JP2007248341A - Method and system for detecting position of supporting point of trolley wire - Google Patents

Method and system for detecting position of supporting point of trolley wire Download PDF

Info

Publication number
JP2007248341A
JP2007248341A JP2006074088A JP2006074088A JP2007248341A JP 2007248341 A JP2007248341 A JP 2007248341A JP 2006074088 A JP2006074088 A JP 2006074088A JP 2006074088 A JP2006074088 A JP 2006074088A JP 2007248341 A JP2007248341 A JP 2007248341A
Authority
JP
Japan
Prior art keywords
distance
support point
point position
change curve
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006074088A
Other languages
Japanese (ja)
Inventor
Shinji Kawasaki
慎治 川▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
West Japan Railway Co
Original Assignee
West Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by West Japan Railway Co filed Critical West Japan Railway Co
Priority to JP2006074088A priority Critical patent/JP2007248341A/en
Publication of JP2007248341A publication Critical patent/JP2007248341A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a means capable of accurately and easily detecting the positions of supporting points of trolley wires. <P>SOLUTION: A detection system is constructed of an input part for inputting various types of inspection and measurement data collected by a recording coach; a processing part for processing the detection of the positions of supporting points of trolley wires on the basis of the various types of data transmitted from the input part and required parameter files; and an output part for outputting the positions of supporting points on the basis of computation results of the processing part. A detection range R containing the positions of a supporting point is set in a change curve K of inspection and measurement values of displacements of trolley wires to determine a complementary straight line L connecting a point S on the change curve K of inspection and measurement values on the starting side of the detection range R to a point T on the ending side. The distance D<SB>P</SB>in a direction perpendicular to a track center line C between the change curve K of inspection and measurement values and the complementary straight line L is computed. A reference distance in which the value D<SB>P</SB>is a maximum value D<SB>U</SB>is determined. Since the change curve K of inspection and measurement values forms a vertex U at the position of the supporting point, the reference distance is determined as a reference distance X<SB>U</SB>of a position at which the distance D<SB>P</SB>is the maximum D<SB>U</SB>. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、トロリ線の支持点位置を正確に且つ簡単に検出できる手段の提供を目的とするものであって、詳しくは、トロリ線の偏位検測データを利用して支持点位置を検出する手段に関する。   The object of the present invention is to provide means for accurately and easily detecting the support point position of the trolley wire. Specifically, the support point position is detected by using the displacement measurement data of the trolley wire. It relates to the means to do.

電気鉄道においては、トロリ線の保全に活用する各種データを収集するため、検測車を走行させて、トロリ線高さ・トロリ線偏位・トロリ線摩耗等の値を検測している。例えば新幹線では、電気軌道総合試験車という検測車により、営業車とほぼ同様の走行条件下で検測を行っている。また営業車や保守用車に検測システムを搭載することにより、検測車として機能させる場合もある。   In electric railways, in order to collect various data to be used for maintenance of the trolley line, the inspection vehicle is run to inspect the values of trolley line height, trolley line displacement, trolley line wear, and the like. For example, on the Shinkansen, inspections are carried out under the same running conditions as commercial vehicles by means of inspection vehicles called electric track comprehensive test vehicles. In some cases, an inspection system is installed in a commercial vehicle or a maintenance vehicle to function as an inspection vehicle.

検測車による各種検測値は、通常、位置情報に対応して表され、位置情報は、線路起点からの線路に沿った距離である距離程として表される。そして距離程は、基本的には、検測車の車輪の回転を利用して、ある程度の精度で測定されるものである。   Various inspection values by the inspection vehicle are usually expressed in correspondence with the position information, and the position information is expressed as a distance that is a distance along the track from the track starting point. The distance is basically measured with a certain degree of accuracy using the rotation of the wheels of the inspection vehicle.

ところでトロリ線検測値の位置情報は、検測データに基づいた現場設備の特定を容易にし且つ精度を高めるため、支持点が基準にされる。支持点とは電車線が電柱に設けた支持手段により支持される箇所である。図4に示すように、電車線は、トロリ線4とトロリ線4を吊り下げる吊架線5及び補助吊架線6とから成っており、明かり区間では、電柱1に設けた可動ブラケット2により所定高さに支持される。またトロリ線4と補助吊架線6とは、可動ブラケット2に取り付けた曲線引金具3により引っ張られている。このように電車線を支持する可動ブラケット2は電柱1に設置されるので、従来、支持点位置は電柱位置とも呼ばれている。個々の電柱1は電柱番号で特定され、それぞれに図面上の距離程が定められているから、電柱位置を検出することにより、電柱位置からの相対位置として検測データの位置情報を表している。   By the way, the position information of the trolley line inspection value is based on the support point in order to facilitate the identification of the on-site equipment based on the inspection data and to improve the accuracy. The support point is a place where the train line is supported by support means provided on the utility pole. As shown in FIG. 4, the train line is composed of a trolley line 4, a suspension line 5 for suspending the trolley line 4, and an auxiliary suspension line 6. In the light section, a predetermined height is set by a movable bracket 2 provided on the utility pole 1. It is supported by. Further, the trolley wire 4 and the auxiliary suspension wire 6 are pulled by the curved metal fitting 3 attached to the movable bracket 2. Since the movable bracket 2 that supports the train line is installed on the utility pole 1 in this way, conventionally, the support point position is also called the utility pole position. Each telephone pole 1 is identified by a telephone pole number, and the distance on the drawing is determined for each pole. By detecting the pole position, the position information of the measurement data is expressed as a relative position from the pole position. .

特許文献1に、電柱位置を検出する従来の方法が記載されている。それによると、図5に示すように、レーザー装置を用い、電車線の支持部材(可動ブラケット)へ投射したレーザービームの反射光を受光することにより、電柱位置を検出している。また、強度の大きいレーザービームを使用することにより、太陽光の入射など外乱の影響を受けないようにできるとされている。
特開平6−323902号公報
Patent Document 1 describes a conventional method for detecting a pole position. According to this, as shown in FIG. 5, the position of the utility pole is detected by receiving the reflected light of the laser beam projected onto the support member (movable bracket) of the train line using a laser device. In addition, it is said that by using a laser beam having a high intensity, it can be prevented from being affected by disturbances such as sunlight.
JP-A-6-323902

特許文献1に記載の技術は、出力の大きいレーザー装置を使用したとしても、支持金具のレーザー反射効率が悪いと確実な検出ができないという欠点がある。   The technique described in Patent Document 1 has a drawback that even if a laser device with a large output is used, reliable detection cannot be performed if the laser reflection efficiency of the support bracket is poor.

さらに従来では、電柱位置と支持点位置とを同一視しているため、正確な支持点位置検出を行っているとは言えず、検測データの位置情報に誤差が含まれるという問題があった。これは、気候や季節による温度変化でトロリ線が長手方向に伸縮するので、トロリ線が支持金具(可動ブラケット)あるいは電柱位置に対し相対移動する結果、支持金具に対するトロリ線各部の真の距離程が変動するからである。   Furthermore, since the utility pole position and the support point position are conventionally regarded as the same, it cannot be said that accurate support point position detection is performed, and there is a problem that the position information of the inspection data includes an error. . This is because the trolley wire expands and contracts in the longitudinal direction due to temperature changes due to climate and season, and as a result of the trolley wire moving relative to the position of the support bracket (movable bracket) or utility pole, the true distance of each part of the trolley wire relative to the support bracket Because it fluctuates.

本発明は、光学的手段を用いることなく、トロリ線の真の支持点位置を確実に且つ容易に検出できる手段を提供する。このために本発明が採用したトロリ線支持点位置検出方法の特徴は、請求項1に記載するように、トロリ線偏位の距離程に対する検測値を表す検測値変化曲線における頂点位置の距離程を特定することにより、トロリ線の支持点位置を検出するところにある。   The present invention provides a means for reliably and easily detecting the true support point position of the trolley wire without using optical means. For this purpose, the trolley line support point position detection method employed by the present invention is characterized in that, as described in claim 1, the vertex position of the measured value change curve representing the measured value with respect to the distance of the trolley line deviation is indicated. By specifying the distance, the support point position of the trolley line is detected.

前記検出方法を実施する具体的な態様としては、請求項2に記載する如く、前記検測値変化曲線においてトロリ線の支持点位置を含むと予想される所定距離範囲の区間を検出範囲として設定し、当該検出範囲の両端それぞれにおける前記検測値変化曲線上の2点を結ぶ直線を補完直線とし、前記検測値変化曲線と前記補完直線との距離が最大となる距離程を算出することにより支持点位置を検出する方法が挙げられる。   As a specific mode for carrying out the detection method, as defined in claim 2, a section of a predetermined distance range that is expected to include a support point position of a trolley line in the inspection value change curve is set as a detection range. Then, a straight line connecting the two points on the measurement value change curve at each end of the detection range is used as a complementary line, and a distance that maximizes the distance between the measurement value change curve and the complementary line is calculated. A method of detecting the support point position by using the above method is mentioned.

あるいは請求項3に記載する如く、前記検測値変化曲線を距離程で微分し、微分係数が急変又は正負が逆転する位置の距離程を特定することにより支持点位置を検出する方法も採用可能である。   Alternatively, as described in claim 3, it is also possible to adopt a method of detecting the support point position by differentiating the measured value change curve by the distance and specifying the distance of the position where the differential coefficient changes suddenly or the sign is reversed. It is.

一方、前記検出方法を実施するために本発明が提案するトロリ線支持点位置検出システムの特徴は、請求項4に記載する如く、トロリ線偏位の距離程に対する検測値データが入力される入力部、当該検測値データに基づいて描いた検測値変化曲線における頂点位置の距離程を特定することにより支持点位置を検出する処理部、当該処理部の処理結果を出力する出力部を備えることである。   On the other hand, the feature of the trolley line support point position detection system proposed by the present invention for carrying out the detection method is that, as described in claim 4, test value data for the distance of the trolley line deviation is input. An input unit, a processing unit for detecting a support point position by specifying a distance of a vertex position in a test value change curve drawn based on the test value data, and an output unit for outputting a processing result of the processing unit It is to prepare.

前記トロリ線支持点位置検出システムにおいて、前記処理部については、請求項5に記載する如く、トロリ線支持点位置の検出処理を実行する検出範囲を設定するためのデータが格納されると共に、前記検出範囲の両端それぞれにおける前記検測値変化曲線上の2点を結ぶ補完直線と前記検測値変化曲線との距離を演算し、当該距離が最大となる点の距離程を支持点位置として算出するものとすることができる。   In the trolley line support point position detection system, as described in claim 5, the processing unit stores data for setting a detection range for performing detection processing of the trolley line support point position, and The distance between the complementary straight line connecting the two points on the test value change curve at each end of the detection range and the test value change curve is calculated, and the distance of the point where the distance becomes the maximum is calculated as the support point position. Can be.

なお本発明において、支持点位置を検出するための前記処理を行うにあたり、検測値変化曲線や補完直線を実際に描く必要はなく、検測値変化曲線や補完直線等を求めるのと実質的に同一の数値処理を行えば足りるものである。また、検測値変化曲線と補完直線との距離とは、検測値変化曲線上の任意の点から補完直線上におろした垂線の長さとするだけでなく、検測値変化曲線から補完直線までの軌道中心線に対し垂直な方向の距離と定義することも可能である。   In the present invention, it is not necessary to actually draw a test value change curve or a supplemental line in performing the above-described processing for detecting the support point position, and it is substantially equivalent to obtaining a test value change curve or a supplemental line. It is sufficient to perform the same numerical processing. The distance between the test value change curve and the supplementary line is not only the length of the perpendicular line drawn from any point on the test value change curve on the supplementary line, but also from the test value change curve. It is also possible to define the distance in the direction perpendicular to the orbit center line.

一般にトロリ線は、電柱に設けた可動ブラケットに取着した曲線引金具により、線路に沿って左右ジグザグの折れ線又は曲線を描くように張り渡されており、故にトロリ線は軌道中心に対し枕木方向の偏位を有している。これがトロリ線偏位である。トロリ線をジグザグに形成しているのは曲線引金具であるから、トロリ線が描く曲線の頂点位置には必ず曲線引金具が存在し、曲線引金具がトロリ線に取着されている箇所が支持点である。すなわち、トロリ線偏位の頂点位置が支持点位置に等しい。本発明は、かかる原理に基づき、トロリ線偏位の検測値変化曲線における頂点位置を特定することにより、トロリ線の支持点位置を検出することができるので、従来の如きレーザー装置を用いる手段と比較して、はるかに正確な支持点位置検出を実現でき、しかもレーザー装置が不要である上に既存の設備を利用できるから、低コストで実施できる。   In general, the trolley wire is stretched to draw a left or right zigzag line or curve along the track by a curved metal fitting attached to a movable bracket provided on the utility pole. The deviation is as follows. This is the trolley line deviation. Since the trolley line is formed in a zigzag pattern, the curved line fittings always exist at the apex position of the curve drawn by the trolley line, and there are places where the curved line fittings are attached to the trolley line. Supporting point. That is, the vertex position of the trolley line deviation is equal to the support point position. According to the present invention, the position of the support point of the trolley line can be detected by specifying the position of the apex in the measured value change curve of the trolley line deviation based on such a principle. Compared to the above, it is possible to realize a far more accurate support point position detection, and further, since a laser device is unnecessary and an existing facility can be used, it can be carried out at a low cost.

本発明では、曲線引金具の取着位置をトロリ線の支持点位置として検出するから、温度変化によりトロリ線が伸縮移動したとしても、当該支持点位置も同様に伸縮移動する。つまり、支持点位置とトロリ線上の各部との相対位置関係は実質的に変化しない。従って、本発明により得られる支持点位置情報は、温度変化によるトロリ線の伸縮の影響を受けないから、検測データの位置情報の精度を高めることができる。このことは、検測データに基づきトロリ線の保全・管理を行う場合にきわめて有利である。例えば、トロリ線摩耗の経時変化を観測して時系列管理を行う場合、各部の摩耗検測値は、支持点位置を基準とした距離程に対応して表される。従来の支持点位置検出手段では、電柱位置を支持点位置と同一視して処理していたので、トロリ線が伸縮移動すると、電柱位置からトロリ線各部までの距離程が変動し、検測データの位置情報が誤差を含んでいた。これに対し本発明によれば、支持点位置とトロリ線各部との相対位置関係は実質的に不変であるから、各部の状況を正確に反映した検測値データを得ることができ、よって精度の高い時系列管理を実現できる。   In the present invention, since the attachment position of the curved metal fitting is detected as the support point position of the trolley wire, even if the trolley wire expands and contracts due to a temperature change, the support point position similarly expands and contracts. That is, the relative positional relationship between the support point position and each part on the trolley line does not substantially change. Therefore, since the support point position information obtained by the present invention is not affected by the expansion and contraction of the trolley line due to the temperature change, it is possible to improve the accuracy of the position information of the inspection data. This is extremely advantageous when maintaining and managing the trolley line based on inspection data. For example, when chronological management is performed by observing a change in trolley wire wear over time, the wear measurement value of each part is represented corresponding to the distance with respect to the support point position. In the conventional support point position detection means, the power pole position is treated as the same as the support point position, so when the trolley line expands and contracts, the distance from the power pole position to each part of the trolley line fluctuates. The position information of contains errors. On the other hand, according to the present invention, since the relative positional relationship between the support point position and each part of the trolley line is substantially unchanged, it is possible to obtain test value data that accurately reflects the situation of each part, and thus the accuracy. High time series management can be realized.

なお請求項2,5に記載した支持点位置検出方法及びシステムは、支持点位置を演算によって算出するための確実で且つ簡便な手法を提供する。すなわち、検測値変化曲線上に支持点位置を含む検出範囲を設定し、検出範囲両端の検測値変化曲線上の2点を結んで補完直線とし、検測値変化曲線と補完直線との距離が最大となる点を求めれば、それが曲線の頂点つまり支持点位置となる。従って、きわめて簡単な演算方法で、確実にトロリ線支持点位置を検出することができる。なお上記演算で求める距離としては、前述の如く、検測値変化曲線から補完直線上におろした垂線の長さでも、検測値変化曲線から補完直線までの軌道中心線に対し垂直な方向の距離でもよく、いずれを採用しても同様の結果が得られる。   The support point position detection method and system described in claims 2 and 5 provide a reliable and simple method for calculating the support point position by calculation. That is, a detection range including the support point position is set on the test value change curve, and two points on the test value change curve at both ends of the detection range are connected to form a complementary straight line. If the point with the maximum distance is found, it becomes the vertex of the curve, that is, the position of the support point. Therefore, the trolley wire support point position can be reliably detected by a very simple calculation method. In addition, as described above, the distance obtained by the above calculation is the direction perpendicular to the center line of the trajectory from the measured value change curve to the complementary line, even if it is the length of the perpendicular line drawn from the measured value change curve on the complementary line. The distance may be used, and any of them can be used to obtain the same result.

また請求項3に記載した支持点位置検出方法によれば、検測値変化曲線における頂点位置を詳細に特定することができる。   According to the support point position detection method described in claim 3, the vertex position in the inspection value change curve can be specified in detail.

トロリ線は電柱に設けられた可動ブラケットの曲線引金具により引っ張られ、軌道中心に対し、ジグザグなトロリ線偏位を形成している。検測車は、収集する検測データの一つとしてトロリ線偏位を検測している。図1は、トロリ線偏位の検測値変化曲線を表したグラフであって、縦軸にトロリ線偏位を、横軸に距離程を表している。同時に、電柱1及び可動ブラケット2の位置もグラフ上に示してある。なお図1の(A)は、一般的な曲線明かり区間の検測値であり、図(B)は直線明かり区間における検測値である。ジグザグなトロリ線偏位の一般的な周期は、図面に示すように、曲線明かり区間では電柱1径間あたり半サイクルであり、直線明かり区間では電柱3径間当たり半サイクルとなっている。なお、図示は省略したが、直線明かり区間でも1径間あたり半サイクルに設定される場合があり、トンネル区間では4径間で半サイクルに設定される。通常、電柱1径間の距離は数十m以下(標準的には40数m)である。   The trolley wire is pulled by a curved bracket of a movable bracket provided on the utility pole, and forms a zigzag trolley wire deviation with respect to the center of the track. The inspection vehicle detects the trolley line deviation as one of the collected inspection data. FIG. 1 is a graph showing a measured value change curve of trolley line deviation, where the ordinate represents the trolley line deviation and the abscissa represents the distance. At the same time, the positions of the utility pole 1 and the movable bracket 2 are also shown on the graph. 1A shows the measured values in a general curve light section, and FIG. 1B shows the measured values in a straight light section. As shown in the drawing, the general period of the zigzag trolley line deviation is a half cycle per one pole of the utility pole in the curved light section, and a half cycle per three poles of the utility pole in the straight light section. In addition, although illustration was abbreviate | omitted, it may be set to a half cycle per span also in a straight light section, and it is set to a half cycle between four diameters in a tunnel section. Usually, the distance between the diameters of the utility poles is several tens of meters or less (typically 40 several meters).

図1において、トロリ線偏位の検測値変化曲線Kにおける各頂点位置に必ず曲線引金具が存在し、その位置が支持点位置である。従って、上記頂点位置の距離程を特定することにより、支持点位置を検出できる。頂点位置の特定方法としては、図1のようなグラフをプリンタ等で印刷しあるいはディスプレイに表示させ、作業者がグラフを観察して曲線の頂点位置を目視により特定する手法が考えられる。しかしながら、この手法は、作業者の個人差による数値の変動を生じうる。表示された検測値変化曲線をイメージ読取手段で解析して、頂点位置を特定することも考えられるが、能率が良いとは言えない。   In FIG. 1, there is always a curved metal fitting at each vertex position in the measured value change curve K of the trolley line deviation, and that position is the support point position. Therefore, the support point position can be detected by specifying the distance of the vertex position. As a method for specifying the vertex position, a method is conceivable in which a graph as shown in FIG. 1 is printed by a printer or displayed on a display, and an operator observes the graph and visually identifies the vertex position of the curve. However, this method may cause a numerical fluctuation due to individual differences among workers. It is conceivable to analyze the displayed measured value change curve by the image reading means and specify the vertex position, but it cannot be said that the efficiency is good.

本例では、図2に示すような検出システムを構築し、支持点位置を検測データから自動的に算出する方法を採用した。同システムは、入力部・処理部・出力部を備えるものであって、検測車とは別個に構築するが、検測車に搭載することも可能である。   In this example, a detection system as shown in FIG. 2 is constructed, and a method of automatically calculating the support point position from the inspection data is adopted. The system includes an input unit, a processing unit, and an output unit, and is constructed separately from the inspection vehicle, but can also be mounted on the inspection vehicle.

入力部は、検測車が収集した各種検測データが入力される機構である。データの入力方式は特に限定されるものではなく、光磁気ディスクやフラッシュメモリ等の記録媒体による方式、通信回線(有線、無線を問わない)によるオンライン方式等が可能である。入力される検測データは、少なくともトロリ線偏位検測値を含み、その他、トロリ線保全に利用するトロリ線高さ・トロリ線摩耗等のデータである。これらはいずれも距離程に対応した検測値として入力される。また、データ処理するための補助情報として、検測車の停車パターン・検測車の上り又は下りの走行方向・検測車の走行区間に関するデータ等が、併せて入力される。これらのデータは、処理部へ送られる。   The input unit is a mechanism for inputting various inspection data collected by the inspection vehicle. The data input method is not particularly limited, and a method using a recording medium such as a magneto-optical disk or a flash memory, an online method using a communication line (whether wired or wireless), and the like are possible. The input inspection data includes at least a trolley line deviation detection value, and other data such as trolley line height and trolley line wear used for trolley line maintenance. These are all input as inspection values corresponding to the distance. Further, as auxiliary information for data processing, a stop pattern of the inspection vehicle, an up / down traveling direction of the inspection vehicle, data related to a traveling section of the inspection vehicle, and the like are also input. These data are sent to the processing unit.

処理部は、入力部から送られる各種データに基づき、トロリ線の支持点位置検出処理を行う機構であり、検出処理に必要なパラメータファイルを格納する記憶装置と、演算処理を実行して演算結果を出力する演算装置とを備える。記憶装置に格納されるパラメータファイルは、電柱距離程・電柱番号・検出処理の有無等の既定の情報、検出幅及び検出範囲等の演算プログラムの設定情報、検測車の停車パターン・検測車の上り又は下りの走行方向・検測車の走行区間データ等のインデックス情報などである。処理部における演算結果は、出力部へ送られる。   The processing unit is a mechanism that performs trolley wire support point position detection processing based on various data sent from the input unit. The storage unit stores a parameter file necessary for detection processing, and executes calculation processing results. Is provided. The parameter file stored in the storage device includes predetermined information such as utility pole distance, utility pole number, detection processing presence / absence, calculation program setting information such as detection width and detection range, etc. This is index information such as the up / down travel direction and travel section data of the inspection vehicle. The calculation result in the processing unit is sent to the output unit.

出力部は、処理部から送られる演算結果に基づき、支持点位置を出力する。出力する内容は、電柱番号に対する支持点位置の距離程である。出力方式は、ディスプレイにおける表示、紙等への印刷、記憶媒体への出力、別の処理システムへの通信回線等を利用したオンライン出力など、必要に応じ適宜選択できる。   The output unit outputs the support point position based on the calculation result sent from the processing unit. The content to be output is the distance of the support point position with respect to the utility pole number. The output method can be appropriately selected as necessary, such as display on a display, printing on paper, output to a storage medium, online output using a communication line to another processing system, and the like.

次に、図3を参照して、前記検出システムによる支持点位置検出方法の一態様を説明する。なお説明の都合上、本検出システムが実行する処理を図面に視覚化して示したが、実際には、視覚化された処理と実質的に同一の数値処理を行うものである。   Next, with reference to FIG. 3, one aspect of the support point position detection method by the detection system will be described. For convenience of explanation, the processing executed by the detection system is visualized in the drawing, but actually, the numerical processing substantially the same as the visualized processing is performed.

図3に示すように、検測データから得られたトロリ線偏位の検測値変化曲線において、必ず支持点位置を含むと予想される検出範囲Rを設定する。支持点は電柱に設けた可動ブラケットの曲線引金具により形成されるから、電柱距離程を基準にして、その前後に一定の検出幅Q,Qを有する区間を検出範囲Rとすればよい。例えば標準的な電柱径間が40数mであるから、検出幅Qの値を20mとし、電柱距離程の前後20mの範囲を検出範囲Rに設定すればよい。なお検出範囲Rの設定値は、上記に限定されるものではなく、線路が直線か曲線かの線形条件や、検出精度を高めるためトロリ線偏位の状況に応じ、適当な値に設定することができる。   As shown in FIG. 3, a detection range R that is expected to include the support point position is set in the inspection value change curve of the trolley line deviation obtained from the inspection data. Since the support point is formed by a curved bracket of a movable bracket provided on the utility pole, a section having a constant detection width Q, Q before and after the distance of the utility pole may be used as the detection range R. For example, since the distance between the standard utility poles is 40 and several meters, the detection width Q may be set to 20 m, and the range of 20 m before and after the utility pole distance may be set as the detection range R. The setting value of the detection range R is not limited to the above, and should be set to an appropriate value according to the linear condition of whether the line is a straight line or a curve, or the situation of trolley line deviation in order to improve detection accuracy. Can do.

続いて、検測値の入力順に見て、検出範囲Rの始端側の検測値変化曲線K上の点を始点S(X1,Y1)とし、終端側の点を終点T(X2,Y2)とし[X1,X2:距離程、Y1,Y2:偏位検測値]、2点S,Tを結ぶ直線である補完直線Lを求める。検出範囲Rにおいて、検測値変化曲線Kと補完直線Lとはほぼ三角形を成すから、検測値変化曲線K上の頂点位置Uは、検測値変化曲線Kと補完直線Lとの距離が最大となる点である。このような点の特定は、検測値変化曲線K上の点から補完直線Lまでの距離を直接的に計算(検測値変化曲線K上の点から補完直線L上に下ろした垂線の長さを算出)して行うこともできるが、さらに簡便な手法で求めることもできる。例えば、検測値変化曲線Kと補完直線Lとの軌道中心線Cに対し垂直な方向の距離Dを算出し、この値Dが最大値Dとなるときの距離程を求める。検測値変化曲線Kは、支持点位置で頂点Uを形成し、電柱1径間内では支持点位置が原則として1個であるから、前記距離Dが最大値Dとなる頂点位置Uを支持点位置と見なすことができる。従って、距離Dが最大値Dとなる頂点位置Uの距離程Xが、支持点位置の距離程となる。 Subsequently, in the order of input of the measurement values, the point on the measurement value change curve K on the start side of the detection range R is set as the start point S (X1, Y1), and the point on the end side is the end point T (X2, Y2). [X1, X2: Distance, Y1, Y2: Deviation measurement value] A complementary straight line L that is a straight line connecting the two points S and T is obtained. In the detection range R, the test value change curve K and the complementary straight line L form a substantially triangular shape. Therefore, the vertex position U on the test value change curve K has a distance between the test value change curve K and the complementary straight line L. This is the maximum point. Such a point is specified by directly calculating the distance from a point on the measured value change curve K to the complementary straight line L (the length of the perpendicular line dropped from the point on the measured value change curve K to the complementary straight line L) It can also be calculated by a simpler method. For example, to calculate the distance D P in the direction perpendicular to the track center line C of the complementary straight line L and the gage value change curve K, obtaining the more distance when the value D P is the maximum value D U. Gage value change curve K is the vertex U formed by the support point position, because within a utility pole 1 span is one support point position in principle, vertex position the distance D P is the maximum value D U U Can be regarded as the support point position. Therefore, the distance D P is as the distance of the vertex position U to the maximum value D U X U becomes the smaller the distance of the support point position.

検測値変化曲線Kと補完直線Lとの前記距離Dの算出方法は図面から明らかである。補完直線Lの式は、
=Y1+(X−X1)*(Y2−Y1)/(X2−X1) [*:乗算記号]
で表されるから、検測値変化曲線K上の任意の点P(X,Y)から補完直線L上の点(X,Y)までの距離Dは、
=|Y−Y
=|(Y−Y1)−(X−X1)*(Y2−Y1)/(X2−X1)|
でとなる。従って、上記X,Yそれぞれに距離程及びそこでのトロリ線偏位の検測値を代入して、Dが最大値Dとなるときの距離程Xを求めれば、それが支持点位置の距離程である。
The method of calculating the distance D P between the gage value change curve K and complementary straight line L is evident from the drawing. The formula for the complementary straight line L is
Y h = Y1 + (X P -X1) * (Y2-Y1) / (X2-X1) [*: multiplication sign]
Therefore, the distance D P from the arbitrary point P (X P , Y P ) on the inspection value change curve K to the point (X P , Y h ) on the complementary straight line L is
D P = | Y P −Y h |
= | (Y P -Y1) - (X P -X1) * (Y2-Y1) / (X2-X1) |
It becomes. Therefore, the X P, by substituting a test measurement values of the contact wire excursions therein and as the distance to each Y P, by obtaining a distance as X U when D P is the maximum value D U, it supports It is the distance of the point position.

ところで、検出範囲内に支持点は原則として一箇所であるが、検測値の誤差等により、計算上、前記距離Dが最大となる点が2箇所以上検出される可能性が考えられる。このような場合には、あらかじめ定めた方法で支持点を決定すればよい。例えば、検出された複数の点の平均値から求める方法や、始点側又は終点側の点を支持点と見なす方法等が挙げられる。 By the way, the support points in the detection range is one place in principle, the error of the test measurement value, the calculation, the distance D P is considered possible that the point of maximum is detected at two or more positions. In such a case, the support point may be determined by a predetermined method. For example, a method of obtaining from an average value of a plurality of detected points, a method of considering a point on the start point side or the end point side as a support point, and the like can be mentioned.

図1(B)に示す如く、直線明かり区間やトンネル区間では、検測値変化曲線Kの頂点は、複数径間内に1箇所しか存在しない。可動ブラケット2が頂点を形成する電柱1Aについては、トロリ線偏位の検測値から頂点位置を求めて支持点位置を検出できるが、頂点を形成しない電柱1Bについては、トロリ線偏位の検測値データからは支持点位置を特定することができない。そこで、このような場合は、各電柱の電柱距離程に基づいて得られる電柱径間を利用し、検出した2つの支持点(頂点)間の距離程を比例配分することにより、各電柱1Bについて支持点位置を割り当てればよい。1径間長は数十m以下なので、上記の如く計算によって割り当てても、実用上問題をもたらすような誤差を生じるおそれがない。従来のように、光線の反射により支持点位置を検出する手段では、検出できない支持点位置の予測が困難である。これに対し本例では、検出処理の実行対象となる電柱とそれ以外の電柱とを区別するものであり、支持点を持つ電柱は少なくとも4径間に一つは存在するから、誤差の少ない支持点位置検出が可能である。なお、検測値に基づき支持点位置検出処理を行う電柱1Aと、検出処理を行わずに上記の如く比例配分で支持点位置を求める電柱1Bとは予め決められているから、処理部に格納した検出処理の有無データに基づき、処理内容を決定することができる。   As shown in FIG. 1 (B), in the straight light section and tunnel section, there is only one vertex of the measured value change curve K within a plurality of spans. For the utility pole 1A in which the movable bracket 2 forms the apex, the position of the support point can be detected by obtaining the apex position from the measured value of the trolley line deviation, but for the utility pole 1B not forming the apex, the detection of the trolley line deviation is performed. The support point position cannot be specified from the measured data. Therefore, in such a case, by using the distance between the power pole diameters obtained based on the distance between the power poles of each power pole, the distance between the two detected support points (vertices) is proportionally distributed, so that each power pole 1B What is necessary is just to assign a support point position. Since the length of one span is several tens of meters or less, there is no possibility of causing an error that causes a practical problem even if it is assigned by calculation as described above. As in the prior art, it is difficult to predict a support point position that cannot be detected by means of detecting the support point position by light reflection. In contrast, in this example, the utility pole to be subjected to detection processing is distinguished from other utility poles, and there is at least one utility pole with support points between the four diameters. Point position detection is possible. The utility pole 1A that performs the support point position detection process based on the measured value and the utility pole 1B that obtains the support point position by proportional distribution as described above without performing the detection process are stored in the processing unit. The processing content can be determined based on the presence / absence data of the detected processing.

[その他の実施形態]
トロリ線偏位の検測値データに基づき、トロリ線の支持点位置を検出する他の方法として、検測値変化曲線を距離程で微分することにより、曲線の頂点位置を求める手法も採用可能である。一般に曲線の頂点では、微分係数が急変するか又は正負の符号が逆転する。従って、トロリ線偏位の変化曲線を距離程で微分し、微分係数が急変するか正負の符号が逆転する位置を特定することにより、支持点位置を検出することが可能である。
[Other Embodiments]
As another method of detecting the support point position of the trolley line based on the measured value data of the trolley line deviation, it is also possible to adopt the method of obtaining the vertex position of the curve by differentiating the measured value change curve with the distance It is. In general, at the vertex of a curve, the derivative changes suddenly or the sign of the sign is reversed. Therefore, it is possible to detect the support point position by differentiating the change curve of the trolley line deviation with the distance and specifying the position where the differential coefficient changes suddenly or the sign of the positive / negative sign reverses.

トロリ線偏位の検測値変化曲線を示すグラフであって、図(A)は曲線明かり区間のもの、図(B)は直線明かり区間のものである。It is a graph which shows the measured value change curve of a trolley line deviation, Comprising: A figure (A) is a thing of a curve light area, A figure (B) is a thing of a straight light part. 本発明に係るトロリ線支持点位置検出システムの構成を概念的に示す図面である。It is drawing which shows notionally the structure of the trolley wire support point position detection system which concerns on this invention. 本発明に係るトロリ線支持点位置検出方法の実施要領を説明するための図面である。It is drawing for demonstrating the implementation point of the trolley wire support point position detection method which concerns on this invention. 従来のトロリ線の取付状況を示す斜視図である。It is a perspective view which shows the attachment condition of the conventional trolley wire. 従来のトロリ線支持点位置(電柱位置)検出方法の要領を示す図面である。It is drawing which shows the point of the conventional trolley wire support point position (electric pole position) detection method.

符号の説明Explanation of symbols

1…電柱 1A…電柱(検出処理有り) 1B…電柱(検出処理無し) 2…可動ブラケット 3…曲線引金具 C…軌道中心線 K…検測値変化曲線 L…補完直線 DESCRIPTION OF SYMBOLS 1 ... Electric pole 1A ... Electric pole (with detection process) 1B ... Electric pole (without detection process) 2 ... Movable bracket 3 ... Curve fitting C ... Track center line K ... Inspection value change curve L ... Complementary straight line

Claims (5)

トロリ線偏位の距離程に対する検測値を表す検測値変化曲線における頂点位置の距離程を特定することにより、トロリ線の支持点位置を検出することを特徴とするトロリ線支持点位置検出方法。   Trolley line support point position detection characterized by detecting the support point position of the trolley line by specifying the distance of the apex position in the measured value change curve representing the measured value with respect to the distance of the trolley line deviation Method. 前記検測値変化曲線においてトロリ線の支持点位置を含むと予想される所定距離範囲の区間を検出範囲として設定し、当該検出範囲の両端それぞれにおける前記検測値変化曲線上の2点を結ぶ直線を補完直線とし、前記検測値変化曲線と前記補完直線との距離が最大となる距離程を算出することにより支持点位置を検出する請求項1に記載のトロリ線支持点位置検出方法。   An interval of a predetermined distance range that is expected to include the support point position of the trolley line in the inspection value change curve is set as a detection range, and two points on the inspection value change curve at both ends of the detection range are connected. The trolley line support point position detection method according to claim 1, wherein a support point position is detected by calculating a distance that maximizes a distance between the measured value change curve and the complementary line, with a straight line as a complementary line. 前記検測値変化曲線を距離程で微分し、微分係数が急変又は正負が逆転する位置の距離程を特定することにより支持点位置を検出する請求項1に記載のトロリ線支持点位置検出方法。   The trolley wire support point position detection method according to claim 1, wherein the test point change curve is differentiated by a distance, and a support point position is detected by specifying a distance at a position where the differential coefficient suddenly changes or the sign is reversed. . トロリ線偏位の距離程に対する検測値データが入力される入力部、当該検測値データに基づいて描いた検測値変化曲線における頂点位置の距離程を特定することにより支持点位置を検出する処理部、当該処理部の処理結果を出力する出力部を備えることを特徴とするトロリ線支持点位置検出システム。   Detecting the support point position by specifying the distance of the apex position in the measured value change curve drawn based on the measured value data, the input unit where the measured value data for the distance of the trolley line deviation is input A trolley wire support point position detection system comprising: a processing unit that performs processing; and an output unit that outputs a processing result of the processing unit. 前記処理部は、トロリ線支持点位置の検出処理を実行する検出範囲を設定するためのデータが格納されると共に、前記検出範囲の両端それぞれにおける前記検測値変化曲線上の2点を結ぶ補完直線と前記検測値変化曲線との距離を演算し、当該距離が最大となる点の距離程を支持点位置として算出するものである請求項4に記載のトロリ線支持点位置検出システム。   The processing unit stores data for setting a detection range for performing detection processing of the trolley line support point position, and complements the two points on the measurement value change curve at both ends of the detection range. The trolley line support point position detection system according to claim 4, wherein a distance between a straight line and the measured value change curve is calculated, and a distance of a point where the distance is maximum is calculated as a support point position.
JP2006074088A 2006-03-17 2006-03-17 Method and system for detecting position of supporting point of trolley wire Pending JP2007248341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006074088A JP2007248341A (en) 2006-03-17 2006-03-17 Method and system for detecting position of supporting point of trolley wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006074088A JP2007248341A (en) 2006-03-17 2006-03-17 Method and system for detecting position of supporting point of trolley wire

Publications (1)

Publication Number Publication Date
JP2007248341A true JP2007248341A (en) 2007-09-27

Family

ID=38592800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006074088A Pending JP2007248341A (en) 2006-03-17 2006-03-17 Method and system for detecting position of supporting point of trolley wire

Country Status (1)

Country Link
JP (1) JP2007248341A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013173479A (en) * 2012-02-27 2013-09-05 Railway Technical Research Institute Overlap structure of trolley line
JP2014220858A (en) * 2013-05-01 2014-11-20 株式会社日立製作所 Position detector and position detection method
US10740936B2 (en) 2016-11-14 2020-08-11 Mitsubishi Electric Corporation Trolley-wire display device, trolley-wire display system, and trolley-wire display data creation method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0829118A (en) * 1994-07-20 1996-02-02 Laser Techno Kk Suspension position detector for trolley

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0829118A (en) * 1994-07-20 1996-02-02 Laser Techno Kk Suspension position detector for trolley

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013173479A (en) * 2012-02-27 2013-09-05 Railway Technical Research Institute Overlap structure of trolley line
JP2014220858A (en) * 2013-05-01 2014-11-20 株式会社日立製作所 Position detector and position detection method
US10740936B2 (en) 2016-11-14 2020-08-11 Mitsubishi Electric Corporation Trolley-wire display device, trolley-wire display system, and trolley-wire display data creation method

Similar Documents

Publication Publication Date Title
Haigermoser et al. Road and track irregularities: measurement, assessment and simulation
CN105115976B (en) A kind of rail abrasion defect detecting system and method
US20220355839A1 (en) Monitoring, predicting and maintaining the condition of railroad elements with digital twins
CN107588915A (en) A kind of Bridge Influence Line recognition methods and system
ES2255203T3 (en) METHOD AND DEVICE FOR CONTROLLING ANOMALIES IN RAILWAY AND TRAIL SUPERESTRUCTURES.
JP6570909B2 (en) DATA GENERATION DEVICE, DATA GENERATION METHOD, PROGRAM, AND RECORDING MEDIUM
CN104937389A (en) Device and method for monitoring and calibrating a device for measuring the profile depth of a type
JP6986936B2 (en) Vehicle control system
JP2009210437A (en) Pq measuring device and pq measuring program
US20220058307A1 (en) Equipment state detection device, equipment state detection method, and program
JP2010267000A (en) Path estimation device, path estimation method and program
Tanaka et al. Practical application of portable trolley for the continuous measurement of rail surface roughness for rail corrugation maintenance
CN112129445A (en) Bow net contact force on-line test scheme
JP2007248341A (en) Method and system for detecting position of supporting point of trolley wire
CN105205841A (en) Map generation method and system of geographic information system
CN113900116A (en) Dynamic detection method and device for geometrical parameters of contact network
CN107423338B (en) Railway comprehensive detection data display method and device
Tan et al. A real-time impact detection and diagnosis system of catenary using measured strains by fibre Bragg grating sensors
JP2019161356A (en) Temperature management device, temperature management system, temperature management method, and program
JP4520878B2 (en) River flow monitoring system
CN112611442A (en) Railway bridge health monitoring method and system based on track accompanying optical cable
JP2001101561A (en) Pollutant quantity estimating device, pollutant quantity predicting device, and road traffic controller using them
Minea et al. Robotic Railway Multi-Sensing and Profiling Unit Based on Artificial Intelligence and Data Fusion
KR20150054363A (en) Accurate train location detection system using stagger information of the overhead contact lines
Antognoli et al. Requirement specifications for track measuring and monitoring systems//Specifiche di requisiti per sistemi di misura e monitoraggio del binario

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111216