JP2007248169A - Eddy current flaw detection probe - Google Patents

Eddy current flaw detection probe Download PDF

Info

Publication number
JP2007248169A
JP2007248169A JP2006070155A JP2006070155A JP2007248169A JP 2007248169 A JP2007248169 A JP 2007248169A JP 2006070155 A JP2006070155 A JP 2006070155A JP 2006070155 A JP2006070155 A JP 2006070155A JP 2007248169 A JP2007248169 A JP 2007248169A
Authority
JP
Japan
Prior art keywords
coil
detection
eddy current
current flaw
flaw detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006070155A
Other languages
Japanese (ja)
Other versions
JP4881494B2 (en
Inventor
Hidefumi Matsukawa
英文 松川
Akihiro Koyama
昭弘 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marktec Corp
Original Assignee
Marktec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marktec Corp filed Critical Marktec Corp
Priority to JP2006070155A priority Critical patent/JP4881494B2/en
Publication of JP2007248169A publication Critical patent/JP2007248169A/en
Application granted granted Critical
Publication of JP4881494B2 publication Critical patent/JP4881494B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an eddy current flaw detection probe, wherein a vertically placed detection coil is arranged inside an exciting coil, capable of detecting flaws in full directions for a large area by moving an eddy current flaw detection probe in the scanning direction while rotating the detection coil. <P>SOLUTION: The eddy current flaw detection probe 2 consists of the exciting coil 21 and the detection coil 22 and has the vertically placed detection coil 22 arranged in the exciting coil 21 so as to rotate the coil. The eddy current flaw detection probe 2 moves in the Y-direction while rotating the detection coil 22 around the rotation axis P1. The locus of the detection coil 21 at that time is shown as in the drawing, and the detection coil moves with changing the direction. Thereby, the flaws in the full different directions such as the flaws F1-F4 can be detected. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本願発明は、検出コイルを回転しながら走査方向へ移動する渦電流探傷プローブに関する。   The present invention relates to an eddy current flaw detection probe that moves in a scanning direction while rotating a detection coil.

従来励磁コイル内で検出コイルを回転して、種々の方向のキズを検出する渦電流探傷プローブが提案されている(例えば特許文献1参照)。
図7、図8により従来の渦電流探傷プローブを説明する。
図7は、渦電流探傷プローブの構成を示す。
図7(a)は、渦電流探傷プローブの平面図、図7(b−1),(b−1)は、励磁コイルと検出コイルの斜視図である。
渦電流探傷プローブ1は、パンケーキ状の励磁コイル11、四角形の検出コイル12からなり、励磁コイル11は、コイル軸(コイルの中心を通る軸)が被検査体Tの検査面と直交するように(コイル面が検査面と平行になるように)配置し、検出コイル12は、励磁コイル11内に、そのコイル面(巻き線で囲まれた開口面)が被検査体Tの検査面と直交するように配置してある。検出コイル12は、モータ(図示せず)により励磁コイル11内で回転する。
Conventionally, an eddy current flaw detection probe that detects a scratch in various directions by rotating a detection coil in an exciting coil has been proposed (see, for example, Patent Document 1).
A conventional eddy current flaw detection probe will be described with reference to FIGS.
FIG. 7 shows the configuration of the eddy current flaw detection probe.
FIG. 7A is a plan view of the eddy current flaw detection probe, and FIGS. 7B-1 and 7B-1 are perspective views of an excitation coil and a detection coil.
The eddy current flaw detection probe 1 includes a pancake-shaped excitation coil 11 and a rectangular detection coil 12. The excitation coil 11 has a coil axis (axis passing through the center of the coil) orthogonal to the inspection surface of the inspection object T. (The coil surface is parallel to the inspection surface), and the detection coil 12 has an excitation coil 11 in which the coil surface (opening surface surrounded by the winding) is the inspection surface of the object T to be inspected. They are arranged so as to be orthogonal. The detection coil 12 is rotated in the excitation coil 11 by a motor (not shown).

次に図8により、図7の渦電流探傷プローブによる探傷について説明する。
図7の渦電流探傷プローブ1により、例えば図8(a)のように、被検査体TのキズF1〜F4を検出する場合には、検出コイル12の中心点P1を中心に時計方向(矢印方向)へ回転し、検出コイル12が1回転する度に、渦電流探傷プローブ1を線Lに沿って、例えば図8(b)の位置X1,X2,X3へ間歇的に移動し、夫々の位置において検出コイル12を1回転して探傷する。
Next, flaw detection using the eddy current flaw detection probe of FIG. 7 will be described with reference to FIG.
When the flaws F1 to F4 of the inspection object T are detected by the eddy current flaw detection probe 1 of FIG. 7, for example, as shown in FIG. 8A, the clockwise direction (arrows) around the center point P1 of the detection coil 12 Each time the detection coil 12 rotates once, the eddy current flaw detection probe 1 is intermittently moved along the line L to, for example, positions X1, X2, and X3 in FIG. The detection coil 12 is rotated once at the position for flaw detection.

また検出コイル12は、位置X1,X2,X3において時計方向へ回転した場合、検出コイル12の1回転分の軌跡は、図8(c−1)、(c−2)のようになる。なお図8(c−1)は、1回転の前半の半回転分の軌跡を示し、図8(c−2)は、後半の半回転分の軌跡を示す。図8(c−1)、(c−2)は、別々に表記してあるが、両図合わせて同じ位置X1等における1回転分の軌跡となる。また図8(c−1)、(c−2)は、検出コイル12の方向を分かり易くするため、便宜的に矢印を付してある。   When the detection coil 12 rotates clockwise at the positions X1, X2, and X3, the trajectory for one rotation of the detection coil 12 is as shown in FIGS. 8C-1 and 8C-2. FIG. 8C-1 shows a locus for the first half of one rotation, and FIG. 8C-2 shows a locus for the second half of the rotation. 8 (c-1) and (c-2) are shown separately, but they are a locus for one rotation at the same position X1 and the like together. 8 (c-1) and (c-2) are provided with arrows for the sake of convenience in order to make the direction of the detection coil 12 easy to understand.

キズによって発生る渦電流は、キズに沿って流れるから、検出コイル12の検出感度は、検出コイル12のコイル面がキズの長手方向と平行(巻き線がキズの長手方向と平行)になるとき一番高く、直交するとき一番低くなる。したがって渦電流探傷プローブ1の位置X1,X2,X3は、中心点P1がキズの近傍に位置するように選定する必要があるが、探傷前には、キズF1〜F4の位置は分からないから、渦電流探傷プローブ1を走査方向へ移動するときの移動量の設定や制御が難しく、かつ渦電流探傷プローブ1は、例えば位置X1において1回転してから位置X2へ移動し、位置X2において1回転してから位置X3へ移動するというように間歇的に移動するから、移動速度が遅くなり探傷時間が長くなる。   Since the eddy current generated by the flaw flows along the flaw, the detection sensitivity of the detection coil 12 is when the coil surface of the detection coil 12 is parallel to the longitudinal direction of the flaw (the winding is parallel to the longitudinal direction of the flaw). Highest, lowest when orthogonal. Therefore, it is necessary to select the positions X1, X2, and X3 of the eddy current flaw detection probe 1 so that the center point P1 is positioned in the vicinity of the flaw. However, before flaw detection, the positions of the flaws F1 to F4 are not known. It is difficult to set and control the amount of movement when moving the eddy current flaw detection probe 1 in the scanning direction. For example, the eddy current flaw detection probe 1 moves to the position X2 after making one rotation at the position X1, and then makes one rotation at the position X2. Then, since it moves intermittently, such as moving to position X3, the moving speed becomes slow and the flaw detection time becomes long.

特開2002−214202号公報JP 2002-214202 A

本願発明は、従来の渦電流探傷プローブの前記問題点を解決することを目的とし、検出コイルを回転させながら渦電流探傷プローブを走査方向へ連続的に移動して、広い範囲の全方向のキズを短時間で、高感度で検出することができる渦電流探傷プローブを提供することを目的する。   The present invention aims to solve the above-mentioned problems of the conventional eddy current flaw detection probe. The eddy current flaw detection probe is continuously moved in the scanning direction while rotating the detection coil, and a wide range of omnidirectional flaws are detected. An object of the present invention is to provide an eddy current flaw detection probe capable of detecting a high-sensitivity in a short time.

本願発明は、その目的を達成するため、請求項1に記載の渦電流探傷プローブは、励磁コイルと励磁コイル内に配置した検出コイルを備え、励磁コイルのコイル面と検出コイルのコイル面は、直交するように配置してある渦電流探傷プローブにおいて、前記渦電流探傷プローブ又は検出コイルを、回転軸を中心に回転しながら走査方向へ移動することを特徴とする。
請求項2に記載の渦電流探傷プローブは、励磁コイルと励磁コイル内に配置した検出コイルを備え、励磁コイルのコイル面と検出コイルのコイル面は、直交するように配置してある渦電流探傷プローブを2個以上備え、2個以上の渦電流探傷プローブは、1個の回転軸の周囲に配置してあり、その回転軸を中心に回転しながら走査方向へ移動することを特徴とする。
請求項3に記載の渦電流探傷プローブは、1個の励磁コイルとその励磁コイル内に配置した2個以上の検出コイルを備え、1個の励磁コイルのコイル面と2個以上の検出コイルのコイル面は、直交するように配置してある渦電流探傷プローブにおいて、2個以上の検出コイルを、各検出コイルの回転軸を中心に回転しながら走査方向へ移動することを特徴とする。
請求項4に記載の渦電流探傷プローブは、1個の励磁コイルとその励磁コイル内に配置した2個以上の検出コイルを備え、1個の励磁コイルのコイル面と2個以上の検出コイルのコイル面は、直交するように配置してある渦電流探傷プローブにおいて、2個以上の検出コイルは1個の回転軸の周囲に配置してあり、その回転軸を中心に回転しながら走査方向へ移動することを特徴とする
In order to achieve the object of the present invention, the eddy current flaw detection probe according to claim 1 includes an excitation coil and a detection coil disposed in the excitation coil, and the coil surface of the excitation coil and the coil surface of the detection coil are: In the eddy current flaw detection probe arranged so as to be orthogonal, the eddy current flaw detection probe or the detection coil is moved in the scanning direction while rotating around a rotation axis.
The eddy current flaw detection probe according to claim 2 includes an excitation coil and a detection coil arranged in the excitation coil, and the coil surface of the excitation coil and the coil surface of the detection coil are arranged so as to be orthogonal to each other. Two or more probes are provided, and the two or more eddy current flaw detection probes are arranged around one rotation axis and move in the scanning direction while rotating around the rotation axis.
The eddy current flaw detection probe according to claim 3 includes one excitation coil and two or more detection coils arranged in the excitation coil, and includes a coil surface of one excitation coil and two or more detection coils. In the eddy current flaw detection probe arranged so that the coil surfaces are orthogonal to each other, two or more detection coils are moved in the scanning direction while rotating about the rotation axis of each detection coil.
The eddy current flaw detection probe according to claim 4 includes one excitation coil and two or more detection coils arranged in the excitation coil, and includes a coil surface of one excitation coil and two or more detection coils. In the eddy current flaw detection probe arranged so that the coil surfaces are orthogonal to each other, two or more detection coils are arranged around one rotating shaft, and rotate in the scanning direction while rotating around the rotating shaft. It is characterized by moving

本願発明の渦電流探傷プローブは、検出コイル又は渦電流探傷プローブを、回転軸を中心に回転しながら走査方向へ移動するから、その回転軸の周囲に配置した各検出コイル又は検出コイルの各半径が通る軌跡は、交差している。したがって渦電流探傷プローブは、全方向のキズを広い範囲において連続的に検出することができる。そして渦電流探傷プローブの走査方向の移動速度を変えて、検出コイルが1回転する間の走査方向の移動距離を変えることにより、キズの分布状況やキズの大きさ等を勘案してキズの検出精度或いは検出感度を調整することができる。また渦電流探傷プローブ又は検出コイルの回転速度を変えて、検出コイルの移動距離を変えることにより、キズの検出精度或いは検出感度を調整することもできる。さらに検出コイル又は渦電流探傷プローブの回転方向を変えることにより、検出コイルの軌跡のパターンを反転させることができる。   Since the eddy current flaw detection probe of the present invention moves the detection coil or the eddy current flaw detection probe in the scanning direction while rotating around the rotation axis, each radius of each detection coil or detection coil arranged around the rotation axis. The trajectories that pass through intersect. Therefore, the eddy current flaw detection probe can continuously detect scratches in all directions in a wide range. By changing the moving speed in the scanning direction of the eddy current flaw detection probe and changing the moving distance in the scanning direction during one rotation of the detection coil, the flaw detection state is taken into consideration. Accuracy or detection sensitivity can be adjusted. In addition, the detection accuracy or detection sensitivity of the flaw can be adjusted by changing the moving distance of the detection coil by changing the rotational speed of the eddy current flaw detection probe or the detection coil. Further, by changing the rotation direction of the detection coil or the eddy current flaw detection probe, the pattern of the locus of the detection coil can be reversed.

本願発明は、2個以上の渦電流探傷プローブを並置して、夫々の検出コイルを別々の回転軸を中心に回転するか、又は1個の回転軸を中心に回転することにより、探傷幅(検出幅)をより大きくすることができる。また2個以上の渦電流探傷プローブの検出コイルの並び方を変えることにより、検出コイルの軌跡のパターンを変えることができる。さらに2個以上の渦電流探傷プローブの検出コイルを別々に回転する場合には、各検出コイルの回転方向を相違させることにより、検出コイルの軌跡のパターンを、反転させることができる。   In the present invention, two or more eddy current flaw detection probes are juxtaposed and each detection coil is rotated around a separate rotation axis, or by rotating around one rotation axis, the flaw detection width ( Detection width) can be further increased. Further, the pattern of the detection coil trajectory can be changed by changing the arrangement of the detection coils of two or more eddy current flaw detection probes. Furthermore, when the detection coils of two or more eddy current flaw detection probes are rotated separately, the pattern of the detection coil trajectory can be reversed by changing the rotation direction of each detection coil.

本願発明の渦電流探傷プローブは、1個の励磁コイル内に2個以上の検出コイルを配置してあるから、渦電流探傷プローブの構造が簡単になり、かつ各検出コイルの間に励磁コイルの巻き線が介在しないから、両検出コイルをより接近させることができ、両検出コイルの間の傷も高感度で検出できる。   In the eddy current flaw detection probe according to the present invention, since two or more detection coils are arranged in one excitation coil, the structure of the eddy current flaw detection probe is simplified, and the excitation coil is interposed between the detection coils. Since no winding is interposed, both detection coils can be brought closer to each other, and scratches between both detection coils can be detected with high sensitivity.

図1〜図6により本願発明の実施例に係る渦電流探傷プローブを説明する。なお各図に共通の部分は、同じ符号を使用している。   An eddy current flaw detection probe according to an embodiment of the present invention will be described with reference to FIGS. In addition, the same code | symbol is used for the part common to each figure.

図1は、本願発明の実施例に係る渦電流探傷プローブの構成を示す。
図1(a)は、渦電流探傷プローブの平面図、図1(b−1),(b−2)は、励磁コイルと検出コイルの斜視図、図1(c)は、検出コイルの斜視図である。
渦電流探傷プローブ2は、パンケーキ状の励磁コイル21、四角形の検出コイル22からなり、励磁コイル21内に縦置型の検出コイル22(いわゆるタンジェンシャルコイル)を配置してある。即ち渦電流探傷プローブ2は、励磁コイル21のコイル面と検出コイル22のコイル面が直交するように(或いは励磁コイル21のコイル軸と検出コイル22のコイル軸が直交するように)配置してある。そして励磁コイル21は、そのコイル軸が被検査体Tの検査面と直交するように(コイル面が検査面と平行になるように)配置してある。ここでコイル軸は、コイルの中心を通る軸であり、コイル面は、コイルの巻き線で囲まれた開口面、即ちコイル軸と直交する面である。以下本願において同様である。
なお検出コイル22は、四角形に限らず、図1(c)のように三角形のものでもよいし、五角形、円形、楕円形等のものであってもよい。また励磁コイル21は、パンケーキ状のものに限らず、四角形等多角形、楕円形等のものであってもよい。
FIG. 1 shows the configuration of an eddy current flaw detection probe according to an embodiment of the present invention.
1A is a plan view of an eddy current flaw detection probe, FIGS. 1B-1 and 1B-2 are perspective views of an excitation coil and a detection coil, and FIG. 1C is a perspective view of the detection coil. FIG.
The eddy current flaw detection probe 2 includes a pancake excitation coil 21 and a square detection coil 22, and a vertical detection coil 22 (so-called tangential coil) is disposed in the excitation coil 21. That is, the eddy current flaw detection probe 2 is arranged so that the coil surface of the excitation coil 21 and the coil surface of the detection coil 22 are orthogonal (or the coil axis of the excitation coil 21 and the coil axis of the detection coil 22 are orthogonal). is there. The exciting coil 21 is arranged so that its coil axis is orthogonal to the inspection surface of the inspection object T (so that the coil surface is parallel to the inspection surface). Here, the coil axis is an axis passing through the center of the coil, and the coil surface is an opening surface surrounded by coil windings, that is, a surface orthogonal to the coil axis. The same applies hereinafter.
The detection coil 22 is not limited to a quadrangle, and may be a triangle as shown in FIG. 1C, or may be a pentagon, a circle, an ellipse, or the like. Further, the exciting coil 21 is not limited to a pancake-shaped one, but may be a polygonal shape such as a quadrangle, an elliptical shape, or the like.

渦電流探傷プローブ2は、支持部材(図示せず)に取付けてあり、その支持部材を慣用されているローラーや車輪をモータで駆動する移動手段によって、所定の速度でY方向(走査方向或いは探傷方向)へ移動する。その際、検出コイル22は、モータ(図示せず)により励磁コイル21内で回転軸P1を中心に回転する。即ち渦電流探傷プローブ2は、検出コイル22を回転しながらY方向へ移動する。
回転軸P1は、検出コイル22のコイル軸と直交し、励磁コイル21のコイル軸と一致する。したがって回転軸P1は、励磁コイル21のコイル面と直交し、被検査体Tの検査面と直交する。
なお渦電流探傷プローブ2について、検出コイル22のみを回転する例について説明したが、励磁コイル21と検出コイル22を一体的に固着して、両コイルを同時に回転するように構成してもよい。即ち回転軸P1を中心に渦電流探傷プローブ2を回転するように構成してもよい。その場合、検出コイル22は、励磁コイル21内では回転しないから励磁コイル21の内面に接触させて固定することができる。
The eddy current flaw detection probe 2 is attached to a support member (not shown), and the support member is moved in the Y direction (scanning direction or flaw detection) at a predetermined speed by a moving means for driving a commonly used roller or wheel with a motor. Direction). At that time, the detection coil 22 is rotated around the rotation axis P1 in the excitation coil 21 by a motor (not shown). That is, the eddy current flaw detection probe 2 moves in the Y direction while rotating the detection coil 22.
The rotation axis P <b> 1 is orthogonal to the coil axis of the detection coil 22 and coincides with the coil axis of the excitation coil 21. Therefore, the rotation axis P1 is orthogonal to the coil surface of the exciting coil 21 and orthogonal to the inspection surface of the object T to be inspected.
In addition, although the example which rotates only the detection coil 22 was demonstrated about the eddy current flaw detection probe 2, you may comprise the excitation coil 21 and the detection coil 22 adhere | attached integrally, and may rotate both coils simultaneously. That is, you may comprise so that the eddy current test probe 2 may be rotated centering on the rotating shaft P1. In that case, since the detection coil 22 does not rotate in the excitation coil 21, it can be fixed in contact with the inner surface of the excitation coil 21.

次に図2により、図1の渦電流探傷プローブをY方向へ移動するときの、検出コイル22の軌跡について説明する。
図2(a)は、被検査体と渦電流探傷プローブの平面図を示し、図2(b)は、渦電流探傷プローブ2の検出コイルの幅を示し、図2(c)は、渦電流探傷プローブ2を移動したときの検出コイルの軌跡(位置)を説明する図である。
Next, the locus of the detection coil 22 when the eddy current flaw detection probe of FIG. 1 is moved in the Y direction will be described with reference to FIG.
2A shows a plan view of the object to be inspected and the eddy current flaw detection probe, FIG. 2B shows the width of the detection coil of the eddy current flaw detection probe 2, and FIG. 2C shows the eddy current. It is a figure explaining the locus | trajectory (position) of a detection coil when the flaw detection probe 2 is moved.

図2(a)において、渦電流探傷プローブ2は、図1の渦電流探傷プローブ2と同じ構成のものである。渦電流探傷プローブ2は、検出コイル22の回転軸P1が線Lに沿ってY方向へ移動する。その移動の際、検出コイル22は、回転軸P1を中心に時計方向(矢印方向)へ回転する。検出コイル22の幅(被検査体Tの検査面と平行する巻き線方向の幅)は、図2(b)のようにW1である。被検査体Tの検査面には、線Lに対して平行なキズF1、直交するキズF2、135度のキズF3、45度のキズF4を加工形成してある。被検査体Tは、板厚9mmの鋼板を用い、キズF1〜F4のサイズは、幅0.2mm、深さ1mm、長さ5mmに形成してある。
キズF1〜F4に対する検出コイル22の検出感度は、検出コイル22の巻き線がキズの長手方向と平行になったとき一番高くなり、直交するとき一番低くなる。
2A, the eddy current flaw detection probe 2 has the same configuration as the eddy current flaw detection probe 2 in FIG. In the eddy current flaw detection probe 2, the rotation axis P1 of the detection coil 22 moves along the line L in the Y direction. During the movement, the detection coil 22 rotates clockwise (arrow direction) about the rotation axis P1. The width of the detection coil 22 (the width in the winding direction parallel to the inspection surface of the inspection object T) is W1 as shown in FIG. On the inspection surface of the inspected object T, a flaw F1 parallel to the line L, a flaw F2 orthogonal to the line L, a flaw F3 of 135 degrees, and a flaw F4 of 45 degrees are processed and formed. The inspection object T is a steel plate having a thickness of 9 mm, and the sizes of the scratches F1 to F4 are 0.2 mm wide, 1 mm deep, and 5 mm long.
The detection sensitivity of the detection coil 22 with respect to the scratches F1 to F4 is highest when the winding of the detection coil 22 is parallel to the longitudinal direction of the scratch, and is lowest when it is orthogonal.

図2(c)において、軌跡は、検出コイル22の1.5回転分を示し、また矢印付き実線は、検出コイル22を、Sは、検出コイル22が一回転する間に渦電流探傷プローブ2がY方向へ移動する距離(移動距離)を示す。なお検出コイル22は、回転の様子を分かり易くするため、便宜的に矢印を付してある。また検出コイル22(矢印付き実線)は、回転角度30度間隔で間歇的に表記してあるが、実際には回転角度は連続的に変化する。
検出コイル22は、図2(c)のように、線Lに対する角度(回転角度)を変えながらY方向へ幅W1の帯状の範囲を移動する。したがって被検査体Tの幅W1の範囲に、例えば、図2(a)のキズF1〜F4のように、様々の方向のキズがある場合にも、それらのキズを検出することができる。
励磁コイル2の軌跡のパターンは、回転軸P1が通る線Lの上下(両側)で相違し、上側のパターンは、Y方向に広くなり、下側のパターンは、上側よりも狭くなる。なお励磁コイル22の回転方向を逆(反時計方向)にした場合には、後述するように上下のパターンは、逆になる。
In FIG. 2C, the trajectory indicates 1.5 rotations of the detection coil 22, the solid line with an arrow indicates the detection coil 22, and S indicates the eddy current flaw detection probe 2 while the detection coil 22 rotates once. Indicates the distance (movement distance) to move in the Y direction. The detection coil 22 is provided with an arrow for the sake of convenience in order to make it easy to understand the state of rotation. Further, the detection coil 22 (solid line with an arrow) is intermittently described at intervals of 30 degrees of rotation angle, but the rotation angle actually changes continuously.
As shown in FIG. 2C, the detection coil 22 moves in a band-shaped range having a width W1 in the Y direction while changing the angle (rotation angle) with respect to the line L. Therefore, even when there are scratches in various directions in the range of the width W1 of the inspection object T, such as scratches F1 to F4 in FIG. 2A, those scratches can be detected.
The pattern of the locus of the exciting coil 2 is different between the upper and lower sides (both sides) of the line L through which the rotation axis P1 passes, the upper pattern becomes wider in the Y direction, and the lower pattern becomes narrower than the upper side. When the rotation direction of the exciting coil 22 is reversed (counterclockwise), the upper and lower patterns are reversed as will be described later.

図2(c)において、上側の軌跡は、検出コイルの矢印側が通る領域E3と無矢印側が通る領域E4が重なるように交互に存在し、領域E3と領域E4は、位置がY方向へ2分の1回転分(180度)ずれている。また同様に下側も検出コイルの矢印側が通る領域と無矢印側が通る領域が、重なるように交互に存在する。しかし下側の重なりは、上側の重なりよりも小さい。そして領域E3と領域E4の重なり部分においては、両領域の検出コイル22は交差しているから、キズF1〜F4は、例えば領域E3の検出コイル22と直交しても、領域E4の検出コイル22とは直交せずに、直角以外の角度で交差する。そのためキズは、少なくとも領域E3或いは領域E4のいずれか一方の領域の検出コイルによって検出できるから、全方向のキズを検出することができる。   In FIG. 2 (c), the upper trajectory alternately exists so that the region E3 through which the arrow side of the detection coil passes and the region E4 through which the non-arrow side passes are overlapped, and the region E3 and the region E4 are divided into two in the Y direction. Is shifted by one rotation (180 degrees). Similarly, on the lower side, the region through which the arrow side of the detection coil passes and the region through which the non-arrow side passes are alternately present. However, the lower overlap is smaller than the upper overlap. And in the overlap part of the area | region E3 and the area | region E4, since the detection coil 22 of both areas cross | intersects, even if the cracks F1-F4 are orthogonal to the detection coil 22 of the area | region E3, for example, the detection coil 22 of the area | region E4 Intersect at an angle other than a right angle. Therefore, scratches can be detected by a detection coil in at least one of the region E3 and the region E4, so that scratches in all directions can be detected.

下側の矢印側の領域と無矢印側の領域は、領域E2の部分において一部が重なるのみであるから、上側に比べるとキズの検出精度は低くなり、キズが領域E2にのみ存在する小さなキズの場合には、検出できなくなる場合がある。しかし下側の領域においても、移動距離Sを小さくすると重なりが大きくなり、検出精度を高くすることができる。また領域E2が図2(c)の場合、或いは図2(c)のよりも大きい場合であっても、探傷幅(検出幅)を半分(W1/2)にして、図2(c)において、線Lの上半分の領域を探傷に利用し、下半分の領域は、2回目の走査で上半分の領域となるように走査幅を設定すれば、領域E2の影響を受けることなく、キズを検出することができる。   Since the lower arrow side area and the non-arrow side area only partially overlap in the area E2, the detection accuracy of the scratches is lower than the upper side, and the scratches exist only in the region E2. In the case of a scratch, it may not be detected. However, even in the lower region, if the movement distance S is reduced, the overlap increases and the detection accuracy can be increased. Further, even if the region E2 is the case shown in FIG. 2C or larger than the case shown in FIG. 2C, the flaw detection width (detection width) is halved (W1 / 2) in FIG. If the scanning width is set so that the upper half area of the line L is used for flaw detection and the lower half area becomes the upper half area in the second scanning, there is no effect of the area E2, and the scratch is not affected. Can be detected.

矢印側の領域と無矢印側の領域は、移動距離Sの大きさによって重なる範囲が変化する(Y方向の位置のずれは、2分の1回転分で変わらない)。例えば、移動距離Sを大きくすると、即ち渦電流探傷プローブ2の移動速度を速くすると、重なりの範囲は小さくなり、移動距離Sを小さくすると、即ち渦電流探傷プローブ2の移動速度を遅くすると、重なりの範囲は大きくなる。したがって検出コイル22の回転速度が同じ場合、渦電流探傷プローブ2の移動速度を速くし過ぎると、キズの検出漏れが生じる。また渦電流探傷プローブ2の移動速度を遅くし過ぎると、矢印側の領域と無矢印側の領域の検出コイルは、交差角が小さくなり、平行に近くなる。そして極端の場合、移動距離S=0になると、矢印側の領域と無矢印側の領域(例えば領域E3と領域E4)は、重なり合って、渦電流探傷プローブ2を移動せずに同じ場所で回転するのと同じ状態になる。したがって渦電流探傷プローブ2の移動速度を速くし過ぎると、キズを検出できなくなる。
なお渦電流探傷プローブ2の移動速度が同じ場合、検出コイル22の回転速度を速くすると、移動距離Sが小さくなるから、矢印側の領域と無矢印側の領域の重なる範囲が大きくなる。
The overlapping range of the area on the arrow side and the area on the non-arrow side changes depending on the magnitude of the movement distance S (the positional deviation in the Y direction does not change in half rotation). For example, when the moving distance S is increased, that is, when the moving speed of the eddy current flaw detection probe 2 is increased, the overlapping range is reduced, and when the moving distance S is decreased, that is, when the moving speed of the eddy current flaw detection probe 2 is decreased, the overlap is increased. The range of increases. Therefore, when the rotation speed of the detection coil 22 is the same, if the moving speed of the eddy current flaw detection probe 2 is increased too much, a flaw detection failure occurs. If the moving speed of the eddy current flaw detection probe 2 is made too slow, the detection coils in the arrow-side area and the non-arrow-side area have a small crossing angle and become nearly parallel. In an extreme case, when the movement distance S = 0, the arrow-side area and the non-arrow-side area (for example, the area E3 and the area E4) overlap and rotate at the same place without moving the eddy current flaw detection probe 2. Will be in the same state as Therefore, if the moving speed of the eddy current flaw detection probe 2 is increased too much, scratches cannot be detected.
When the moving speed of the eddy current flaw detection probe 2 is the same, if the rotation speed of the detection coil 22 is increased, the moving distance S is reduced, so that the overlapping range of the area on the arrow side and the area on the non-arrow side is increased.

図3は、図2において渦電流探傷プローブ2をY方向へ移動したときの検出コイル22の軌跡のシュミーレーション結果を示し、図3(a)〜(d)は、検出コイル22が一回転する間の移動距離Sを変えたときの軌跡の変化を示す。図3は、検出コイル22の2回転分の軌跡を示し、軌跡は、回転角度15度間隔で表記してある。
図3(a)は、移動距離S=0.3W1(W1は検出コイル22の幅)、図3(b)は、S=0.5W1、図3(c)は、S=0.75W1、図3(d)は、S=1.0W1のときの軌跡である。
3 shows a simulation result of the locus of the detection coil 22 when the eddy current flaw detection probe 2 is moved in the Y direction in FIG. 2, and FIGS. 3 (a) to 3 (d) show that the detection coil 22 rotates once. The change of the locus when the movement distance S during the change is changed is shown. FIG. 3 shows a trajectory for two rotations of the detection coil 22, and the trajectory is represented at intervals of 15 degrees of rotation angle.
3A shows the movement distance S = 0.3W1 (W1 is the width of the detection coil 22), FIG. 3B shows S = 0.5W1, FIG. 3C shows S = 0.75W1, FIG. 3D shows the locus when S = 1.0W1.

図2のように渦電流探傷プローブの検出コイルが1個の場合、移動距離S=0.3W1(図3(a))からS=0.75W1(図3(c))の間では、検出コイルが通過しない領域は生じないから、検出コイルの幅W1の範囲について、漏れなくキズを検出することができる。
図3(d)(移動距離S=0.3W1)の場合、領域E1は、検出コイルが表記されていないが、検出コイルの回転開始時期に相当する領域であるため、検出コイルは通過しないが、半回転以降は、領域E2のようになるから、図3(d)の場合にも、キズを検出できるが、下側のキズの検出精度は低くなる。
As shown in FIG. 2, when there is one detection coil of the eddy current flaw detection probe, the detection is performed between the movement distance S = 0.3W1 (FIG. 3 (a)) and S = 0.75W1 (FIG. 3 (c)). Since there is no region through which the coil does not pass, scratches can be detected without leakage in the range of the width W1 of the detection coil.
In the case of FIG. 3 (d) (movement distance S = 0.3W1), the area E1 does not indicate the detection coil, but the detection coil does not pass because it is an area corresponding to the rotation start timing of the detection coil. After half a turn, the region E2 is displayed, so that the scratch can be detected also in the case of FIG. 3D, but the detection accuracy of the lower scratch is lowered.

なお移動距離Sがさらに大きくなり、領域E2が大きくなる場合には、図3(d)において検出コイルの回転軸が通る線の上半分の領域を探傷に利用すれば、領域E2の影響を受けることなく、キズを検出することができる。図3(d)において、領域E3は、検出コイルの一方の側(検出コイルの一方の半径)が通る領域であり、領域E4は、検出コイルの他方の側(検出コイルの他方の半径)が通る領域である。なお領域E3と領域E4は、位置がY方へ2分の1回転分(180度)ずれている。   When the moving distance S is further increased and the area E2 is increased, the area of the upper half of the line through which the rotation axis of the detection coil passes in FIG. 3D is affected by the area E2. It is possible to detect scratches without any problems. In FIG. 3D, a region E3 is a region through which one side of the detection coil (one radius of the detection coil) passes, and a region E4 is the other side of the detection coil (the other radius of the detection coil). It is a passing area. Note that the positions of the areas E3 and E4 are shifted by a half rotation (180 degrees) in the Y direction.

次に図2の渦電流探傷プローブ2を用いてキズの探傷試験を行った結果について説明する。
試験に用いた渦電流探傷プローブ2の励磁コイル21は、外径13mm、内径10mmの円形のナイロンボビンに線径70μmの被覆銅線を100回巻いてあり、検出コイル22は、一辺が8mmの四角形のボビンに線径50μmの被覆銅線を120回巻いてあるものを用いた。また励磁信号源には、周波数1kHz〜200kHz、出力約1Vの発振器を用いた。試験は、渦電流探傷プローブ2を3000rpmで回転しながら、Y方向へ移動して、図2(a)のキズF1〜F4の検出を行なった。
Next, the result of the flaw detection test using the eddy current flaw detection probe 2 of FIG. 2 will be described.
The exciting coil 21 of the eddy current flaw detection probe 2 used for the test is a circular nylon bobbin having an outer diameter of 13 mm and an inner diameter of 10 mm wound with 100 turns of a coated copper wire having a wire diameter of 70 μm, and the detection coil 22 has a side of 8 mm. A rectangular bobbin in which a coated copper wire having a wire diameter of 50 μm was wound 120 times was used. As the excitation signal source, an oscillator having a frequency of 1 kHz to 200 kHz and an output of about 1 V was used. In the test, the eddy current flaw detection probe 2 was moved in the Y direction while rotating at 3000 rpm, and scratches F1 to F4 in FIG. 2A were detected.

試験結果によると、渦電流探傷プローブ2の検出範囲の幅(探傷幅)は、約10mmである。渦電流探傷プローブ2のY方向の移動速度が、9m/min(移動距離S=0.3W1)から22.5m/min(移動距離S=0.75W1)の範囲では、キズF1〜F4の検出出力は、略同じになり全てのキズを検出できた。移動速度が30m/min(移動距離S=1.0W1)の場合には、キズF1が検出コイル22の回転軸P1が通る線Lから外れると、キズF1の検出出力が低下し、移動速度がさらに速くなるとキズF1を検出できなくなる。また移動速度が、9m/minよりも遅くなると、各キズの検出出力が低下し、移動速度がさらに遅くなるとキズを検出できなくなる。   According to the test results, the width of the detection range (flaw detection width) of the eddy current flaw detection probe 2 is about 10 mm. When the moving speed of the eddy current flaw detection probe 2 in the Y direction is in the range of 9 m / min (moving distance S = 0.3W1) to 22.5 m / min (moving distance S = 0.75W1), the flaws F1 to F4 are detected. The output was almost the same, and all scratches could be detected. When the moving speed is 30 m / min (moving distance S = 1.0 W1), if the scratch F1 deviates from the line L through which the rotation axis P1 of the detection coil 22 passes, the detection output of the scratch F1 decreases, and the moving speed is reduced. If the speed is further increased, the scratch F1 cannot be detected. Further, when the moving speed becomes slower than 9 m / min, the detection output of each scratch decreases, and when the moving speed becomes further slow, the scratch cannot be detected.

図4は、図1の渦電流探傷プローブ2と同じ構成のものを2個並置し、両渦電流探傷プローブの検出コイルを別々に回転させてY方向へ移動する例である。
まず図4(a−1),(a−2)について説明する。
2個の渦電流探傷プローブ2a,2bは、図4(a−1)のように励磁コイル21aと励磁コイル21bが接触するように接近させて配置し、夫々の検出コイル22a,22bは、両検出コイルのコイル面が同一面に並ぶように(巻き線方向に一直線状に並ぶように)配置してある。即ち回転軸の並び方向と一致するように配置してある。渦電流探傷プローブ2a,2bは、検出コイル22a,22bを、回転軸P1a,P1bを中心に時計方向(矢印方向)へ回転しながらY方向へ移動する。検出コイル22a,22bの軌跡は、図4(a−2)のようになり、探傷幅は、検出コイルが1個の場合の2倍になる。渦電流探傷プローブの個数は、2個に限らず、2個以上配置することができる。
FIG. 4 shows an example in which two eddy current flaw detection probes 2 of FIG. 1 are arranged side by side and the detection coils of both eddy current flaw detection probes are rotated separately to move in the Y direction.
First, FIGS. 4A-1 and 4A-2 will be described.
The two eddy current flaw detection probes 2a and 2b are arranged close to each other such that the exciting coil 21a and the exciting coil 21b are in contact with each other as shown in FIG. 4 (a-1). It arrange | positions so that the coil surface of a detection coil may be located in a line (it arranges in a straight line form in the winding direction). That is, they are arranged so as to coincide with the direction in which the rotation axes are arranged. The eddy current flaw detection probes 2a and 2b move in the Y direction while rotating the detection coils 22a and 22b clockwise around the rotation axes P1a and P1b (arrow direction). The trajectories of the detection coils 22a and 22b are as shown in FIG. 4A-2, and the flaw detection width is twice that of a single detection coil. The number of eddy current flaw detection probes is not limited to two, and two or more can be arranged.

また図4(a−1)において、3個目の渦電流探傷プローブを、その励磁コイルが渦電流探傷プローブ2a,2bの励磁コイル21a.21bと接触するように、配置することもできる(回転軸は、3角形の頂点に位置する)。その場合には、渦電流探傷プローブ2a,2bの検出コイルの軌跡の間に3個目の軌跡ができるから、キズの検出精度をより高くすることができる。渦電流探傷プローブの個数は、2個、3個に限らず、2個以上配置することができる。   4 (a-1), the third eddy current flaw detection probe is connected to the excitation coil 21a. Of the eddy current flaw detection probe 2a, 2b. It can also arrange | position so that it may contact 21b (a rotating shaft is located in the vertex of a triangle). In that case, since a third trajectory is formed between the trajectories of the detection coils of the eddy current flaw detection probes 2a and 2b, the flaw detection accuracy can be further increased. The number of eddy current flaw detection probes is not limited to two and three, and two or more can be arranged.

図4(b−1),(b−2)は、図4(a−1),(a−2)において、検出コイル22aと検出コイル22bの回転方向を逆にした例で、検出コイル22aは、反時計方向(矢印方向)へ回転し、検出コイル22bは、時計方向へ回転する。この場合には、一方の検出コイルの軌跡のパターンは、他方の検出コイルの軌跡のパターンと上下が逆になる。   FIGS. 4B-1 and 4B-2 are examples in which the rotation directions of the detection coil 22a and the detection coil 22b are reversed in FIGS. 4A-1 and 4A-2. Rotates counterclockwise (arrow direction), and the detection coil 22b rotates clockwise. In this case, the trajectory pattern of one detection coil is upside down with the trajectory pattern of the other detection coil.

図4(c−1),(c−2)は、検出コイル22a,22bのコイル面が直交するように(両検出コイルの巻き線の方向が直交するように)配置した例である。即ち検出コイル22a,22bは、回転軸の並び方向に対して位置が90度ずれるように配置してある。検出コイル22a,22bは、ともに時計方向へ回転する。この場合には、検出コイル22aと検出コイル22bの軌跡は、位置がY方向へ4分の1回転分(90度)ずれる。 FIGS. 4C-1 and 4C-2 are examples in which the coil surfaces of the detection coils 22a, 22b are arranged to be orthogonal (so that the winding directions of both detection coils are orthogonal). That is, the detection coils 22a and 22b are arranged so that their positions are shifted by 90 degrees with respect to the direction in which the rotation axes are arranged. Both the detection coils 22a and 22b rotate clockwise. In this case, the positions of the trajectories of the detection coil 22a and the detection coil 22b are shifted by a quarter rotation (90 degrees) in the Y direction.

以上のように2個或いは2個以上の渦電流探傷プローブを並置した場合、検出コイルの回転方向を逆にする、或いは2個の検出コイルの並び方向を変えることにより、検出コイルの軌跡のパターンを変えたり、Y方向の位置を変えたりすることができ、探傷幅を大きくすることができる。また回転軸が多角形の頂点に位置するように配置することにより、キズの検出精度を高くすることができる。   As described above, when two or more eddy current flaw detection probes are juxtaposed, the detection coil trajectory pattern can be obtained by reversing the rotation direction of the detection coil or changing the arrangement direction of the two detection coils. Or the position in the Y direction can be changed, and the flaw detection width can be increased. In addition, by arranging the rotation axis so as to be positioned at the vertex of the polygon, the detection accuracy of the scratch can be increased.

図5は、渦電流探傷プローブを2個並置し、両渦電流探傷プローブを共通の1個の回転軸を中心に回転しながらY方向へ移動する例である。
図5(a)は、渦電流探傷プローブの平面図を示し、図5(b)は、検出コイルの幅を示し、図5(c−1)〜(c−4)は、検出コイルの軌跡を示す。
図5(a)において、渦電流探傷プローブ3は、2個の渦電流探傷プローブ31,32からなり、渦電流探傷プローブ31,32は、図1の渦電流探傷プローブ2と同じ構成で、夫々励磁コイル311と検出コイル312、励磁コイル321と検出コイル322からなる。渦電流探傷プローブ31,32は、回転軸P2の周囲に位置を180度ずらして配置し(回転軸P2の周囲に2翼のプロペラ状に配置し)、励磁コイル311,321が回転軸P2に接触するか略接触するように配置してある。検出コイル312,322は、両検出コイルのコイル面が同一面に並ぶように(巻き線方向に一直線状に並ぶように)配置してある。渦電流探傷プローブ3は、回転軸P2を中心に回転しながらY方向へ移動する。なお回転軸P2は、励磁コイル311,321のコイル軸と平行で、両励磁コイルの接触点に位置する。
FIG. 5 shows an example in which two eddy current flaw detection probes are juxtaposed and both eddy current flaw detection probes are moved in the Y direction while rotating around a common rotation axis.
5A shows a plan view of the eddy current flaw detection probe, FIG. 5B shows the width of the detection coil, and FIGS. 5C-1 to 5C-4 show the locus of the detection coil. Indicates.
In FIG. 5A, the eddy current testing probe 3 includes two eddy current testing probes 31 and 32. The eddy current testing probes 31 and 32 have the same configuration as the eddy current testing probe 2 of FIG. It consists of an excitation coil 311 and a detection coil 312, and an excitation coil 321 and a detection coil 322. The eddy current flaw detection probes 31 and 32 are arranged around the rotation axis P2 by being shifted by 180 degrees (two wings are arranged around the rotation axis P2), and the excitation coils 311 and 321 are arranged on the rotation axis P2. It is arranged so as to make contact or substantially contact. The detection coils 312 and 322 are arranged so that the coil surfaces of both detection coils are aligned on the same plane (aligned in a straight line in the winding direction). The eddy current flaw detection probe 3 moves in the Y direction while rotating around the rotation axis P2. The rotation axis P2 is parallel to the coil axes of the excitation coils 311 and 321 and is located at the contact point of both excitation coils.

渦電流探傷プローブ3を構成する渦電流探傷プローブは、2個に限らず2個以上配置することができる。
図5(b)において、検出コイル312,322の幅は、夫々W1であり、渦電流探傷プローブ3の検出コイルの幅W2は、約2W1である。
The number of eddy current flaw detection probes constituting the eddy current flaw detection probe 3 is not limited to two, and two or more eddy current flaw detection probes can be arranged.
In FIG. 5B, the widths of the detection coils 312 and 322 are each W1, and the width W2 of the detection coil of the eddy current flaw detection probe 3 is about 2W1.

渦電流探傷プローブ3をY方向へ移動するときの検出コイル312,322の軌跡は、図5(c−1)〜(c−4)のようになる。図5(c−1)〜(c−4)において、検出コイル312は、実線で示し、検出コイル322は、破線で表記してある。
図5(c−1)〜(c−4)において、図5(c−1)は、移動距離S=0.75W2、図5(c−2)は、S=1.0W2、図5(c−3)は、S=1.5W2、図5(c−4)は、S=2.0W2のときの軌跡を示す。
The trajectories of the detection coils 312 and 322 when the eddy current flaw detection probe 3 is moved in the Y direction are as shown in FIGS. 5 (c-1) to (c-4). 5 (c-1) to 5 (c-4), the detection coil 312 is indicated by a solid line, and the detection coil 322 is indicated by a broken line.
5 (c-1) to (c-4), FIG. 5 (c-1) shows the movement distance S = 0.75W2, FIG. 5 (c-2) shows S = 1.0W2, and FIG. c-3) shows a locus when S = 1.5W2, and FIG. 5C-4 shows a locus when S = 2.0W2.

図5(a)のように渦電流探傷プローブの検出コイルが2個の場合、移動距離S=0.75W2(図5(c−1))からS=1.5W2(図5(c−3))の間では、検出コイルが通過しない領域は生じないから、検出コイルの幅W2の範囲について、漏れなくキズを検出することができる。
図5(c−4)(移動距離S=2.0W2)の場合、領域E1は、検出コイルが表記されていないが、検出コイルの回転開始時期に相当する領域であるため、検出コイルは通過しないが、半回転以降は、領域E2のようになるから、図5(c−4)の場合にも、キズを検出できるが、下側のキズの検出精度は低くなる。移動距離Sがさらに大きくなり、領域E2が大きくなる場合には、図5(c−4)において検出コイルの回転軸が通る線Lの上半分の領域を探傷に利用すれば、領域E2の影響を受けることなく、キズを検出することができる。なお図5(c−4)において、領域E3は、検出コイル322が通る領域であり、領域E4は、検出コイル312が通る領域である。また領域E3と領域E4は、位置がY方へ2分の1回転分(180度)ずれている。
When there are two detection coils of the eddy current flaw detection probe as shown in FIG. 5A, the movement distance S = 0.75W2 (FIG. 5C-1) to S = 1.5W2 (FIG. 5C-3). )), A region through which the detection coil does not pass does not occur, so that a flaw can be detected without omission in the range of the width W2 of the detection coil.
In the case of FIG. 5C-4 (moving distance S = 2.0W2), the detection coil is not shown, but the detection coil passes through the area E1 because it is an area corresponding to the rotation start time of the detection coil. However, after half a turn, it becomes like the region E2, so that the scratch can be detected also in the case of FIG. 5C-4, but the detection accuracy of the lower scratch is lowered. When the movement distance S is further increased and the region E2 is increased, the influence of the region E2 can be obtained by using the upper half region of the line L through which the rotation axis of the detection coil passes in FIG. Scratches can be detected without receiving any damage. In FIG. 5C-4, an area E3 is an area through which the detection coil 322 passes, and an area E4 is an area through which the detection coil 312 passes. Further, the positions of the areas E3 and E4 are shifted by a half rotation (180 degrees) in the Y direction.

次に図5(a)の渦電流探傷プローブ3を用いてキズの探傷試験を行った結果について説明する。
渦電流探傷プローブ3を構成する2個の渦電流探傷プローブ31,32は、図1の渦電流探傷プローブ2と同じ構成ものを用い、図2(a)の被検査体TについてキズF1〜F4の検出を行った。また励磁信号源は、図2の渦電流探傷プローブの試験に用いたものと同じものを用い、渦電流探傷プローブ3は、2000rpmで回転した。
Next, a result of a flaw detection test using the eddy current flaw detection probe 3 of FIG.
The two eddy current flaw detection probes 31 and 32 constituting the eddy current flaw detection probe 3 have the same configuration as that of the eddy current flaw detection probe 2 in FIG. 1, and scratches F1 to F4 with respect to the object T in FIG. Was detected. The excitation signal source used was the same as that used in the test of the eddy current flaw detection probe of FIG. 2, and the eddy current flaw detection probe 3 was rotated at 2000 rpm.

試験結果によると、渦電流探傷プローブ3の探傷幅は、約20mmである。渦電流探傷プローブ3のY方向の移動速度が、15m/min(移動距離S=0.75W2)から30m/min(移動距離S=1.5W2)の範囲では、キズF1〜F4の検出出力は、略同じになり全てのキズを検出できた。移動速度が40m/min(移動距離S=2.0W2)の場合には、キズF1が検出コイル22の回転軸P2が通る線Lから外れると、キズF1の検出出力が低下し、移動速度がさらに速くなると検出できなくなる。また移動速度が、15m/minよりも遅くなると、検出出力が低下し、移動速度がさらに遅くなるとキズを検出できなくなる。   According to the test results, the flaw detection width of the eddy current flaw detection probe 3 is about 20 mm. When the moving speed in the Y direction of the eddy current flaw detection probe 3 is in the range of 15 m / min (moving distance S = 0.75W2) to 30 m / min (moving distance S = 1.5W2), the detection outputs of the scratches F1 to F4 are All the scratches could be detected. When the moving speed is 40 m / min (moving distance S = 2.0 W2), if the scratch F1 deviates from the line L through which the rotation axis P2 of the detection coil 22 passes, the detection output of the scratch F1 decreases, and the moving speed is reduced. If it becomes even faster, it can no longer be detected. Further, when the moving speed becomes slower than 15 m / min, the detection output decreases, and when the moving speed becomes further slower, scratches cannot be detected.

図6は、1個の励磁コイル内に2個の検出コイルを配置した例である。
図6(a−1),(a−2)は、2個の検出コイルを夫々の回転軸を中心に回転する例であり、図6(b−1),(b−2)は、2個の検出コイルが1個の回転軸を中心に回転する例である。また図6(c−1),(c−2)は、2個の検出コイルを、両検出コイルの巻き線の方向が直交するように配置した例である。
FIG. 6 shows an example in which two detection coils are arranged in one excitation coil.
FIGS. 6A-1 and 6A-2 are examples in which two detection coils are rotated about their respective rotation axes. FIGS. 6B-1 and 6B-2 are two examples. This is an example in which one detection coil rotates around one rotation axis. FIGS. 6C-1 and 6C-2 are examples in which two detection coils are arranged so that the winding directions of the two detection coils are orthogonal to each other.

まず図6(a−1),(a−2)について説明する。
図6(a−1)の渦電流探傷プローブ4は、四角形の励磁コイル41内に検出コイル42a,42bを配置し、両検出コイルのコイル面が同一面に並ぶように(巻き線の方向が一直線状に並ぶように)配置してある。即ち回転軸の並び方向と一致するように配置してある。検出コイル42a,42bは、夫々点P1a,P1bを中心に回転する。図6(a−2)は、楕円形の励磁コイル41を用いた例である。
First, FIGS. 6A-1 and 6A-2 will be described.
In the eddy current flaw detection probe 4 of FIG. 6 (a-1), the detection coils 42a and 42b are arranged in a rectangular excitation coil 41 so that the coil surfaces of both the detection coils are aligned on the same surface (the direction of the winding is the same). Arranged in a straight line). That is, they are arranged so as to coincide with the direction in which the rotation axes are arranged. The detection coils 42a and 42b rotate around the points P1a and P1b, respectively. FIG. 6A-2 shows an example in which an elliptical excitation coil 41 is used.

図6(b−1)の渦電流探傷プローブ5は、四角形の励磁コイル51内に検出コイル52a,52bを配置してある。検出コイル52a,52bは、回転軸P2の周囲に位置を180度ずらして配置し(2翼のプロペラ状に配置し)、回転軸P2に接触するか略接触するように配置してある。検出コイル52a,52bは、両検出コイルのきる面が同一面に並ぶように(巻き線方向が一直線状に並ぶように)配置してある。渦電流探傷プローブ5は、検出コイル52a,52bに共通の1個の回転軸P2を中心に回転する。即ち、励磁コイル51、検出コイル52a,52bは、一体的に回転軸P2を中心に回転する。図6(b−2)は、楕円形の励磁コイル51を用いた例である。なお励磁コイル51を大きくして検出コイル52a,52bのみを回転するように構成することもできる。
なお図6(b−1),(b−2)において、検出コイル52a,52bの外に3番目の検出コイルを設け、回転軸P2の周囲に、例えば120度間隔で、3翼のプロペラ状に配置することもできる。この場合、3個の検出コイルの軌跡は、走査方向へ120度ずつずれた状態で重なるからキズの検出精度がより高くなる。検出コイルの個数は、3個に限らない。
In the eddy current flaw detection probe 5 of FIG. 6B-1, detection coils 52 a and 52 b are arranged in a rectangular excitation coil 51. The detection coils 52a and 52b are arranged so as to be shifted by 180 degrees around the rotation axis P2 (arranged in a two-wing propeller shape), and are arranged so as to contact or substantially contact the rotation axis P2. The detection coils 52a and 52b are arranged so that surfaces of both detection coils are aligned on the same surface (so that the winding direction is aligned in a straight line). The eddy current flaw detection probe 5 rotates about one rotation axis P2 common to the detection coils 52a and 52b. That is, the excitation coil 51 and the detection coils 52a and 52b rotate integrally around the rotation axis P2. FIG. 6B-2 shows an example in which an elliptical excitation coil 51 is used. It is also possible to increase the excitation coil 51 and rotate only the detection coils 52a and 52b.
6 (b-1) and 6 (b-2), a third detection coil is provided outside the detection coils 52a and 52b, and a three-blade propeller is formed around the rotation axis P2 at intervals of 120 degrees, for example. It can also be arranged. In this case, since the trajectories of the three detection coils overlap in a state shifted by 120 degrees in the scanning direction, the flaw detection accuracy becomes higher. The number of detection coils is not limited to three.

図6(c−1)の渦電流探傷プローブ5は、四角形の励磁コイル51内に、検出コイル52a,52bを配置してある。検出コイル52a,52bは、回転軸P2の周囲に位置を90度ずらして、回転軸P2に接触するか略接触するように配置し、両検出コイルのコイル面が直交するように(巻き線方向が直交するように)配置してある。渦電流探傷プローブ5は、検出コイル52a,52bに共通の1個の回転軸P2を中心に回転する。図6(c−2)は、楕円形の励磁コイル51を用いた例である。なお検出コイル52a,52bのみを回転するように構成することもできる。
なお図6(c−1),(c−2)において、検出コイル52a,52bの外に3番目、4番目の検出コイルを設け、回転軸P2の周囲に、例えば90度間隔で、4翼のプロペラ状に配置することもできる。この場合、4個の検出コイルの軌跡は、走査方向へ90度ずつずれた状態で重なるからキズの検出精度がより高くなる。
In the eddy current flaw detection probe 5 of FIG. 6C-1, detection coils 52 a and 52 b are arranged in a rectangular excitation coil 51. The detection coils 52a and 52b are arranged so that the positions of the detection coils 52a and 52b are shifted by 90 degrees around the rotation axis P2 so as to be in contact with or substantially in contact with the rotation axis P2. Are arranged so that they are orthogonal to each other. The eddy current flaw detection probe 5 rotates about one rotation axis P2 common to the detection coils 52a and 52b. FIG. 6 (c-2) is an example using an elliptical excitation coil 51. Note that only the detection coils 52a and 52b can be configured to rotate.
6 (c-1) and 6 (c-2), the third and fourth detection coils are provided outside the detection coils 52a and 52b, and four blades are provided around the rotation axis P2, for example, at intervals of 90 degrees. It can also be arranged in the form of a propeller. In this case, the trajectories of the four detection coils overlap with each other while being shifted by 90 degrees in the scanning direction, so that the flaw detection accuracy becomes higher.

図6(c−1),(c−2)の検出コイル52a,52bの軌跡は、位置が走査方向(Y方向)へ4分の1回転分(90度)ずれているのに対して、図6(b−1),(b−2)の場合は、2分の1回転分(180度)ずれている。
図6の場合には、励磁コイルは1個でよいから、渦電流探傷プローブの構造が簡単になる。また検出コイル42a,42bの間、検出コイル52a,52bの間に励磁コイルの巻き線が介在しないから、両検出コイルをより接近させることができ、両検出コイルの間のキズも高感度で検出できる。
The trajectories of the detection coils 52a and 52b in FIGS. 6C-1 and 6C-2 are shifted in the scanning direction (Y direction) by a quarter rotation (90 degrees). In the case of FIGS. 6 (b-1) and (b-2), the rotation is shifted by a half rotation (180 degrees).
In the case of FIG. 6, since only one exciting coil is required, the structure of the eddy current flaw detection probe is simplified. Moreover, since no winding of the exciting coil is interposed between the detection coils 42a and 42b and between the detection coils 52a and 52b, both the detection coils can be brought closer to each other, and scratches between the two detection coils can be detected with high sensitivity. it can.

本願発明の実施例に係る渦電流探傷プローブの構成を示す。The structure of the eddy current test probe which concerns on the Example of this invention is shown. 図1の渦電流探傷プローブの検出コイルを回転しながら、移動したときの検出コイルの軌跡を説明する図である。It is a figure explaining the locus | trajectory of a detection coil when it moves, rotating the detection coil of the eddy current test probe of FIG. 図2(a)において,渦電流探傷プローブの検出コイルを回転しながら、移動したときの検出コイルの軌跡のシュミーレーション結果を示す。FIG. 2A shows a simulation result of the trajectory of the detection coil when the detection coil of the eddy current flaw detection probe is rotated and moved. 図1の渦電流探傷プローブを2個並置し,両渦電流探傷プローブの検出コイルを別々に回転しながら移動する例である。This is an example in which two eddy current flaw detection probes in FIG. 1 are juxtaposed and the detection coils of both eddy current flaw detection probes are moved while rotating separately. 図1の渦電流探傷プローブを2個並置し、両渦電流探傷プローブを共通の1個の回転軸を中心に回転しながら移動する例である。This is an example in which two eddy current flaw detection probes of FIG. 1 are juxtaposed and both eddy current flaw detection probes are moved while rotating around a common rotation axis. 1個の励磁コイル内に2個の検出コイルを配置した渦電流探傷プローブの例である。This is an example of an eddy current flaw detection probe in which two detection coils are arranged in one excitation coil. 従来の渦電流探傷プローブの構成を示す。The structure of the conventional eddy current flaw detection probe is shown. 図7の渦電流探傷プローブによる探傷について説明する図である。It is a figure explaining the flaw detection by the eddy current flaw detection probe of FIG.

符号の説明Explanation of symbols

2,2a,2b,3,31,32,4,5 渦電流探傷プローブ
21,21a,21b,311,321,41,51 励磁コイル
22,22a,22b,312,322,42a,42b,52a,52b 検出コイル
F1〜F4 キズ
P1,P1a,P1b,P2 回転軸
S 移動距離
T 被検査体
W1,W2 コイルの幅
2, 2a, 2b, 3, 31, 32, 4, 5 Eddy current flaw detection probes 21, 21a, 21b, 311, 321, 41, 51 Excitation coils 22, 22a, 22b, 312, 322, 42a, 42b, 52a, 52b Detection coils F1 to F4 Scratches P1, P1a, P1b, P2 Rotating shaft S Moving distance T Inspected object W1, W2 Coil width

Claims (4)

励磁コイルと励磁コイル内に配置した検出コイルを備え、励磁コイルのコイル面と検出コイルのコイル面は、直交するように配置してある渦電流探傷プローブにおいて、前記渦電流探傷プローブ又は検出コイルを、回転軸を中心に回転しながら走査方向へ移動することを特徴とする渦電流探傷プローブ。   An eddy current flaw detection probe having an excitation coil and a detection coil arranged in the excitation coil, the coil surface of the excitation coil and the coil surface of the detection coil being arranged so as to be orthogonal to each other, the eddy current flaw detection probe or the detection coil is An eddy current flaw detection probe that moves in the scanning direction while rotating about a rotation axis. 励磁コイルと励磁コイル内に配置した検出コイルを備え、励磁コイルのコイル面と検出コイルのコイル面は、直交するように配置してある渦電流探傷プローブを2個以上備え、2個以上の渦電流探傷プローブは、1個の回転軸の周囲に配置してあり、その回転軸を中心に回転しながら走査方向へ移動することを特徴とする渦電流探傷プローブ。   An excitation coil and a detection coil arranged in the excitation coil are provided, and the coil surface of the excitation coil and the coil surface of the detection coil are provided with two or more eddy current flaw detection probes arranged so as to be orthogonal to each other. The eddy current flaw detection probe is arranged around one rotation axis and moves in the scanning direction while rotating around the rotation axis. 1個の励磁コイルとその励磁コイル内に配置した2個以上の検出コイルを備え、1個の励磁コイルのコイル面と2個以上の検出コイルのコイル面は、直交するように配置してある渦電流探傷プローブにおいて、2個以上の検出コイルを、各検出コイルの回転軸を中心に回転しながら走査方向へ移動することを特徴とする渦電流探傷プローブ。   One excitation coil and two or more detection coils arranged in the excitation coil are provided, and the coil surface of one excitation coil and the coil surfaces of two or more detection coils are arranged to be orthogonal to each other. An eddy current flaw detection probe, wherein two or more detection coils are moved in a scanning direction while rotating about a rotation axis of each detection coil. 1個の励磁コイルとその励磁コイル内に配置した2個以上の検出コイルを備え、1個の励磁コイルのコイル面と2個以上の検出コイルのコイル面は、直交するように配置してある渦電流探傷プローブにおいて、2個以上の検出コイルは1個の回転軸の周囲に配置してあり、その回転軸を中心に回転しながら走査方向へ移動することを特徴とする渦電流探傷プローブ。   One excitation coil and two or more detection coils arranged in the excitation coil are provided, and the coil surface of one excitation coil and the coil surfaces of two or more detection coils are arranged to be orthogonal to each other. In the eddy current flaw detection probe, the two or more detection coils are arranged around one rotation axis and move in the scanning direction while rotating around the rotation axis.
JP2006070155A 2006-03-15 2006-03-15 Eddy current testing probe Active JP4881494B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006070155A JP4881494B2 (en) 2006-03-15 2006-03-15 Eddy current testing probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006070155A JP4881494B2 (en) 2006-03-15 2006-03-15 Eddy current testing probe

Publications (2)

Publication Number Publication Date
JP2007248169A true JP2007248169A (en) 2007-09-27
JP4881494B2 JP4881494B2 (en) 2012-02-22

Family

ID=38592653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006070155A Active JP4881494B2 (en) 2006-03-15 2006-03-15 Eddy current testing probe

Country Status (1)

Country Link
JP (1) JP4881494B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010054352A (en) * 2008-08-28 2010-03-11 Hitachi Ltd Eddy current flaw detection method, eddy current flaw detection probe, and eddy current flaw detection device
WO2010073926A1 (en) 2008-12-24 2010-07-01 住友金属工業株式会社 Eddy-current testing method and eddy-current testing device
CN101893602A (en) * 2009-05-22 2010-11-24 码科泰克株式会社 Rotating eddy current test prob
CN103076390A (en) * 2012-12-27 2013-05-01 佛山市斯派利管业科技有限公司 Positioning method and device applied to eddy current flaw detection, and eddy current flaw detector
JP2013185952A (en) * 2012-03-08 2013-09-19 Jfe Steel Corp Magnetic flaw detection probe

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3875502A (en) * 1973-05-24 1975-04-01 Foerster Inst Dr Friedrich Coil arrangement and circuit for eddy current testing
JPS51113687A (en) * 1975-03-07 1976-10-06 Foerster Inst Dr Friedrich Eddy current probing coil device
JPS5277786A (en) * 1975-12-24 1977-06-30 Hitachi Ltd Temperature measuring device
JPS6117663A (en) * 1984-07-03 1986-01-25 株式会社アイジー技術研究所 Inner and outer wall repairing structure
JPH0217658A (en) * 1988-07-06 1990-01-22 Hitachi Ltd Semiconductor integrated circuit device
JP2002214202A (en) * 2001-01-16 2002-07-31 Marktec Corp Eddy current flaw detection probe
JP2003344361A (en) * 2002-05-27 2003-12-03 Univ Nihon Eddy current flaw detection probe and eddy current flow detector

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3875502A (en) * 1973-05-24 1975-04-01 Foerster Inst Dr Friedrich Coil arrangement and circuit for eddy current testing
JPS51113687A (en) * 1975-03-07 1976-10-06 Foerster Inst Dr Friedrich Eddy current probing coil device
JPS5277786A (en) * 1975-12-24 1977-06-30 Hitachi Ltd Temperature measuring device
JPS6117663A (en) * 1984-07-03 1986-01-25 株式会社アイジー技術研究所 Inner and outer wall repairing structure
JPH0217658A (en) * 1988-07-06 1990-01-22 Hitachi Ltd Semiconductor integrated circuit device
JP2002214202A (en) * 2001-01-16 2002-07-31 Marktec Corp Eddy current flaw detection probe
JP2003344361A (en) * 2002-05-27 2003-12-03 Univ Nihon Eddy current flaw detection probe and eddy current flow detector

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010054352A (en) * 2008-08-28 2010-03-11 Hitachi Ltd Eddy current flaw detection method, eddy current flaw detection probe, and eddy current flaw detection device
WO2010073926A1 (en) 2008-12-24 2010-07-01 住友金属工業株式会社 Eddy-current testing method and eddy-current testing device
JP2010151555A (en) * 2008-12-24 2010-07-08 Marktec Corp Method and device for detection of eddy current flaw
US8803516B2 (en) 2008-12-24 2014-08-12 Nippon Steel & Sumitomo Metal Corporation Eddy current testing method and apparatus for inspecting an object for flaws
CN101893602A (en) * 2009-05-22 2010-11-24 码科泰克株式会社 Rotating eddy current test prob
WO2010134510A1 (en) 2009-05-22 2010-11-25 住友金属工業株式会社 Rotating eddy current test probe
JP2011007780A (en) * 2009-05-22 2011-01-13 Marktec Corp Rotating eddy current flaw detection probe
US8638091B2 (en) 2009-05-22 2014-01-28 Nippon Steel & Sumitomo Metal Corporation Rotary eddy current testing probe device
JP2013185952A (en) * 2012-03-08 2013-09-19 Jfe Steel Corp Magnetic flaw detection probe
CN103076390A (en) * 2012-12-27 2013-05-01 佛山市斯派利管业科技有限公司 Positioning method and device applied to eddy current flaw detection, and eddy current flaw detector

Also Published As

Publication number Publication date
JP4881494B2 (en) 2012-02-22

Similar Documents

Publication Publication Date Title
JP4881494B2 (en) Eddy current testing probe
JP5153274B2 (en) Inspection equipment for inspection objects
WO2010073926A1 (en) Eddy-current testing method and eddy-current testing device
JP5438592B2 (en) Rotating eddy current flaw detection probe
JP2014089325A5 (en)
JP2003215107A (en) Eddy current flaw detection probe
JP2011002409A (en) Leak flux flaw detecting device
WO2016021074A1 (en) Rotation detection device
JP5140214B2 (en) Rotating eddy current flaw detection probe
JP2008175579A (en) Torque sensor
JP6168682B2 (en) Eddy current flaw detection probe and inspection method
JP5411084B2 (en) Rotation angle detector
JP2004205212A (en) Eddy current flaw detecting probe for magnetic material and eddy current flaw detector
JP6816848B1 (en) Leakage magnetic flux flaw detector
JP2002214202A (en) Eddy current flaw detection probe
JP2014066688A (en) Eddy current flaw detection probe, and eddy current flaw detection device
JPH10318988A (en) Eddy current flaw detection probe
KR20210010136A (en) Device for detecting defect of rolled coil and device set using the same
JP2015135243A (en) Rotation detection device
JP2009243890A (en) Ultrasonic inspection device and method
JPH02173560A (en) Eddy current flaw-detecting method
JP2016024169A (en) Eddy current flaw detection probe
JP2009287981A (en) Eddy-current flaw detector and eddy-current flaw detecting method
JP2006220630A (en) Probe for eddy current flaw detection
JP2019062120A (en) Magnetization device and magnetization method of magnetic encoder

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20081208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081209

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111203

R150 Certificate of patent or registration of utility model

Ref document number: 4881494

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350