JP2007248332A - Lining damage detection method and corrosive fluid housing apparatus - Google Patents

Lining damage detection method and corrosive fluid housing apparatus Download PDF

Info

Publication number
JP2007248332A
JP2007248332A JP2006073914A JP2006073914A JP2007248332A JP 2007248332 A JP2007248332 A JP 2007248332A JP 2006073914 A JP2006073914 A JP 2006073914A JP 2006073914 A JP2006073914 A JP 2006073914A JP 2007248332 A JP2007248332 A JP 2007248332A
Authority
JP
Japan
Prior art keywords
lining
optical fiber
fiber sensor
base material
damage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006073914A
Other languages
Japanese (ja)
Other versions
JP4594887B2 (en
Inventor
Yutaka Ishiwatari
裕 石渡
Keiichi Sasaki
恵一 佐々木
Masashi Takahashi
雅士 高橋
Masaru Fukuya
賢 福家
Yohei Nishiguchi
洋平 西口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006073914A priority Critical patent/JP4594887B2/en
Publication of JP2007248332A publication Critical patent/JP2007248332A/en
Application granted granted Critical
Publication of JP4594887B2 publication Critical patent/JP4594887B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Transform (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Details Of Rigid Or Semi-Rigid Containers (AREA)
  • Protection Of Pipes Against Damage, Friction, And Corrosion (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily detect damage of the lining of a container with a lining, which houses a corrosive fluid inside, over a long period. <P>SOLUTION: A helical optical fiber sensor 6 is fixed to an external surface of a base material made of metal. The optical fiber sensor 6 measures changes in distortions of the base material made of metal associated with damage in the lining and detects damage in the lining on the basis of the changes in distortions. Distortion changes may be measured by a method for measuring wavelength deviations of light transmitted through the optical fiber sensor at a curved part due to the Doppler effect, a method for measuring changes in the refractive index of the optical fiber sensor; and a method for measuring a distribution of backward scattering light of transmitted light through the optical fiber sensor. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、腐食性流体を収容する容器の内張りの損傷を検出する方法およびかかる検出が可能な流体収容装置に関する。   The present invention relates to a method for detecting damage to the lining of a container containing corrosive fluid, and a fluid storage device capable of such detection.

化学プラント等においては高温・高圧の塩酸、硫酸、硝酸等の腐食性液体を収容(貯蔵や輸送を含む)することが多い。多くの構造用金属材料はこのような腐食性液体に対する耐食性が劣るため用いることができず、一方、ガラス、セラミックス材料等は一般に良好な耐食性を示すと言われているが強度的に脆いため、大きな熱応力が作用する高温・高圧の配管には信頼性の観点から採用することが困難である。   In chemical plants, etc., corrosive liquids such as high-temperature and high-pressure hydrochloric acid, sulfuric acid, and nitric acid are often contained (including storage and transportation). Many structural metal materials cannot be used due to poor corrosion resistance against such corrosive liquids, while glass and ceramic materials are generally said to show good corrosion resistance but are brittle in strength. It is difficult to adopt from the viewpoint of reliability for high-temperature and high-pressure pipes where large thermal stress acts.

このような状況において、強度は外側の金属母材で分担し、その内面にガラスやセラミックス等の耐食性に優れた材料をコ−ティングまたはライニングなどの内張りを施す方法が知られている(特許文献1および2参照)。しかし、構造用金属材料に比べてガラスやセラミックスの熱膨張率が著しく小さいため、高温加熱時に両者の熱膨張率差で発生する熱応力により、コ−ティング層やライニング層に亀裂等の破損や剥離を生じる可能性が高い。   In such a situation, a method is known in which strength is shared by an outer metal base material, and a material excellent in corrosion resistance such as glass or ceramic is coated on the inner surface thereof by coating or lining (patent document). 1 and 2). However, since the thermal expansion coefficient of glass and ceramics is significantly smaller than that of structural metal materials, the coating layer and lining layer may be damaged by cracks and the like due to the thermal stress generated by the difference in thermal expansion coefficient between them. There is a high possibility of causing peeling.

一旦、コ−ティング層やライニング層に亀裂や剥離を生じると、腐食性液体が耐食性に劣る金属製母材と直接接することになり、短時間で腐食性液体が漏洩し、プラントが停止する等のリスクがある。したがって、機械的、または熱的応力によるコ−ティング層やライニング層の損傷を迅速かつ高精度で検知する技術が重要である。   Once cracking or peeling occurs in the coating layer or lining layer, the corrosive liquid comes into direct contact with the metal base material that is inferior in corrosion resistance, the corrosive liquid leaks in a short time, and the plant shuts down. There are risks. Therefore, a technique for detecting damage to the coating layer and the lining layer due to mechanical or thermal stress quickly and with high accuracy is important.

さらに、このようなガラスやセラミックスを金属部材の内面にライニング、コ−ティングしたものは、装置からの金属元素の混入を嫌う医薬、食品産業にも幅広く使用されている。このような装置においてもライニング層やコ−ティング層の損傷による製品中への金属元素の混入は避ける必要があり、ライニング層やコ−ティング層の損傷を外部から瞬時に検知することが不可欠である。   Furthermore, such a glass or ceramic lining and coating on the inner surface of a metal member is widely used in the pharmaceutical and food industries that dislike mixing metal elements from the apparatus. Even in such an apparatus, it is necessary to avoid contamination of the metal element into the product due to damage to the lining layer or coating layer, and it is essential to instantaneously detect damage to the lining layer or coating layer from the outside. is there.

このようなコ−ティング層やライニング層の損傷を検知する代表的な方法としては、超音波探傷法やアコ−スティックエミッション(AE)法が知られている。超音波探傷法は金属表面から超音波を入射し、コ−ティング層やライニング層中の亀裂での反射波を検出して亀裂の位置や大きさを検知する。しかし、探知できる領域が狭いので、損傷する位置を予め特定し、その位置に超音波を入射しないと検出することができない。また、金属製母材とコ−ティング層やライニング層との間に剥離等の間隙が発生している場合は、金属製母材側の剥離表面で入射した超音波が反射してしまい、コ−ティング層やライニング層の割れを検知することができない。   As a typical method for detecting such damage to the coating layer and the lining layer, an ultrasonic flaw detection method and an acoustic emission (AE) method are known. In the ultrasonic flaw detection method, an ultrasonic wave is incident from a metal surface, and a reflected wave at a crack in the coating layer or the lining layer is detected to detect the position and size of the crack. However, since the area that can be detected is narrow, it is impossible to detect unless the position to be damaged is specified in advance and the ultrasonic wave is incident on the position. In addition, when a gap such as peeling occurs between the metal base material and the coating layer or lining layer, the incident ultrasonic wave is reflected on the peeling surface on the metal base material side, and the coating is performed. -It is not possible to detect cracking in the lining layer or lining layer.

AE法は、コ−ティング層やライニング層の損傷に伴う音を感知し、その損傷を検知する方法であり、前記の超音波探傷法に比べて広範囲な領域をカバ−することができ、かつ、コ−ティング層やライニング層が損傷した瞬間に感知できる可能性が高い。しかし、センサの耐熱温度がせいぜい300℃程度であり、機器の運転に伴う様々なノイズの影響を受けるため信頼性に関しては必ずしも十分とは言えない。
特開2000−177042号公報 特開平7−294370号公報 特開2005−300337号公報 特開2006−38794号公報
The AE method is a method for detecting the sound accompanying damage to the coating layer and the lining layer and detecting the damage, and can cover a wider area than the ultrasonic flaw detection method described above, and There is a high possibility that the coating layer or the lining layer can be sensed at the moment of damage. However, the heat-resistant temperature of the sensor is at most about 300 ° C., and it is not necessarily sufficient in terms of reliability because it is affected by various noises accompanying the operation of the device.
JP 2000-177042 A JP 7-294370 A Japanese Patent Laying-Open No. 2005-300137 JP 2006-38794 A

このような状況において、特許文献1では、金属製母材内面のライニング層を2層構造とし、表面層は耐食性と絶縁性を兼ね備えた材料、下地層は導電性材料で構成し、内部の液体と金属製母材との間の電気的変化によりライニング層の損傷を検知する方法を提案している。しかし、濃硫酸のような絶縁性の液体には適用することができない。また、腐食性液体中に長期間にわたり電極を設置しておくことも困難であり、その適用先が限定されるという課題がある。さらに、損傷位置を特定することも困難であり、損傷が検知された場合でも損傷部を局部的に補修・交換することも難しく、そのメンテナンス性にも問題がある。   In such a situation, in Patent Document 1, the lining layer on the inner surface of the metal base material has a two-layer structure, the surface layer is made of a material having both corrosion resistance and insulation, the base layer is made of a conductive material, and the internal liquid A method for detecting the damage of the lining layer by the electrical change between the metal and the metal base material is proposed. However, it cannot be applied to an insulating liquid such as concentrated sulfuric acid. Moreover, it is difficult to install an electrode in a corrosive liquid for a long time, and there is a problem that the application destination is limited. Furthermore, it is difficult to specify the damage position, and even when damage is detected, it is difficult to repair and replace the damaged part locally, and there is a problem in its maintainability.

また、特許文献2では導電性液媒体を配管内に充満させる必要があり、高周波電圧印加装置が必要である。   Further, in Patent Document 2, it is necessary to fill a pipe with a conductive liquid medium, and a high-frequency voltage application device is required.

本発明は、上記事情に鑑みてなされたものであって、腐食性流体を内部に収容する内張り付き容器の内張りの損傷を長期間にわたって簡便に検出する方法、および、かかる検出が可能な腐食性流体収容装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and a method for easily detecting damage to the lining of a container with a lining containing corrosive fluid therein over a long period of time, and corrosivity capable of such detection. An object is to provide a fluid storage device.

上記目的を達成するために、本発明に係る内張り損傷検出方法は、腐食性流体を内部に収容し、金属製母材と、前記腐食性流体に対して前記母材よりも耐食性の高い材料の内張りとを有する容器の内張りの損傷を検出する内張り損傷検出方法において、前記金属製母材の外表面に光ファイバセンサを固定するセンサ固定工程と、前記光ファイバセンサにより前記内張りの損傷に伴う前記金属製母材のひずみ変化を測定するひずみ変化測定工程と、前記ひずみ変化に基づいて前記内張りの損傷を検知する損傷検知工程と、を有すること特徴とする。   In order to achieve the above object, a lining damage detection method according to the present invention includes a corrosive fluid contained therein, a metal base material, and a material having higher corrosion resistance than the base material against the corrosive fluid. In a lining damage detection method for detecting damage to a lining of a container having a lining, a sensor fixing step of fixing an optical fiber sensor to an outer surface of the metal base material, and the optical fiber sensor accompanying the damage of the lining. A strain change measuring step for measuring a strain change of the metal base material; and a damage detecting step for detecting damage to the lining based on the strain change.

本発明に係る腐食性流体収容装置は、腐食性流体を内部に収容する腐食性流体収容装置であって、金属製母材と、前記腐食性流体に対して前記母材よりも耐食性の高い材料の内張りと、前記金属製母材の外表面に固定された光ファイバセンサと、前記光ファイバセンサにより前記内張りの損傷に伴う前記金属製母材のひずみ変化を測定するひずみ変化測定手段と、を有すること特徴とする。   A corrosive fluid storage device according to the present invention is a corrosive fluid storage device that stores a corrosive fluid therein, and is a metal base material and a material having higher corrosion resistance than the base material with respect to the corrosive fluid. An optical fiber sensor fixed to the outer surface of the metal base material, and strain change measuring means for measuring a strain change of the metal base material accompanying damage to the liner by the optical fiber sensor. It is characterized by having.

この発明によれば、腐食性流体を内部に収容する内張り付き容器の内張りの損傷を長期間にわたって簡便に検出することができる。   According to the present invention, it is possible to easily detect the damage of the lining of the container with the lining containing the corrosive fluid therein over a long period of time.

発明者らは、従来のガラスやセラミックスがライニング(内張り)された部材を調査した結果、これらの製品は高温で施工・焼成されているものが多く、かつ、ライニング材と金属製母材とでは熱膨張率が大幅に異なるので、製造過程の冷却時にライニング層、金属製母材共に大きな残留ひずみが内在していることを見出した。   As a result of investigating conventional glass and ceramic lining members, these products are often constructed and fired at high temperatures, and the lining material and metal base material Since the coefficients of thermal expansion differed greatly, it was found that a large residual strain was inherent in both the lining layer and the metal base material during cooling of the manufacturing process.

また、このライニング層に生じている残留ひずみと金属製母材に生じている残留ひずみとは釣り合っており、ライニング層の損傷によりライニング層の残留ひずみが開放・消滅すると、金属製母材の残留ひずみも開放・消滅する。その結果、金属製母材に微小な変形が生じることが明かとなった。したがって、金属製母材の外表面におけるひずみの変化をモニタリングし、そのひずみの変化を検出することによりコ−ティング層またはライニング層の損傷を検知することが可能である。   Also, the residual strain generated in the lining layer and the residual strain generated in the metal base material are balanced, and if the residual strain in the lining layer is released or disappeared due to damage to the lining layer, the residual metal base material remains. The strain is also released and disappears. As a result, it has been clarified that minute deformation occurs in the metal base material. Therefore, it is possible to detect damage to the coating layer or the lining layer by monitoring the change in strain on the outer surface of the metal base material and detecting the change in strain.

また、耐熱処理を施した光ファイバセンサは500℃以上の高温でも安定であり、かつ、光ファイバが変形することにより、その内部を透過する光の波長や散乱が変化する特性を有している。したがって、コ−ティングまたはライニングを施した金属部材の表面に光ファイバを固定し、コ−ティング層またはライニング層の損傷により生じる金属製母材表面の微小なひずみ変化を検出することにより、コ−ティング層やライニング層の損傷を瞬時に感知することが可能である。さらに、この光ファイバセンサを、たとえば、配管、反応容器等の機器を構成する部材ごとに独立して設置することにより、コ−ティング層やライニング層が損傷した位置や部材を容易に特定することが可能となり、メンテナンス性も著しく改善できる。   The heat-resistant optical fiber sensor is stable even at a high temperature of 500 ° C. or higher, and has a characteristic that the wavelength and scattering of light transmitted through the optical fiber changes when the optical fiber is deformed. . Therefore, the optical fiber is fixed to the surface of the metal member subjected to coating or lining, and the coating is detected by detecting a minute strain change on the surface of the metal base material caused by damage to the coating layer or lining layer. It is possible to instantly detect damage to the ting layer and lining layer. Further, by installing this optical fiber sensor independently for each member constituting the equipment such as a pipe and a reaction vessel, for example, the position or member where the coating layer or the lining layer is damaged can be easily identified. And maintainability can be remarkably improved.

以下、本発明に係るガラスやセラミックスを内張りした金属部材における内張りの損傷検知方法と、腐食性流体収容装置についての具体的な実施形態を、図面を参照して説明する。ここで、同一または類似の部分には共通の符号を付して、重複説明は省略する。   Hereinafter, specific embodiments of a method for detecting damage to a lining in a metal member lined with glass or ceramics according to the present invention and a corrosive fluid storage device will be described with reference to the drawings. Here, the same or similar parts are denoted by common reference numerals, and redundant description is omitted.

[実施例1〜3]
本発明の実施例1〜3を図1、図2を参照して説明する。図1はガラスライニング配管1を模式的に示す縦断面図である。金属配管母材4の内面にガラスライニング層(内張り)5が設けられている。金属配管母材4はたとえば炭素鋼製であり、内面の耐食性を向上させるためにガラスがライニングされている。このガラスライニング配管1の直管部2の両端にフランジ部3が溶接されている。
[Examples 1 to 3]
Embodiments 1 to 3 of the present invention will be described with reference to FIGS. FIG. 1 is a longitudinal sectional view schematically showing a glass lining pipe 1. A glass lining layer (lining) 5 is provided on the inner surface of the metal pipe base material 4. The metal piping base material 4 is made of, for example, carbon steel, and is lined with glass in order to improve the corrosion resistance of the inner surface. Flange portions 3 are welded to both ends of the straight pipe portion 2 of the glass lining pipe 1.

ガラスライニング層5は、たとえば、金属配管母材4を高温に加熱し、その中にガラス管を挿入し、ガラス管の内部を加圧することによりガラス管を膨張させ、金属配管母材4の内面に密着させて形成する。このような状態で室温まで冷却すると、熱膨張率の大きい金属配管母材4の方が収縮量が大きいので、脆いガラスライニング層5に圧縮の残留ひずみが発生し割れ難い構造になっている。一方、金属配管母材4にはガラスライニング層5の圧縮残留ひずみとバランスして引張の残留ひずみが発生している。   The glass lining layer 5 is formed, for example, by heating the metal pipe preform 4 to a high temperature, inserting a glass tube therein, and pressurizing the inside of the glass tube to expand the glass tube, and thereby the inner surface of the metal pipe preform 4. It is formed in close contact with. When cooled to room temperature in such a state, the metal pipe base material 4 having a larger coefficient of thermal expansion has a larger shrinkage, so that a compressive residual strain is generated in the brittle glass lining layer 5 and the structure is difficult to break. On the other hand, tensile residual strain is generated in the metal pipe base material 4 in balance with the compressive residual strain of the glass lining layer 5.

図2は、本発明に係る腐食性流体収容装置の実施例1〜3を模式的に示したものである。ガラスライニング配管1の直管部2の外周面に、耐熱処理を施した光ファイバセンサ6を螺旋状に固定してある。光ファイバセンサ6はひずみ変化測定手段20に接続されて、ガラスライニング配管1のひずみ変化が測定される。また、ひずみ変化測定手段20は内張りの損傷を検知する損傷検知手段21に接続され、ひずみ変化測定手段20の出力に基づいて、ガラスライニング層5(図1)の損傷が検知される。   FIG. 2 schematically shows Examples 1 to 3 of the corrosive fluid container according to the present invention. An optical fiber sensor 6 subjected to a heat treatment is fixed in a spiral shape on the outer peripheral surface of the straight pipe portion 2 of the glass lining pipe 1. The optical fiber sensor 6 is connected to the strain change measuring means 20 and the strain change of the glass lining pipe 1 is measured. Further, the strain change measuring means 20 is connected to a damage detecting means 21 for detecting damage to the lining, and based on the output of the strain change measuring means 20, damage to the glass lining layer 5 (FIG. 1) is detected.

光ファイバセンサ6はその計測する物理量により幾つかの種類がある。実施例1としては、光ファイバ中を透過した光がドップラ効果による湾曲部での波長のずれを計測する方法とした。実施例2としては、光ファイバ内にグレ−ティング部を設け、このグレ−ティングでの回折波長のずれを計測する方法とした(特許文献3等参照)。実施例3としては、光ファイバ中を透過する光の後方散乱光の分布を計測する方法とした(特許文献4等参照)。   There are several types of optical fiber sensors 6 depending on the physical quantity to be measured. In Example 1, a method of measuring a wavelength shift at a curved portion due to the Doppler effect of light transmitted through an optical fiber was used. In Example 2, a grating part was provided in the optical fiber, and a method of measuring the shift of the diffraction wavelength in this grating was used (see Patent Document 3, etc.). Example 3 is a method of measuring the distribution of backscattered light transmitted through an optical fiber (see Patent Document 4).

一方、図3に示すように、比較例として、図1に示すガラスライニング配管1の表面に、高温処理を施したひずみゲ−ジ7を焼き付けたもの(比較例1)、自動露光(AE)素子8を密着させて固定したもの(比較例2)を製作した。   On the other hand, as shown in FIG. 3, as a comparative example, the surface of the glass lining pipe 1 shown in FIG. 1 is baked with a strain gauge 7 subjected to high temperature treatment (Comparative Example 1), automatic exposure (AE). A device (Comparative Example 2) in which the element 8 was fixed in close contact was manufactured.

次に上記の検知方法の特性を調べるため、熱サイクル試験を実施した。熱サイクル試験は実施例1〜3、および、比較例1、2に示したガラスライニング配管を電気炉の中に入れ、室温から所定の温度まで昇温後、その所定の温度で30分間保持し、その後室温まで降温した。その際、保持する所定の温度を300℃から50℃ずつ上げて、ガラスライニング層5が損傷する温度まで試験を行なった。   Next, in order to investigate the characteristics of the above detection method, a thermal cycle test was performed. In the heat cycle test, the glass lining pipes shown in Examples 1 to 3 and Comparative Examples 1 and 2 were put in an electric furnace, and after raising the temperature from room temperature to a predetermined temperature, the glass was maintained at the predetermined temperature for 30 minutes. Then, the temperature was lowered to room temperature. At that time, the predetermined temperature to be held was increased from 300 ° C. to 50 ° C., and the test was performed up to a temperature at which the glass lining layer 5 was damaged.

上記熱サイクル試験で得られた結果を図4の表に示す。図4で、センサに損傷がない場合(健全)を「○」で示し、センサが損傷した場合(以後の計測不可)を「×」で示し、ライニング層損傷を検知した場合を「◎」で示している。   The results obtained in the thermal cycle test are shown in the table of FIG. In FIG. 4, “○” indicates that the sensor is not damaged (healthy), “×” indicates that the sensor is damaged (cannot be measured thereafter), and “◎” indicates that the lining layer damage is detected. Show.

図4の結果から、本発明に係る実施例1〜3においては、450℃でガラスライニング層の損傷を示すひずみの変化が検知でき、本方法でガラスライニング層の損傷による金属製母材のひずみ変化が測定可能なことが明らかとなった。一方、ひずみゲ−ジを用いた比較例1では、300℃の最初の熱サイクルでひずみゲ−ジが損傷し、450℃でのガラスライニング層の損傷を検知することはできなかった。また、AEセンサ−を用いた比較例2においても、400℃でAEセンサ−が損傷し、450℃でのガラスライニング層の損傷を検知することはできなかった。   From the results of FIG. 4, in Examples 1 to 3 according to the present invention, a change in strain indicating damage of the glass lining layer can be detected at 450 ° C., and strain of the metal base material due to damage of the glass lining layer by this method is detected. It became clear that the change was measurable. On the other hand, in Comparative Example 1 using a strain gauge, the strain gauge was damaged in the first thermal cycle at 300 ° C., and the damage of the glass lining layer at 450 ° C. could not be detected. Also in Comparative Example 2 using the AE sensor, the AE sensor was damaged at 400 ° C., and damage to the glass lining layer at 450 ° C. could not be detected.

以上のように、上記実施例1〜3の光ファイバセンサを用いることにより、高温でガラスライニング配管のガラスライニング層の損傷に伴う金属製母材表面のひずみ変化を精度良く検知することが可能であり、配管内部に高温の腐食性液体が流れる場合でも、ガラスライニング層の損傷を瞬時に検知し、外部への漏洩を未然に防止することが可能である。また、上記実施例のように光ファィバセンサを配管の外周部全体にわたって螺旋状に設置することにより、ライニング層がいずれの位置で損傷しても検知することが可能となる。   As described above, by using the optical fiber sensors of Examples 1 to 3, it is possible to accurately detect a change in strain on the surface of the metal base material caused by damage to the glass lining layer of the glass lining pipe at a high temperature. Yes, even when a hot corrosive liquid flows inside the pipe, it is possible to instantaneously detect damage to the glass lining layer and prevent leakage to the outside. Moreover, it becomes possible to detect whether the lining layer is damaged at any position by installing the optical fiber sensor spirally over the entire outer periphery of the pipe as in the above embodiment.

[実施例4〜7]
本発明の実施例4〜7を図5〜図8を参照して説明する。上記実施例1〜3(図2、図3)で示したように、光ファイバセンサ6をガラスライニング配管1の外周部に螺旋状に設置することにより、ガラスライニング層の損傷を精度良く検知できることを確認した。しかしガラスファイバセンサの取り付け方法により測定される信号の精度が異なる。たとえば、実施例1〜3に示した光ファイバセンサ6を螺旋状に取り付けた場合は、配管全体にわたっての情報を得ることができるが、その精度と感度は若干低下する。
[Examples 4 to 7]
Embodiments 4 to 7 of the present invention will be described with reference to FIGS. As shown in Examples 1 to 3 (FIGS. 2 and 3), the optical fiber sensor 6 can be spirally installed on the outer peripheral portion of the glass lining pipe 1 to accurately detect damage to the glass lining layer. It was confirmed. However, the accuracy of the signal measured differs depending on the glass fiber sensor mounting method. For example, when the optical fiber sensor 6 shown in Embodiments 1 to 3 is attached in a spiral shape, information on the entire pipe can be obtained, but the accuracy and sensitivity are slightly lowered.

すなわち、図2に示した光ファイバセンサの配置では、配管の周方向のひずみ変化には比較的良好な感度を有するが、配管の長手方向のひずみ変化の検出感度は必ずしも十分ではない。また、光ファイバセンサが金属製配管から浮きあがっていると、その周囲のひずみ変化を測定できず、検知感度が低下する可能性がある。そこで、本実施例ではこのような課題を改善するため、以下の構成とした。   That is, the arrangement of the optical fiber sensor shown in FIG. 2 has relatively good sensitivity to changes in the strain in the circumferential direction of the pipe, but the detection sensitivity of strain changes in the longitudinal direction of the pipe is not always sufficient. Further, if the optical fiber sensor is lifted from the metal pipe, the surrounding strain change cannot be measured, and the detection sensitivity may be lowered. Therefore, in this embodiment, in order to improve such a problem, the following configuration is adopted.

図5に示すようにガラスライニングを施したエルボ配管9の場合は、曲部が応力集中になり、同位置でガラスライニング層が損傷する可能性が極めて高い。これに対応するために次のような構成とした。   As shown in FIG. 5, in the case of the elbow pipe 9 subjected to glass lining, the curved portion becomes stress concentrated, and the possibility that the glass lining layer is damaged at the same position is very high. In order to cope with this, the following configuration is adopted.

実施例4では、図5に示すように、曲部に光ファイバセンサ6を集中的に巻き付けた。   In Example 4, as shown in FIG. 5, the optical fiber sensor 6 was concentratedly wound around the curved portion.

実施例5では、図6に示すように、光ファイバセンサを渦巻き状にし、応力集中部となりやすい曲部の外側と内側に設置した。これは、実施例4では配管の長手方向のひずみ検出感度が低いからである。   In Example 5, as shown in FIG. 6, the optical fiber sensor was spirally installed on the outer side and the inner side of the curved portion that tends to become a stress concentration portion. This is because in Example 4, the strain detection sensitivity in the longitudinal direction of the pipe is low.

実施例6では、図7に示すように、光ファイバセンサを楕円形の渦巻き状光ファイバセンサ6bとし、楕円形状の長軸方向を好感度が必要な周方向に合わせて設置した。これは、ガラスライニングを施した直管部2ではガラスライニング層の損傷により周方向のひずみ変化が大きいが、その破壊形態では長手方向のひずみ変化が大きくなる場合もあるからである。   In Example 6, as shown in FIG. 7, the optical fiber sensor is an elliptical spiral optical fiber sensor 6b, and the elliptical long axis direction is set in accordance with the circumferential direction that requires favorable sensitivity. This is because the straight pipe portion 2 subjected to the glass lining has a large strain change in the circumferential direction due to the damage of the glass lining layer, but the strain change in the longitudinal direction may be large in the fracture mode.

実施例7では、図8に示すように、実施例6の楕円形の渦巻き状光ファイバセンサ6bに加えて、楕円形状の長軸方向を配管の長手方向に合わせた楕円形の渦巻き状光ファイバセンサ6cも設置した。   In Example 7, as shown in FIG. 8, in addition to the elliptical spiral optical fiber sensor 6b of Example 6, an elliptical spiral optical fiber in which the major axis direction of the elliptical shape is matched with the longitudinal direction of the pipe. A sensor 6c was also installed.

上記実施例4〜7に加えて、エルボ配管9と直管部2の全体にわたって光ファイバセンサを螺旋状に配置したものを、それぞれ比較例3、比較例4として、熱サイクル試験を実施した。   In addition to the above Examples 4-7, thermal cycle tests were conducted as Comparative Example 3 and Comparative Example 4, respectively, in which the optical fiber sensors were spirally arranged over the entire elbow pipe 9 and the straight pipe part 2.

熱サイクル試験はエルボ配管と直管について、その中央部近傍に圧縮荷重を負荷し、周方向に強制的にひずみを与えた場合と、両端部のフランジ部に圧縮荷重を負荷し、配管全体に長手方向のひずみを強制的に与えた場合について実施した。熱サイクル試験はエルボ配管、直管、それぞれ3本について実施し、いずれかの光ファイバセンサがガラスライニング層の損傷を感知した時点で終了した。   In the thermal cycle test, for elbow pipes and straight pipes, a compressive load is applied in the vicinity of the center of the pipe and a strain is forced in the circumferential direction, and a compressive load is applied to the flanges at both ends. This was carried out in the case where a longitudinal strain was forcibly applied. The thermal cycle test was carried out for three elbow pipes and three straight pipes, and ended when any of the optical fiber sensors detected damage to the glass lining layer.

エルボ配管を用いた、実施例4、5および比較例3の実験結果を図9の表に示す。図9でガラスライニング層の損傷を検知できた場合は「○」、検知できなかった場合は「×」で表している。   The experimental results of Examples 4 and 5 and Comparative Example 3 using elbow piping are shown in the table of FIG. In FIG. 9, when the damage of the glass lining layer can be detected, “◯” is indicated, and when it is not detected, “X” is indicated.

図9に示す実験結果より、エルボ配管全体にわたって光ファイバセンサを設置した比較例3では、周方向の検出感度は比較的良好であるが、応力集中部に集中して光ファイバセンサを設置した実施例4では、比較例3では検知できなかった微小なひずみ変化も捕らえることが可能であり、周方向の検知感度が改善されていることが確認された。一方、渦巻き状に光ファイバセンサを配置した実施例5は、実施例4および比較例3では検出できなかった長手方向のひずみ変化を良好に捕らえられることがわかる。   From the experimental results shown in FIG. 9, in Comparative Example 3 in which the optical fiber sensor was installed over the entire elbow pipe, the detection sensitivity in the circumferential direction was relatively good, but the optical fiber sensor was installed concentrated on the stress concentration part. In Example 4, it was possible to capture a minute strain change that could not be detected in Comparative Example 3, and it was confirmed that the circumferential detection sensitivity was improved. On the other hand, it can be seen that Example 5 in which the optical fiber sensors are arranged in a spiral shape can satisfactorily capture the longitudinal strain change that could not be detected in Example 4 and Comparative Example 3.

次に直管を用いた、実施例6、7および比較例4の実験結果を図10の表に示す。図9と同様にガラスライニング層の損傷を検知できた場合は「○」、検知できなかった場合は「×」で表している。   Next, the experimental results of Examples 6 and 7 and Comparative Example 4 using a straight pipe are shown in the table of FIG. As in FIG. 9, when the damage of the glass lining layer can be detected, “◯” is indicated, and when it is not detected, “X” is indicated.

図10に示す実験結果より、直管全体にわたって光ファイバセンサを設置した比較例4では、周方向の検出感度は良好であるが、光ファイバセンサを楕円形状の渦巻き状に設置することにより、周方向に加えて長手方向の検出感度も著しく改善されることがわかる。さらに、このような楕円形状の渦巻き状センサを、それぞれの長軸が直交する方向に設置した実施例7では、周方向、長手方向ともに優れた検出感度を示すことが明らかである。   From the experimental results shown in FIG. 10, in Comparative Example 4 in which the optical fiber sensor is installed over the entire straight pipe, the circumferential detection sensitivity is good, but by installing the optical fiber sensor in an elliptical spiral shape, It can be seen that the detection sensitivity in the longitudinal direction in addition to the direction is significantly improved. Further, it is clear that Example 7 in which such elliptical spiral sensors are installed in directions in which the respective long axes are orthogonal shows excellent detection sensitivity in both the circumferential direction and the longitudinal direction.

以上のように光ファイバセンサの設置位置や設置形状を最適化することにより、各々の製品に合った検出感度を得ることができる。   As described above, by optimizing the installation position and installation shape of the optical fiber sensor, detection sensitivity suitable for each product can be obtained.

このような金属製母材とライニング層との残留ひずみは、配管に限らず、どのような部材にも生じており、光ファイバセンサを用いてライニング層の損傷による金属製母材のひずみ変化を検知することにより、ライニング層の損傷を瞬時に精度良く検出することが可能となる。   Such residual strain between the metal base material and the lining layer is generated not only in the piping but also in any member, and the strain change of the metal base material due to the damage of the lining layer is detected using an optical fiber sensor. By detecting it, it becomes possible to detect the damage of the lining layer instantly and accurately.

本発明に係るガラスライニング配管の一例を示す縦断面図。The longitudinal cross-sectional view which shows an example of the glass lining piping which concerns on this invention. 本発明に係る腐食性流体収容装置の実施例1〜3を示す模式的外観図。The typical external view which shows Examples 1-3 of the corrosive fluid accommodation apparatus which concerns on this invention. 本発明に係る腐食性流体収容装置の比較例1、2を示す模式的外観図。The typical external view which shows the comparative examples 1 and 2 of the corrosive fluid accommodating apparatus which concerns on this invention. 本発明に係る腐食性流体収容装置の実施例1〜3と比較例1、2の実験結果を示す表。The table | surface which shows the experimental result of Examples 1-3 and Comparative Examples 1 and 2 of the corrosive fluid accommodation apparatus which concerns on this invention. 本発明に係る腐食性流体収容装置の実施例4を示す模式的外観図。The typical external view which shows Example 4 of the corrosive fluid accommodating apparatus which concerns on this invention. 本発明に係る腐食性流体収容装置の実施例5を示す模式的外観図。The typical external view which shows Example 5 of the corrosive fluid accommodating apparatus which concerns on this invention. 本発明に係る腐食性流体収容装置の実施例6を示す模式的外観図。The typical external view which shows Example 6 of the corrosive fluid accommodating apparatus which concerns on this invention. 本発明に係る腐食性流体収容装置の実施例7を示す模式的外観図。The typical external view which shows Example 7 of the corrosive fluid accommodating apparatus which concerns on this invention. 本発明に係る腐食性流体収容装置の実施例4、5と比較例3の実験結果を示す表。The table | surface which shows the experimental result of Examples 4 and 5 and the comparative example 3 of the corrosive fluid accommodation apparatus which concerns on this invention. 本発明に係る腐食性流体収容装置の実施例6、7と比較例4の実験結果を示す表。The table | surface which shows the experimental result of Examples 6 and 7 and the comparative example 4 of the corrosive fluid accommodation apparatus which concerns on this invention.

符号の説明Explanation of symbols

1…ガラスライニング配管
2…直管部
3…フランジ部
4…金属配管母材(金属製母材)
5…ライニング層(内張り)
6,6a,6b,6c…光ファイバセンサ
7…ひずみゲージ
8…AEセンサ
20…ひずみ変化測定手段
21…損傷検知手段
DESCRIPTION OF SYMBOLS 1 ... Glass lining piping 2 ... Straight pipe part 3 ... Flange part 4 ... Metal piping base material (metal base material)
5 ... Lining layer (lining)
6, 6a, 6b, 6c ... optical fiber sensor 7 ... strain gauge 8 ... AE sensor 20 ... strain change measuring means 21 ... damage detecting means

Claims (10)

腐食性流体を内部に収容し、金属製母材と、前記腐食性流体に対して前記母材よりも耐食性の高い材料の内張りとを有する容器の内張りの損傷を検出する内張り損傷検出方法において、
前記金属製母材の外表面に光ファイバセンサを固定するセンサ固定工程と、
前記光ファイバセンサにより前記内張りの損傷に伴う前記金属製母材のひずみ変化を測定するひずみ変化測定工程と、
前記ひずみ変化に基づいて前記内張りの損傷を検知する損傷検知工程と、
を有すること特徴とする内張り損傷検出方法。
In a lining damage detection method for containing a corrosive fluid inside and detecting damage to a lining of a container having a metal base material and a lining of a material having higher corrosion resistance than the base material against the corrosive fluid,
A sensor fixing step of fixing an optical fiber sensor to the outer surface of the metal base material;
A strain change measuring step of measuring a strain change of the metal base material due to damage of the lining by the optical fiber sensor;
A damage detection step of detecting damage to the lining based on the strain change;
A lining damage detection method characterized by comprising:
前記ひずみ変化測定工程は、前記光ファイバセンサ中を透過した光がドップラ効果による湾曲部での波長のずれを計測する工程を含むこと、を特徴とする請求項1に記載の内張り損傷検出方法。   2. The lining damage detection method according to claim 1, wherein the strain change measurement step includes a step of measuring a wavelength shift of the curved portion due to the Doppler effect by the light transmitted through the optical fiber sensor. 前記ひずみ変化測定工程は、前記光ファイバセンサの屈折率の変化を計測する工程を含むこと、を特徴とする請求項1に記載の内張り損傷検出方法。   The lining damage detection method according to claim 1, wherein the strain change measurement step includes a step of measuring a change in refractive index of the optical fiber sensor. 前記ひずみ変化測定工程は、前記光ファイバセンサの透過光後方散乱光分布を計測する工程を含むこと、を特徴とする請求項1に記載の内張り損傷検出方法。   The lining damage detection method according to claim 1, wherein the strain change measurement step includes a step of measuring a transmitted light backscattered light distribution of the optical fiber sensor. 前記容器は管状であって、前記センサ固定工程は、前記容器の長手方向ほぼ全体にわたって前記光ファイバセンサを螺旋状に設置することを特徴とする請求項1ないし請求項4のいずれか一項に記載の内張り損傷検出方法。   5. The container according to any one of claims 1 to 4, wherein the container is tubular, and the optical fiber sensor is spirally installed over substantially the entire longitudinal direction of the container in the sensor fixing step. The lining damage detection method as described. 前記センサ固定工程は、前記容器の応力集中部に前記光ファイバセンサを設置することを特徴とする請求項1ないし請求項4のいずれか一項に記載の内張り損傷検出方法。   The lining damage detection method according to any one of claims 1 to 4, wherein in the sensor fixing step, the optical fiber sensor is installed in a stress concentration portion of the container. 前記センサ固定工程は、前記光ファイバセンサを渦巻き状に設置することを特徴とする請求項1ないし請求項4または請求項6のいずれか一項に記載の内張り損傷検出方法。   The lining damage detection method according to claim 1, wherein the optical fiber sensor is installed in a spiral shape in the sensor fixing step. 前記光ファイバセンサは、アスペクト比を有する楕円形状であることを特徴とする請求項7記載の内張り損傷検出方法。   The lining damage detection method according to claim 7, wherein the optical fiber sensor has an elliptical shape having an aspect ratio. 前記センサ固定工程は、前記容器の外表面に、互いに長手軸方向が直交する向きに複数の楕円形状の渦巻き状光ファイバセンサを設置するものであることを特徴とする請求項8記載の内張り損傷検出方法。   9. The lining damage according to claim 8, wherein in the sensor fixing step, a plurality of elliptical spiral optical fiber sensors are installed on the outer surface of the container so that the longitudinal axis directions thereof are orthogonal to each other. Detection method. 腐食性流体を内部に収容する腐食性流体収容装置であって、
金属製母材と、
前記腐食性流体に対して前記母材よりも耐食性の高い材料の内張りと、
前記金属製母材の外表面に固定された光ファイバセンサと、
前記光ファイバセンサにより前記内張りの損傷に伴う前記金属製母材のひずみ変化を測定するひずみ変化測定手段と、
を有すること特徴とする腐食性流体収容装置。
A corrosive fluid containing device for containing a corrosive fluid inside,
A metal base material,
A lining of a material having higher corrosion resistance than the base material against the corrosive fluid;
An optical fiber sensor fixed to the outer surface of the metal base material;
A strain change measuring means for measuring a strain change of the metal base material due to damage of the lining by the optical fiber sensor;
A corrosive fluid containing device characterized by comprising:
JP2006073914A 2006-03-17 2006-03-17 Lined damage detection method and corrosive fluid container Expired - Fee Related JP4594887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006073914A JP4594887B2 (en) 2006-03-17 2006-03-17 Lined damage detection method and corrosive fluid container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006073914A JP4594887B2 (en) 2006-03-17 2006-03-17 Lined damage detection method and corrosive fluid container

Publications (2)

Publication Number Publication Date
JP2007248332A true JP2007248332A (en) 2007-09-27
JP4594887B2 JP4594887B2 (en) 2010-12-08

Family

ID=38592792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006073914A Expired - Fee Related JP4594887B2 (en) 2006-03-17 2006-03-17 Lined damage detection method and corrosive fluid container

Country Status (1)

Country Link
JP (1) JP4594887B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015044998A1 (en) * 2013-09-24 2015-04-02 富士通株式会社 Optical fiber cord and abnormality detection system
JP2016188858A (en) * 2015-03-27 2016-11-04 太平洋セメント株式会社 Corrosion detection method and corrosion sensor

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62228192A (en) * 1986-03-29 1987-10-07 株式会社東芝 Nuclear fuel element
JPH07267250A (en) * 1994-03-29 1995-10-17 Fuji Kako Kk Lining reservoir and manufacture thereof
JPH07294370A (en) * 1994-04-25 1995-11-10 Mitsubishi Chem Corp Method for detecting damage of lined piping
JPH1090018A (en) * 1996-09-17 1998-04-10 Sumitomo Electric Ind Ltd System for observing distortion of ground
JPH11256627A (en) * 1998-03-12 1999-09-21 Sakuji Kurata Method for using whole pipeline in underground buried substance and structure as overall emergency predict alarm sensor, and overall emergency predict disaster-prevention monitor system
JPH11344390A (en) * 1998-06-03 1999-12-14 Mitsubishi Heavy Ind Ltd Device for detecting damaged position of pipe or container
JP2000177042A (en) * 1998-12-15 2000-06-27 Shinko Pantec Co Ltd Lined product, damage detecting method, and coating material for lining
JP2000329622A (en) * 1999-05-24 2000-11-30 Hitachi Cable Ltd Optical fiber temperature sensor
JP2001208505A (en) * 2000-01-27 2001-08-03 Kubota Corp Method for measuring shrink quantity of corrosionproof lining layer
JP2003254724A (en) * 2002-03-01 2003-09-10 Tokyo Electric Power Co Inc:The System for measuring wide-area distortion distribution
JP2005300337A (en) * 2004-04-12 2005-10-27 Kazumasa Sasaki Optical fiber strain sensor and measuring apparatus using it
JP2006038794A (en) * 2004-07-30 2006-02-09 Geo-Research Institute Optical fiber sensor and sensing system thereof

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62228192A (en) * 1986-03-29 1987-10-07 株式会社東芝 Nuclear fuel element
JPH07267250A (en) * 1994-03-29 1995-10-17 Fuji Kako Kk Lining reservoir and manufacture thereof
JPH07294370A (en) * 1994-04-25 1995-11-10 Mitsubishi Chem Corp Method for detecting damage of lined piping
JPH1090018A (en) * 1996-09-17 1998-04-10 Sumitomo Electric Ind Ltd System for observing distortion of ground
JPH11256627A (en) * 1998-03-12 1999-09-21 Sakuji Kurata Method for using whole pipeline in underground buried substance and structure as overall emergency predict alarm sensor, and overall emergency predict disaster-prevention monitor system
JPH11344390A (en) * 1998-06-03 1999-12-14 Mitsubishi Heavy Ind Ltd Device for detecting damaged position of pipe or container
JP2000177042A (en) * 1998-12-15 2000-06-27 Shinko Pantec Co Ltd Lined product, damage detecting method, and coating material for lining
JP2000329622A (en) * 1999-05-24 2000-11-30 Hitachi Cable Ltd Optical fiber temperature sensor
JP2001208505A (en) * 2000-01-27 2001-08-03 Kubota Corp Method for measuring shrink quantity of corrosionproof lining layer
JP2003254724A (en) * 2002-03-01 2003-09-10 Tokyo Electric Power Co Inc:The System for measuring wide-area distortion distribution
JP2005300337A (en) * 2004-04-12 2005-10-27 Kazumasa Sasaki Optical fiber strain sensor and measuring apparatus using it
JP2006038794A (en) * 2004-07-30 2006-02-09 Geo-Research Institute Optical fiber sensor and sensing system thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015044998A1 (en) * 2013-09-24 2015-04-02 富士通株式会社 Optical fiber cord and abnormality detection system
JPWO2015044998A1 (en) * 2013-09-24 2017-03-02 富士通株式会社 Optical fiber cord and anomaly detection system
US10422751B2 (en) 2013-09-24 2019-09-24 Fujitsu Limited Optical fiber cord and abnormality detection system
JP2016188858A (en) * 2015-03-27 2016-11-04 太平洋セメント株式会社 Corrosion detection method and corrosion sensor

Also Published As

Publication number Publication date
JP4594887B2 (en) 2010-12-08

Similar Documents

Publication Publication Date Title
JP5171623B2 (en) Optical fiber strain adjustment type material change sensor
JPH0933358A (en) Device that measures temperature of high-temperature wall
JP4594887B2 (en) Lined damage detection method and corrosive fluid container
JP2007024830A (en) Attaching structure of surface thermometer
JP4776484B2 (en) Pipe nondestructive inspection device, pipe nondestructive inspection method, and power plant
JPH11344390A (en) Device for detecting damaged position of pipe or container
RU2652534C1 (en) Control means for a high-temperature and high pressure device
KR101137699B1 (en) Method and Apparatus for Measurement of Terminal Solid Solubility Temperature in Alloys Capable of Forming Hydrides
JP2009287957A (en) System for distortion detection, and distortion detection method using the same
JP6220257B2 (en) Pipe life evaluation method
JP2005003575A (en) Temperature measuring sensor, refractory body, and diagnostic method for fireproof lining
CN214583469U (en) Instrument electric tracing overtemperature protection measuring tube
JP2011117823A (en) Device for measuring pipe wall thickness
JP2008107327A (en) Device and method for measuring pipe wall thickness
JPWO2009081466A1 (en) Heating heater for piping
JP2005127741A (en) Method and apparatus for detecting leakage of gaseous substance
JP2002221303A (en) Method of measuring furnace interior side temperature of membrane panel
Hu et al. Design and test of an extensometer for strain monitoring of high temperature pipelines
KR102023117B1 (en) Piping unit and heating system having the same
JP5876348B2 (en) Heater wire inspection method
JP2002286444A (en) Crack detecting method for high-temperature pipe
WO2021040041A1 (en) Thermal history evaluation method and thermal history evaluation device for heat-resistant member
JP2019215094A (en) Refractory lining structure and temperature sensor
JP2004239634A (en) Outlet temperature measurement system of cracking furnace for ethylene manufacturing device
US20230375414A1 (en) Temperature sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100917

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees