後述する(11)式または(12)式から演算してそ
の結果を機能(1)30に出力するものである。このた
め、演算部11に発電機の電圧(V)と電流(I)及び
発電機1の機器定数、自動電圧調整器9の伝達関数、調
速機の伝達関数を入力し、VとIから発電機1の出力を
求めた結果と上記定数や伝達関数値を(11)式に代入
することによって(12)式のように伝達関数が演算さ
れるので、最高感度となる変動周期を求めることができ
る。The arithmetic control unit 10 calculates the minute fluctuation period and the magnitude from the equation (11) or (12) described later, and outputs the result to the function (1) 30. Therefore, the voltage (V) and current (I) of the generator, the device constant of the generator 1, the transfer function of the automatic voltage regulator 9, and the transfer function of the speed governor are input to the calculation unit 11, and V and I are input. Since the transfer function is calculated as shown in equation (12) by substituting the result of obtaining the output of the generator 1 and the above constants and transfer function values into equation (11), obtain the fluctuation cycle that provides the highest sensitivity. You can
【0028】また、周波数リレー部20の周波数リレー
の整定値は系統連系時の常時の周波数によって誤動作し
ない値に決められるので、変動量の大きさは同期発電機
の単独運転時の周波数変動がこの整定値を超える様に決
められる。このようにして演算された最適な変動量の大
きさと周波数は機能2である演算制御部10に出力され
る。周波数リレー部20は発電機の電圧(V)を入力と
して、それより周波数変動を求め、この値が整定値を超
えたことによって同期発電機の単独運転状態を検出し、
受電点の遮断器4にトリップ指令を出力し、これにより
同期発電機の単独運転を防止する。Further, since the set value of the frequency relay of the frequency relay unit 20 is set to a value that does not malfunction due to the constant frequency during grid interconnection, the magnitude of the fluctuation amount depends on the frequency fluctuation during independent operation of the synchronous generator. It is decided to exceed this set value. The optimum magnitude and frequency of the fluctuation amount calculated in this manner are output to the calculation control unit 10, which is the second function. The frequency relay unit 20 receives the voltage (V) of the generator as an input, obtains the frequency fluctuation from it, and detects the islanding state of the synchronous generator when this value exceeds the set value,
A trip command is output to the circuit breaker 4 at the power receiving point to prevent the synchronous generator from operating independently.
【0029】単独運転の誤検出対策として、単独運転を
検出する周波数リレー部20は、低整定値を持つ第1段
周波数リレー(FR1)21aと高整定値を持つ第2段
周波数リレー(FR2)21bの2種類を設け、第1段
リレー動作、第2段リレー不動作の条件が成立してから
一定時間だけ(回路25aが入力が有ってから一定時間
だけオン)自動電圧調整器9の電圧整定値の微少変動量
の大きさを増幅し、その条件が成立してから一定期間
(回路25bも回路25aと同じ)かつ第1段周波数リ
レー21aと第2段周波数リレー21bが共に動作した
場合のみ同期発電機の単独運転状態として検出する。As a countermeasure against the erroneous detection of the isolated operation, the frequency relay section 20 for detecting the isolated operation includes a first stage frequency relay (FR1) 21a having a low settling value and a second stage frequency relay (FR2) having a high settling value. 21b are provided, and the automatic voltage regulator 9 is operated for a fixed time (the circuit 25a is turned on for a fixed time after the input is present) after the conditions of the first-stage relay operation and the second-stage relay non-operation are established. The magnitude of the minute fluctuation amount of the voltage settling value is amplified, and the first-stage frequency relay 21a and the second-stage frequency relay 21b operate together for a certain period (the circuit 25b is the same as the circuit 25a) after the condition is satisfied. Only when the synchronous generator is detected as an isolated operation state.
【0030】また、系統側連系点の潮流が大きな場合は
単独運転に移行すると同期発電機2の入力と出力のアン
バランスが大きくなり同期発電機の周波数もそれに伴い
大きくなるので、単独運転移行直後に周波数リレーが第
1段および第2段ともに動作することがある。これに対
して検出時間に遅れが生じないように、第1段、第2段
のリレーが共に動作すると微少変動量の大きさを増幅せ
ずに単独運転を検出する。第1段周波数リレー26aの
整定値は、系統連系時の常時の周波数変動で誤動作しな
いように決め、第2段周波数リレー21bの整定値は増
幅された微少変動量の大きさに対して決めれば、信頼性
の高い単独運転が可能になる。Further, when the tidal current at the grid-side interconnection point is large, the imbalance between the input and the output of the synchronous generator 2 increases when the operation shifts to the independent operation, and the frequency of the synchronous generator also increases accordingly. Immediately after that, the frequency relay may operate in both the first stage and the second stage. On the other hand, when both the first-stage and second-stage relays are operated so that the detection time is not delayed, the islanding operation is detected without amplifying the magnitude of the minute fluctuation amount. The settling value of the first-stage frequency relay 26a is determined so as not to malfunction due to constant frequency fluctuations during system interconnection, and the settling value of the second-stage frequency relay 21b is determined with respect to the magnitude of the amplified minute fluctuation amount. In this way, highly reliable independent operation becomes possible.
【0031】系統連系点の潮流が零の条件で同期発電機
の単独運転に移行した後の能動方式周波数リレーの応動
を図3に示す。同期発電機単独運転移行後の発電機周波
数は、後述する図10〜図13のシュミレーション結果
で示すように、ほぼ正弦波状に変化し、その大きさは時
間と共に徐々に大きくなり定常状態に落ちつく。よっ
て、周波の変動値が一定値以上になると動作する能動方
式の周波数リレーは図示するように動作復帰を繰り返
す。FIG. 3 shows the response of the active frequency relay after the synchronous generator shifts to the independent operation under the condition that the power flow at the grid interconnection point is zero. The generator frequency after shifting to the independent operation of the synchronous generator changes in a substantially sine wave shape as shown by the simulation results of FIGS. 10 to 13 described later, and the magnitude gradually increases with time and settles in a steady state. Therefore, the active frequency relay, which operates when the fluctuation value of the frequency exceeds a certain value, repeats the operation recovery as shown in the figure.
【0032】一方、配電系統短絡事故時には同期発電機
は加速されて周波数が増加するので、その場合の誤検出
を防止するため周波数リレーの出力にタイマーを設け
る。そのタイマーの整定値は配電変電所に設置されてい
る短絡事故用リレーによる事故除去時間に裕度を持たせ
た値とする。そのタイマーのカウントは上述のように単
独運転移行後に動作、復帰を繰返すので積分方式として
検出時間の遅延を防止する。また、短絡事故は不足電圧
リレー(UVR)28によって検出できることがあるの
で、不足電圧リレー28を設けて周波数リレーの出力を
ロックし、短絡事故の誤検出を防止する。On the other hand, in the event of a short circuit in the distribution system, the synchronous generator is accelerated and the frequency increases, so a timer is provided at the output of the frequency relay to prevent erroneous detection in that case. The set value of the timer shall be a value that gives a margin to the fault elimination time by the short circuit fault relay installed at the distribution substation. As described above, the count of the timer repeats the operation and the return after the shift to the isolated operation, so that the detection time is prevented from being delayed by the integral method. In addition, since a short circuit accident may be detected by the under voltage relay (UVR) 28, the under voltage relay 28 is provided to lock the output of the frequency relay to prevent erroneous detection of the short circuit accident.
【0033】タイマーのセット条件は、不足電圧リレー
28の動作時とする。図4〜図6に機能(3)20の動
作シーケンスを示す。図4は基本動作波形図、図5は第
1段周波数リレー21aのみの動作動作による微少変動
増幅における単独運転検出の動作波形図、図5は第1段
周波数リレー21aと第2段周波数リレー21bの動作
が同じである場合の動作波形図、図6は第1段周波数リ
レー21aの動作による微少変動値増幅時における波形
図である。図4と図5において、FR1,FR2は第1
段,第2段周波数リレー21a,21bの動作波形を示
し、タイマ1,タイマ2は積分タイマー22a,22b
の動作波形、B1,B2はスイッチング増幅回路25a,
25bの出力波形、A1はアンドゲート26aの出力波
形、A2はナンドゲート23bの出力波形、Cは単独運
転検出波形を示す。図5に示すように、オンディレイタ
イマー整定値は第1の積分タイマー22aのリセット信
号T1と第2の積分タイマー22bのリセット信号T2の
整定値が同じである場合、第1段周波数リレー21aと
第2段周波数リレー21bの動作時間のばらつき以上に
する。The condition for setting the timer is when the undervoltage relay 28 is operating. 4 to 6 show an operation sequence of the function (3) 20. FIG. 4 is a basic operation waveform diagram, FIG. 5 is an operation waveform diagram of single operation detection in the minute fluctuation amplification by the operation operation of only the first stage frequency relay 21a, and FIG. 5 is the first stage frequency relay 21a and the second stage frequency relay 21b. 6 is an operation waveform diagram in the case of the same operation of FIG. 6, and FIG. 6 is a waveform diagram at the time of amplifying the minute fluctuation value by the operation of the first stage frequency relay 21a. 4 and 5, FR1 and FR2 are the first
The operation waveforms of the first and second stage frequency relays 21a and 21b are shown, and the timers 1 and 2 are integration timers 22a and 22b.
Operating waveforms, B 1 and B 2 are switching amplifier circuits 25a,
25b shows the output waveform, A 1 shows the output waveform of the AND gate 26a, A 2 shows the output waveform of the NAND gate 23b, and C shows the isolated operation detection waveform. As shown in FIG. 5, when the on-delay timer setting value is set value of the reset signal T 2 of the first integral timer 22a reset signal T 1 and the second integral timer 22b is the same, the first-stage frequency relay 21a and the second stage frequency relay 21b, the operating time is more than the variation.
【0034】[0034]
【実施例】以下に、能動方式の性能をシミュレーション
結果で示す。その条件は以下の通りである。EXAMPLES The performance of the active method is shown below by simulation results. The conditions are as follows.
【0035】図7は同期発電機G1が系統連系されてい
る系統図と系統定数を示す。表1と2および図8と図9
は、その発電機の機器定数と調速機の定数および自動電
圧調整器の定数を示す。発電機の有効電力出力を1.8
3MW,無効電力出力を0.4MVαγ(遅れ),構内
負荷L1の消費電力を有効電力0.916MW,無効電
力0.4MVαγ(遅れ)とし、残りの有効電力0.9
16MWが逆潮流され外部負荷L0で消費されるものと
する。この条件では系統側連系点の遮断器CBOの潮流
は零になる。FIG. 7 shows a system diagram and system constants in which the synchronous generator G 1 is interconnected. Tables 1 and 2 and Figures 8 and 9
Indicates the device constant of the generator, the constant of the speed governor, and the constant of the automatic voltage regulator. The active power output of the generator is 1.8
3 MW, the reactive power output is 0.4 MVαγ (delay), the power consumption of the local load L 1 is 0.916 MW, the reactive power is 0.4 MVαγ (delay), and the remaining active power 0.9
It is assumed that 16 MW flows backward and is consumed by the external load L 0 . Under this condition, the tidal current of the circuit breaker CBO at the system side interconnection point becomes zero.
【0036】[0036]
【表1】 [Table 1]
【0037】[0037]
【表2】 [Table 2]
【0038】自動電圧調整器(AVR)の電圧設定値を
定格電圧の大きさに対して1%のピーク値をもつ0.4
Hzの正弦波で微少変動させ、系統側連系点の遮断器を
1秒で開放させた場合のAVR電圧設定値変動量,発電
機周波数,端子電圧,発電機の無効電力の変動量を図1
0〜13に示す。The voltage setting value of the automatic voltage regulator (AVR) is 0.4 with a peak value of 1% with respect to the magnitude of the rated voltage.
Figure shows fluctuations in AVR voltage set value fluctuations, generator frequency, terminal voltage, and reactive power of the generator when the circuit breaker at the grid side is opened in 1 second with a slight fluctuation with a sine wave of Hz. 1
It shows in 0-13.
【0039】図10〜図13に示すように、系統連系時
には発電機周波数は殆ど変動しないが、単独運転移行後
の周波数変動は大きい。発電機の端子電圧の変動量も同
様である。一方、無効電力の変動量は逆の傾向になって
いる。As shown in FIGS. 10 to 13, the generator frequency hardly fluctuates when the system is interconnected, but the frequency fluctuates after shifting to the independent operation. The same applies to the fluctuation amount of the terminal voltage of the generator. On the other hand, the fluctuation amount of the reactive power has the opposite tendency.
【0040】次に、自動電圧調整器(AVR)の電圧設
定値の変動量(1%)を一定として、変動周期を変化さ
せた場合の単独運転時の周波数変動(第一波の大きさ)
を図14に示す。これより変動周期0.4Hzで最高感
度が得られることが分かる。系統連系時の系統へ与える
影響をより少なくするために、このような最高感度とな
る変動周期の選択が重要である。また、AVRの電圧設
定値の変動量、変動周期を1%,0.4Hz一定とし
て、発電機の有効電力出力を変化させた場合の単独運転
時の発電機周波数(第一波の大きさ)を図15に示す。
これより発電機の有効電力に比例して周波数が変動する
ことが分かる。Next, the frequency variation (first wave magnitude) during islanding when the variation period (1%) of the voltage setting value of the automatic voltage regulator (AVR) is changed and the variation period is changed.
Is shown in FIG. From this, it is understood that the maximum sensitivity is obtained with the fluctuation cycle of 0.4 Hz. In order to reduce the influence on the grid during grid connection, it is important to select the fluctuation period that gives the highest sensitivity. Further, the generator frequency (the size of the first wave) during islanding when the amount of change in the AVR voltage setting value and the changing cycle are fixed at 1% and 0.4 Hz and the active power output of the generator is changed. Is shown in FIG.
This shows that the frequency fluctuates in proportion to the active power of the generator.
【0041】能動方式の性能(理論的検討結果)次に能
動方式について理論的な検討を行う。発電機モデルは、
能動方式に対してダンパ巻線の影響は殆どないので、こ
の巻線の影響を無視した過渡モデルを使用する。Performance of Active Method (Result of Theoretical Investigation) Next, theoretical investigation will be made on the active method. The generator model is
Since there is almost no effect of the damper winding on the active method, a transient model that ignores the effect of this winding is used.
【0042】同期発電機に対する二軸理論より、単独運
転時には次式が成立する。According to the biaxial theory for the synchronous generator, the following equation is established during the isolated operation.
【0043】[0043]
【数1】 Ie=LT(E′q)2 ………(1)## EQU1 ## I e = L T (E ' q ) 2 ... (1)
【0044】[0044]
【数2】 Vfd=LfdEq′+Td′0(d/dt)Eq′……(2)(2) V fd = L fd E q ′ + T d ′ 0 (d / dt) E q ′ (2)
【0045】[0045]
【数3】 Et=LetEq′ ………(3) 但し、Te,Vfd,Etは発電機の電気的出力トルク,界
磁電圧、Eq′は発電機のq軸過渡電圧、Td′0はd軸
開路過渡時定数であって、LT,Lfd,Letは次式で定
義される。[Equation 3] E t = L et E q ′ (3) where T e , V fd , and E t are the electric output torque and field voltage of the generator, and E q ′ is the q-axis of the generator. The transient voltage, T d ′ 0, is a d-axis open circuit transient time constant, and L T , L fd and L et are defined by the following equations.
【0046】[0046]
【数4】 (Equation 4)
【0047】ZL=RL+jXLは発電機出力に対応する
インピーダンスであり、(4)式でZL以外の定数は表
1に示してある。能動方式による変動は微少なので
(1)〜(3)式を線形近似してラプラス変換すると次
式が得られる。Z L = R L + jX L is the impedance corresponding to the generator output, and the constants other than Z L in the equation (4) are shown in Table 1. Since the variation due to the active method is very small, the following equation is obtained by linearly approximating the equations (1) to (3) and performing the Laplace transform.
【0048】[0048]
【数5】 △Te=2LTEq′0・△Eq′ ………
(5)[Formula 5] ΔT e = 2L T E q ′ 0 · ΔE q ′ ...
(5)
【0049】[0049]
【数6】 △Vfd(Lfd+STd′0)△Eq′……
(6)## EQU6 ## ΔV fd (L fd + ST d ′ 0 ) ΔE q ′ ...
(6)
【0050】[0050]
【数7】 △et=Let△Eq′ ………
(7) 但し、△Te,△Vfd,△et,△E′qはTe,Vfd,e
t,E′qの微少変動に対するラプラス変換値、Eq′0は
系統連系時のEq′の平均値である。[Equation 7] Δe t = L et ΔE q ′ ...
(7) However, △ T e, △ V fd , △ e t, △ E 'q is T e, V fd, e
The Laplace transform value with respect to a slight variation of t and E ′ q , and E q ′ 0 is the average value of E q ′ during grid interconnection.
【0051】次に図8の調速機回路について、基準速度
と負荷設定値が一定として線形近似すると次式が得られ
る。Next, for the governor circuit of FIG. 8, linear approximation is performed with the reference speed and the load set value being constant, and the following equation is obtained.
【0052】[0052]
【数8】 △Tm=−GGOV △ωm ………(8) 但し、△Tm,△ωmは原動機出力Tm,発電機回転速度
ωmの微少変動に対するラプラス変換値、GGOVは調速機
(ガバナー)回路伝達関数であって、GGOV={10.
0/(1+0.1S)}×{1.0/(1+0.6
S)}である。## EQU8 ## ΔT m = −G GOV Δω m (8) where ΔT m and Δω m are Laplace conversion values, G, for slight fluctuations of the motor output T m and the generator rotation speed ω m. GOV is a governor circuit transfer function, and G GOV = {10.
0 / (1 + 0.1S)} × {1.0 / (1 + 0.6)
S)}.
【0053】また、図9の自動電圧調整器(AVR)回
路について、端子電圧検出回路の時定数は小さいのでこ
れを無視して線形近似すると次式が得られる。Further, in the automatic voltage regulator (AVR) circuit of FIG. 9, since the time constant of the terminal voltage detection circuit is small, the following equation is obtained by linearly ignoring this.
【0054】[0054]
【数9】 △Vfd=GAVR(△VAVR−△et) ………(9) 但し、△VAVRはAVR電圧設定値の微少変動に対する
伝達関数、GAVRはAVR回路伝達関数であって、GAVR
={10.0(1+1.56S)/1.56S}×
{1.0/(1+0.2S)}である。発電機の動揺方
程式を線形近似すると次式が成立する。Equation 9] △ V fd = G AVR (△ V AVR - △ e t) ......... (9) where, △ V AVR is the transfer function for small variations in the AVR voltage set value, G AVR in AVR circuit transfer function Yes , G AVR
= {10.0 (1 + 1.56S) /1.56S} ×
It is {1.0 / (1 + 0.2S)}. The following equation is established by linearly approximating the vibration equation of the generator.
【0055】[0055]
【数10】 2H(d△ωn/dt)=△Tm−△Te ………(10) 但し、2Hは発電機(原動機を含む)慣性定数であり、
(5),(6),(7),(8),(9),(10)式
から単独運転時の伝達関数ブロック図を作成すると図1
6になる。図16のブロック図よりAVR電圧設定値変
動△VAVRに対する発電機周波数の伝達関数△ωm(発電
機回転速度)は次式になる。2H (dΔω n / dt) = ΔT m −ΔT e (10) where 2H is the inertia constant of the generator (including the prime mover),
When a transfer function block diagram during islanding is created from equations (5), (6), (7), (8), (9), and (10),
Becomes 6. From the block diagram of FIG. 16, the transfer function Δω m (generator rotation speed) of the generator frequency with respect to the AVR voltage set value variation ΔV AVR is given by the following equation.
【0056】[0056]
【数11】 [Equation 11]
【0057】(11)式より、単独運転時の発電機の周
波数変動は、発電機の機器定数とその出力状態で定まる
定数Lt,Lfd,Letと系統連系時のq軸過渡電圧の平
均値Eq′O、d軸開路過渡時定数Td′O及びAVR,ガ
バナー回路の伝達関数GAVR,GGOV、発電機の単位慣性定
数2Hで決定される。(11)式に於いて、発電機の有
効電力出力が1.83MW,無効電力出力が0.267
MVαγでかつ系統側連系点の潮流が零の条件で△ωm
の伝達関数を求めた結果を次式に示す。From the equation (11), the frequency fluctuation of the generator during the isolated operation is determined by the device constants of the generator and the constants L t , L fd and L et which are determined by the output state thereof and the q-axis transient voltage at the time of grid interconnection. Is determined by the average value E q ′ O , the d-axis open circuit transient time constant T d ′ O and AVR, the governor circuit transfer functions G AVR and G GOV , and the unit inertia constant 2H of the generator. In the equation (11), the active power output of the generator is 1.83 MW and the reactive power output is 0.267.
Δω m under the condition that MVαγ and the tidal current at the grid side is zero
The result of obtaining the transfer function of is shown in the following equation.
【0058】[0058]
【数12】 (Equation 12)
【0059】(12)式は発電機の出力状態、発電機の
機器定数、AVR,ガバナー回路の伝達関数、AVRの
電圧設定値の変動量、変動周期によって発電機の周波数
変動を演算できることを示している。(12)式に対し
てボード線図を求めると図17になりAVR電圧設定値
の変動周波数が0.4Hzで、発電機周波数に対して最
高感度が得られることを示している。これは図14に示
すシミュレーション結果とほぼ一致している。Expression (12) shows that the frequency fluctuation of the generator can be calculated by the output state of the generator, the equipment constant of the generator, the transfer function of the AVR and the governor circuit, the fluctuation amount of the voltage setting value of the AVR, and the fluctuation cycle. ing. When the Bode diagram is obtained from the equation (12), the result is shown in FIG. 17, which shows that the fluctuation frequency of the AVR voltage setting value is 0.4 Hz, and the maximum sensitivity is obtained with respect to the generator frequency. This is almost in agreement with the simulation result shown in FIG.
【0060】[0060]
【発明の効果】請求項1の発明によれば、発電機出力、
発電機の機器定数、その自動電圧調整器の伝達関数およ
びその調速機の伝達関数とからその微少変動量に対して
最適な周期、大きさを演算し、その値を自動電圧調整器
の電圧設定値変動量とすることによって効果的な単独運
転検出が可能になる。According to the invention of claim 1, the generator output,
The optimum cycle and magnitude are calculated for the minute fluctuation amount from the generator constant, the transfer function of the automatic voltage regulator and the transfer function of the speed governor, and the value is calculated as the voltage of the automatic voltage regulator. By setting the amount of change in the set value, it is possible to effectively detect the isolated operation.
【0061】請求項2の発明によれば、単独運転の誤検
出防止策として、単独運転を検出する周波数リレーは低
整定値を持つ第1段と高整定値を持つ第2段の2種類を
設け、第1段リレー動作、第2段リレー不動作の条件が
成立してから一定期間だけ自動電圧調整器の電圧設定値
の微少変動量の大きさを増幅し、その条件が成立してか
ら一定期間かつ第1段リレーと第2段リレーが共に動作
した場合のみ同期発電機の単独運転状態として検出す
る。また、系統側連系点の潮流が大きな場合は単独運転
に移行すると同期発電機の入力と出力のアンバランスが
大きくなり発電機周波数もそれに伴い大きくなるので、
単独運転移行直後に周波数リレーが第1段及び第2段共
に動作することがある。これに対して検出時間に遅れが
生じないよう、第1段、第2段のリレーが共に動作する
と微少変動量の大きさを増幅せずに単独運転を検出す
る。第1段リレーの整定値は、系統連系時の常時の周波
数変動で誤動作しないように決め、第2段リレーの整定
値は増幅された微少変動量の大きさに対して決めれば、
信頼性の高い単独運転検出が可能になる。According to the invention of claim 2, as a measure for preventing erroneous detection of the isolated operation, there are two types of frequency relays for detecting the isolated operation: a first stage having a low settling value and a second stage having a high settling value. After the conditions for the first-stage relay operation and the second-stage relay non-operation are established, the magnitude of the minute fluctuation amount of the voltage setting value of the automatic voltage regulator is amplified for a certain period of time, and then the conditions are satisfied. Only when both the first-stage relay and the second-stage relay operate for a certain period of time, it is detected as the independent operation state of the synchronous generator. Also, if the tidal current at the grid side is large, the imbalance between the input and output of the synchronous generator will increase and the generator frequency will also increase when switching to islanding operation.
Immediately after shifting to the islanding operation, the frequency relay may operate in both the first stage and the second stage. On the other hand, when the relays of the first stage and the second stage are operated together so that the detection time is not delayed, the islanding operation is detected without amplifying the magnitude of the minute fluctuation amount. If the settling value of the first-stage relay is determined so as not to malfunction due to constant frequency fluctuations during system interconnection, and the setting value of the second-stage relay is determined with respect to the magnitude of the amplified minute fluctuation amount,
Highly reliable islanding detection is possible.
【0062】請求項3又は4の発明によれば、系統短絡
事故に対する単独運転検出の誤動作対策に関する発明で
あり、これによって短絡事故時の誤動作を防止できる。According to the third or fourth aspect of the present invention, the invention relates to a countermeasure against a malfunction of the islanding operation detection for a system short-circuit accident, which can prevent a malfunction during a short-circuit accident.
【0063】請求項5の発明によれば、系統連系されて
いるときだけ、自動電圧調整器の電圧設定値に微少変動
を与えることにより信頼性の高い単独運転検出方式が可
能になる。According to the fifth aspect of the present invention, a highly reliable islanding operation detection system can be realized by giving a slight variation to the voltage setting value of the automatic voltage regulator only when the system is interconnected.
【0064】請求項6の発明によれば、発電機の無効電
力出力の変動量が一定値以下になることによって自動電
圧調整器の電圧設定値に微少変動を与える回路の不良を
検出することにより、信頼性の高い単独運転検出方式が
可能になる。According to the sixth aspect of the present invention, it is possible to detect a circuit defect that causes a slight fluctuation in the voltage setting value of the automatic voltage regulator due to the fluctuation amount of the reactive power output of the generator becoming equal to or less than a certain value. It enables a highly reliable islanding detection method.
【0065】請求項7の発明によれば、請求項6の発明
に対して系統連系されているときだけ不良検出すること
により信頼性の高い監視が可能になる。According to the invention of claim 7, it is possible to perform highly reliable monitoring by detecting a defect only when the invention is interconnected with respect to the invention of claim 6.
【図1】本発明の実施の形態による同期発電機の単独運
転検出装置を示すブロック結線図。FIG. 1 is a block connection diagram showing an islanding operation detection device for a synchronous generator according to an embodiment of the present invention.
【図2】図1の同期発電機の単独運転検出装置の要部の
ブロック結線図。FIG. 2 is a block connection diagram of a main part of the islanding operation detection device for the synchronous generator of FIG.
【図3】能動方式による周波数変動とリレー応動を示す
波形図。FIG. 3 is a waveform diagram showing frequency fluctuation and relay response by an active method.
【図4】図1の装置における要部の動作シーケンス図。FIG. 4 is an operation sequence diagram of a main part in the apparatus of FIG.
【図5】図1の装置における要部の動作シーケンス図。5 is an operation sequence diagram of a main part of the apparatus shown in FIG.
【図6】図1の装置における要部の動作シーケンス図。6 is an operation sequence diagram of a main part of the apparatus of FIG.
【図7】本発明の実施例としてのシミュレーションを示
すブロック図。FIG. 7 is a block diagram showing a simulation as an embodiment of the present invention.
【図8】本発明の実施例としてのシミュレーションを示
すブロック図。FIG. 8 is a block diagram showing a simulation as an embodiment of the present invention.
【図9】本発明の実施例としてのシミュレーションを示
すブロック図。FIG. 9 is a block diagram showing a simulation as an embodiment of the present invention.
【図10】本発明の実施例としてのシミュレーションに
よる特性波形図。FIG. 10 is a characteristic waveform diagram by simulation as an example of the present invention.
【図11】本発明の実施例としてのシミュレーションに
よる特性波形図。FIG. 11 is a characteristic waveform diagram by simulation as an example of the present invention.
【図12】本発明の実施例としてのシミュレーションに
よる特性波形図。FIG. 12 is a characteristic waveform diagram by simulation as an example of the present invention.
【図13】本発明の実施例としてのシミュレーションに
よる特性波形図。FIG. 13 is a characteristic waveform diagram by simulation as an example of the present invention.
【図14】本発明の実施例としてのシミュレーションに
よる特性波形図。FIG. 14 is a characteristic waveform diagram by simulation as an example of the present invention.
【図15】本発明の実施例としてのシミュレーションに
よる特性波形図。FIG. 15 is a characteristic waveform diagram by simulation as an example of the present invention.
【図16】本発明の実施例としてのシミュレーションに
よる伝達関数ブロック図。FIG. 16 is a transfer function block diagram by simulation as an embodiment of the present invention.
【図17】図16の伝達関数を用いた発電機周波数のボ
ード線図。FIG. 17 is a Bode plot of generator frequency using the transfer function of FIG.
【図18】同期発電機を連系した電力系統のブロック
図。FIG. 18 is a block diagram of an electric power system in which synchronous generators are interconnected.
1…電力系統の配電変電所 2…同期発電機 3…配電線 4…系統連系遮断器 4a,4b…遮断器補助接点 5a,5b…遮断器補助接点 5…遮断器 7…変流器 8…計器用変圧器 9…自動電圧調整器 10…演算制御部 11…演算部 20…周波数リレー部 21a…第1段周波数リレー 21b…第2段周波数リレー 22a…第1の積分タイマー 22b…第2の積分タイマー 23a,23b…ナンドゲート 24…オンディレータイマー 25a,25b…スイッチング増幅回路 26a,26b…アンドゲート 27a,27b…オアゲート 28…不足電圧リレー 29…無効電力検出回路 30…外乱信号発生部 31…外乱信号発生器 32…ナンドゲート 33…アンドゲート 34…オアゲート 1 ... Distribution substation of electric power system 2 ... Synchronous generator 3 ... Distribution line 4 ... Grid interconnection breaker 4a, 4b ... Auxiliary breaker contact 5a, 5b ... Auxiliary breaker contact 5 ... Breaker 7 ... Current transformer 8 ... voltage transformer 9 ... automatic voltage regulator 10 ... arithmetic control unit 11 ... arithmetic unit 20 ... frequency relay unit 21a ... first stage frequency relay 21b ... second stage frequency relay 22a ... first integration timer 22b ... second Integration timer 23a, 23b ... NAND gate 24 ... On-delay timer 25a, 25b ... Switching amplification circuit 26a, 26b ... AND gate 27a, 27b ... OR gate 28 ... Undervoltage relay 29 ... Reactive power detection circuit 30 ... Disturbance signal generator 31 ... Disturbance signal generator 32 ... NAND gate 33 ... AND gate 34 ... OR gate
───────────────────────────────────────────────────── フロントページの続き (72)発明者 甲斐 隆章 東京都品川区大崎2丁目1番17号 株式会 社明電舎内 (72)発明者 金田 裕敏 東京都品川区大崎2丁目1番17号 株式会 社明電舎内 (72)発明者 藤本 敏朗 東京都品川区大崎2丁目1番17号 株式会 社明電舎内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takaaki Kai 2-1-1 Osaki, Shinagawa-ku, Tokyo Stock company inside the company Meidensha (72) Inventor Hirotoshi Kaneda 2--17 Osaki, Shinagawa-ku, Tokyo Stock association Shameidensha (72) Inventor Toshiro Fujimoto 2-17 Osaki, Shinagawa-ku, Tokyo Stock company Shameidensha
Claims (7)
同期発電機を解列して単独運転となることを検出する単
独運転検出方法において、 前記同期発電機の出力と機器定数,当該同期発電機の自
動電圧調整器の伝達関数および当該調速機の伝達関数と
から周波数の微少変動量と周期を算出する演算制御部
と、 前記同期発電機周波数変動分を演算してその変動分が整
定値以上になったことを条件に単独運転となったことを
検出する周波数リレー部、および前記演算部によって算
出された電力量の微少変動量と同期と前記周波数リレー
部の検出信号を入力条件として、前記同期発電機の自動
電圧調整器に対して外乱信号を入力する外乱信号発生部
からなり、 前記外乱信号発生部より前記自動電圧調整器に電圧設定
値微少変動信号を出力し、その電圧設定値を所定周期で
微少変動させることを特徴とする、 同期発電機の単独運転検出方法。1. A method for detecting an isolated operation by disconnecting a synchronous generator connected to a power system as a distributed power source, the output of the synchronous generator, a device constant, and the synchronization. An arithmetic control unit that calculates a minute fluctuation amount and a cycle of the frequency from the transfer function of the automatic voltage regulator of the generator and the transfer function of the speed governor, and the fluctuation amount by calculating the synchronous generator frequency fluctuation amount. Frequency relay section that detects that it has become independent operation on the condition that it has become equal to or more than the set value, and minute fluctuation amount of power amount calculated by the calculation section and synchronization and the detection signal of the frequency relay section are input conditions As a disturbance signal generator for inputting a disturbance signal to the automatic voltage regulator of the synchronous generator, the disturbance signal generator outputs a voltage setting value slight fluctuation signal to the automatic voltage regulator, A method for detecting isolated operation of a synchronous generator, characterized in that the pressure set value is slightly changed in a predetermined cycle.
持つ第1段の周波数リレーと高整定値を持つ第2段周波
数リレーの2種類の周波数リレーを設け、第1段リレー
動作、第2段リレー不動作の条件が成立してから一定期
間だけ自動電圧調整器の電圧設定値の微少変動量の大き
さを増幅しその条件が成立してから一定期間かつ第1段
リレーと第2段リレーが共に動作した場合のみ単独運転
を検出し、また、第1段、第2段のリレーが共に動作し
た場合は微少変動量の大きさを増幅せずに単独運転を検
出することを特徴とする請求項1に記載の同期発電機の
単独運転検出方法。2. The frequency relay section is provided with two types of frequency relays, a first stage frequency relay having a low settling value and a second stage frequency relay having a high settling value, and a first stage relay operation, a second stage The amount of minute fluctuations in the voltage setting value of the automatic voltage regulator is amplified only for a certain period after the condition of relay non-operation is established, and for a certain period after the condition is established, the first stage relay and the second stage relay Are detected only when they operate together, and when the first-stage and second-stage relays operate together, the independent operation is detected without amplifying the magnitude of the minute fluctuation amount. The method for detecting isolated operation of the synchronous generator according to claim 1.
変動分が整定値以上になった時間を積分しその値が所定
時間以上になったことを条件に前記同期発電機の単独運
転を検出し、前記同期発電機が連系されていない系統の
短絡事故時の発電機の加速に対して単独運転状態の誤検
出を系統の短絡事故除去リレーとの時限協調によって防
止することを特徴とする、請求項1に記載の同期発電機
の単独運転検出方法。3. The frequency relay unit detects the islanding operation of the synchronous generator on the condition that the time when the fluctuation of the frequency becomes a set value or more is integrated and the value becomes a predetermined time or more, A method for preventing erroneous detection of an islanding state against acceleration of the generator at the time of a short-circuit accident in a system in which the synchronous generator is not connected by time coordination with a short-circuit accident elimination relay of the system, Item 1. A method for detecting an isolated operation of a synchronous generator according to Item 1.
出リレーの動作によって周波数リレーの出力信号をロッ
クし、前記同期発電機が連系されていない系統の短絡事
故時の該同期発電機の加速に対して単独運転状態の誤検
出を防止する、ことを特徴とする請求項1に記載の同期
発電機の単独運転検出方法。4. The acceleration of the synchronous generator at the time of a short circuit accident of a system in which the synchronous generator is not connected by locking the output signal of the frequency relay by the operation of the short circuit accident detection relay in the frequency relay unit. The method for detecting an isolated operation of a synchronous generator according to claim 1, wherein erroneous detection of the isolated operation state is prevented.
器の開閉信号によって検出し、前記同期発電機が系統連
系されているときのみ前記外乱信号発生部を前記自動電
圧調整器への微少変動信号を出力させることを特徴とす
る請求項1に記載の同期発電機の単独運転検出方法。5. The system condition of the synchronous generator is detected by an open / close signal of a circuit breaker for interconnection, and the disturbance signal generator is sent to the automatic voltage regulator only when the synchronous generator is system-interconnected. 2. The method for detecting an isolated operation of a synchronous generator according to claim 1, wherein the small fluctuation signal is output.
の無効電力の変動分を監視し、前記外乱信号発生部の不
良を検出することを特徴とする請求項1に記載の同期発
電機の単独運転検出方法。6. The synchronous generator according to claim 1, wherein the frequency relay unit monitors a variation of the reactive power of the synchronous generator and detects a defect of the disturbance signal generating unit. An islanding detection method.
系用遮断器の開閉信号によって検出し、当該同期発電機
が系統連系されているときだけ前記外乱信号発生部の不
良を検出し、該同期発電機の電圧設定値微少変動による
前記同期発電機の無効電力出力の変動分が単独運転時に
小さくなることによる前記外乱信号発生部の不良が誤検
出されることを防止することを特徴とする、請求項6に
記載の同期発電機の単独運転検出方法。7. A system interconnection condition of the synchronous generator is detected by a switching signal of a system interconnection breaker, and a defect of the disturbance signal generator is detected only when the synchronous generator is system interconnected. However, it is possible to prevent erroneous detection of a defect in the disturbance signal generation unit due to a small variation in the reactive power output of the synchronous generator due to a slight change in the voltage set value of the synchronous generator during islanding operation. The method for detecting isolated operation of a synchronous generator according to claim 6, which is characterized in that.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP01957296A JP3629324B2 (en) | 1996-02-06 | 1996-02-06 | Synchronous generator isolated operation detection method |
EP96108609A EP0746078B1 (en) | 1995-05-31 | 1996-05-30 | Method and apparatus for detecting islanding operation of dispersed generator |
DE69623692T DE69623692T2 (en) | 1995-05-31 | 1996-05-30 | Method and device for detecting the islanding operation of a distributed generator |
US08/655,817 US5808449A (en) | 1995-02-06 | 1996-05-31 | Method and apparatus for detecting islanding operation of dispersed generator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP01957296A JP3629324B2 (en) | 1996-02-06 | 1996-02-06 | Synchronous generator isolated operation detection method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09215204A true JPH09215204A (en) | 1997-08-15 |
JP3629324B2 JP3629324B2 (en) | 2005-03-16 |
Family
ID=12003007
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP01957296A Expired - Fee Related JP3629324B2 (en) | 1995-02-06 | 1996-02-06 | Synchronous generator isolated operation detection method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3629324B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007252128A (en) * | 2006-03-17 | 2007-09-27 | Fuji Electric Systems Co Ltd | Independent operation detection device for synchronous generator having power system stabilizing function |
JP2007252127A (en) * | 2006-03-17 | 2007-09-27 | Fuji Electric Systems Co Ltd | Independent operation detection device for synchronous generator |
-
1996
- 1996-02-06 JP JP01957296A patent/JP3629324B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007252128A (en) * | 2006-03-17 | 2007-09-27 | Fuji Electric Systems Co Ltd | Independent operation detection device for synchronous generator having power system stabilizing function |
JP2007252127A (en) * | 2006-03-17 | 2007-09-27 | Fuji Electric Systems Co Ltd | Independent operation detection device for synchronous generator |
JP4631762B2 (en) * | 2006-03-17 | 2011-02-16 | 富士電機システムズ株式会社 | Single operation detector for synchronous generator |
JP4631763B2 (en) * | 2006-03-17 | 2011-02-16 | 富士電機システムズ株式会社 | Isolated operation detector for synchronous generator with power system stabilization function |
Also Published As
Publication number | Publication date |
---|---|
JP3629324B2 (en) | 2005-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Redfern et al. | Protection against loss of utility grid supply for a dispersed storage and generation unit | |
Rajamani et al. | Islanding and load shedding schemes for captive power plants | |
JP2001224134A (en) | Method and apparatus for control of parallel-off of generator | |
Usta et al. | Protection of dispersed storage and generation units against islanding | |
CN110821579A (en) | Steam turbine-generator safety protection system and method applied to large power plant | |
JP2004096871A (en) | Linkage protection system for distributed power supply equipment | |
JPH09215204A (en) | Individual-operation detection method for synchronous generator | |
Redfern et al. | Power based algorithm to provide loss of grid protection for embedded generation | |
JP3302898B2 (en) | Power grid connection protection device | |
JP2002101562A (en) | System interconnection protection device of power generating installation | |
Begovic et al. | On wide area protection | |
Doughty et al. | Electrical studies for an industrial gas turbine cogeneration facility | |
JP3751829B2 (en) | System interconnection protection device for power generation facilities | |
JP3397608B2 (en) | Power grid connection protection device | |
JP2607500B2 (en) | Spot network power receiving substation protection device | |
JPS6046735A (en) | Method of disassembling parallel power system | |
Chen et al. | Analysis of the Impact of MW-level Grid-connected Photovoltaic Power Station on Backup Automatic Switch in Distribution Network | |
JP2003111283A (en) | System linkage protector for generation facility | |
JP2620916B2 (en) | Grid connection protection device | |
JP2557056B2 (en) | Governor operation constant switching circuit | |
JP3154747B2 (en) | In-plant independent operation transfer control device | |
JP2684317B2 (en) | Grid connection protection device | |
JP4387620B2 (en) | System interconnection protection device for power generation facilities | |
JPH033617A (en) | Reverse transmission preventive device for non-utility generation plant | |
JP2002281674A (en) | System interconnection protection device for power generating facility |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041201 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20041207 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20041213 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081217 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091217 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101217 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111217 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121217 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131217 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |