JP2007248388A - Instrument for measuring aerosol transmissivity - Google Patents

Instrument for measuring aerosol transmissivity Download PDF

Info

Publication number
JP2007248388A
JP2007248388A JP2006075243A JP2006075243A JP2007248388A JP 2007248388 A JP2007248388 A JP 2007248388A JP 2006075243 A JP2006075243 A JP 2006075243A JP 2006075243 A JP2006075243 A JP 2006075243A JP 2007248388 A JP2007248388 A JP 2007248388A
Authority
JP
Japan
Prior art keywords
light
dust
measurement
transmittance
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006075243A
Other languages
Japanese (ja)
Inventor
Akinori Mizuno
明哲 水野
Kazuyuki Goto
和之 後藤
Toru Nishiyama
徹 西山
Minoru Fukuhara
実 福原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEOARK CORP
Panasonic Holdings Corp
Original Assignee
NEOARK CORP
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEOARK CORP, Matsushita Electric Industrial Co Ltd filed Critical NEOARK CORP
Priority to JP2006075243A priority Critical patent/JP2007248388A/en
Publication of JP2007248388A publication Critical patent/JP2007248388A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an instrument for measuring aerosol transmissivity, capable of improving measurement time delays and reducing the size of the overall instrument and having high measurement accuracy. <P>SOLUTION: The aerosol transmissivity measuring instrument is provided with: a light projection and reception part for projecting and receiving light; a reflection part having a first reflecting mirror for reflecting light from the light projection and reception part to the light projection and reception part; a measuring tube integrally provided with the light projection and reception part and the reflecting mirror in corresponding manner; and a means for calibrating absolute values and circulating air into the measuring tube. The intensity of light transmitted through air is measured at normal measuring times and at absolute value measuring times to measure the transmissivity of light. The light projection and reception part has a second reflecting mirror. The second reflecting mirror has a first pinhole for passing light to be projected into the measuring tube and a second pinhole for passing light multiply reflected between the first reflecting mirror and the first reflecting mirror to a light reception part. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、道路トンネル内部等の汚染空気の煙霧透過率を光学的に測定する煙霧透過率測定装置に関するものである。   The present invention relates to a haze transmittance measuring apparatus for optically measuring the haze transmittance of polluted air inside a road tunnel or the like.

従来、この種の煙霧透過率測定装置は、投光部と受光部を100m程度離して設け、投光部から煤煙・煤塵などが浮遊する煙霧中に光を透過させて、その透過率を測定するものである。   Conventionally, this type of haze transmittance measuring device is provided with a light projecting unit and a light receiving unit separated by about 100 m, and the light is transmitted from the light projecting unit into the fumes where soot and dust float, and the transmittance is measured. To do.

従来の煙霧透過率測定装置は、投光部の光源の光束減衰、受光部素子の経年劣化およびレンズ面の汚れなどによる測定値の低下を補償するために、校正機能が備えられ、一定周期毎に校正を行い、低下分の補償を行っていた。   A conventional haze transmittance measuring device is equipped with a calibration function to compensate for a decrease in measured value due to light beam attenuation of a light source of a light projecting unit, aging deterioration of a light receiving unit element, dirt on a lens surface, and the like. Was calibrated to compensate for the decline.

その際、光透過率の絶対値(100%)の設定は、任意に作り出すことができないため、測定現地にて目視により合わせるか、設定値の記録より、その最高値を合わせるものであり、誤差が大きくなるおそれがあった。   At that time, since the absolute value (100%) of the light transmittance cannot be created arbitrarily, it can be adjusted by visual observation at the measurement site or by setting the maximum value by recording the setting value. Could increase.

そこで、例えば、特許文献1に記載の煙霧透過率測定装置が提案されている。(特許文献1参照)。
特許第3539112号
Therefore, for example, a haze transmittance measuring device described in Patent Document 1 has been proposed. (See Patent Document 1).
Japanese Patent No. 3539112

特許文献1に記載の煙霧透過率測定装置は、投受光部と反射部とが測定筒を介して一体的に設けられているため、光軸合わせなどの現場調整を行う必要がなく、また、光透過率の絶対値(100%)を、測定筒内の汚い空気と清浄空気とを置換して測定するため、従来の目視による場合と異なり、誤差をほとんど無くすことができるものである。   In the smoke transmittance measuring device described in Patent Document 1, since the light projecting / receiving unit and the reflecting unit are integrally provided via the measurement tube, it is not necessary to perform on-site adjustment such as optical axis alignment, Since the absolute value (100%) of the light transmittance is measured by replacing dirty air and clean air in the measuring cylinder, unlike the case of conventional visual observation, errors can be almost eliminated.

しかしながら、特許文献1に記載の煙霧透過率測定装置は、測定部を外筒(測定筒)で密閉するクローズパス方式であり、測定光路長に連動して当該外筒が相当の容積を有するものとなるため、ポンプにて吸引したトンネル内等の汚染空気を測定筒内に充満させるのに時間を要する場合があった。   However, the haze transmittance measuring device described in Patent Document 1 is a closed path method in which the measurement unit is sealed with an outer cylinder (measurement cylinder), and the outer cylinder has a considerable volume in conjunction with the measurement optical path length. Therefore, it may take time to fill the measurement cylinder with the contaminated air sucked by the pump.

また、特許文献1に記載の煙霧透過率測定装置は、一方(反射部側)にしか反射鏡が設けられていないため、測定光は測定筒内を1往復しかすることができない。通常、クローズパス方式の煙霧透過率測定装置は、装置全体の大きさに制限があり、1往復で得られる測定光路長は、所望の測定光路長(例えば100m)より短い測定光路長(例えば、4〜5m)となる。そこで、短い測定光路長から求めた光透過率を、所望の測定光路長の光透過率に換算して求める手法があるが、この手法による場合、換算による誤差が大きくなってしまうことがある。例えば、実際に測定した測定光路長が5mの光透過率を、測定光路長が100mの光透過率に換算するとき、測定光路長が5mの光透過率を20乗して求めるため、誤差の影響も無視できないものとなってしまう。   Moreover, since the haze transmittance measuring apparatus described in Patent Document 1 is provided with a reflecting mirror only on one side (reflecting part side), the measuring light can only reciprocate within the measuring cylinder. Normally, the closed-path type haze transmittance measuring device has a limitation on the size of the entire device, and the measurement optical path length obtained by one round trip is shorter than the desired measurement optical path length (for example, 100 m) (for example, for example, 4-5 m). Therefore, there is a method for obtaining the light transmittance obtained from the short measurement optical path length by converting it to the light transmittance of a desired measurement optical path length. However, when this method is used, an error due to the conversion may increase. For example, when a light transmittance with a measurement optical path length of 5 m actually measured is converted into a light transmission with a measurement light path length of 100 m, the light transmittance with a measurement light path length of 5 m is obtained by the 20th power. The effect will not be negligible.

本発明は、上記事情を鑑みてなされたものであり、測定時間遅れを改善し、また、装置全体を小型化しつつ精度良く所望の測定光路長の光透過率を求めることができる煙霧透過率測定装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and has improved the measurement time delay, and is capable of obtaining the light transmittance of a desired measurement optical path length with high accuracy while downsizing the entire apparatus. An object is to provide an apparatus.

本発明の煙霧透過率測定装置は、光の投射と受光を行う投受光部と、前記投受光部からの光を前記投受光部に反射する第1の反射鏡を有する反射部と、前記投受光部と前記反射部とを対応させ一体的に設ける測定筒と、前記測定筒内に空気を流通させる絶対値校正手段とを備え、前記投受光部で、通常測定時と絶対値測定時において空気中を透過する光の強さを測定して光の透過率を測定する煙霧透過率測定装置であって、前記投受光部は、第2の反射鏡を有し、前記第2の反射鏡は、前記測定筒内に投射する光を通過させる第1のピンホールと、前記第2の反射鏡と前記第1の反射鏡との間で多重反射して来た光を受光部まで通過させる第2のピンホールと、を有する。   The smoke transmittance measuring device of the present invention includes a light projecting / receiving unit that projects and receives light, a reflection unit that includes a first reflecting mirror that reflects light from the light projecting / receiving unit, and the light projecting / receiving unit. A measuring tube provided integrally with the light receiving portion and the reflecting portion, and an absolute value calibration means for circulating air in the measuring tube; and at the time of normal measurement and absolute value measurement in the light projecting / receiving portion. A haze transmittance measuring device that measures the light transmittance by measuring the intensity of light transmitted through the air, wherein the light projecting and receiving unit includes a second reflecting mirror, and the second reflecting mirror Passes the first pinhole that allows the light projected into the measuring tube to pass through, and the light that has been multiple-reflected between the second reflecting mirror and the first reflecting mirror, to the light receiving section. A second pinhole.

この構成により、投受光部と反射部との間で測定光を多重反射させることで、測定光を所望の測定光路長とし測定を実行することができる。よって、多重反射により測定光路長の所望の距離が得られるので、測定対象となる空気を収容する測定筒を小型化することができる。測定筒が小型化されると、測定筒の体積が縮小するので、測定筒内に空気を収容するのに要する時間が短縮される。   With this configuration, the measurement light can be subjected to multiple reflections between the light projecting / receiving unit and the reflection unit, so that the measurement light can be measured with a desired measurement optical path length. Therefore, since the desired distance of the measurement optical path length can be obtained by the multiple reflection, the measurement cylinder that accommodates the air to be measured can be reduced in size. When the measuring cylinder is reduced in size, the volume of the measuring cylinder is reduced, so that the time required to accommodate air in the measuring cylinder is shortened.

また、本発明の煙霧透過率測定装置は、前記投受光部と前記反射部とを一体的に形成するシャフトと、前記シャフトにより一体的に形成された光学機器部の中央部分の重心位置にて支持金具で固定するベース部と、を備える。   In addition, the haze transmittance measuring device of the present invention includes a shaft that integrally forms the light projecting / receiving portion and the reflecting portion, and a center of gravity position of a central portion of an optical device portion that is integrally formed by the shaft. And a base portion fixed with a support bracket.

この構成により、前記投受光部と前記反射部とを光軸がずれないように例えば、インバー製のシャフトにて一体的に固定し、振動に対して強く、また、温度変化による部材の伸縮にても安定するように、光学機器部の中央部分の重心位置にてベース部に安定して固定することができる。   With this configuration, the light projecting / receiving unit and the reflecting unit are fixed integrally with, for example, an Invar shaft so that the optical axis does not shift, and is resistant to vibrations, and is capable of expanding and contracting the member due to temperature changes. However, it can be stably fixed to the base portion at the center of gravity of the central portion of the optical device portion so as to be stable.

また、本発明の煙霧透過率測定装置は、前記第1の反射鏡と前記第2の反射鏡が乱視鏡である。   In the haze transmittance measuring apparatus of the present invention, the first reflecting mirror and the second reflecting mirror are astigmatism mirrors.

この構成により、測定光の光束を小さくすることができる。よって、測定筒の内容積をさらに小さくし、外からの汚染空気の容積を小さくすることにより、空気の汚れに対する応答時間を短くすることができる。   With this configuration, the light beam of the measurement light can be reduced. Therefore, the response time for air contamination can be shortened by further reducing the internal volume of the measuring cylinder and reducing the volume of the contaminated air from the outside.

また、本発明の煙霧透過率測定装置は、前記測定筒の内壁に埋込材が形成されている。   In the haze transmittance measuring apparatus of the present invention, an embedding material is formed on the inner wall of the measuring cylinder.

この構成により、測定筒の内壁と光束との隙間を埋込材にて無くすことで、外からの汚れた空気の容積を小さくすることができ、よって、空気の汚れに対する応答時間を短くすることができる。   This configuration eliminates the gap between the inner wall of the measuring tube and the luminous flux with the embedding material, so that the volume of dirty air from the outside can be reduced, and thus the response time to air dirt can be shortened. Can do.

また、本発明の煙霧透過率測定装置は、前記投受光部と前記測定筒とが防塵筒を介して接合され、前記防塵筒は、防塵ガラスを有し、前記第2の反射鏡に形成された第2のピンホールの投受光部側に、受光筒が設けられ、前記受光筒の内部若しくは出口部分に受光素子が設けられている。   In the haze transmittance measuring apparatus of the present invention, the light projecting / receiving unit and the measurement tube are joined via a dust-proof tube, and the dust-proof tube has dust-proof glass and is formed on the second reflecting mirror. A light receiving cylinder is provided on the light projecting / receiving part side of the second pinhole, and a light receiving element is provided inside or at the exit of the light receiving cylinder.

この構成により、多重反射を経て最終的に第2の反射鏡に到達した測定光は第2のピンホールを介して受光筒内に入り、その奥の受光素子により光電変換される。よって、受光時に、防塵ガラスに付着した煤塵による散乱光の影響を防ぐことができ、精度良く光透過率および吸光係数を演算することができる。   With this configuration, the measurement light finally reaching the second reflecting mirror through multiple reflection enters the light receiving cylinder through the second pinhole and is photoelectrically converted by the light receiving element in the back. Therefore, it is possible to prevent the influence of scattered light due to the dust adhering to the dust-proof glass during light reception, and to calculate the light transmittance and the light absorption coefficient with high accuracy.

また、本発明の煙霧透過率測定装置は、前記投受光部と前記測定筒とが防塵筒を介して接合され、前記防塵筒は、防塵ガラスを有し、前記測定筒は、前記防塵筒を包囲する外周付近に吹き出し口を有し、前記吹き出し口に清浄空気を送り出す清浄空気発生部を備える。   Further, in the haze transmittance measuring apparatus of the present invention, the light projecting / receiving unit and the measurement cylinder are joined via a dust-proof cylinder, the dust-proof cylinder has dust-proof glass, and the measurement cylinder has the dust-proof cylinder A clean air generator is provided that has a blow-out port near the surrounding outer periphery and that sends clean air to the blow-out port.

また、本発明の煙霧透過率測定装置は、前記反射部と前記測定筒とが防塵筒を介して接合され、前記防塵筒は、防塵ガラスを有し、前記測定筒は、前記防塵筒を包囲する外周付近に吹き出し口を有し、前記吹き出し口に清浄空気を送り出す清浄空気発生部を備える。   Further, in the haze transmittance measuring device of the present invention, the reflecting portion and the measurement tube are joined via a dust-proof tube, the dust-proof tube has dust-proof glass, and the measurement tube surrounds the dust-proof tube. A clean air generating unit that has a blowout port near the outer periphery and sends clean air to the blowout port.

この構成により、清浄空気発生部から送り出された清浄空気が、防塵筒の外周に設けられた吹き出し口から測定筒内に流出する。この空気流により、汚染空気が投受光部、反射部に設けられた防塵ガラスに近づくことを防ぎ、汚染空気の煤塵が防塵ガラスに付着することを防ぐことができる。   With this configuration, the clean air sent out from the clean air generating unit flows into the measurement cylinder from the outlet provided on the outer periphery of the dust-proof cylinder. By this air flow, the contaminated air can be prevented from approaching the dust-proof glass provided in the light projecting / receiving part and the reflecting part, and the dust of the contaminated air can be prevented from adhering to the dust-proof glass.

また、本発明の煙霧透過率測定装置の前記防塵ガラスは、前記防塵筒の筒内部に設けられている。   The dust-proof glass of the haze transmittance measuring device of the present invention is provided inside the dust-proof cylinder.

この構成により、防塵ガラスへの煤塵・粉塵の付着を抑えることができる。   With this configuration, adhesion of soot and dust to the dust-proof glass can be suppressed.

また、本発明の煙霧透過率測定装置は、前記測定筒は、開閉部を有する。   Moreover, as for the haze transmittance measuring apparatus of this invention, the said measurement cylinder has an opening-closing part.

この構成により、測定後に開閉部を開けて、反射鏡の汚れを容易に定期的に清掃することができる。   With this configuration, the open / close portion can be opened after measurement, and the reflector can be easily and regularly cleaned of dirt.

また、本発明の煙霧透過率測定装置は、多重反射した光の測定光路長から求めた透過率を、所望の測定光路長の透過率に換算する演算手段を備えている。   In addition, the haze transmittance measuring apparatus of the present invention is provided with a calculation means for converting the transmittance obtained from the measured optical path length of the multiple reflected light into the desired measured optical path length.

この構成により、換算により所望の測定光路長の透過率を求めるので、投受光部と反射部間の往復回数を減らし、投射光による多重反射にて測定光路を短くすることができる。よって、煤塵・粉塵の付着した防塵ガラスによる散乱および前記反射鏡による乱反射による透過光の低下を抑えることができる。また、換算を行う場合であっても、多重反射により一定の測定光路長(例えば、30〜60m程度)を確保することができるので、換算による誤差の影響は少なくて済む。   With this configuration, since the transmittance of the desired measurement optical path length is obtained by conversion, the number of reciprocations between the light projecting / receiving unit and the reflection unit can be reduced, and the measurement optical path can be shortened by multiple reflection by the projection light. Therefore, it is possible to suppress a decrease in transmitted light due to scattering by dust-proof glass to which dust / dust adheres and irregular reflection by the reflecting mirror. Even in the case of conversion, since a constant measurement optical path length (for example, about 30 to 60 m) can be ensured by multiple reflection, the influence of error due to conversion can be reduced.

また、本発明の煙霧透過率測定装置は、前記演算手段が、透過率を人の視感度特性に適合させる視感度補正を行う。   Further, in the haze transmittance measuring apparatus of the present invention, the calculation means performs visibility correction for adapting the transmittance to human visibility characteristics.

この構成により、人間の視感度特性に適合した透過率を測定することができる。   With this configuration, it is possible to measure transmittance suitable for human visibility characteristics.

また、本発明の煙霧透過率測定装置は、前記演算手段が、絶対値校正開始時から設定時間経過後であって、透過率の測定値が設定範囲内に収束したとき、前記設定時間経過後の測定値の平均値を絶対測定値とするものである。   Further, in the haze transmittance measuring apparatus of the present invention, the calculation means is after a set time has elapsed since the start of absolute value calibration, and when the measured transmittance value has converged within a set range, The average value of the measured values is an absolute measured value.

この構成により、精度の高い絶対測定値を得ることができ、透過率の測定精度も向上する。   With this configuration, an absolute measurement value with high accuracy can be obtained, and the measurement accuracy of transmittance is improved.

本発明の煙霧透過率測定装置によれば、測定時間遅れを改善し、装置全体を小型化しつつ透過率測定の精度良く所望の測定光路長の光透過率を求めることができる。すなわち、第2の反射鏡と第1の反射鏡との間で多重反射することにより、例えば測定光路長を100mにとって透過率を測定するため、従来の1往復短スパン(4m〜5m)の透過率から100m距離換算する必要がなく、従来より精度は大幅に改善される。   According to the haze transmittance measuring apparatus of the present invention, it is possible to improve the measurement time delay and obtain the light transmittance of a desired measurement optical path length with high accuracy of transmittance measurement while downsizing the entire apparatus. That is, by performing multiple reflections between the second reflecting mirror and the first reflecting mirror, for example, in order to measure the transmittance when the measurement optical path length is 100 m, the transmission of the conventional one reciprocating short span (4 m to 5 m) is performed. It is not necessary to convert the distance from the rate to 100 m, and the accuracy is greatly improved as compared with the prior art.

以下、本発明に係る実施の形態について図面を参照して詳細に説明する。   Hereinafter, embodiments according to the present invention will be described in detail with reference to the drawings.

(実施の形態1)
図1は、本実施の形態1の煙霧透過率測定装置の概略構成を示している。図2は、光学機器部と絶対値校正部の概略構成を示している。図3Aは、投受光部側に設けられる反射鏡の正面図である。図1に示すように、煙霧透過率測定装置100は、光源から投射される光を多重反射させて光の強さを測定する光学機器部9と、測定筒3内の空気を清浄な空気で満たして絶対値の校正を行う絶対値校正部4と、光透過率または吸光係数を演算する制御部5とにより構成されている。
(Embodiment 1)
FIG. 1 shows a schematic configuration of the haze transmittance measuring apparatus according to the first embodiment. FIG. 2 shows a schematic configuration of the optical device unit and the absolute value calibration unit. FIG. 3A is a front view of a reflecting mirror provided on the light projecting / receiving unit side. As shown in FIG. 1, the haze transmittance measuring device 100 includes an optical device unit 9 that measures the intensity of light by multiple reflection of light projected from a light source, and clean air in the measurement cylinder 3. An absolute value calibration unit 4 that satisfies and calibrates an absolute value and a control unit 5 that calculates a light transmittance or an extinction coefficient are configured.

光学機器部9は、測定筒3内に光を投射する投受光部1と、投受光部1からの光を反射する反射部2と、測定対象の空気が流入する測定筒3とを備えている。投受光部1と反射部2とは、測定筒3を介して相対向するように、例えば4本のインバー製のシャフト8により一体的に設置されている。なお、シャフトの材質は、耐久性が高く、常温付近で熱膨張率が低いものが好ましい。   The optical device unit 9 includes a light projecting / receiving unit 1 that projects light into the measurement tube 3, a reflection unit 2 that reflects light from the light projecting / receiving unit 1, and a measurement tube 3 into which air to be measured flows. Yes. The light projecting / receiving unit 1 and the reflecting unit 2 are integrally installed by, for example, four Invar shafts 8 so as to face each other via the measuring cylinder 3. The material of the shaft is preferably a material having high durability and a low coefficient of thermal expansion near room temperature.

図2に示すように、投受光部1と測定筒3との間には防塵筒10が設けられ、防塵筒の測定筒3側の出口面には防塵ガラス11aが設けられている。また、同様に、反射部2と測定筒3との間には防塵筒10が設けられ、防塵筒の測定筒3側面の出口面には防塵ガラス11bが設けられている。
なお、防塵ガラスに付着する煤塵・粉塵による煙霧透過率の低下を抑えるため、レーザ光測定光路を短くし、光束の径を小さくし、防塵筒の径も小さくし、防塵筒を長くし、防塵ガラスを防塵筒の筒内部に設けても良い。
As shown in FIG. 2, a dust-proof tube 10 is provided between the light projecting / receiving unit 1 and the measurement tube 3, and a dust-proof glass 11a is provided on the exit surface of the dust-proof tube on the measurement tube 3 side. Similarly, a dust-proof tube 10 is provided between the reflecting portion 2 and the measurement tube 3, and a dust-proof glass 11b is provided on the exit surface of the measurement tube 3 side surface of the dust-proof tube.
In addition, in order to suppress the decrease in the smoke transmittance due to dust and dust adhering to the dust-proof glass, the laser light measurement optical path is shortened, the light beam diameter is reduced, the dust-proof cylinder diameter is also reduced, the dust-proof cylinder is lengthened, Glass may be provided inside the dust-proof cylinder.

また、光学機器部9は中央の重心位置にて支持金具6により支持され、その支持金具6はベース7に固定されている。   The optical device section 9 is supported by a support fitting 6 at the center of gravity, and the support fitting 6 is fixed to the base 7.

投受光部1は、半導体レーザ・LED等の光線状態の光を発射する光源を備えその光源により測定筒3内に光を投射する投光部13と、光電変換部・プリアンプ回路等を備え反射部2から反射されてきた光を受光して電気信号に変換する受光部14と、光を通過させるピンホールを有する反射鏡12aとを備えている。   The light projecting / receiving unit 1 has a light source that emits light in a light beam state such as a semiconductor laser / LED, and includes a light projecting unit 13 that projects light into the measuring tube 3 by the light source, and a photoelectric conversion unit / preamplifier circuit. The light-receiving part 14 which receives the light reflected from the part 2 and converts it into an electrical signal, and the reflecting mirror 12a which has the pinhole which lets light pass are provided.

本実施の形態1の反射鏡12aは、凹面鏡であり、図3Aに示すように、投光部13から測定筒3内に投射する光を通過させるためのピンホール3aと、測定筒3内で多重反射を経て最終的に受光部14に向けて反射されてきた光を通過させるピンホール3bとを有している。   The reflecting mirror 12a of the first embodiment is a concave mirror, and as shown in FIG. 3A, in the measuring cylinder 3, the pinhole 3a for allowing the light projected from the light projecting unit 13 into the measuring cylinder 3 and the measuring cylinder 3 are passed. And a pinhole 3b through which the light finally reflected toward the light receiving unit 14 through the multiple reflection is passed.

このピンホール3a、3bの位置は、凹面鏡反射の計算法(ABCDマトリックス)を使用することにより決定することができる。例えば、凹面鏡における座標軸を使用し、初期座標(x、y)、2枚の凹面鏡の距離L、2枚の凹面鏡の曲率半径ρ、往復回数m、の製造条件を入れ、上記の凹面鏡反射の計算法により、m往復目の最終の投受光部側反射鏡の反射点を、光を受光部まで通過させる第2のピンホール(3b)として求めることができる。また、前記初期座標の位置を、光を投射する第1のピンホール(3a)とする。   The positions of the pinholes 3a and 3b can be determined by using a concave mirror reflection calculation method (ABCD matrix). For example, using the coordinate axis of the concave mirror, the initial coordinates (x, y), the distance L of the two concave mirrors, the radius of curvature ρ of the two concave mirrors, and the number of reciprocations m are entered, and the calculation of the concave mirror reflection described above is performed. By this method, the reflection point of the final reflector at the m-th round trip can be obtained as a second pinhole (3b) that allows light to pass to the light receiving part. Further, the position of the initial coordinate is defined as a first pinhole (3a) that projects light.

図3Bに、上述の計算方法により算出される2枚の凹面鏡上の反射点を示す。図3B(a)は、投受光部側の凹面鏡12a上の反射点を示しており、図3B(b)は、反射部側の凹面鏡12b上の反射点を示している。図3Bに示すように対向する凹面鏡間では、光が反射を繰り返すことで反射点が隣接する位置に連続して位置し、多重反射の結果、反射点が円周を描くように位置している。   FIG. 3B shows the reflection points on the two concave mirrors calculated by the above calculation method. FIG. 3B (a) shows a reflection point on the concave mirror 12a on the light projecting / receiving part side, and FIG. 3B (b) shows a reflection point on the concave mirror 12b on the reflection part side. As shown in FIG. 3B, between the concave mirrors facing each other, the reflection points are continuously located at adjacent positions by repeating the reflection of light, and as a result of multiple reflection, the reflection points are located so as to draw a circle. .

なお、ここで、図3Cに、反射鏡として乱視鏡を用いたときの2枚の乱視鏡上の反射点を示す。図3C(a)は、投受光部側の乱視鏡20a上の反射点を示しており、図3C(b)は、反射部側の凹面鏡20b上の反射点を示している。図3Cに示すように対向する乱視鏡間では、光が反射を繰り返すことで反射点が隣接する位置に連続して位置し、多重反射の結果、反射点が交差する楕円を描くように位置している。   Here, FIG. 3C shows reflection points on the two astigmatism mirrors when the astigmatism mirror is used as the reflector. FIG. 3C (a) shows a reflection point on the astigmatic mirror 20a on the light projecting / receiving part side, and FIG. 3C (b) shows a reflection point on the concave mirror 20b on the reflection part side. As shown in FIG. 3C, between the astigmatisms facing each other, the reflection point is continuously located at the adjacent position by repeating the reflection, and as a result of the multiple reflection, it is located so as to draw an ellipse where the reflection point intersects. ing.

反射部2は、投受光部1と同様の凹面鏡の反射鏡12bを有している。反射鏡12aと反射鏡12bとは、上記、製作条件に記したように曲率半径ρを有し、ピンホール3aより出射する光の投射角(α、β)を調整し、測定筒3内に投射された光が反射鏡12aと反射鏡12bとの間をm回往復反射してピンホール3bに入射する測定光路長の100[m]となるように、互いに対向している反射鏡間を調整し設置されている。   The reflecting unit 2 includes a concave mirror 12b similar to the light projecting / receiving unit 1. The reflecting mirror 12a and the reflecting mirror 12b have a radius of curvature ρ as described in the above manufacturing conditions, adjust the projection angles (α, β) of light emitted from the pinhole 3a, and enter the measuring tube 3 Between the reflecting mirrors facing each other, the projected light is reflected back and forth between the reflecting mirrors 12a and 12b m times and has a measurement optical path length of 100 [m] incident on the pinhole 3b. Adjusted and installed.

絶対値校正部4は、トンネル等からの汚染空気の流入を制御する入口電磁弁15と、絶対値校正時に開閉動作する校正電磁弁16と、第1のフィルター17aと、第2のフィルター17bと、測定後の空気の吐出を制御する吐出電磁弁18と、吸引ポンプ19と、ホース50とを有している。このホース50は、粉塵や煤塵が付着しにくいように、帯電しにくいホースを用いると良い。例えば、静電気やホコリ対策用として、チューブに導電性を持たせた帯電防止チューブである。   The absolute value calibration unit 4 includes an inlet solenoid valve 15 that controls the inflow of contaminated air from a tunnel, a calibration solenoid valve 16 that opens and closes during absolute value calibration, a first filter 17a, and a second filter 17b. And a discharge electromagnetic valve 18 for controlling the discharge of air after the measurement, a suction pump 19, and a hose 50. The hose 50 is preferably a hose that is not easily charged so that dust and soot are less likely to adhere. For example, an antistatic tube in which the tube is made conductive to prevent static electricity and dust.

(絶対値測定時の動作)
以上のように構成された煙霧透過率測定装置100は、絶対値測定時、絶対値構成部4の校正電磁弁16を開状態とし、入口電磁弁15、吐出電磁弁18が閉状態とする。そして、吸引ポンプ19により測定筒3内の汚染空気を絶対値校正部4内の第1のフィルター17aと第2のフィルター17bを通過するように循環させる。
(Operation during absolute value measurement)
The smoke transmittance measuring apparatus 100 configured as described above opens the calibration electromagnetic valve 16 of the absolute value component 4 and closes the inlet electromagnetic valve 15 and the discharge electromagnetic valve 18 during absolute value measurement. The suction pump 19 circulates the contaminated air in the measurement cylinder 3 so as to pass through the first filter 17 a and the second filter 17 b in the absolute value calibration unit 4.

上述のフィルターを通過するように汚染空気を循環させることで、汚染空気から煤塵等が除去され、やがて測定筒3内の空気は透過率100%の状態となる。測定筒3内の空気が透過率100%の状態で測定を行い絶対値として制御部5に記憶させる。   By circulating the polluted air so as to pass through the above-described filter, dust and the like are removed from the polluted air, and the air in the measuring tube 3 eventually becomes 100% transmissible. Measurement is performed in a state where the air in the measuring cylinder 3 has a transmittance of 100% and is stored in the control unit 5 as an absolute value.

なお、制御部5は、絶対値校正開始時から所定の設定時間経過後まで、すなわち測定値が安定するまで待機して、その後、透過率の測定値が設定範囲内に収束したとき、設定時間経過後の測定値の平均値を絶対測定値としても良い。この構成により、精度の高い絶対測定値を得ることができ、透過率の測定精度も向上する。   The control unit 5 waits from the start of absolute value calibration until a predetermined set time elapses, that is, until the measured value is stabilized, and then when the measured value of transmittance converges within the set range, the set time is reached. An average value of measured values after elapse may be set as an absolute measured value. With this configuration, an absolute measurement value with high accuracy can be obtained, and the measurement accuracy of transmittance is improved.

(通常測定時の動作)
通常測定時、煙霧透過率測定装置100は、まず、絶対値校正部4の入口電磁弁15、吐出電磁弁18を開状態とし、校正電磁弁16を閉状態とする。そして、吸引ポンプ19がトンネル内等の汚染空気を測定筒3内に吸引する。
(Operation during normal measurement)
At the time of normal measurement, the smoke transmittance measuring apparatus 100 first opens the inlet solenoid valve 15 and the discharge solenoid valve 18 of the absolute value calibration unit 4 and closes the calibration solenoid valve 16. Then, the suction pump 19 sucks contaminated air in the tunnel or the like into the measuring cylinder 3.

次に、図4Aに示すように、投受光部1の投光部13から測定筒3へ向けて、投受光部1内に設置されている反射鏡12aのピンホール3aを通過するように光を投射する。投射された測定用の光は、煤塵や煤煙等が浮遊する測定筒3内を経て反射部2の反射鏡12bに到達する。この光が投受光部1に向けて反射する。反射した光は再び測定筒3内を経て投受光部1内の反射鏡12aに到達し、再び反射部2側に反射する。   Next, as shown in FIG. 4A, the light is transmitted from the light projecting unit 13 of the light projecting / receiving unit 1 toward the measuring tube 3 so as to pass through the pinhole 3a of the reflecting mirror 12a installed in the light projecting / receiving unit 1. Project. The projected measurement light reaches the reflecting mirror 12b of the reflecting section 2 through the measuring tube 3 in which dust and soot float. This light is reflected toward the light projecting / receiving unit 1. The reflected light again passes through the measuring tube 3 and reaches the reflecting mirror 12a in the light projecting / receiving unit 1 and is reflected again to the reflecting unit 2 side.

このように多重反射した光は、最終的に投受光部1内の反射鏡12aのピンホール3bに到達し通過する。通過した光は、受光部14内の光電変換部で電気信号に変換され、制御部5に送信される。   The multiple reflected light finally reaches the pinhole 3b of the reflecting mirror 12a in the light projecting / receiving unit 1 and passes therethrough. The passed light is converted into an electric signal by the photoelectric conversion unit in the light receiving unit 14 and transmitted to the control unit 5.

制御部5では、この電気信号(電圧)に基づいて光透過率または吸光係数が計算される。すなわち、一般に煙霧粒子層などの光透過率Tは次の(1)式で表される。 In the control unit 5, the light transmittance or the extinction coefficient is calculated based on the electric signal (voltage). That is, generally, the light transmittance TL of the haze particle layer or the like is expressed by the following equation (1).

Figure 2007248388
Figure 2007248388

上記電気信号の値はノイズ・温度ドリフトが含まれるため、これらを除去する必要がある。このため測定光を遮断(0%校正)の電気信号を用いて誤差を除去した光透過率TL1を、次式で求める。

Figure 2007248388
Since the value of the electric signal includes noise and temperature drift, it is necessary to remove them. For this reason, the light transmittance T L1 from which the error is removed using an electrical signal for blocking the measurement light (0% calibration) is obtained by the following equation.
Figure 2007248388

また、吸光係数Kは次式で求まる

Figure 2007248388
Moreover, the extinction coefficient K is obtained by the following equation.
Figure 2007248388

煙霧透過率測定装置100は、測定中、一定周期毎に自動的に絶対値校正を行い、この時の測定光も電気信号に変換された後、制御部5に入力される。ここで、上記(1)ないし(3)式に基づいて光透過率または吸光係数が演算される。   The smoke transmittance measuring device 100 automatically calibrates the absolute value at regular intervals during the measurement, and the measurement light at this time is also converted into an electric signal and then input to the control unit 5. Here, the light transmittance or the extinction coefficient is calculated based on the equations (1) to (3).

そして、制御部5は、必要に応じて、演算した透過率を所望の測定光路長の透過率に換算する。上述の(1)で求めた光透過率をTとすると換算後の光透過率Tは次式で求まる。

Figure 2007248388
And the control part 5 converts the calculated transmittance | permeability into the transmittance | permeability of a desired measurement optical path length as needed. Light transmission T L after conversion and the light transmittance obtained in the above (1) and T S is determined by the following equation.
Figure 2007248388

例えば、本実施の形態の煙霧透過率測定装置100において、多重反射により得られる測定光路長(短スパン光路長)が50[m]であり、100[m]の測定光路長に換算するときは、上記数1、数2で求めた光透過率を2乗することになる。   For example, in the smoke transmittance measuring apparatus 100 of the present embodiment, when the measurement optical path length (short span optical path length) obtained by multiple reflection is 50 [m], and converted to a measurement optical path length of 100 [m] The light transmittance obtained by the above equations 1 and 2 is squared.

また、制御部5は、求めた光透過率を、人間の視感度特性に適合させるべく視感度補正を行うと良い。光に対する目の感度である視感度は波長によって異なり、波長550[nm]で最も強くなる。この550[nm]を基準に、相対的に表された視感度を比視感度という。図4Bに、標準比視感度特性曲線が図示されている。また、本実施の形態の投受光部1で測定光として投射される光の波長は635[nm]であり、図4Bに図示されている。また、汚染空気に含まれる粉塵等の重量濃度[mg/m]毎の視感度の波長特性が図4Bに図示されている。 Further, the control unit 5 may perform visibility correction so that the obtained light transmittance is adapted to human visibility characteristics. Visibility, which is the sensitivity of the eyes to light, varies depending on the wavelength, and is strongest at a wavelength of 550 [nm]. The relative visibility expressed with reference to 550 [nm] is referred to as specific visibility. FIG. 4B shows a standard relative luminous sensitivity characteristic curve. Further, the wavelength of light projected as measurement light by the light projecting / receiving unit 1 of the present embodiment is 635 [nm], which is illustrated in FIG. 4B. Moreover, the wavelength characteristic of the visibility for each weight concentration [mg / m 3 ] of dust or the like contained in the contaminated air is shown in FIG. 4B.

ここで、補正用の換算表を作るため人間の目の視感度の基準を550[nm]とする。図4Bに示す、汚染空気の重量濃度が0.2[mg/m]のときの視感度の波長特性を示すグラフから、目の感度の基準とした550[nm]のとき(同図中、Aで図示される点)、視感度が67.8[%]であり、測定光の波長(例えば、半導体レーザの波長)である635[nm]のとき(同図中、Bで図示される点)、70.1[%]であることがわかる。 Here, in order to create a conversion table for correction, the reference for the visibility of human eyes is 550 [nm]. From the graph showing the wavelength characteristic of the visibility when the weight concentration of contaminated air is 0.2 [mg / m 3 ] shown in FIG. ), The visibility is 67.8 [%], and the wavelength of the measurement light (for example, the wavelength of the semiconductor laser) is 635 [nm] (shown by B in the figure). It can be seen that it is 70.1 [%].

また、同様に、汚染空気の重量濃度が0.6[mg/m]のときの視感度の波長特性を示すグラフから、目の感度の基準とした550[nm]のとき、視感度が34.9[%]であり、測定光の波長ある635[nm]のとき、41.1[%]であることがわかる。 Similarly, from the graph showing the wavelength characteristics of the visibility when the weight concentration of the contaminated air is 0.6 [mg / m 3 ], the visibility is 550 nm as the standard of eye sensitivity. It is 34.9 [%], and when the wavelength of the measurement light is 635 [nm], it can be seen that it is 41.1 [%].

また、同様に、汚染空気の重量濃度が1.0[mg/m]のときの視感度の波長特性を示すグラフから、目の感度の基準とした550[nm]のとき、視感度が17.8[%]であり、測定光の波長ある635[nm]のとき、22.6[%]であることがわかる。この結果を表1に示す。 Similarly, from the graph showing the wavelength characteristics of the visibility when the weight concentration of the polluted air is 1.0 [mg / m 3 ], the visibility is 550 nm as the eye sensitivity reference. It is 17.8 [%], and when the wavelength of the measurement light is 635 [nm], it can be seen that it is 22.6 [%]. The results are shown in Table 1.

Figure 2007248388
Figure 2007248388

このように、実験から求めた表1のデータをもとに線形補完等を行って換算表を作成する。換算表を予め作成しておき、制御部5に記憶させておく。この構成により、例えば、装置での測定結果が、41.1[%]だったとき、換算表を用いて34.9[%]と補正することができる。このように、測定装置で求めた光透過率に対して、人間の視感度特性に適合させる視感度補正を行い、精度良く光透過率を求めることができる。   In this way, a conversion table is created by performing linear interpolation based on the data in Table 1 obtained from the experiment. A conversion table is created in advance and stored in the control unit 5. With this configuration, for example, when the measurement result of the apparatus is 41.1 [%], it can be corrected to 34.9 [%] using the conversion table. As described above, the light transmittance obtained by the measuring apparatus can be corrected to match the human visual sensitivity characteristic, and the light transmittance can be obtained with high accuracy.

以上のように、本実施の形態1の煙霧透過率測定装置100は、光学機器部8の投受光部1と反射部2との間で測定光を多重反射させて、測定光を所望の測定光路長とし測定を実行することができる。このため、測定対象となる空気を収容する測定筒3を小型化することができる。また、測定筒3の体積が縮小することで、測定筒内に空気を収容するのに要する時間を短縮することができる。例えば、測定筒3内の空気を外気に入れ替える時間や、絶対値校正時に、測定筒3内の空気を循環させるのに要する時間を大幅に短縮することができる。   As described above, the haze transmittance measuring apparatus 100 according to the first embodiment multi-reflects the measurement light between the light projecting / receiving unit 1 and the reflection unit 2 of the optical device unit 8 to obtain the desired measurement light. Measurement can be performed with the optical path length. For this reason, it is possible to reduce the size of the measuring cylinder 3 that accommodates the air to be measured. Further, since the volume of the measurement tube 3 is reduced, the time required to store air in the measurement tube can be shortened. For example, the time required to replace the air in the measurement cylinder 3 with the outside air, and the time required to circulate the air in the measurement cylinder 3 at the time of absolute value calibration can be greatly reduced.

また、本実施の形態1の煙霧透過率測定装置100は、自動的に絶対値校正部4により100%の絶対値校正を行うことができる。そして、制御部5によって光透過率および吸光係数を演算することによって光学窓用ガラスの汚れによる光透過率の低下および温度による光透過率の変動(温度ドリフト)を補正することができるので測定精度の向上を図ることができる。   Further, the smoke transmittance measuring apparatus 100 according to the first embodiment can automatically perform 100% absolute value calibration by the absolute value calibration unit 4. Then, by calculating the light transmittance and extinction coefficient by the control unit 5, it is possible to correct the decrease in light transmittance due to the dirt of the glass for optical windows and the variation in light transmittance (temperature drift) due to temperature, so that the measurement accuracy Can be improved.

また、本実施の形態1の煙霧透過率測定装置100は、換算により所望の測定光路長(例えば100m)の透過率を求めるので、投受光部と反射部間の往復回数を減らし、投射光による多重反射にて測定光路を短くすることができる。よって、煤塵・粉塵の付着した防塵ガラスによる散乱および前記反射鏡による乱反射による透過光の低下を抑えることができる。また、換算を行う場合であっても、多重反射により一定の測定光路長(例えば、30〜60m程度)を確保することができるので、換算による誤差の影響は少なくて済む。   Moreover, since the haze transmittance measuring apparatus 100 of this Embodiment 1 calculates | requires the transmittance | permeability of desired measurement optical path length (for example, 100m) by conversion, it reduces the reciprocation frequency between a light projection / reception part and a reflection part, and is based on projection light. The measurement optical path can be shortened by multiple reflection. Therefore, it is possible to suppress a decrease in transmitted light due to scattering by dust-proof glass to which dust / dust adheres and irregular reflection by the reflecting mirror. Even in the case of conversion, since a constant measurement optical path length (for example, about 30 to 60 m) can be ensured by multiple reflection, the influence of error due to conversion can be reduced.

(実施の形態2)
図5は、本実施の形態2の煙霧透過率測定装置200の概略構成を示している。なお、以下の説明では、上述した構成要素と同一の構成要素には同一の符号を付し、その説明を省略する。実施の形態2と比較して本実施の形態の特徴は、図5に示すように、反射鏡に乱視鏡20a、20bを用いている点にある。
(Embodiment 2)
FIG. 5 shows a schematic configuration of the haze transmittance measuring apparatus 200 according to the second embodiment. In the following description, the same components as those described above are denoted by the same reference numerals, and the description thereof is omitted. As compared with the second embodiment, the present embodiment is characterized in that astigmatism mirrors 20a and 20b are used as reflecting mirrors, as shown in FIG.

通常の凹面鏡より反射点を増やすために、(図3C、段落0044参照)反射鏡として乱視鏡を使用することにより、測定光の光束を小さくすることができる。測定筒3の内容積をさらに小さくし、外からの汚染空気の容積を小さくすることにより、空気の汚れに対する応答時間を短くすることができる。   In order to increase the number of reflection points compared to a normal concave mirror (see FIG. 3C, paragraph 0044), an astigmatism mirror can be used as a reflection mirror, thereby reducing the luminous flux of measurement light. By further reducing the internal volume of the measuring tube 3 and reducing the volume of the contaminated air from the outside, the response time to air contamination can be shortened.

(実施の形態3)
図6は、本実施の形態3の煙霧透過率測定装置300の概略構成を示している。なお、以下の説明では、上述した構成要素と同一の構成要素には同一の符号を付し、その説明を省略する。本実施の形態の特徴は、図6に示すように、測定筒3内に埋込材21を設けている点にある。
(Embodiment 3)
FIG. 6 shows a schematic configuration of the haze transmittance measuring apparatus 300 according to the third embodiment. In the following description, the same components as those described above are denoted by the same reference numerals, and the description thereof is omitted. The feature of the present embodiment is that an embedding material 21 is provided in the measuring tube 3 as shown in FIG.

この構成により、測定筒3の内壁と光束との隙間を埋込材3にて無くすことで、外からの汚れた空気の容積を小さくすることができ、よって、空気の汚れに対する応答時間を短くすることができる。   With this configuration, the gap between the inner wall of the measuring tube 3 and the luminous flux is eliminated by the embedding material 3, so that the volume of dirty air from the outside can be reduced, thereby shortening the response time to air dirt. can do.

(実施の形態4)
図7は、本実施の形態4の煙霧透過率測定装置400の概略構成を示している。なお、以下の説明では、上述した構成要素と同一の構成要素には同一の符号を付し、その説明を省略する。本実施の形態の特徴は、図7に示すように、投受光部1内の反射鏡12aのピンホール3bに受光筒22を設け、その受光筒22の奥に受光素子23を設けている点にある。
(Embodiment 4)
FIG. 7 shows a schematic configuration of the haze transmittance measuring apparatus 400 of the fourth embodiment. In the following description, the same components as those described above are denoted by the same reference numerals, and the description thereof is omitted. The feature of the present embodiment is that, as shown in FIG. 7, a light receiving cylinder 22 is provided in the pinhole 3b of the reflecting mirror 12a in the light projecting / receiving unit 1, and a light receiving element 23 is provided in the back of the light receiving cylinder 22. It is in.

この構成により、多重反射を経て最終的に反射鏡12aに到達した測定光はピンホール3bを介して受光筒23内に入り、その奥の受光素子23により光電変換されプリアンプ回路24により増幅された後、制御部5に入力される。   With this configuration, the measurement light finally reaching the reflecting mirror 12a through multiple reflections enters the light receiving cylinder 23 through the pinhole 3b, is photoelectrically converted by the light receiving element 23 at the back, and is amplified by the preamplifier circuit 24. Then, it is input to the control unit 5.

よって、本実施の形態4の煙霧透過率測定装置400は、受光時に、防塵ガラス11に付着した煤塵による散乱光の影響を防ぐことができ、精度良く透過率の測定ができることからLm透過率への換算や吸光係数を演算することができる。   Therefore, the haze transmittance measuring apparatus 400 according to the fourth embodiment can prevent the influence of scattered light due to the dust adhering to the dust-proof glass 11 at the time of receiving light, and can measure the transmittance with high accuracy. Conversion and extinction coefficient can be calculated.

(実施の形態5)
図8Aは、本実施の形態5の煙霧透過率測定装置500の概略構成を示している。図8Bは、測定筒3を図示中のA方向から見たときの正面図である。なお、以下の説明では、上述した構成要素と同一の構成要素には同一の符号を付し、その説明を省略する。本実施の形態の特徴は、図8A、図8Bに示すように、測定筒3に防塵筒10が嵌め込まれて接合している部分のうち、防塵筒3の外周部分に吹き出し口28を設けている点にある。この吹き出し口28は、投受光部1側と反射部2側の両方に設けられている。
(Embodiment 5)
FIG. 8A shows a schematic configuration of the haze transmittance measuring apparatus 500 of the fifth embodiment. FIG. 8B is a front view of the measuring tube 3 when viewed from the A direction in the drawing. In the following description, the same components as those described above are denoted by the same reference numerals, and the description thereof is omitted. As shown in FIGS. 8A and 8B, the present embodiment is characterized in that a blow-out port 28 is provided in the outer peripheral portion of the dust-proof cylinder 3 in the portion where the dust-proof cylinder 10 is fitted and joined to the measurement cylinder 3. There is in point. The outlets 28 are provided on both the light projecting / receiving unit 1 side and the reflecting unit 2 side.

本実施の形態5の煙霧透過率測定装置500は、吹き出し口28に清浄空気を送り出す清浄空気発生部25を備えている。この清浄空気発生部25は、絶対値校正部4の吹出電磁弁18の出口側と接続している。この吹出電磁弁18の出口から清浄空気発生部25に送出されて来た空気を浄化する清浄フィルター26と、清浄フィルター26により煤塵が除去された清浄空気を吹き出し口28へ送り出す清浄ポンプ27とを備えている。   The haze transmittance measuring apparatus 500 according to the fifth embodiment includes a clean air generating unit 25 that sends clean air to the outlet 28. The clean air generation unit 25 is connected to the outlet side of the blowout electromagnetic valve 18 of the absolute value calibration unit 4. A clean filter 26 for purifying the air sent from the outlet of the blowout solenoid valve 18 to the clean air generating unit 25, and a clean pump 27 for sending clean air from which dust is removed by the clean filter 26 to the outlet 28 I have.

この構成により、清浄ポンプ27から送り出された清浄空気が、防塵筒10の外周に設けられた吹き出し口28から測定筒3内に流出する。この空気流により、汚染空気が投受光部1と反射部2に設けられた防塵ガラス11a、11bに近づくことを防ぎ、汚染空気の煤塵が防塵ガラスに付着することを防ぐことができる。   With this configuration, the clean air sent out from the clean pump 27 flows out into the measurement tube 3 from the air outlet 28 provided on the outer periphery of the dust-proof tube 10. By this air flow, the contaminated air can be prevented from approaching the dust-proof glasses 11a and 11b provided in the light projecting / receiving unit 1 and the reflecting unit 2, and the dust of the contaminated air can be prevented from adhering to the dust-proof glass.

(実施の形態6)
図9は、本実施の形態6の煙霧透過率測定装置500の概略構成を示している。なお、以下の説明では、上述した構成要素と同一の構成要素には同一の符号を付し、その説明を省略する。本実施の形態の特徴は、図9に示すように、測定筒3の一部に清掃口29と、その清掃口を塞ぐ清掃蓋30とが設けられ、防塵筒10と防塵ガラスとが省略されている点にある。
(Embodiment 6)
FIG. 9 shows a schematic configuration of the haze transmittance measuring apparatus 500 of the sixth embodiment. In the following description, the same components as those described above are denoted by the same reference numerals, and the description thereof is omitted. As shown in FIG. 9, the present embodiment is characterized in that a cleaning port 29 and a cleaning lid 30 that closes the cleaning port are provided in a part of the measurement tube 3, and the dust-proof tube 10 and the dust-proof glass are omitted. There is in point.

このように防塵筒10と防塵ガラスとが省略され、投受光部1と測定筒3とは直接接合され、また、反射部2と測定筒3とも直接接合されるので、煙霧透過率測定装置全体の大きさを小型化することができる。また、清掃蓋30を取り外すことで、清掃口29から反射鏡の汚れを容易に定期的に清掃することができる。   Thus, since the dust-proof cylinder 10 and the dust-proof glass are omitted, the light projecting / receiving unit 1 and the measuring cylinder 3 are directly joined, and the reflecting part 2 and the measuring cylinder 3 are also joined directly. Can be reduced in size. Further, by removing the cleaning lid 30, it is possible to easily and regularly clean the reflector from the cleaning port 29.

なお、以上の実施の形態の説明においては、測定光路長を100[m]として説明してきたがこれに限られず、所望の長さに設定しても良い。   In the above description of the embodiment, the measurement optical path length has been described as 100 [m]. However, the measurement optical path length is not limited to this and may be set to a desired length.

本発明の煙霧透過率測定装置は、トンネル内等の汚染空気の光透過率を計測する装置として有用である。   The haze transmittance measuring device of the present invention is useful as a device for measuring the light transmittance of contaminated air in a tunnel or the like.

本実施の形態1の煙霧透過率測定装置の概略構成図Schematic configuration diagram of the haze transmittance measuring apparatus of the first embodiment 光学機器部と絶対値校正部の概略構成図Schematic configuration diagram of the optical equipment section and absolute value calibration section 反射鏡の正面図Front view of reflector 凹面鏡の反射点を示す図Diagram showing reflection point of concave mirror 乱視鏡の反射点を示す図Diagram showing reflection point of astigmatism 多重反射の様子を説明する図Diagram explaining how multiple reflections occur 汚染空気に含まれる粉塵等の重量濃度毎の視感度の波長特性を示す図The figure which shows the wavelength characteristic of the visibility for every weight concentration of dust etc. which are contained in polluted air 本実施の形態2の煙霧透過率測定装置の概略構成図Schematic configuration diagram of the haze transmittance measuring apparatus of the second embodiment 本実施の形態3の煙霧透過率測定装置の概略構成図Schematic configuration diagram of the haze transmittance measuring apparatus of the third embodiment 本実施の形態4の煙霧透過率測定装置の概略構成図Schematic configuration diagram of the haze transmittance measuring apparatus of the fourth embodiment 本実施の形態5の煙霧透過率測定装置の概略構成図Schematic configuration diagram of the haze transmittance measuring apparatus of the fifth embodiment 測定筒を図8A中のA方向から見たときの正面図Front view when measuring tube is viewed from direction A in FIG. 8A 本実施の形態6の煙霧透過率測定装置の概略構成図Schematic configuration diagram of the haze transmittance measuring apparatus of the sixth embodiment

符号の説明Explanation of symbols

1 投受光部
2 反射部
3 測定筒
3a 出射点(ピンホール)
3b 入射点(ピンホール)
4 絶対値構成部
5 制御部
6 支持金具
7 ベース
8 インバー製シャフト
9 光学機器部
10 防塵筒
11a、11b 防塵ガラス
12a、12b 反射鏡
13 投光部
14 受光部
15 入力電磁弁
16 校正電磁弁
17a、17b フィルター
18 吹出電磁弁
19 吸引ポンプ
21 埋込材
22 受光筒
23 受光素子
25 清浄空気発生部
29 清掃口
30 清掃蓋
DESCRIPTION OF SYMBOLS 1 Light emitter / receiver 2 Reflector 3 Measuring tube 3a Output point (pinhole)
3b Incident point (pinhole)
DESCRIPTION OF SYMBOLS 4 Absolute value structure part 5 Control part 6 Support metal fitting 7 Base 8 Invar shaft 9 Optical apparatus part 10 Dust-proof cylinder 11a, 11b Dust-proof glass 12a, 12b Reflector 13 Light projection part 14 Light-receiving part 15 Input solenoid valve 16 Calibration solenoid valve 17a , 17b Filter 18 Blowout solenoid valve 19 Suction pump 21 Embedding material 22 Light receiving cylinder 23 Light receiving element 25 Clean air generating part 29 Cleaning port 30 Cleaning lid

Claims (13)

光の投射と受光を行う投受光部と、前記投受光部からの光を前記投受光部に反射する第1の反射鏡を有する反射部と、前記投受光部と前記反射部とを対応させ一体的に設ける測定筒と、前記測定筒内に空気を流通させる絶対値校正手段とを備え、前記投受光部で、通常測定時と絶対値測定時において空気中を透過する光の強さを測定して光の透過率を測定する煙霧透過率測定装置であって、
前記投受光部は、第2の反射鏡を有し、
前記第2の反射鏡は、前記測定筒内に投射する光を通過させる第1のピンホールと、前記第2の反射鏡と前記第1の反射鏡との間で多重反射して来た光を受光部まで通過させる第2のピンホールと、を有する煙霧透過率測定装置。
A light projecting / receiving unit that projects and receives light, a reflecting unit that includes a first reflecting mirror that reflects light from the light projecting / receiving unit, and the light projecting / receiving unit and the reflecting unit are associated with each other. A measuring tube provided integrally; and an absolute value calibration means for circulating air in the measuring tube, and the light projecting / receiving unit determines the intensity of light transmitted through the air during normal measurement and absolute value measurement. A haze transmittance measuring device for measuring and measuring light transmittance,
The light projecting / receiving unit has a second reflecting mirror,
The second reflecting mirror is a first pinhole that allows light projected into the measurement tube to pass therethrough, and light that has been multiple-reflected between the second reflecting mirror and the first reflecting mirror. And a second pinhole that allows the light to pass to the light receiving unit.
前記投受光部と前記反射部とを一体的に形成するシャフトと、前記シャフトにより一体的に形成された光学機器部の中央部分の重心位置にて支持金具で固定するベース部と、を備える請求項1に記載の煙霧透過率測定装置。   A shaft that integrally forms the light projecting / receiving portion and the reflecting portion, and a base portion that is fixed by a support bracket at a center of gravity of a central portion of an optical device portion that is integrally formed by the shaft. Item 2. The haze transmittance measuring device according to Item 1. 前記第1の反射鏡と前記第2の反射鏡が乱視鏡である請求項1または2に記載の煙霧透過率測定装置。   The haze transmittance measuring device according to claim 1 or 2, wherein the first reflecting mirror and the second reflecting mirror are astigmatism mirrors. 前記測定筒の内壁に埋込材が形成されている請求項1から3いずれか一項に記載の煙霧透過率装置。   The haze transmittance | permeability apparatus as described in any one of Claim 1 to 3 with which the embedding material is formed in the inner wall of the said measurement cylinder. 前記投受光部と前記測定筒とが防塵筒を介して接合され、
前記防塵筒は、防塵ガラスを有し、
前記第2の反射鏡に形成された第2のピンホールの投受光部側に、受光筒が設けられ、前記受光筒の内部若しくは出口部分に受光素子が設けられている請求項1から4いずれか一項に記載の煙霧透過率測定装置。
The light projecting / receiving unit and the measuring cylinder are joined via a dust-proof cylinder,
The dust-proof cylinder has dust-proof glass,
5. Any one of claims 1 to 4, wherein a light receiving cylinder is provided on a light projecting / receiving part side of a second pinhole formed in the second reflecting mirror, and a light receiving element is provided inside or at an exit portion of the light receiving cylinder. The haze transmittance measuring device according to claim 1.
前記投受光部と前記測定筒とが防塵筒を介して接合され、
前記防塵筒は、防塵ガラスを有し、
前記測定筒は、前記防塵筒を包囲する外周付近に吹き出し口を有し、
前記吹き出し口に清浄空気を送り出す清浄空気発生部を備える請求項1から5いずれか一項に記載の煙霧透過率測定装置。
The light projecting / receiving unit and the measuring cylinder are joined via a dust-proof cylinder,
The dust-proof cylinder has dust-proof glass,
The measurement tube has a blowout port near the outer periphery surrounding the dust-proof tube,
The haze transmittance measuring device according to any one of claims 1 to 5, further comprising a clean air generating unit that sends clean air to the outlet.
前記反射部と前記測定筒とが防塵筒を介して接合され、
前記防塵筒は、防塵ガラスを有し、
前記測定筒は、前記防塵筒を包囲する外周付近に吹き出し口を有し、
前記吹き出し口に清浄空気を送り出す清浄空気発生部を備える請求項1から5いずれか一項に記載の煙霧透過率測定装置。
The reflection part and the measurement tube are joined via a dust-proof tube,
The dust-proof cylinder has dust-proof glass,
The measurement tube has a blowout port near the outer periphery surrounding the dust-proof tube,
The haze transmittance measuring device according to any one of claims 1 to 5, further comprising a clean air generating unit that sends clean air to the outlet.
前記防塵ガラスは、前記防塵筒の筒内部に設けられている請求項5から7いずれか一項に記載の煙霧透過率測定装置。   The said dust-proof glass is a haze transmittance | permeability measuring apparatus as described in any one of Claim 5 to 7 provided in the cylinder inside of the said dust-proof cylinder. 前記測定筒は、開閉部を有する請求項1から5いずれか一項に記載の煙霧透過率測定装置。   The said measurement cylinder is a haze transmittance | permeability measuring apparatus as described in any one of Claim 1 to 5 which has an opening-closing part. 前記絶対値校正手段は、空気を流通させるホースが帯電しにくいホースである請求項1から9いずれか一項に記載の煙霧透過率測定装置。   The said absolute value calibration means is a hose transmittance | permeability measuring apparatus as described in any one of Claim 1 to 9 which is a hose which the hose which distribute | circulates air is hard to be charged. 多重反射した光の測定光路長から求めた透過率を、所望の測定光路長の透過率に換算する演算手段を備える請求項1から10いずれか一項に記載の煙霧透過率測定装置。   The haze transmittance measuring apparatus according to any one of claims 1 to 10, further comprising a calculation unit that converts the transmittance obtained from the measured optical path length of the multiple reflected light into the desired measured optical path length. 前記演算手段は、透過率を人の視感度特性に適合させる視感度補正を行う請求項1から11いずれか一項に記載の煙霧透過率測定装置。   The said transmittance | permeability measurement apparatus as described in any one of Claim 1 to 11 which performs the visibility correction | amendment which adapts a transmittance | permeability to a human visual sensitivity characteristic. 前記演算手段は、絶対値校正開始時から設定時間経過後であって、透過率の測定値が設定範囲内に収束したとき、前記設定時間経過後の測定値の平均値を絶対測定値とする請求項1から12いずれか一項に記載の煙霧透過率測定装置。   The calculation means is an absolute measurement value after the set time has elapsed from the start of absolute value calibration and when the measured value of the transmittance has converged within the set range. The haze transmittance measuring device according to any one of claims 1 to 12.
JP2006075243A 2006-03-17 2006-03-17 Instrument for measuring aerosol transmissivity Withdrawn JP2007248388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006075243A JP2007248388A (en) 2006-03-17 2006-03-17 Instrument for measuring aerosol transmissivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006075243A JP2007248388A (en) 2006-03-17 2006-03-17 Instrument for measuring aerosol transmissivity

Publications (1)

Publication Number Publication Date
JP2007248388A true JP2007248388A (en) 2007-09-27

Family

ID=38592833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006075243A Withdrawn JP2007248388A (en) 2006-03-17 2006-03-17 Instrument for measuring aerosol transmissivity

Country Status (1)

Country Link
JP (1) JP2007248388A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010243269A (en) * 2009-04-03 2010-10-28 Riken Keiki Co Ltd Multi-path cell and gas measuring instrument
KR20120106702A (en) * 2009-07-07 2012-09-26 엑스트랄리스 테크놀로지 리미티드 Chamber condition
KR20200085445A (en) * 2019-01-07 2020-07-15 주식회사 에스원 Method for High Resolution Measurement of Fog Density and The Quantized Fog Spraying System thereof
CN114441459A (en) * 2020-11-03 2022-05-06 横河电机株式会社 Isolation of fluid samples in a multipass optical system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010243269A (en) * 2009-04-03 2010-10-28 Riken Keiki Co Ltd Multi-path cell and gas measuring instrument
KR20120106702A (en) * 2009-07-07 2012-09-26 엑스트랄리스 테크놀로지 리미티드 Chamber condition
JP2012532386A (en) * 2009-07-07 2012-12-13 エックストラリス・テクノロジーズ・リミテッド Chamber condition
US9111427B2 (en) 2009-07-07 2015-08-18 Xtralis Technologies Ltd Chamber condition
KR102061714B1 (en) * 2009-07-07 2020-02-11 엑스트랄리스 테크놀로지 리미티드 Chamber condition
KR20200085445A (en) * 2019-01-07 2020-07-15 주식회사 에스원 Method for High Resolution Measurement of Fog Density and The Quantized Fog Spraying System thereof
KR102145427B1 (en) 2019-01-07 2020-08-18 주식회사 에스원 Method for High Resolution Measurement of Fog Density and The Quantized Fog Spraying System thereof
CN114441459A (en) * 2020-11-03 2022-05-06 横河电机株式会社 Isolation of fluid samples in a multipass optical system
JP2022075596A (en) * 2020-11-03 2022-05-18 横河電機株式会社 Separation of fluid sample in multipath optical system
JP7230988B2 (en) 2020-11-03 2023-03-01 横河電機株式会社 Separation of fluid samples in multipass optics
US11686670B2 (en) 2020-11-03 2023-06-27 Yokogawa Electric Corporation Isolation of fluid sample in multi-pass optical system

Similar Documents

Publication Publication Date Title
US10048064B2 (en) Optical three dimensional scanners and methods of use thereof
JP5198844B2 (en) Cloudiness detector and mirror-cooled dew point meter
US5467188A (en) Particle detection system
JP2007248388A (en) Instrument for measuring aerosol transmissivity
RU2356031C2 (en) Device and method to measure light transmission in atmosphere and to determine meteorological range of visibility
CN106483071B (en) Gas detector and absorption tank thereof
CN103196805B (en) A kind of optical devices detecting aerosol quality and concentration
US20060192968A1 (en) Optical assembly
JP2008513756A (en) Gas content measuring apparatus and method
CN211740982U (en) Atmospheric dust detection device
US20140126223A1 (en) Optical integrator rod with internal object plane
CN113176220A (en) Gas detector and detection method thereof
KR102229060B1 (en) Optical scattering detection device with an anti-contamination tube
JP2007121083A (en) Distance measurement apparatus
JP2007205920A (en) Multiple reflection type cell, and infrared type gas detector
KR101912708B1 (en) Contamination Measuring Device for Solar Panel Surface and Solar Cell Panel Measuring Contamination
JP2000187786A (en) Fire detector and soil compensation method for fire detector
KR101913173B1 (en) Contamination Measuring Device for Solar Panel Surface
US20120257202A1 (en) Concentration measuring device, concentration measuring arrangement and concentration measuring method
CN105928881B (en) A kind of the window mirror delustring detection method and detection device of transmission-type visual range visibility meter
JP2014066600A (en) Smog transmittance measurement apparatus
CN113125368A (en) Aerosol extinction instrument and measurement method thereof
CN214041118U (en) Long-optical-path gas absorption cell
JP3539112B2 (en) Haze transmittance measuring device
JP2010096550A (en) Smog transmittance measuring instrument

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071113

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080108

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090602