JP2007250469A - Negative active material - Google Patents

Negative active material Download PDF

Info

Publication number
JP2007250469A
JP2007250469A JP2006075460A JP2006075460A JP2007250469A JP 2007250469 A JP2007250469 A JP 2007250469A JP 2006075460 A JP2006075460 A JP 2006075460A JP 2006075460 A JP2006075460 A JP 2006075460A JP 2007250469 A JP2007250469 A JP 2007250469A
Authority
JP
Japan
Prior art keywords
negative electrode
active material
electrode active
carbon
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006075460A
Other languages
Japanese (ja)
Inventor
Yasuhiko Osawa
康彦 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006075460A priority Critical patent/JP2007250469A/en
Publication of JP2007250469A publication Critical patent/JP2007250469A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a negative active material made of material having both a function absorbing and releasing ions, and a function conducting electrons. <P>SOLUTION: By using the negative active material comprising carbon of porous structure having three-dimensional mutual through holes passing through amorphous carbon which is a base material, three-dimensionally spreading in a net shape, and having an average passing through width of 0.05-5 μm, the specific surface area of the negative active material is increased, and the negative active material increasing the absorbing-releasing amount of ions is provided. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は負極活物質に係り、より詳細には二次電池用の負極活物質に係る。   The present invention relates to a negative electrode active material, and more particularly to a negative electrode active material for a secondary battery.

二次電池の負極活物質として、充放電に伴いイオンを可逆的に吸蔵−放出できるインターカレーターが用いられており、例えば、リチウムイオン二次電池ではリチウムイオンを吸蔵−放出するインターカレーターとして黒鉛などの炭素系材料が用いられている。   As a negative electrode active material of a secondary battery, an intercalator capable of reversibly occluding and releasing ions with charge and discharge is used. For example, in a lithium ion secondary battery, graphite or the like is used as an intercalator that absorbs and releases lithium ions. These carbon-based materials are used.

インターカレーターの比表面積を向上させると、イオンの吸蔵−放出速度が向上し、抵抗を抑制できるため、電池を高出力化することができる。このため、従来技術では、比表面積を向上させるために、インターカレーターからなる負極活物質を微粒子化する方法が採られていた。しかしながら、負極活物質は電子を伝導する役割も担っており、負極活物質が微粒子化することにより粒子同士の乖離に伴う電子ネットワークの切断が起き易くなると却って電池の性能を低下させていた。   When the specific surface area of the intercalator is improved, the occlusion-release rate of ions is improved and the resistance can be suppressed, so that the battery can have high output. For this reason, in the prior art, in order to improve the specific surface area, a method in which a negative electrode active material made of an intercalator is made into fine particles has been adopted. However, the negative electrode active material also plays a role of conducting electrons, and if the negative electrode active material becomes fine particles and the electronic network is easily disconnected due to the divergence between the particles, the performance of the battery is deteriorated.

これに対し、特許文献1では一般的に用いられている膜状の集電体の代わりに、繊維状の集電体を用い、この表面にインターカレーターを被着させたものを負極として用いている。特許文献1の図2(b)では、繊維状に形成された負極が開示されている。
特開平10−312794号広報
In contrast, in Patent Document 1, a fibrous current collector is used in place of the film-shaped current collector that is generally used, and an intercalator attached to the surface is used as the negative electrode. Yes. In FIG. 2B of Patent Document 1, a negative electrode formed in a fiber shape is disclosed.
Japanese Laid-Open Patent Publication No. 10-312794

しかしながら、上述の特許文献1に記載の負極は電子の伝導のみを目的とする繊維状の物質の表面にインターカレーターが配置されているため、イオンの吸蔵−放出量に限界があるという問題を有している。さらに、特許文献1に記載の負極は、負極の骨格となる電子伝導体が繊維であるため機械的強度が低く、イオンの吸蔵−放出時のインターカレーターの体積変動に伴い崩壊するおそれがある。特許文献1に記載の負極の構造では電子伝導体が崩壊した場合、インターカレーターの比表面積が低下するおそれがある。   However, the negative electrode described in Patent Document 1 has a problem in that the amount of occluded / released ions is limited because an intercalator is disposed on the surface of a fibrous material intended only for electron conduction. is doing. Furthermore, the negative electrode described in Patent Document 1 has a low mechanical strength because the electron conductor serving as the skeleton of the negative electrode is a fiber, and there is a possibility that the negative electrode collapses due to a change in the volume of the intercalator during ion storage and release. In the structure of the negative electrode described in Patent Document 1, when the electronic conductor collapses, the specific surface area of the intercalator may be reduced.

本発明は、上記課題を解決するために、イオンの吸蔵−放出量に優れる負極活物質を提供することを目的とする。   In order to solve the above problems, an object of the present invention is to provide a negative electrode active material that is excellent in the amount of occlusion-release of ions.

本発明者は、負極活物質のみからなる多孔質構造体を用いることにより、上記課題を解決できることを見出し、本発明を完成させた。   The present inventor has found that the above problems can be solved by using a porous structure composed only of a negative electrode active material, and has completed the present invention.

すなわち、本発明は三次元相互貫通孔を有するカーボンからなる負極活物質を提供することにより上記課題を解決する。   That is, this invention solves the said subject by providing the negative electrode active material which consists of carbon which has a three-dimensional mutual through-hole.

本発明によりイオンの吸蔵−放出量に優れる負極活物質を提供することができる。   According to the present invention, it is possible to provide a negative electrode active material excellent in the amount of occlusion-release of ions.

本発明の第1は三次元相互貫通孔を有するカーボンからなる負極活物質である。   The first of the present invention is a negative electrode active material made of carbon having three-dimensional mutual through holes.

本発明でいう三次元相互貫通孔とは、母材であるカーボンを貫通する孔を指し、前記孔は三次元方向に網目状に広がっている。三次元相互貫通孔を有するカーボンの構造として、例えばスポンジの構造が挙げられる。三次元相互貫通孔を有するカーボンを用いることにより、負極活物質の比表面積を向上させられることができ、さらに、微粒子を使用した場合よりも電子ネットワークの切断が起き難くなる。   The three-dimensional mutual through hole referred to in the present invention refers to a hole that penetrates carbon as a base material, and the hole extends in a mesh shape in the three-dimensional direction. Examples of the carbon structure having three-dimensional mutual through holes include a sponge structure. By using carbon having three-dimensional mutual through holes, the specific surface area of the negative electrode active material can be improved, and further, the electronic network is less likely to be cut than when fine particles are used.

本発明の三次元相互貫通孔を有するカーボンからなる負極活物質(以下、単に「本発明の負極活物質」とも記載)は膜状で用いてもよいし、例えば粒子状など一定の形状に加工したものを用いてもよい。   The negative electrode active material made of carbon having three-dimensional mutual through-holes of the present invention (hereinafter also simply referred to as “the negative electrode active material of the present invention”) may be used in the form of a film, or processed into a certain shape such as particles. You may use what you did.

本発明の負極活物質を膜状で用いると、電子ネットワークの切断が起き難くなる点で好ましい。膜状で用いる場合、平均膜厚は1〜200μmが好ましく、より好ましくは5〜50μmである。1μm以上であるとイオンの吸蔵量に優れるため好ましく、200μm以下であるとイオンの吸蔵−放出速度に優れるため好ましい。   When the negative electrode active material of the present invention is used in a film form, it is preferable in that the electronic network is hardly cut. When used in a film form, the average film thickness is preferably 1 to 200 μm, more preferably 5 to 50 μm. When it is 1 μm or more, it is preferable because the occlusion amount of ions is excellent, and when it is 200 μm or less, it is preferable because it is excellent in the occlusion-release rate of ions.

本発明の負極活物質を粒子状で用いると、イオンの吸蔵−放出速度に優れるため好ましい。粒子状で用いる場合、平均粒子径は1〜50μmが好ましく、より好ましくは5〜25μmである。1μm以上であるとイオンの吸蔵量に優れるため好ましく、50μm以下であるとイオンの吸蔵−放出速度に優れるため好ましい。   When the negative electrode active material of the present invention is used in the form of particles, it is preferable because it has an excellent ion storage-release rate. When used in the form of particles, the average particle diameter is preferably 1 to 50 μm, more preferably 5 to 25 μm. When it is 1 μm or more, it is preferable because the occlusion amount of ions is excellent, and when it is 50 μm or less, it is preferable because the occlusion-release rate of ions is excellent.

本発明の負極活物質は、イオンを吸蔵放出する機能と、電子を伝導する機能とを併せ持つ材料のみからなることが好ましい。これにより、単位質量あたりの充放電可能な電気の量を向上させることができる。   The negative electrode active material of the present invention is preferably made of only a material having both a function of occluding and releasing ions and a function of conducting electrons. Thereby, the quantity of the electricity which can be charged / discharged per unit mass can be improved.

本発明の負極活物質に含まれる三次元相互貫通孔の平均貫通幅は0.05μm以上であることが好ましく、より好ましくは0.05〜5μm、さらに好ましくは0.2〜2μmである。0.05μm以上であると、負極活物質内に満たされる電解液の量に優れ、また、表面保護膜(SEI)が過剰に形成されることを抑制でき、電気量の消費も抑制できるため好ましい。5μm以下であると、負極活物質の比表面積に優れるため好ましい。   The average through width of the three-dimensional mutual through holes contained in the negative electrode active material of the present invention is preferably 0.05 μm or more, more preferably 0.05 to 5 μm, still more preferably 0.2 to 2 μm. When the thickness is 0.05 μm or more, the amount of the electrolytic solution filled in the negative electrode active material is excellent, the surface protective film (SEI) can be prevented from being excessively formed, and the consumption of electricity can also be suppressed. . A thickness of 5 μm or less is preferable because the specific surface area of the negative electrode active material is excellent.

本発明の負極活物質はカーボンからなるが、カーボンとしてはアモルファスカーボンが好ましい。アモルファスカーボンを用いると、電極表面のイオンの析出量が抑制されるため好ましい。イオンの析出量が抑制される場合、より急速な充放電を行うことも可能である。このため、アモルファスカーボンを用いた負極活物質は、発進時などに急速な放電を要求する車両などに好適である。   The negative electrode active material of the present invention is made of carbon, and amorphous carbon is preferable as the carbon. Use of amorphous carbon is preferable because the amount of ions deposited on the electrode surface is suppressed. When the amount of deposited ions is suppressed, more rapid charge / discharge can be performed. For this reason, the negative electrode active material using amorphous carbon is suitable for vehicles that require rapid discharge when starting.

本発明において、負極活物質のカーボン部分と空隙部分との体積比は1:0.1〜1:10が好ましく、より好ましくは1:0.3〜1:3である。カーボン部分の体積を1として空隙部分の体積が0.1以上であると、負極活物質内に満たされる電解液の量に優れ、10以下であると、イオンの吸蔵−放出量に優れる。   In the present invention, the volume ratio between the carbon portion and the void portion of the negative electrode active material is preferably 1: 0.1 to 1:10, more preferably 1: 0.3 to 1: 3. When the volume of the carbon portion is 1 and the volume of the void portion is 0.1 or more, the amount of the electrolyte solution filled in the negative electrode active material is excellent, and when it is 10 or less, the amount of ion occlusion-release is excellent.

上述のイオンとしてはリチウムイオンが好ましい。   As the above-mentioned ions, lithium ions are preferable.

本発明の第2は、上述の負極活物質の製造方法である。   A second aspect of the present invention is a method for producing the above-described negative electrode active material.

本発明の負極活物質の製造方法は特に限定されないが、三次元相互貫通孔を有する前駆体を、不活性雰囲気下で炭化させることにより作製することが好ましい。   Although the manufacturing method of the negative electrode active material of this invention is not specifically limited, It is preferable to produce by carbonizing the precursor which has a three-dimensional mutual through-hole in inert atmosphere.

前記前駆体としては、三次元相互貫通孔を有し炭化しうるものであれば特に限定されないが、炭素化過程である程度形状を保持できるものが好ましい。例えば、ポリイミド樹脂、フェノール樹脂、またはフラン樹脂などが挙げられる。   The precursor is not particularly limited as long as it has three-dimensional mutual through-holes and can be carbonized, but a precursor that can retain a shape to some extent during the carbonization process is preferable. For example, a polyimide resin, a phenol resin, or a furan resin can be used.

三次元相互貫通孔を有する前駆体の製造方法としては、有機ゲルに超音波を照射する方法、または、ポリアミック酸の溶液を貧溶媒に曝す方法などが挙げられる。   Examples of the method for producing a precursor having a three-dimensional mutual through hole include a method of irradiating an organic gel with ultrasonic waves, a method of exposing a polyamic acid solution to a poor solvent, and the like.

前記不活性雰囲気としては特に限定されず、窒素雰囲気、ヘリウム雰囲気、ネオン雰囲気、またはアルゴン雰囲気などが挙げられる。   The inert atmosphere is not particularly limited, and examples thereof include a nitrogen atmosphere, a helium atmosphere, a neon atmosphere, and an argon atmosphere.

炭化させる方法としては、大気圧炭素化、減圧炭素化、または加圧炭素化などが挙げられる。   Examples of the carbonizing method include atmospheric pressure carbonization, reduced pressure carbonization, and pressurized carbonization.

本発明の第3は、上述の負極活物質、または上述の方法により作製された負極活物質を含むことを特徴とするイオン電池用負極である。   3rd of this invention is a negative electrode for ion batteries characterized by including the negative electrode active material mentioned above or the negative electrode active material produced by the above-mentioned method.

本発明においてイオン電池用負極は負極活物質と、集電体とを含む。図1のAおよびBに本発明の負極の好ましい一実施形態の断面概略図を示す。図1のAおよびBにおいて、符号35は集電体を示し、100は負極活物質を示し、110はカーボン部分を示し、120は空隙部分を示す。図1のAおよびBは、それぞれ上述の負極活物質の項に記載した、膜状の負極活物質と、粒子状の負極活物質とを示す。これらの利点については上述したとおりである。粒子状の負極活物質を用いる場合には、粒子同士を結着させるためにバインダーを用いることが好ましく、バインダーとしてはPVdFなどが挙げられる。   In the present invention, the negative electrode for an ion battery includes a negative electrode active material and a current collector. 1A and 1B are schematic cross-sectional views of a preferred embodiment of the negative electrode of the present invention. 1A and 1B, reference numeral 35 denotes a current collector, 100 denotes a negative electrode active material, 110 denotes a carbon portion, and 120 denotes a void portion. 1A and 1B respectively show a film-like negative electrode active material and a particulate negative electrode active material described in the above-mentioned negative electrode active material section. These advantages are as described above. In the case of using a particulate negative electrode active material, it is preferable to use a binder in order to bind the particles, and examples of the binder include PVdF.

背景技術の項に特許文献1について記載したが、本願発明の負極活物質と、引用文献1の負極活物質とは外観上同様に見える場合もある。しかしながら、図2に示す特許文献1の負極の断面概略図と図1のAおよびBとを比較するとわかるように、これらは全く異なる構造を有している。本願では膜状の集電体35上に多孔質構造の負極活物質100が形成されているのに対し、引用文献1では多孔質構造の集電体45表面に負極活物質200が形成されている。   Although patent document 1 was described in the section of background art, the negative electrode active material of this invention and the negative electrode active material of the cited reference 1 may look the same on an external appearance. However, as can be seen by comparing the schematic cross-sectional view of the negative electrode of Patent Document 1 shown in FIG. 2 with A and B in FIG. 1, they have completely different structures. In the present application, the negative electrode active material 100 having a porous structure is formed on the film-like current collector 35, whereas in the cited document 1, the negative electrode active material 200 is formed on the surface of the current collector 45 having a porous structure. Yes.

本願発明の特許文献1よりも優れている点として、単位質量あたりの充放電できる電気の量に優れることや、図1のBに示す構造を形成できる点などが挙げられる。   As points superior to Patent Document 1 of the present invention, there are an excellent amount of electricity that can be charged and discharged per unit mass, a point that a structure shown in FIG. 1B can be formed, and the like.

本発明の第4は、上述の負極活物質、上述の方法により作製された負極活物質、またはイオン電池用負極を含むことを特徴とする二次電池である。   4th of this invention is a secondary battery characterized by including the above-mentioned negative electrode active material, the negative electrode active material produced by the above-mentioned method, or the negative electrode for ion batteries.

上述の負極活物質、上述の方法により作製された負極活物質、またはイオン電池用負極を含むことにより、大電流で充放電を繰り返すことのできる高出力密度の電池を提供することができる。   By including the above-described negative electrode active material, the negative electrode active material produced by the above-described method, or the negative electrode for an ion battery, it is possible to provide a high-power-density battery that can be repeatedly charged and discharged with a large current.

本発明の二次電池の構成は特に限定されず、従来公知の二次電池の構成を採用することができる。例えば、図3に示すようなバイポーラ型の二次電池の構造を採用してもよい。図3において符号13は正極活物質層を示し、符号15は負極活物質層を示し、符号17は電解質層を示し、符号19は単電池層を示し、符号25は正極タブを示し、符号27は負極タブを示し、符号29はラミネートシートを示し、符号33は正極集電体を示し、符号35は負極集電体を示す。負極活物質層に含まれる負極活物質以外の各構成要素に関しては特に限定されず、従来公知の材料を適宜選択することができる。   The structure of the secondary battery of this invention is not specifically limited, The structure of a conventionally well-known secondary battery is employable. For example, a structure of a bipolar secondary battery as shown in FIG. 3 may be adopted. 3, reference numeral 13 indicates a positive electrode active material layer, reference numeral 15 indicates a negative electrode active material layer, reference numeral 17 indicates an electrolyte layer, reference numeral 19 indicates a single cell layer, reference numeral 25 indicates a positive electrode tab, reference numeral 27 Indicates a negative electrode tab, reference numeral 29 indicates a laminate sheet, reference numeral 33 indicates a positive electrode current collector, and reference numeral 35 indicates a negative electrode current collector. Each constituent element other than the negative electrode active material contained in the negative electrode active material layer is not particularly limited, and a conventionally known material can be appropriately selected.

本発明において二次電池はリチウムイオン二次電池が好ましい。   In the present invention, the secondary battery is preferably a lithium ion secondary battery.

本発明の第5は、上述の負極活物質、上述の方法により作製された負極活物質、イオン電池用負極、または二次電池を含むことを特徴とする車両である。   According to a fifth aspect of the present invention, there is provided a vehicle including the negative electrode active material described above, the negative electrode active material prepared by the method described above, a negative electrode for an ion battery, or a secondary battery.

本発明の車両に含まれる負極活物質は出力に優れるため、電池の体積を小さくすることもできる。このため、車両において占める質量または体積を節約できるため、車両設計上大きなメリットを有する。   Since the negative electrode active material contained in the vehicle of the present invention is excellent in output, the battery volume can also be reduced. For this reason, since the mass or volume which occupies in a vehicle can be saved, it has a big merit on vehicle design.

次に実施例を挙げて本願発明を具体的に説明するが、これらの実施例は何ら本願発明を制限するものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated concretely, these Examples do not restrict | limit this invention at all.

(実施例1)
[三次元相互貫通孔を有するカーボンの製造]
ジアミノジフェニルエーテル50gをジメチルアセトアミド800gに溶かして、その溶液にジアミノジフェニルエーテルと等モルのピロメリット酸を加えて1時間程度撹拌すると溶液の粘度が高くなり水あめ状のポリアミック酸溶液ができた。これをガラス板上に塗布して、これを貧溶媒である水に5分間漬けることによりジメチルアセトアミドを溶かし、三次元相互貫通孔を有する前駆体を得た。
Example 1
[Production of carbon having three-dimensional mutual through holes]
When 50 g of diaminodiphenyl ether was dissolved in 800 g of dimethylacetamide, and diaminodiphenyl ether and equimolar pyromellitic acid were added to the solution and stirred for about 1 hour, the viscosity of the solution increased and a starchy polyamic acid solution was obtained. This was applied on a glass plate and immersed in water as a poor solvent for 5 minutes to dissolve dimethylacetamide, thereby obtaining a precursor having three-dimensional mutual through holes.

前記前駆体を真空乾器内で100℃にて1時間乾燥後、真空容器内で300℃1時間加熱してイミド化した。これを超高純度アルゴン(99.9999%)雰囲気下(約100ml/分でフロー)、昇温速度400℃/hで1000℃まで昇温し、1000℃にて1時間保持して炭素化して三次元相互貫通孔を有するアモルファスカーボンを作製した。   The precursor was dried in a vacuum dryer at 100 ° C. for 1 hour and then imidized by heating in a vacuum vessel at 300 ° C. for 1 hour. This was heated to 1000 ° C. at a heating rate of 400 ° C./h under an ultra-high purity argon (99.9999%) atmosphere (flow at about 100 ml / min), and kept at 1000 ° C. for 1 hour for carbonization. Amorphous carbon with three-dimensional mutual through holes was prepared.

作製したカーボンの電子顕微鏡写真を図4に示す。マクロ孔が発達しているのがわかる。これをメノウ乳鉢で粉砕して粉末とした。そのときの平均粒子径は19μmであった。   An electron micrograph of the produced carbon is shown in FIG. It can be seen that macropores are developed. This was pulverized with an agate mortar to obtain a powder. The average particle size at that time was 19 μm.

[負極の作製]
上記で作製したカーボン粉末とPVdFとの質量比が85:15となるように秤量した。ホモジナイザーの容器に、上記で作製したカーボン粉末とPVdFと適量のNMPを加えてよく撹拌、混合してスラリーを調製した。このスラリーをダイコーターを用いて、箔上に塗布して乾燥した。銅箔の両面に電極層を形成して、プレスをかけて、55mm×105mmになるように、しかも電極層がないリード部分を残して切り出した。電極層の厚さは、出来上り時点で、45μmになるように塗布条件を調整した。
[Production of negative electrode]
The carbon powder prepared above was weighed so that the mass ratio of PVdF was 85:15. The carbon powder prepared above, PVdF, and an appropriate amount of NMP were added to a homogenizer container, and stirred well and mixed to prepare a slurry. This slurry was applied onto a foil using a die coater and dried. Electrode layers were formed on both sides of the copper foil, and pressed to cut out 55 mm × 105 mm, leaving a lead portion without the electrode layer. The coating conditions were adjusted so that the thickness of the electrode layer was 45 μm at the time of completion.

[正極の作製]
正極の作製は、平均粒子径1.2μmスピネルのマンガン酸リチウムを用いて行った。各組成が質量比で活物質:アセチレンブラック:PVdF=75:15:10になるようにした。まず、スピネル型のマンガン酸リチウム、アセチレンブラックとPVdFを計量し、これに適量のNMP(N−メチルー2−ピロリドン)を加えてホモジナイザーにてよく撹拌、混合した。ダイコーターを用いてこのスラリーをアルミ箔に一定量塗布して乾燥した。このようにしてアルミ箔の両面に電極層を形成して、ロールプレスにてプレスをかけて、電極層部分が50mm×100mmになるように、しかも電極層がないリード部分を残して切り出した。電極層の厚さは、出来上り時点で、40μmになるように塗布条件を調整した。
[Production of positive electrode]
The positive electrode was produced using lithium manganate having an average particle size of 1.2 μm spinel. Each composition was made to be active material: acetylene black: PVdF = 75: 15: 10 by mass ratio. First, spinel type lithium manganate, acetylene black and PVdF were weighed, and an appropriate amount of NMP (N-methyl-2-pyrrolidone) was added thereto, followed by thorough stirring and mixing with a homogenizer. A certain amount of this slurry was applied to an aluminum foil using a die coater and dried. In this way, electrode layers were formed on both surfaces of the aluminum foil, and pressed with a roll press, and the electrode layer portion was cut out so as to be 50 mm × 100 mm, leaving a lead portion without the electrode layer. The coating conditions were adjusted so that the thickness of the electrode layer was 40 μm at the time of completion.

[電池の作製]
電池の作製は、次のように行った。上記で切り出した正極と負極それぞれを90℃の真空乾燥機にて1日乾燥した。正極と負極との間に、厚さ25μmのポリプロピレンの多孔質膜を介して最外側が負極になるようにして10枚の正極を11枚の負極を交互に積層して、各正極と負極を束ねてリードを溶接して、この積層体を正負極のリードを取り出した構造にて、アルミニウムのラミネートフィルムバックに収めて、注液機により電解液を注液して、減圧下シールをして電池を作製した。
[Production of battery]
The battery was produced as follows. Each of the positive electrode and negative electrode cut out above was dried in a vacuum dryer at 90 ° C. for 1 day. Between the positive electrode and the negative electrode, 10 positive electrodes and 11 negative electrodes are alternately laminated so that the outermost electrode becomes a negative electrode through a 25 μm thick porous polypropylene film. Bundled and welded with lead, and the laminate was placed in an aluminum laminate film back with the positive and negative lead taken out, and the electrolyte was injected with a liquid injector and sealed under reduced pressure. A battery was produced.

(実施例2)
実施例1の三次元相互貫通孔を有するカーボンの合成において、貧溶媒をアセトンにしたこと以外は同様にして三次元相互貫通マクロ孔を有するアモルファスカーボンを作製した。
(Example 2)
In the synthesis of carbon having three-dimensional interpenetrating holes in Example 1, amorphous carbon having three-dimensional interpenetrating macropores was produced in the same manner except that the poor solvent was acetone.

さらに実施例1と同様にして電池を作製した。   Further, a battery was produced in the same manner as in Example 1.

(実施例3)
実施例1の三次元相互貫通マクロ孔を有するアモルファスカーボンの合成において用いるカーボン前駆体を文献(CARBON,43,(2005),pp.2808〜2811.)に示された方法に従って合成し、これを実施例1と同じ条件にて炭素化して三次元相互貫通孔を有するアモルファスカーボンを作製した。
(Example 3)
The carbon precursor used in the synthesis of the amorphous carbon having the three-dimensional interpenetrating macropores of Example 1 was synthesized according to the method described in the literature (CARBON, 43, (2005), pp. 2808 to 2811.). Carbonization was performed under the same conditions as in Example 1 to produce amorphous carbon having three-dimensional mutual through holes.

さらに実施例1と同様にして電池を作製した。   Further, a battery was produced in the same manner as in Example 1.

(比較例)
実施例1において、負極の活物質を平均粒子径0.5μmのソフトカーボンに変えた以外は実施例1と同様にして電池を作製した。
(Comparative example)
A battery was fabricated in the same manner as in Example 1, except that the negative electrode active material was changed to soft carbon having an average particle size of 0.5 μm.

(電池性能評価試験)
充放電は室温で行い、充電は1Aの定電流−定電圧モードにて4.2Vまで合計2時間行った。電池出力の測定は、充電後低電流放電を行い10秒目での電池端子電圧が2.5Vを下回らないような最大電流値とそのときの端子電圧の積とを計算して、体積当たりの出力密度とした。表1では、比較のため、比較例の電池の体積出力密度をそれぞれ100として、実施例の出力密度を相対値にて示した。
(Battery performance evaluation test)
Charging / discharging was performed at room temperature, and charging was performed in a constant current-constant voltage mode of 1 A up to 4.2 V for a total of 2 hours. The battery output is measured by discharging the low current after charging and calculating the product of the maximum current value and the terminal voltage at that time so that the battery terminal voltage at 10 seconds does not fall below 2.5V. The power density was taken. In Table 1, for comparison, the power density of the battery of the comparative example was set to 100, and the power density of the example was shown as a relative value.

表1からわかるように、本発明によれば三次元相互貫通マクロ孔を有するアモルファスカーボンを負極活物質とすることにより、電池の出力密度を飛躍的に改善できることがわかる。   As can be seen from Table 1, according to the present invention, the power density of the battery can be drastically improved by using amorphous carbon having three-dimensional interpenetrating macropores as the negative electrode active material.

Aは膜状の負極活物質を有する本発明の負極の断面概略図であり、Bは粒子状の負極活物質を有する本発明の負極の断面概略図である。A is a schematic cross-sectional view of a negative electrode of the present invention having a film-like negative electrode active material, and B is a schematic cross-sectional view of a negative electrode of the present invention having a particulate negative electrode active material. 特許文献1の負極の断面概略図である。1 is a schematic cross-sectional view of a negative electrode of Patent Document 1. FIG. 本発明の一実施形態のイオン電池の断面概略図である。It is a section schematic diagram of an ion battery of one embodiment of the present invention. 実施例1の負極活物質であるアモルファスカーボンの電子顕微鏡写真である。2 is an electron micrograph of amorphous carbon that is a negative electrode active material of Example 1. FIG.

符号の説明Explanation of symbols

13 正極活物質層、
15 負極活物質層、
17 電解質層、
19 単電池層、
25 正極タブ、
27 負極タブ、
29 ラミネートシート、
33 正極集電体、
35 負極集電体、
45 集電体、
100 負極活物質、
110 カーボン部分、
120 空隙部分、
200 負極活物質。
13 positive electrode active material layer,
15 negative electrode active material layer,
17 electrolyte layer,
19 cell layer,
25 positive electrode tab,
27 negative electrode tab,
29 Laminate sheet,
33 positive electrode current collector,
35 negative electrode current collector,
45 Current collector,
100 negative electrode active material,
110 carbon part,
120 void part,
200 Negative electrode active material.

Claims (9)

三次元相互貫通孔を有するカーボンからなる負極活物質。   A negative electrode active material made of carbon having three-dimensional mutual through holes. イオンを吸蔵放出する機能と、
電子を伝導する機能と、
を併せ持つ材料のみからなること特徴とする請求項1に記載の負極活物質。
The ability to occlude and release ions,
The ability to conduct electrons,
The negative electrode active material according to claim 1, comprising only a material having both of
前記三次元相互貫通孔の平均貫通幅が0.05〜5μmであることを特徴とする請求項1または2に記載の負極活物質。   3. The negative electrode active material according to claim 1, wherein an average through width of the three-dimensional mutual through holes is 0.05 to 5 μm. 前記カーボンがアモルファスカーボンであることを特徴とする請求項1〜3のいずれかに記載の負極活物質。   The negative electrode active material according to claim 1, wherein the carbon is amorphous carbon. 三次元相互貫通孔を有する前駆体を、
不活性雰囲気下で炭化させることを特徴とする請求項1〜4のいずれかに記載の負極活物質の製造方法。
A precursor having three-dimensional mutual through-holes,
The method for producing a negative electrode active material according to claim 1, wherein carbonization is performed in an inert atmosphere.
請求項1〜4のいずれかに記載の負極活物質、または
請求項5に記載の方法により作製された負極活物質
を含むことを特徴とするイオン電池用負極。
A negative electrode for an ion battery comprising the negative electrode active material according to claim 1 or the negative electrode active material produced by the method according to claim 5.
請求項1〜4のいずれかに記載の負極活物質、
請求項5に記載の方法により作製された負極活物質、または
請求項6に記載のイオン電池用負極
を含むことを特徴とする二次電池。
The negative electrode active material according to claim 1,
A secondary battery comprising the negative electrode active material produced by the method according to claim 5 or the negative electrode for an ion battery according to claim 6.
前記二次電池がリチウムイオン二次電池であることを特徴とする二次電池。   A secondary battery, wherein the secondary battery is a lithium ion secondary battery. 請求項1〜4のいずれかに記載の負極活物質、
請求項5に記載の方法により作製された負極活物質、
請求項6に記載のイオン電池用負極、または
請求項7もしくは8に記載の二次電池、
を含むことを特徴とする車両。
The negative electrode active material according to claim 1,
A negative electrode active material produced by the method according to claim 5,
The negative electrode for an ion battery according to claim 6, or the secondary battery according to claim 7 or 8,
Including a vehicle.
JP2006075460A 2006-03-17 2006-03-17 Negative active material Pending JP2007250469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006075460A JP2007250469A (en) 2006-03-17 2006-03-17 Negative active material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006075460A JP2007250469A (en) 2006-03-17 2006-03-17 Negative active material

Publications (1)

Publication Number Publication Date
JP2007250469A true JP2007250469A (en) 2007-09-27

Family

ID=38594516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006075460A Pending JP2007250469A (en) 2006-03-17 2006-03-17 Negative active material

Country Status (1)

Country Link
JP (1) JP2007250469A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011044310A (en) * 2009-08-20 2011-03-03 Nissan Motor Co Ltd Negative electrode for lithium ion secondary battery, method of manufacturing the same, lithium ion secondary battery employing the same
JP2016106385A (en) * 2016-03-25 2016-06-16 株式会社半導体エネルギー研究所 Positive electrode active material for secondary battery, and secondary battery
US9966603B2 (en) 2013-03-29 2018-05-08 Nec Corporation Negative electrode carbon material for lithium secondary battery, negative electrode for lithium secondary battery, and lithium secondary battery
US10326137B2 (en) 2014-09-30 2019-06-18 Nec Corporation Negative electrode active material for a lithium ion secondary battery and production method for same, and negative electrode and lithium ion secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011044310A (en) * 2009-08-20 2011-03-03 Nissan Motor Co Ltd Negative electrode for lithium ion secondary battery, method of manufacturing the same, lithium ion secondary battery employing the same
US9966603B2 (en) 2013-03-29 2018-05-08 Nec Corporation Negative electrode carbon material for lithium secondary battery, negative electrode for lithium secondary battery, and lithium secondary battery
US10326137B2 (en) 2014-09-30 2019-06-18 Nec Corporation Negative electrode active material for a lithium ion secondary battery and production method for same, and negative electrode and lithium ion secondary battery
JP2016106385A (en) * 2016-03-25 2016-06-16 株式会社半導体エネルギー研究所 Positive electrode active material for secondary battery, and secondary battery

Similar Documents

Publication Publication Date Title
Wang et al. Co3O4@ MWCNT nanocable as cathode with superior electrochemical performance for supercapacitors
JP5344884B2 (en) Lithium secondary battery
CN106252659A (en) Integrated flexible thin film lithium sulfur or lithium ion battery cell, battery and preparation method
US20070212611A1 (en) Lithium secondary battery
JPWO2008059846A1 (en) Power storage device
JPH08170126A (en) Porous metallic body, its production and plate for battery using the same
CN102916197A (en) Current collector, preparation method of current collector, lithium-ion battery electrode sheet and lithium-ion battery
JP2005209498A (en) Nonaqueous electrolyte secondary battery
Yang et al. B/N co-doping rGO/BNNSs heterostructure with synergistic adsorption-electrocatalysis function enabling enhanced electrochemical performance of lithium-sulfur batteries
JP2007250469A (en) Negative active material
CN102916161B (en) Electrode composite material of a kind of lithium ion battery and preparation method thereof
TWI331817B (en) Cathode of lithium ion battery, method for manufacturing the same and lithium ion battery using the cathode
WO2016045622A1 (en) Battery, battery pack and continuous power supply
JP6212305B2 (en) Composite current collector, and electrode and secondary battery using the same
JPH09245770A (en) Non-aqueous electrolyte battery
CN111705315B (en) Preparation method of modified copper three-dimensional framework and application of modified copper three-dimensional framework in lithium battery
Wang et al. Bioinspired hierarchical cross-linked graphene–silicon nanofilms via synergistic interfacial interactions as integrated negative electrodes for high-performance lithium storage
CN113497222A (en) Lithium ion battery anode slurry and anode piece
US9705135B2 (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
CN106025365A (en) Making method of battery and battery
WO2024066086A1 (en) Secondary battery and battery pack
KR101804722B1 (en) Porous electrode current collector and electrode
WO2014156053A1 (en) Negative electrode for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary battery
WO2009141850A1 (en) Electrical storage device
JP2011029136A (en) Electrode for secondary battery, secondary battery, and manufacturing method of electrode for secondary battery