JP2007244996A - Catalyst for converting/supplying fuel, apparatus for converting/supplying fuel, and method for converting/supplying fuel by using the apparatus - Google Patents

Catalyst for converting/supplying fuel, apparatus for converting/supplying fuel, and method for converting/supplying fuel by using the apparatus Download PDF

Info

Publication number
JP2007244996A
JP2007244996A JP2006071932A JP2006071932A JP2007244996A JP 2007244996 A JP2007244996 A JP 2007244996A JP 2006071932 A JP2006071932 A JP 2006071932A JP 2006071932 A JP2006071932 A JP 2006071932A JP 2007244996 A JP2007244996 A JP 2007244996A
Authority
JP
Japan
Prior art keywords
fuel
catalyst
conversion
supply
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006071932A
Other languages
Japanese (ja)
Inventor
Hiroshi Akama
弘 赤間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006071932A priority Critical patent/JP2007244996A/en
Publication of JP2007244996A publication Critical patent/JP2007244996A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst for converting/supplying fuel, which can be designed to be more compact than the conventional one and can effectively convert mixed fuel containing an oxygen-containing compound such as alcohol from a low temperature range of around 200°C and to provide an apparatus for converting/supplying fuel and a method for converting/supplying fuel using the apparatus for converting/supplying fuel. <P>SOLUTION: The catalyst for converting/supplying fuel contains Pt and a compound containing Ce, Ti, Zr, Nb, an alkali metal, an alkaline-earth metal or the like and is used for converting mixed fuel composed of hydrocarbon-based fuel and oxygen-containing compound fuel, or contains Cu and an oxide containing Al, Si, Zn, Mg or the like and is used for converting the mixed fuel. The apparatus for converting/supplying fuel is provided with the catalyst for converting/supplying fuel. When the mixed fuel composed of hydrocarbon-based fuel and oxygen-containing compound fuel is brought into contact with the catalyst for converting/supplying fuel, temperature control using the waste heat from an internal-combustion engine is performed, the mixed fuel is converted, and the converted fuel is supplied to the internal-combustion engine. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、燃料変換・供給用触媒、燃料変換・供給装置及びこれを用いた燃料変換・供給方法に係り、更に詳細には、エタノールなどの含酸素化合物を含有する混合燃料を用いた場合に、内燃機関の運転状況に応じて適切な特性の燃料を供給できる燃料変換・供給用触媒、燃料変換・供給装置及びこれを用いた燃料変換・供給方法に関する。   The present invention relates to a fuel conversion / supply catalyst, a fuel conversion / supply device, and a fuel conversion / supply method using the same, and more specifically, when a mixed fuel containing an oxygen-containing compound such as ethanol is used. The present invention relates to a fuel conversion / supply catalyst, a fuel conversion / supply device, and a fuel conversion / supply method using the same, which can supply fuel with appropriate characteristics according to the operating conditions of the internal combustion engine.

地球環境に対する配慮から、二酸化炭素(CO2)排出量の低減が叫ばれており、自動車の内燃機関の燃費向上を目的に各種の試みがなされている。
例えば、ガソリンのリーンバーンエンジン、直噴エンジン、ディーゼルエンジンにおける高圧噴射技術、また、燃料のオクタン価向上剤の添加など各種の施策が行われている。
また、燃料からのアプローチとして、従来用いられているガソリンや軽油の他に、水素、アルコール(メタノール、エタノールなど)、エーテル(ジメチルエーテル、メチルターシャリーブチルエーテルなど)、バイオディーゼル、合成燃料(GTL)などの代替燃料も検討されてきている。
In consideration of the global environment, reduction of carbon dioxide (CO2) emissions has been screamed, and various attempts have been made for the purpose of improving the fuel efficiency of automobile internal combustion engines.
For example, various measures such as high pressure injection technology for gasoline lean burn engines, direct injection engines, and diesel engines, and addition of an octane number improver for fuel are being implemented.
In addition to conventional gasoline and light oil as fuel approaches, hydrogen, alcohol (methanol, ethanol, etc.), ether (dimethyl ether, methyl tertiary butyl ether, etc.), biodiesel, synthetic fuel (GTL), etc. Alternative fuels have also been considered.

ここで、エタノールは、バイオ起源にて製造できることから再生可能であり、大気中のCO2を増加させないカーボンニュートラル燃料として近年注目を集めている。
また、アルコール類は、分子内に酸素原子を含有するため、ガソリンに混合させると、オクタン価を向上させ、燃料の燃焼性向上にも寄与することが期待されている。
このため、既にブラジル、アメリカなどいくつかの国においては、ガソリンに一定量のエタノールを混合した燃料であるガスホールが、内燃機関用燃料として使用されている。
Here, ethanol is reproducible because it can be produced from bio origin, and has recently attracted attention as a carbon neutral fuel that does not increase CO2 in the atmosphere.
In addition, since alcohols contain oxygen atoms in their molecules, mixing with gasoline is expected to improve the octane number and contribute to improving fuel combustibility.
For this reason, in some countries such as Brazil and the United States, a gas hole, which is a fuel in which a certain amount of ethanol is mixed with gasoline, is already used as a fuel for an internal combustion engine.

しかし、アルコールは単純に、ガソリンと比較して熱量が劣るので、混合した分だけ出力が低下することから、逆に燃費悪化になる可能性もあり、従来の化石燃料に添加しただけでは燃料の節約に繋がるとは言い難い。   However, alcohol is simply inferior to gasoline and has a lower calorific value, so the output will be reduced by the amount of mixing, which may adversely affect fuel consumption. It's hard to say that it leads to savings.

このような背景から、ガソリンや軽油などとアルコールとの混合燃料を内燃機関へ供給する際の各種の条件を最適化することを目的として、これら混合燃料の内燃機関への供給方法や噴射方法など種々の技術が提案されている(例えば、特許文献1,2参照)。
特公昭60−47469号公報 特開平6−10787号公報
From such a background, for the purpose of optimizing various conditions when supplying a mixed fuel of gasoline, light oil, etc. and alcohol to the internal combustion engine, a method of supplying the mixed fuel to the internal combustion engine, an injection method, etc. Various techniques have been proposed (see, for example, Patent Documents 1 and 2).
Japanese Examined Patent Publication No. 60-47469 JP-A-6-10787

特許文献1は、アルコール混合ガソリン燃料を、アルコールの改質温度以上に熱し、改質ガスを得ると同時にガソリンをガス化し、次いでガス化したガソリン燃料を冷却、凝縮して、改質ガスと分離し、それらを別系統でエンジンに供給するというものである。   In Patent Document 1, an alcohol-mixed gasoline fuel is heated to a temperature higher than the reforming temperature of alcohol to obtain reformed gas, and at the same time, gasoline is gasified, and then the gasified gasoline fuel is cooled and condensed to be separated from the reformed gas. However, they are supplied to the engine by a separate system.

この場合、アルコールは比較的改質が容易なメタノールの場合には有効と思われるが、より高い改質温度が必要なエタノールの場合には改質ガスへの転化が困難であった。また、改質によりアルコールから水素を得ることを主眼に考えられており、そのためには水を加える必要があり、エタノールのような、より改質し難いアルコールでは、所定の改質ガスを得るのが一層困難となっていた。更に、内燃機関の運転条件と改質ガスの供給との関係も考慮されておらず、得られた改質ガスが内燃機関の効率向上に寄与できるかは不明であった。   In this case, the alcohol seems to be effective in the case of methanol which is relatively easy to reform, but in the case of ethanol which requires a higher reforming temperature, it was difficult to convert it into a reformed gas. In addition, the main idea is to obtain hydrogen from alcohol by reforming. To that end, water must be added. For alcohol that is difficult to reform, such as ethanol, a predetermined reformed gas can be obtained. Has become even more difficult. Further, the relationship between the operating conditions of the internal combustion engine and the supply of the reformed gas is not taken into consideration, and it has been unclear whether the obtained reformed gas can contribute to improving the efficiency of the internal combustion engine.

また、特許文献2には、例えば、アルコール混合軽油を効果的に供給し噴射するための、コンパクトな複燃料噴射弁が提案されている。   Patent Document 2 proposes a compact double fuel injection valve for effectively supplying and injecting alcohol-mixed light oil, for example.

この場合も、混合されたアルコール燃料からディーゼルエンジン燃焼に有利な燃料成分が得られれば、従来の噴射装置でも燃焼効率の向上効果が得られるものと考えられる。
しかし、特許文献2では燃料噴射弁に主眼が置かれており、燃料の特性、即ち混合されるアルコール種などは考慮されていない。
In this case as well, if a fuel component advantageous for diesel engine combustion is obtained from the mixed alcohol fuel, it is considered that the conventional injection device can also improve the combustion efficiency.
However, Patent Document 2 focuses on the fuel injection valve, and does not consider the characteristics of the fuel, that is, the alcohol species to be mixed.

このように、これまでの含酸素化合物やアルコール混合燃料の内燃機関への供給に関する技術は、アルコールとして、比較的改質し易いメタノールに主眼を置いてなされていた。また、運転条件との関係も十分考慮しておらず、有効な活用がなされていなかった。
即ち、昨今、リニューアブルエネルギー燃料として注目されているバイオ起源のエタノールを燃料の一部に用いた混合燃料に対しては、低温から効率良く作用する燃料変換・供給用触媒は提案されておらず、有効な利用がなされていなかった。
また、自動車などの内燃機関に供給する燃料を変換するときは、使用する触媒のコンパクト化が非常に重要な要素となる。
As described above, the conventional technology relating to the supply of oxygen-containing compounds and alcohol-mixed fuels to the internal combustion engine has been focused on methanol that is relatively easily reformed as alcohol. In addition, the relationship with operating conditions was not fully considered, and effective use was not made.
That is, recently, a fuel conversion / supply catalyst that works efficiently from low temperatures has not been proposed for a mixed fuel that uses bio-derived ethanol, which has attracted attention as a renewable energy fuel, as part of the fuel. There was no effective use.
In addition, when converting fuel supplied to an internal combustion engine such as an automobile, downsizing of the catalyst used is a very important factor.

本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、従来品よりコンパクトに設計可能であり、アルコールのような含酸素化合物を含む混合燃料を200℃程度の低温域からでも効果的に変換できる燃料変換・供給用触媒、燃料変換・供給装置及びこれを用いた燃料変換・供給方法を提供することにある。   The present invention has been made in view of such problems of the prior art, and the object of the present invention is to design a mixed fuel containing an oxygen-containing compound such as alcohol that can be designed more compactly than conventional products. An object of the present invention is to provide a fuel conversion / supply catalyst, a fuel conversion / supply device, and a fuel conversion / supply method using the same, which can be effectively converted even from a low temperature range of about 200 ° C.

本発明者は、上記課題を解決すべく鋭意検討を重ねた結果、白金を、セリウム、チタン、ジルコニア、ニオブ、アルカリ金属、アルカリ土類金属などと組み合わせた触媒や、銅を、アルミニウム、シリコン、亜鉛、マグネシウムなどと組み合わせた触媒を用いることにより、上記課題が解決できることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventor has developed a catalyst in which platinum is combined with cerium, titanium, zirconia, niobium, alkali metal, alkaline earth metal, etc., copper, aluminum, silicon, The present inventors have found that the above problems can be solved by using a catalyst combined with zinc, magnesium, etc., and have completed the present invention.

即ち、本発明の燃料変換・供給用触媒は、内燃機関へ燃料成分を供給する装置に用いられる触媒であって、
白金と、セリウム、チタン、ジルコニア、ニオブ、アルカリ金属及びアルカリ土類金属から成る群より選ばれた少なくとも1種の元素を含む化合物と、を含有し、
炭化水素系燃料と含酸素化合物燃料とから成る混合燃料の少なくとも一部を、他の燃料成分に変換することを特徴とする。
That is, the fuel conversion / supply catalyst of the present invention is a catalyst used in an apparatus for supplying a fuel component to an internal combustion engine,
Containing platinum and a compound containing at least one element selected from the group consisting of cerium, titanium, zirconia, niobium, alkali metals and alkaline earth metals,
It is characterized in that at least a part of a mixed fuel composed of a hydrocarbon-based fuel and an oxygen-containing compound fuel is converted into another fuel component.

また、本発明の他の燃料変換・供給用触媒は、内燃機関へ燃料成分を供給する装置に用いられる触媒であって、
銅と、アルミニウム、シリコン、亜鉛及びマグネシウムから成る群より選ばれた少なくとも1種の元素を含む酸化物と、を含有し、
炭化水素系燃料と含酸素化合物燃料とから成る混合燃料の少なくとも一部を、他の燃料成分に変換することを特徴とする。
Further, another fuel conversion / supply catalyst of the present invention is a catalyst used in an apparatus for supplying a fuel component to an internal combustion engine,
Copper and an oxide containing at least one element selected from the group consisting of aluminum, silicon, zinc and magnesium,
It is characterized in that at least a part of a mixed fuel composed of a hydrocarbon-based fuel and an oxygen-containing compound fuel is converted into another fuel component.

更に、本発明の燃料変換・供給装置は、上記燃料変換・供給用触媒を備えることを特徴とする。   Furthermore, a fuel conversion / supply device according to the present invention is characterized by comprising the fuel conversion / supply catalyst.

更にまた、本発明の燃料変換・供給方法は、上記燃料変換・供給装置を用いて燃料を変換・供給するに当たり、
炭化水素系燃料と含酸素化合物燃料とから成る混合燃料を燃料変換・供給用触媒に接触させる際に、内燃機関からの廃熱を用いて該触媒又はその近傍の温度制御を行い、
該混合燃料の少なくとも一部を、他の燃料成分に変換し、内燃機関へ供給することを特徴とする。
Furthermore, the fuel conversion / supply method of the present invention, when converting and supplying fuel using the fuel conversion / supply device,
When contacting a mixed fuel composed of a hydrocarbon-based fuel and an oxygen-containing compound fuel with a fuel conversion / supply catalyst, temperature control of the catalyst or its vicinity is performed using waste heat from an internal combustion engine,
At least a part of the mixed fuel is converted into another fuel component and supplied to the internal combustion engine.

本発明によれば、白金を、セリウム、チタン、ジルコニア、ニオブ、アルカリ金属、アルカリ土類金属などと組み合わせた触媒や、銅を、アルミニウム、シリコン、亜鉛、マグネシウムなどと組み合わせた触媒を用いることとしたため、従来品よりコンパクトに設計することが可能であり、アルコールのような含酸素化合物を含む混合燃料を200℃程度の低温域から効果的に変換できる燃料変換・供給用触媒、燃料変換・供給装置及びこれを用いた燃料変換・供給方法を提供することができる。   According to the present invention, a catalyst in which platinum is combined with cerium, titanium, zirconia, niobium, alkali metal, alkaline earth metal, or the like, or a catalyst in which copper is combined with aluminum, silicon, zinc, magnesium, or the like is used. Therefore, it is possible to design more compact than conventional products, and a fuel conversion / supply catalyst that can effectively convert a mixed fuel containing an oxygen-containing compound such as alcohol from a low temperature range of about 200 ° C., fuel conversion / supply An apparatus and a fuel conversion / supply method using the same can be provided.

以下、本発明の燃料変換・供給用触媒について詳細に説明する。なお、本明細書において、「%」は特記しない限り質量百分率を示す。   Hereinafter, the fuel conversion / supply catalyst of the present invention will be described in detail. In the present specification, “%” indicates a mass percentage unless otherwise specified.

上述の如く、本発明の第1の燃料変換・供給用触媒は、炭化水素系燃料と含酸素化合物燃料とから成る混合燃料の少なくとも一部を、他の燃料成分に変換して、内燃機関へ供給する装置に用いられる触媒である。
また、その構成は、白金(Pt)と、セリウム(Ce)、チタン(Ti)、ジルコニア(Zr)、ニオブ(Nb)、アルカリ金属又はアルカリ土類金属、及びこれらの任意の組合せに係るものを含む化合物と、を含有して成る。
As described above, the first fuel conversion / supply catalyst of the present invention converts at least a part of a mixed fuel composed of a hydrocarbon-based fuel and an oxygen-containing compound fuel into another fuel component, and supplies it to an internal combustion engine. It is a catalyst used for the apparatus to supply.
In addition, the structure includes platinum (Pt), cerium (Ce), titanium (Ti), zirconia (Zr), niobium (Nb), alkali metal or alkaline earth metal, and any combination thereof. And a compound containing.

また、本発明の第2の燃料変換・供給用触媒は、上記第1の触媒と用途は同様であるが、その構成は、銅(Cu)と、アルミニウム(Al)、シリコン(Si)、亜鉛(Zn)又はマグネシウム(Mg)、及びこれらの任意の組み合わせに係るものを含む酸化物と、を含有して成る。   Further, the second fuel conversion / supply catalyst of the present invention has the same application as the first catalyst, but the constitution thereof is copper (Cu), aluminum (Al), silicon (Si), zinc. (Zn) or magnesium (Mg), and oxides including those according to any combination thereof.

このような構成により、第1及び第2の燃料変換・供給用触媒は、少量でも200℃程度の低温度条件から混合燃料中のエタノールなど含酸素化合物を水素、エチレン、COなどの燃焼しやすい燃料に変換することができる。   With such a configuration, the first and second fuel conversion / supply catalysts can easily burn oxygen-containing compounds such as ethanol in a mixed fuel such as hydrogen, ethylene, and CO from a low temperature condition of about 200 ° C. even in a small amount. It can be converted into fuel.

ここで、本発明の燃料変換・供給用触媒が変換し得る混合燃料のうち、炭化水素系燃料としては、例えば、ガソリン、軽油、バイオディーゼル、合成軽油(GTL)などが使用できる。また、含酸素化合物燃料には、例えば、メタノール、エタノール、MTBE(メチルターシャリーブチルエーテル)、ETBE(エチルターシャリーブチルエーテル)などが使用できる。   Here, among the mixed fuels that can be converted by the fuel conversion / supply catalyst of the present invention, as the hydrocarbon fuel, for example, gasoline, light oil, biodiesel, synthetic light oil (GTL), or the like can be used. As the oxygen-containing compound fuel, for example, methanol, ethanol, MTBE (methyl tertiary butyl ether), ETBE (ethyl tertiary butyl ether), or the like can be used.

次に、本発明の燃料変換・供給装置について詳細に説明する。
本発明の燃料変換・供給装置は、上述の燃料変換・供給用触媒を備えて成る。
Next, the fuel conversion / supply device of the present invention will be described in detail.
The fuel conversion / supply device of the present invention comprises the above-described fuel conversion / supply catalyst.

ここで、図1に燃料変換・供給装置を適用した燃焼システムの概要を示す。
図1に示すように、この燃焼システムは燃料変換・供給装置を有し、該装置は、混合燃料を供給しうる燃料タンク1と、熱交換器2、2’とで構成される。
燃料タンク1からの燃料供給は、A経路とB経路の2系統で行うことができる。A経路からは、混合燃料をそのままガソリン内燃機関の吸気側に供給できる。B経路からは、混合燃料を排気系側に設置された熱交換器2’に流通させてから内燃機関の吸気側に供給できる。
また、熱交換器2’には、燃料変換・供給用触媒3が設置されており、排気の熱を利用して燃料変換できる。
Here, FIG. 1 shows an outline of a combustion system to which the fuel conversion / supply device is applied.
As shown in FIG. 1, this combustion system has a fuel conversion / supply device, which is composed of a fuel tank 1 capable of supplying a mixed fuel and heat exchangers 2, 2 ′.
The fuel supply from the fuel tank 1 can be performed by two systems of the A path and the B path. From the A route, the mixed fuel can be supplied as it is to the intake side of the gasoline internal combustion engine. From the route B, the mixed fuel can be supplied to the intake side of the internal combustion engine after flowing through the heat exchanger 2 ′ installed on the exhaust system side.
Further, a fuel conversion / supply catalyst 3 is installed in the heat exchanger 2 ′, and fuel can be converted by utilizing the heat of the exhaust.

このシステムでは、例えば、内燃機関の始動時には、燃料供給経路Aより混合燃料を直接噴射供給し燃焼させ、内燃機関の排気温度が上がった時点で、熱交換器を介する燃料供給経路Bに切り替えて運転することができる。混合燃料としては、例えばエタノールを10%含有するガソリン(レギュラーガソリン)を使用できる。
このとき、熱が不足する場合には、更に熱交換器にヒーターを組み込むことで、必要に応じて加熱することが可能となる。
また、排気ガスの一部(EGRガス)を熱交換器2’内の触媒3に送り込むことにより、圧力、酸素の制御が可能になり、このときは変換反応の効率を高めることができる。該熱交換器2’は、内燃機関の排気ガスからの熱を活用できる位置に設置することが良い。
廃熱は熱交換器2’を介して触媒3に与えられるが、熱交換器2’自体は排気管内や排気管周囲に設置することができる。
In this system, for example, when the internal combustion engine is started, the mixed fuel is directly injected and supplied from the fuel supply path A and burned. When the exhaust temperature of the internal combustion engine rises, the system is switched to the fuel supply path B via the heat exchanger. You can drive. As the mixed fuel, for example, gasoline containing 10% ethanol (regular gasoline) can be used.
At this time, when the heat is insufficient, it is possible to heat as necessary by incorporating a heater in the heat exchanger.
Further, by sending a part of the exhaust gas (EGR gas) to the catalyst 3 in the heat exchanger 2 ', the pressure and oxygen can be controlled. In this case, the efficiency of the conversion reaction can be increased. The heat exchanger 2 ′ is preferably installed at a position where the heat from the exhaust gas of the internal combustion engine can be utilized.
Waste heat is given to the catalyst 3 via the heat exchanger 2 ', but the heat exchanger 2' itself can be installed in the exhaust pipe or around the exhaust pipe.

特に、触媒3は、内燃機関の負荷が低い低速運転時の排気温度が低い条件のときに有効で、含有アルコールからの水素生成反応、アルコールの分解によるエチレン生成反応、CO生成反応など、更には一部のガソリンからの水素生成反応、分解反応によるエチレン生成反応など各種の反応により、内燃機関のリーンバーン領域拡大に寄与するため、燃費向上に寄与できる。
水素生成反応、エチレンの生成反応は、吸熱反応であることから、結果的に排気ガスの熱を回収でき、燃費向上効果を増大できる。
なお、熱交換器2を通過した燃料成分は、内燃機関に直接噴射することができるが、熱交換器2’で熱交換、冷却することで、ガス成分と液体成分に気液分離してから両燃料成分を噴射することもできる。このときは、気体用と液体用の燃料噴射装置を併用すればよい。
In particular, the catalyst 3 is effective when the exhaust temperature is low during low speed operation with a low load on the internal combustion engine, such as a hydrogen generation reaction from the contained alcohol, an ethylene generation reaction by decomposition of the alcohol, a CO generation reaction, etc. Various reactions such as hydrogen production reaction from some gasoline and ethylene production reaction by decomposition reaction contribute to the expansion of the lean burn area of the internal combustion engine, which can contribute to the improvement of fuel consumption.
Since the hydrogen generation reaction and the ethylene generation reaction are endothermic reactions, the heat of the exhaust gas can be recovered as a result, and the fuel efficiency improvement effect can be increased.
The fuel component that has passed through the heat exchanger 2 can be directly injected into the internal combustion engine, but after the gas and liquid are separated into a gas component and a liquid component by heat exchange and cooling in the heat exchanger 2 ′. Both fuel components can also be injected. At this time, the fuel injectors for gas and liquid may be used in combination.

次に、本発明の燃料変換・供給方法について詳細に説明する。
本発明の燃料変換・供給方法は、上述の燃料変換・供給装置を用いて燃料を変換・供給するに当たり、炭化水素系燃料と含酸素化合物燃料とから成る混合燃料を燃料変換・供給用触媒に接触させるときに、内燃機関からの廃熱を用いて該触媒又はその近傍の温度制御を行い、該混合燃料の少なくとも一部を、他の燃料成分に変換し、内燃機関へ供給する。
Next, the fuel conversion / supply method of the present invention will be described in detail.
In the fuel conversion / supply method of the present invention, when the fuel is converted / supplied using the fuel conversion / supply device described above, a mixed fuel composed of a hydrocarbon-based fuel and an oxygen-containing compound fuel is used as a fuel conversion / supply catalyst. When contacting, temperature control of the catalyst or its vicinity is performed using waste heat from the internal combustion engine, and at least a part of the mixed fuel is converted into other fuel components and supplied to the internal combustion engine.

このように、内燃機関からの廃熱を用いて触媒の温度制御を行うことにより、熱回収が可能になるため燃費向上効果が大きくなる。
混合燃料の変換効率は、含有されている含酸素化合物の種類、含有量によるが、エタノールが10%程度含有されたガソリンの場合、含有されたエタノールの60〜80%程度を他の燃料成分に変換して供給できることが期待される。
Thus, by performing the temperature control of the catalyst using the waste heat from the internal combustion engine, the heat recovery becomes possible, so the fuel efficiency improvement effect is increased.
The conversion efficiency of the mixed fuel depends on the type and content of the oxygenated compounds contained, but in the case of gasoline containing about 10% ethanol, about 60-80% of the contained ethanol is used as another fuel component. It is expected that it can be converted and supplied.

ここで、廃熱による温度制御は、触媒又はその近傍を200〜400℃程度に加熱できることが好ましい。
また、混合燃料を構成する炭化水素系燃料と含酸素化合物燃料の混合比は、例えば、炭化水素系燃料:含酸素化合物燃料(エタノール燃料)として、90:10〜15:85の範囲が想定される。
Here, it is preferable that the temperature control by waste heat can heat a catalyst or its vicinity to about 200-400 degreeC.
The mixing ratio of the hydrocarbon-based fuel and the oxygen-containing compound fuel constituting the mixed fuel is assumed to be in the range of 90:10 to 15:85, for example, as hydrocarbon-based fuel: oxygen-containing compound fuel (ethanol fuel). The

また、内燃機関からの排気ガスの少なくとも一部を混合燃料と混合し、該触媒に供給することが好ましい。
例えば、排気ガス中の水分、窒素酸化物、一酸化炭素(CO)、炭化水素(HC)などの成分が活用でき、熱量の回収に役立つとともに、排気のクリーン化にも貢献できる。
Further, it is preferable that at least a part of the exhaust gas from the internal combustion engine is mixed with the mixed fuel and supplied to the catalyst.
For example, components such as moisture, nitrogen oxides, carbon monoxide (CO), and hydrocarbons (HC) in the exhaust gas can be used, which contributes to the recovery of heat and contributes to the cleanliness of the exhaust.

このときは、上記混合処理で得られる混合ガス(混合燃料+排気ガス)の酸素濃度を制御することができる。これにより、燃料変換反応を有効に行わせることができる。
具体的には、混合ガス中に0.1〜3.0%程度の割合で酸素が含まれることが良い。
At this time, the oxygen concentration of the mixed gas (mixed fuel + exhaust gas) obtained by the mixing process can be controlled. Thereby, fuel conversion reaction can be performed effectively.
Specifically, oxygen is preferably contained in the mixed gas at a ratio of about 0.1 to 3.0%.

更に、混合燃料を燃料変換・供給用触媒に接触させるときには、該触媒の反応場の圧力を制御することが好ましい。これにより、変換反応の制御性が高められる。
具体的には、0.3〜10Pa程度に制御することが良い。
Furthermore, when the mixed fuel is brought into contact with the fuel conversion / supply catalyst, it is preferable to control the pressure in the reaction field of the catalyst. Thereby, the controllability of the conversion reaction is enhanced.
Specifically, it is good to control to about 0.3 to 10 Pa.

更にまた、変換反応の効率を高める観点からは、上記含酸素化合物燃料としてエタノール燃料を使用することが好ましい。   Furthermore, from the viewpoint of improving the efficiency of the conversion reaction, it is preferable to use ethanol fuel as the oxygen-containing compound fuel.

また、上記燃料変換・供給用触媒は、例えば、30ppiの細孔を有するニッケル(Ni)性メタルフォームなどに塗布することで、ライトオフ特性、応答性が高まり、触媒利用率を向上させ得る。
特に、3次元連続細孔を有するメタル製担体に塗布して用いることが好ましい。例えば、ニッケル合金などメタル製の発泡担体、即ち、3次元連続細孔を有し、気孔率が80%以上のモノリス担体を用いることができる。このときは、少ない触媒量で十分な変換機能が得られ、またライトオフ特性、応答性が高められる。
The fuel conversion / supply catalyst can be applied to, for example, nickel (Ni) metal foam having pores of 30 ppi, so that light-off characteristics and responsiveness can be improved, and the catalyst utilization rate can be improved.
In particular, it is preferably applied to a metal carrier having three-dimensional continuous pores. For example, a metal foam carrier such as a nickel alloy, that is, a monolith carrier having three-dimensional continuous pores and a porosity of 80% or more can be used. In this case, a sufficient conversion function can be obtained with a small amount of catalyst, and light-off characteristics and responsiveness can be improved.

以下、実施例を用いて本発明の実施の形態をより詳細に説明するが、本発明の技術的範囲は下記の実施例のみには制限されない。   Hereinafter, embodiments of the present invention will be described in more detail with reference to examples. However, the technical scope of the present invention is not limited to the following examples.

(実施例1)1%Pt−0.3%Cs/CeO2−Nb2O5(Ce:Nb=50:50 モル比)の調製
10%のセリアゾル溶液と10%ニオブゾル溶液を所定量混合し、ホットプレート上で撹拌しながら水分を飛ばした後、150℃で一晩乾燥した。次いで、電気炉中で大気下600℃2時間の焼成を行った。
一方、ジニトロジアンミン白金水溶液と硝酸セシウム水溶液を所定量混合し、含浸法により上記で得られたCeO2−Nb2O5粉末に所定量の白金とセシウムを担持した。同様に150℃で一晩乾燥した後、電気炉を用いて大気下500℃で2時間の焼成を行い、1%Pt−0.3%Cs/CeO2−Nb2O5(Ce:Nb=50:50 モル比)の触媒粉末を得た。
(Example 1) Preparation of 1% Pt-0.3% Cs / CeO2-Nb2O5 (Ce: Nb = 50: 50 molar ratio) A predetermined amount of 10% ceria sol solution and 10% niobium sol solution were mixed and heated on a hot plate The water was removed while stirring at rt and dried at 150 ° C. overnight. Next, firing was performed at 600 ° C. for 2 hours in the air in an electric furnace.
On the other hand, a predetermined amount of a dinitrodiammine platinum aqueous solution and a cesium nitrate aqueous solution were mixed, and a predetermined amount of platinum and cesium were supported on the CeO2-Nb2O5 powder obtained by the impregnation method. Similarly, after drying at 150 ° C. overnight, firing was performed at 500 ° C. for 2 hours in the atmosphere using an electric furnace, and 1% Pt−0.3% Cs / CeO 2 —Nb 2 O 5 (Ce: Nb = 50: 50 mol) Ratio) of catalyst powder.

次に、該触媒粉末をモノリス触媒化するため、触媒粉からスラリーを調製した。磁製ポットミルに上記触媒粉、水、バインダーとしてのシリカゾルを固形分に対して3%添加し、約1時間振動を与えて粉砕した後、取り出し、スターラで撹拌しながら、更に水分を追加、調節しながら適当な粘度の触媒スラリーを得た。   Next, in order to convert the catalyst powder into a monolith catalyst, a slurry was prepared from the catalyst powder. Add 3% of the above catalyst powder, water, and silica sol as a binder to a porcelain pot mill, crush and shake for about 1 hour, take out, and add and adjust moisture while stirring with a stirrer Thus, a catalyst slurry having an appropriate viscosity was obtained.

平均30ppiの3次元細孔密度を有するニッケル製メタルフォームを準備した。このメタルフォームを上記触媒スラリー溶液に浸し、余分なスラリーを除去して、メタルフォーム単位容積(1L)当たり約80gの触媒粉(シリカバインダーも含む)を塗布した。150℃での乾燥、500℃での焼成工程を得て、メタルフォーム骨格上に触媒を固定し、実施例1になるフォーム触媒(1)を得た。   A nickel metal foam having an average three-dimensional pore density of 30 ppi was prepared. The metal foam was immersed in the catalyst slurry solution, excess slurry was removed, and about 80 g of catalyst powder (including silica binder) was applied per unit volume (1 L) of metal foam. After drying at 150 ° C. and firing at 500 ° C., the catalyst was fixed on the metal foam skeleton to obtain a foam catalyst (1) according to Example 1.

(実施例2〜5)
実施例1と同様の手順、方法にて実施例2〜5になる触媒粉末、触媒スラリーを経てメタルフォーム触媒を調製した。各触媒調製における原料に関して、チタニア、ジルコニア共に10%ゾル、カルシウムは硝酸塩を用いた。
実施例2は1%Pt/TiO(ルチル型)触媒、実施例3は1%Pt/CeO−ZrO(Ce:Zr=80:20 モル比)、実施例4は1%Pt/Nb、実施例5は1%Pt−0.2%Ca/CeO−Nb(Ce:Nb=50:50 モル比)を示した。
(Examples 2 to 5)
The metal foam catalyst was prepared through the catalyst powder and catalyst slurry which become Example 2-5 with the same procedure and method as Example 1. Regarding the raw materials in each catalyst preparation, 10% sol was used for both titania and zirconia, and nitrate was used for calcium.
Example 2 is a 1% Pt / TiO 2 (rutile type) catalyst, Example 3 is 1% Pt / CeO 2 —ZrO 2 (Ce: Zr = 80: 20 molar ratio), and Example 4 is 1% Pt / Nb. 2 O 5 , Example 5 showed 1% Pt-0.2% Ca / CeO 2 —Nb 2 O 5 (Ce: Nb = 50: 50 molar ratio).

(実施例6〜8)10%Cu/Al2O3触媒の調製
硝酸銅水溶液を用意し、γアルミナの粉末を溶液中に投入し、スターラで撹拌しながら、10%アンモニア水溶液を滴下し、水酸化銅を析出させた。余分な水分をろ過して除き、得られたケーキを乾燥機にいれて約100℃で2日間乾燥させた後、電気炉で大気下500℃で2時間焼成し、触媒粉末を得た。以下、実施例1と同様にして触媒スラリーを調製し、メタルフォーム触媒(6)を得た。全く同様にメタルフォームに触媒スラリーを塗布して、メタルフォーム型触媒(7)、20%Cu/SiO2触媒及びメタルフォーム触媒(8)20%Cu−5%Zn/Al2O3を得た。
(Examples 6 to 8) Preparation of 10% Cu / Al2O3 catalyst An aqueous copper nitrate solution was prepared, γ-alumina powder was charged into the solution, and a 10% aqueous ammonia solution was added dropwise while stirring with a stirrer. Was precipitated. Excess water was removed by filtration, and the resulting cake was put in a dryer and dried at about 100 ° C. for 2 days, and then calcined in the electric furnace at 500 ° C. for 2 hours to obtain a catalyst powder. Thereafter, a catalyst slurry was prepared in the same manner as in Example 1 to obtain a metal foam catalyst (6). The catalyst slurry was applied to the metal foam in exactly the same manner to obtain a metal foam type catalyst (7), a 20% Cu / SiO 2 catalyst and a metal foam catalyst (8) 20% Cu-5% Zn / Al 2 O 3.

(性能評価)
実施例1〜7で得られた燃料変換・供給用メタルフォーム担持触媒について、以下のようにして該触媒入口温度100〜500℃におけるエタノール転化率及び水素生成特性を測定した。
触媒サイズは、6.0cc、前処理として、10%H/Nバランスガスを5L毎分の流速で供給しながら、500℃で1時間処理した後、Nパージを行い、触媒層から十分にHを追い出した後、触媒性能を評価した。
性能評価には、常圧固定床流通式反応装置を用い、エタノール/イソオクタン=50:50重量比混合燃料をモデル燃料とし、混合燃料流量3.0cc毎分で触媒層に供給した。
従って、LHSV(液空間速度)は約30となる。この際、キャリアガスとして、Nを0.5L毎分で供給した。
触媒層入口温度を100℃〜400℃まで適当な温度範囲で設定し、ガスクロマトグラフを用いてエタノールと水素を定量した。触媒層入口でのエタノールと出口でのエタノール及びHを定量し、下記数式1により、エタノール転化率を算出した。
(Performance evaluation)
For the fuel conversion / supply metal foam-supported catalysts obtained in Examples 1 to 7, the ethanol conversion and hydrogen generation characteristics at the catalyst inlet temperature of 100 to 500 ° C. were measured as follows.
The catalyst size was 6.0 cc, and as a pretreatment, 10% H 2 / N 2 balance gas was supplied at a flow rate of 5 L / minute, treated at 500 ° C. for 1 hour, then purged with N 2 , after thoroughly expelling the H 2, it was evaluated for catalytic performance.
For the performance evaluation, an atmospheric pressure fixed bed flow type reactor was used, and ethanol / isooctane = 50: 50 weight ratio mixed fuel was used as a model fuel and supplied to the catalyst layer at a mixed fuel flow rate of 3.0 cc / min.
Therefore, LHSV (liquid space velocity) is about 30. At this time, N 2 was supplied as a carrier gas at a rate of 0.5 L per minute.
The catalyst layer inlet temperature was set in a suitable temperature range from 100 ° C. to 400 ° C., and ethanol and hydrogen were quantified using a gas chromatograph. Ethanol at the catalyst layer inlet, ethanol and H 2 at the outlet were quantified, and the ethanol conversion was calculated by the following formula 1.

Figure 2007244996
Figure 2007244996

Figure 2007244996
Figure 2007244996

即ち、エタノール転化率が高いほど、燃料変換性能に優れる触媒である。本実施例においては、エタノール転化率とともにH生成能も性能を判断する指標である。Hは、燃焼速度が速く、且つクリーンな燃料であり、オクタン価も高く、内燃機関の燃焼にとって好ましい特性を備えているからである。 That is, the higher the ethanol conversion rate, the better the fuel conversion performance. In this example, the ethanol conversion rate as well as the H 2 production ability are also indices for judging the performance. This is because H 2 is a clean fuel with a high combustion rate, a high octane number, and favorable characteristics for combustion of an internal combustion engine.

図2に示すように、いずれの燃料変換・供給用触媒も150℃程度の低温域からエタノール転化しており、250℃では顕著な水素生成がみられ、高効率エンジンの低排温条件でも十分に作動し得ることが分かる。   As shown in FIG. 2, all of the fuel conversion / supply catalysts have been ethanol-converted from a low temperature range of about 150 ° C., and remarkable hydrogen production is seen at 250 ° C., which is sufficient even under low exhaust temperature conditions of a high efficiency engine. It can be seen that it can work.

本発明の燃料変換・供給用触媒を適用した燃焼システムの一例を示す概略図である。It is the schematic which shows an example of the combustion system to which the catalyst for fuel conversion and supply of this invention is applied.

符号の説明Explanation of symbols

1 燃料タンク
2 熱交換器
2’熱交換器
3 燃料変換・供給用触媒
DESCRIPTION OF SYMBOLS 1 Fuel tank 2 Heat exchanger 2 'Heat exchanger 3 Fuel conversion and supply catalyst

Claims (9)

内燃機関へ燃料成分を供給する装置に用いられる触媒であって、
白金と、セリウム、チタン、ジルコニア、ニオブ、アルカリ金属及びアルカリ土類金属から成る群より選ばれた少なくとも1種の元素を含む化合物と、を含有し、
炭化水素系燃料と含酸素化合物燃料とから成る混合燃料の少なくとも一部を、他の燃料成分に変換することを特徴とする燃料変換・供給用触媒。
A catalyst used in an apparatus for supplying a fuel component to an internal combustion engine,
Containing platinum and a compound containing at least one element selected from the group consisting of cerium, titanium, zirconia, niobium, alkali metals and alkaline earth metals,
A fuel conversion / supply catalyst, wherein at least part of a mixed fuel comprising a hydrocarbon fuel and an oxygen-containing compound fuel is converted into another fuel component.
内燃機関へ燃料成分を供給する装置に用いられる触媒であって、
銅と、アルミニウム、シリコン、亜鉛及びマグネシウムから成る群より選ばれた少なくとも1種の元素を含む酸化物と、を含有し、
炭化水素系燃料と含酸素化合物燃料とから成る混合燃料の少なくとも一部を、他の燃料成分に変換することを特徴とする燃料変換・供給用触媒。
A catalyst used in an apparatus for supplying a fuel component to an internal combustion engine,
Copper and an oxide containing at least one element selected from the group consisting of aluminum, silicon, zinc and magnesium,
A fuel conversion / supply catalyst, wherein at least part of a mixed fuel comprising a hydrocarbon fuel and an oxygen-containing compound fuel is converted into another fuel component.
請求項1又は2に記載の燃料変換・供給用触媒を備えることを特徴とする燃料変換・供給装置。   A fuel conversion / supply device comprising the fuel conversion / supply catalyst according to claim 1. 請求項3に記載の燃料変換・供給装置を用いて燃料を変換・供給するに当たり、
炭化水素系燃料と含酸素化合物燃料とから成る混合燃料を燃料変換・供給用触媒に接触させるときに、内燃機関からの廃熱を用いて該触媒又はその近傍の温度制御を行い、
該混合燃料の少なくとも一部を、他の燃料成分に変換し、内燃機関へ供給することを特徴とする燃料変換・供給方法。
In converting and supplying fuel using the fuel conversion and supply device according to claim 3,
When contacting a mixed fuel composed of a hydrocarbon-based fuel and an oxygen-containing compound fuel with a fuel conversion / supply catalyst, temperature control of the catalyst or its vicinity is performed using waste heat from an internal combustion engine,
A fuel conversion / supply method, wherein at least a part of the mixed fuel is converted into another fuel component and supplied to an internal combustion engine.
内燃機関からの排気ガスの少なくとも一部を混合燃料と混合し、該触媒に供給することを特徴とする請求項4に記載の燃料変換・供給方法。   5. The fuel conversion / supply method according to claim 4, wherein at least a part of exhaust gas from the internal combustion engine is mixed with a mixed fuel and supplied to the catalyst. 上記混合処理で得られる混合ガスの酸素濃度を制御することを特徴とする請求項5に記載の燃料変換・供給方法。   6. The fuel conversion / supply method according to claim 5, wherein the oxygen concentration of the mixed gas obtained by the mixing process is controlled. 上記燃料変換・供給用触媒の反応場の圧力を制御することを特徴とする請求項4〜6のいずれか1つの項に記載の燃料変換・供給方法。   The fuel conversion / supply method according to any one of claims 4 to 6, wherein a pressure in a reaction field of the fuel conversion / supply catalyst is controlled. 上記含酸素化合物燃料がエタノール燃料であることを特徴とする請求項4〜7のいずれか1つの項に記載の燃料変換・供給方法。   The fuel conversion / supply method according to any one of claims 4 to 7, wherein the oxygen-containing compound fuel is ethanol fuel. 上記燃料変換・供給用触媒を、3次元連続細孔を有するメタル製担体に塗布して用いることを特徴とする請求項4〜8のいずれか1つの項に記載の燃料変換・供給方法。   The fuel conversion / supply method according to any one of claims 4 to 8, wherein the fuel conversion / supply catalyst is used by being applied to a metal carrier having three-dimensional continuous pores.
JP2006071932A 2006-03-16 2006-03-16 Catalyst for converting/supplying fuel, apparatus for converting/supplying fuel, and method for converting/supplying fuel by using the apparatus Pending JP2007244996A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006071932A JP2007244996A (en) 2006-03-16 2006-03-16 Catalyst for converting/supplying fuel, apparatus for converting/supplying fuel, and method for converting/supplying fuel by using the apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006071932A JP2007244996A (en) 2006-03-16 2006-03-16 Catalyst for converting/supplying fuel, apparatus for converting/supplying fuel, and method for converting/supplying fuel by using the apparatus

Publications (1)

Publication Number Publication Date
JP2007244996A true JP2007244996A (en) 2007-09-27

Family

ID=38589845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006071932A Pending JP2007244996A (en) 2006-03-16 2006-03-16 Catalyst for converting/supplying fuel, apparatus for converting/supplying fuel, and method for converting/supplying fuel by using the apparatus

Country Status (1)

Country Link
JP (1) JP2007244996A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009130197A2 (en) * 2008-04-22 2009-10-29 Basf Se Method for prereforming ethanol
JP2016059868A (en) * 2014-09-17 2016-04-25 旭化成ケミカルズ株式会社 Hydrogen generation catalyst, and method for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009130197A2 (en) * 2008-04-22 2009-10-29 Basf Se Method for prereforming ethanol
WO2009130197A3 (en) * 2008-04-22 2009-12-17 Basf Se Method for prereforming ethanol
JP2011521900A (en) * 2008-04-22 2011-07-28 ビーエーエスエフ ソシエタス・ヨーロピア Method for pre-reforming ethanol
JP2016059868A (en) * 2014-09-17 2016-04-25 旭化成ケミカルズ株式会社 Hydrogen generation catalyst, and method for producing the same

Similar Documents

Publication Publication Date Title
JP6263256B2 (en) Flex fuel hydrogen generator
JP5386121B2 (en) Exhaust gas purification catalyst device and exhaust gas purification method
JP7389753B2 (en) Water injection to increase hydrogen production through on-board reforming of fuel for automobile internal combustion engines
EP1409859A2 (en) Fuel supply system of an internal combustion engine
CN100439697C (en) Discharging system of diesel engine with mechanism for reconditioning fuel
US9567897B2 (en) Oxygenate compound synthesis device, systems including the device, and methods of using the same
JP5972274B2 (en) Exhaust gas NOx treatment using 3 continuous SCR catalyst compartments
JP2008261330A (en) Octane number-increasing catalyst, fuel reformer of internal combustion engine and internal combustion engine
Sendilvelan et al. Chemical and experimental analysis of fumigation process to reduce emission without affecting the performance of an engine
US8293197B2 (en) Systems and methods for enhanced selective catalytic reduction of NOx
Joseph et al. Experimental investigation to enhance the low‐temperature nitrogen oxide emission reduction in biodiesel exhaust using selective catalytic reduction with direct ammonia injection and manganese cerium zirconia catalyst
Dosa et al. Novel Mn–Cu-containing CeO 2 nanopolyhedra for the oxidation of CO and diesel soot (Part II): effect of oxygen concentration on the catalytic activity
JP2010029822A (en) Steam reforming catalyst
JP2007244996A (en) Catalyst for converting/supplying fuel, apparatus for converting/supplying fuel, and method for converting/supplying fuel by using the apparatus
JP4853773B2 (en) Fuel supply apparatus and fuel supply method
JP2008298000A (en) Fuel reforming system and fuel reforming method
JP2008144668A (en) Power system and ethanol conversion catalyst
JP2014522418A (en) Method for producing fuel for automotive, stationary engine and marine applications by catalytic liquid phase alcohol conversion and small apparatus for carrying out this method
JPS6241063B2 (en)
JP2004251196A (en) Apparatus for producing reformed gas, method for producing reformed gas employing this apparatus and exhaust emission control system
JP2005044651A (en) Method of manufacturing hydrogen rich gas
JP2006052688A (en) Feeding method of fuel for internal combustion engine, and feeder of fuel for internal combustion engine
RU2747327C1 (en) Systems and methods of production of liquid fuel from landfill gases
Tsolakis et al. Exhaust gas fuel reforming for IC Engines using diesel type fuels
JP5006775B2 (en) Fuel reformer