JP2007244242A - Method and system for controlling temperature of culture media in hydroponics - Google Patents

Method and system for controlling temperature of culture media in hydroponics Download PDF

Info

Publication number
JP2007244242A
JP2007244242A JP2006069681A JP2006069681A JP2007244242A JP 2007244242 A JP2007244242 A JP 2007244242A JP 2006069681 A JP2006069681 A JP 2006069681A JP 2006069681 A JP2006069681 A JP 2006069681A JP 2007244242 A JP2007244242 A JP 2007244242A
Authority
JP
Japan
Prior art keywords
nutrient solution
container
water
temperature
drainage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006069681A
Other languages
Japanese (ja)
Inventor
Nobuyuki Sato
展之 佐藤
Kanji Yamasaki
完治 山▲さき▼
Kyuji Shimamoto
久二 嶋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PLANTS KK
Shizuoka Prefecture
Original Assignee
PLANTS KK
Shizuoka Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PLANTS KK, Shizuoka Prefecture filed Critical PLANTS KK
Priority to JP2006069681A priority Critical patent/JP2007244242A/en
Publication of JP2007244242A publication Critical patent/JP2007244242A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • Y02P60/216

Landscapes

  • Hydroponics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a system each for controlling temperature of culture media easily controlling the temperature of culture media without causing reduction in utilization efficiency of fertilizer. <P>SOLUTION: The system for controlling temperature of culture media in hydroponics 1 is structured as follows: cultivation containers 2 each comprises an outer container provided with a drainage port at a prescribed height and an inner container supported by the outer container and provided with a storing part for culture media, and has slits each making the inside of the outer container communicate with the inside of the storing part at the storing part of the inner container so that culture solution and water supplied to the inner container can be stored in the outer container within the water level up to the position of the drainage port; and a control device 8 alternately supplies the culture solution and the water having prescribed temperature to the cultivation containers 2 respectively via open/close control of a first and second open/close valves 9, 10 to control the temperature of the culture media. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、バラやトマト等の植物を養液栽培する際に、植物が植えられる培地の温度を制御する方法及びシステムに関する。   The present invention relates to a method and system for controlling the temperature of a medium in which plants are planted when hydroponically cultivating plants such as roses and tomatoes.

植物の養液栽培には、植物を植えたロックウール等の培地に、供給手段となる給液パイプ等から養液や水を供給し、余剰分を排出する掛け流し式が知られている(例えば特許文献1参照)。また、供給した養液をタンクに回収し、再びポンプで給液パイプに戻して養液を再供給する循環方式もよく用いられている(例えば特許文献2参照)。   In the hydroponic cultivation of plants, there is known a flow-through method in which nutrient solution or water is supplied to a medium such as rock wool planted with plants from a supply pipe or the like serving as a supply means, and the excess is discharged ( For example, see Patent Document 1). In addition, a circulation system in which the supplied nutrient solution is collected in a tank and returned to the supply pipe with a pump to supply the nutrient solution again is often used (see, for example, Patent Document 2).

特開2002−306000号公報JP 2002-306000 A 特開平9−107827号公報JP-A-9-107827

このような養液栽培においては、品質や収量の向上に繋がることから冬季や夏季での培地温度の管理が重要となる。前者の掛け流し式の場合、ヒータ等による温度調節装置を用いるとコストアップに繋がるため、多量の給液やかん水を行うことで温度制御を行うことが考えられる。しかし、余剰分として排出される量が多くなって肥料の利用効率が悪くなる上、培地の多湿による根腐れのおそれもある。
一方、後者の循環方式の場合、多量の給液やかん水を利用しても肥料の利用効率は低下しないが、循環液中に病原菌が侵入すると感染が拡大してしまう問題がある。
In such hydroponics, it is important to manage the medium temperature in winter and summer because it leads to improvement in quality and yield. In the case of the former flow-through type, using a temperature control device such as a heater leads to an increase in cost. Therefore, it is conceivable to perform temperature control by supplying a large amount of liquid supply or irrigation. However, the amount discharged as a surplus is increased and the use efficiency of the fertilizer is deteriorated, and there is a risk of root rot due to the high humidity of the medium.
On the other hand, in the case of the latter circulation method, the use efficiency of fertilizer is not reduced even if a large amount of liquid supply or brine is used, but there is a problem that infection spreads when pathogenic bacteria enter the circulation liquid.

そこで、本発明は、肥料の利用効率を低下させることなく、病原菌の感染のおそれも低減でき、より簡単に培地の温度制御が可能となる培地温度の制御方法及びシステムを提供することを目的としたものである。   Accordingly, an object of the present invention is to provide a medium temperature control method and system that can reduce the risk of infection with pathogens without reducing the fertilizer utilization efficiency, and that enables simpler temperature control of the medium. It is a thing.

上記目的を達成するために、請求項1に記載の発明は、培地温度の制御方法として、植物を植えた培地を収容する栽培容器として、所定高さに排出口を備えた外容器と、その外容器内に支持されて培地の収容部を備えた内容器とからなり、内容器の収容部に外容器内と収容部内とを連通させる連通部を有して、内容器に供給した養液及び水を排出口位置までの水位で外容器に貯留可能としたものを用い、その栽培容器に養液と所定温度の水とを所定間隔で交互に供給することで、培地の温度を制御することを特徴としたものである。
請求項2に記載の発明は、請求項1の目的に加えて、栽培容器の排出口から流出した養液等を回収する排液タンクと、その排液タンクでの水位が所定量に達すると、排液タンクの養液等を排液する排液手段とを備えたものにあって、天候に合わせた適切な養液等の供給を行うために、排液手段による排液回数に応じて栽培容器への養液と水との供給量を変更するようにしたものである。
In order to achieve the above-mentioned object, the invention according to claim 1 is a method for controlling a culture medium temperature, as a cultivation container for accommodating a culture medium in which a plant is planted, an outer container having an outlet at a predetermined height, A nutrient solution that is supported in the outer container and has an inner container provided with a medium container, and the inner container container has a communication part that communicates the inside of the outer container and the container, and is supplied to the inner container And the temperature of the culture medium is controlled by alternately supplying the nutrient solution and water at a predetermined temperature to the cultivation container at a predetermined interval, using water that can be stored in the outer container at the water level up to the discharge port position. It is characterized by that.
In addition to the object of claim 1, the invention described in claim 2 is a drainage tank that collects nutrient solution or the like that has flowed out from the outlet of the cultivation container, and the water level in the drainage tank reaches a predetermined amount. In addition to drainage means for draining nutrient solution etc. in the drainage tank, in order to supply appropriate nutrient solution etc. according to the weather, according to the number of drainage by the drainage means The supply amount of nutrient solution and water to the cultivation container is changed.

上記目的を達成するために、請求項3に記載の発明は、培地温度の制御システムとして、栽培容器を、所定高さに排出口を備えた外容器と、その外容器内に支持されて培地の収容部を備えた内容器とからなり、内容器の収容部に外容器内と収容部内とを連通させる連通部を有して、内容器に供給した養液及び水を排出口位置までの水位で外容器に貯留可能としたものとし、供給手段を制御する制御手段が、供給手段によって栽培容器へ養液と所定温度の水とを所定間隔で交互に供給させることで、培地の温度を制御することを特徴としたものである。
請求項4に記載の発明は、請求項3の目的に加えて、栽培容器の排出口から流出した養液等を回収する排液タンクと、その排液タンクでの水位が所定量に達すると、前記排液タンクの養液等を排液する排液手段とを備えたものにあって、天候に合わせた適切な養液等の供給を行うために、排液手段による排液回数に応じて栽培容器への養液と水との供給量を変更するようにしたものである。
In order to achieve the above-mentioned object, the invention according to claim 3 is a culture medium supported by a culture container, an outer container having a discharge port at a predetermined height, and a culture medium as a medium temperature control system. The inner container is provided with a communication part that communicates the inside of the outer container with the inside of the container, and the nutrient solution and water supplied to the inner container are disposed up to the discharge port position. The control means for controlling the supply means can supply the nutrient solution and water at a predetermined temperature alternately to the cultivation container at predetermined intervals by the supply means, so that the temperature of the medium can be stored. It is characterized by controlling.
In addition to the object of claim 3, the invention described in claim 4 is a drainage tank that collects nutrient solution or the like flowing out from the outlet of the cultivation container, and when the water level in the drainage tank reaches a predetermined amount. And a drainage means for draining the nutrient solution etc. of the drainage tank, in order to supply an appropriate nutrient solution according to the weather, according to the number of times of drainage by the drainage means The supply amount of nutrient solution and water to the cultivation container is changed.

請求項1及び3に記載の発明によれば、養液と交互に供給される所定温度の水によって培地温度を適正に制御可能となり、植物の品質が向上し、収量の増加に繋がる。而も、栽培容器にはその構造によって一定量の養液等のみが確保されるため、肥料が効率よく利用されると共に、培地が過湿状態にならず根腐れを生じさせない。また、排液の肥料成分も少なくなるため、掛け流し式にしても環境負荷を少なくすることができる。さらに、養液を循環させなくてもよいので、病原菌の感染も好適に防止可能となる上、濾過装置や殺菌装置等の付加装置が不要となることで低コストでの実現も期待できる。
請求項2及び4に記載の発明によれば、請求項1及び3の効果に加えて、排液回数に応じて養液と水との供給量を変更することで、雨天時等で排液量が多いときは養液及び水の供給を少なくして過湿状態を防ぎ、乾燥時等で排液量が少ないときは養液及び水の供給を多くして肥料や水分の欠乏状態を防ぐといった天候に合わせた対応が可能となる。
According to invention of Claim 1 and 3, it becomes possible to control a culture medium temperature appropriately by the water of the predetermined temperature supplied alternately with a nutrient solution, the quality of a plant improves, and it leads to the increase in a yield. In addition, since only a certain amount of nutrient solution or the like is secured in the cultivation container due to its structure, the fertilizer is used efficiently, and the medium does not become overhumid and does not cause root rot. In addition, since the fertilizer component of the drainage is reduced, the environmental load can be reduced even if it is a flow-through type. Furthermore, since it is not necessary to circulate the nutrient solution, it is possible to suitably prevent infection with pathogenic bacteria, and it can be expected to be realized at low cost by eliminating the need for additional devices such as a filtration device and a sterilization device.
According to the second and fourth aspects of the invention, in addition to the effects of the first and third aspects, the supply amount of nutrient solution and water is changed according to the number of times of drainage, so that the drainage can be performed in rainy weather. When the amount is large, supply nutrient solution and water is reduced to prevent overhumidity, and when the amount of drainage is low during drying, etc., increase nutrient solution and water supply to prevent deficiency of fertilizer and water. It is possible to respond to the weather.

以下、本発明の実施の形態を図面に基づいて説明する。
図1は、本発明の培地温度の制御システムの一例を示す概略図で、制御システム1は、温室内に並べられた複数の栽培容器2,2・・と、各栽培容器2へ養液タンク3からの養液と上水道からの水とを供給する供給手段としての供給パイプ4と、各栽培容器2に分岐管5,5・・を介して接続され、下流側に排液タンク7を備えた排液パイプ6と、制御システム1全体の作動を制御する制御手段としての制御装置8と、を備える。供給パイプ4は、下流側で排液パイプ6に接続されて、上流側には、上水道側からの水の供給路を開閉する第一開閉弁9と、養液タンク3側からの養液の供給路を開閉する第二開閉弁10とが設けられている。一方、排液タンク7には、溜まった養液及び水(以下「養液等」という。)を外部へ排出する排液手段としてのポンプ11が設けられている。なお、排液タンク7は、所定数の栽培容器2の群ごとに設ければよい(例えば10a当たり1カ所程度)。また、養液は、植物の育成に必要な窒素、リン、カリウム、カルシウム、マグネシウム等の無機成分を所定濃度で水に混合させた周知のものが使用される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic diagram illustrating an example of a culture medium temperature control system according to the present invention. The control system 1 includes a plurality of cultivation containers 2, 2. 3 is connected to each cultivation container 2 via branch pipes 5, 5,... And a drainage tank 7 is provided on the downstream side. The drainage pipe 6 and a control device 8 as a control means for controlling the operation of the entire control system 1 are provided. The supply pipe 4 is connected to the drainage pipe 6 on the downstream side, and on the upstream side, the first on-off valve 9 for opening and closing the water supply path from the water supply side, and the nutrient solution from the nutrient solution tank 3 side A second on-off valve 10 for opening and closing the supply path is provided. On the other hand, the drainage tank 7 is provided with a pump 11 as drainage means for discharging the accumulated nutrient solution and water (hereinafter referred to as “nutrient solution”) to the outside. In addition, what is necessary is just to provide the drainage tank 7 for every group of the predetermined number of cultivation containers 2 (for example, about one place per 10a). Moreover, the well-known thing which mixed inorganic components, such as nitrogen, phosphorus, potassium, calcium, and magnesium required for plant growth, with water by predetermined concentration is used for a nutrient solution.

栽培容器2は、図2に示すように、外容器12と内容器13とからなる二重構造で、外容器12は、上面を開口させた深底で四角形の箱体を呈し、一方の長手側面の中央において、上下高さの中心より僅かに下方位置には、分岐管5が接続される排出口14が形成され、底部中央には、円形状の凹部15が形成されている。
一方、内容器13は、外容器12の開口に係止する外形が矩形状の上板16と、その上板16の中央部分から下方へ四角形の箱状に膨出して培地の収容部を形成する深底部17とからなり、上板16は、多数のスリット18,18・・が形成された網目状となっている。また、深底部17では、底面中央に、外容器12の凹部15に先端が嵌合する筒状の突部19が突設され、その突部19の周囲に、深底部17の内外を連通させる連通部としての上下方向のスリット20,20・・が、周方向へ等間隔で形成されている。また、深底部17の長手側面にも縦方向に連通部となる一対のスリット21,21が左右対称で形成されている。
As shown in FIG. 2, the cultivation container 2 has a double structure composed of an outer container 12 and an inner container 13, and the outer container 12 has a deep rectangular shape with an open top surface, and has one longitudinal direction. In the center of the side surface, a discharge port 14 to which the branch pipe 5 is connected is formed slightly below the center of the vertical height, and a circular recess 15 is formed in the center of the bottom.
On the other hand, the inner container 13 has an upper plate 16 whose outer shape is locked to the opening of the outer container 12 and a rectangular box-like shape that bulges downward from the central portion of the upper plate 16 to form a medium containing portion. The upper plate 16 has a mesh shape in which a large number of slits 18 are formed. Further, in the deep bottom portion 17, a cylindrical projection 19 whose tip is fitted to the concave portion 15 of the outer container 12 protrudes from the center of the bottom surface, and the inside and outside of the deep bottom portion 17 communicate with the periphery of the projection 19. The vertical slits 20, 20... As communication portions are formed at equal intervals in the circumferential direction. In addition, a pair of slits 21 and 21 that are communicating portions in the vertical direction are formed symmetrically on the longitudinal side surface of the deep bottom portion 17.

この外容器12に内容器13を上方から被せるように収容することで、内容器13の上板16が外容器12の開口に係止して外容器12を閉塞すると共に、深底部17が外容器12の内部に突出して突部19が凹部15に嵌合し、安定状態で支持される。内容器13の深底部17に、ロックウール等の培地が充填されて、バラ等の植物が所定の株数植えられる。   By housing the inner container 13 so as to cover the outer container 12 from above, the upper plate 16 of the inner container 13 is locked to the opening of the outer container 12 to close the outer container 12, and the deep bottom portion 17 is The protrusion 19 protrudes into the container 12 and fits into the recess 15 and is supported in a stable state. The deep bottom portion 17 of the inner container 13 is filled with a medium such as rock wool, and a predetermined number of plants such as roses are planted.

この栽培容器2によれば、内容器13の培地に供給された養液等は、深底部17の突部19のスリット20やスリット21を通って外容器12内に流れ、外容器12に貯留する。液量が排出口14の位置に達すると、排出口14から溢れて分岐管5を介して排液パイプ6に排出されるため、外容器12内での液量が一定に維持される。よって、スリット20を介して外容器12と連通する深底部17でも同様に養液等の液量が一定に維持され、培地が過剰に養液等に浸かるおそれがなくなる。逆に、少ない量の養液等でもスリット20を介して内容器13側への再吸収ができることになる。
なお、供給パイプ4から各栽培容器2への養液等の供給は、ノズルによる噴出を利用したり、一端を供給パイプ4内に、他端を培地側に夫々垂らした不織布による毛管現象を利用したりして行われる。
According to the cultivation container 2, the nutrient solution or the like supplied to the medium in the inner container 13 flows into the outer container 12 through the slit 20 or the slit 21 of the protrusion 19 of the deep bottom portion 17 and is stored in the outer container 12. To do. When the amount of liquid reaches the position of the discharge port 14, it overflows from the discharge port 14 and is discharged to the drain pipe 6 through the branch pipe 5, so that the amount of liquid in the outer container 12 is kept constant. Accordingly, the amount of the nutrient solution or the like is similarly maintained constant in the deep bottom portion 17 that communicates with the outer container 12 through the slit 20, and there is no possibility that the medium is excessively immersed in the nutrient solution or the like. On the contrary, even a small amount of nutrient solution or the like can be reabsorbed to the inner container 13 side through the slit 20.
In addition, supply of nutrient solution etc. to each cultivation container 2 from the supply pipe 4 uses the ejection by a nozzle, or uses the capillary phenomenon by the nonwoven fabric which hang | suspended one end in the supply pipe 4 and the other end to the culture medium side, respectively. It is done.

そして、制御装置8は、周知のCPUやメモリ、タイマー、入力部及び表示部等を備え、入力部で設定されたタイマーに従って、第一、第二開閉弁9,10の開閉制御を交互に行う他、排液タンク7に設けられた図示しない水位検出手段(フロート及び接点を用いた周知のもの)によって得られる水位が所定値に達すると、ポンプ11を作動させる排液制御を実行する。また、制御装置8は、排液タンク7での排液回数に応じて、後述するように、養液の供給時間(以下「給液時間」という。)及び水の供給時間(以下「かん水時間」という。)を変動させる培地温度制御(制御方法)を実行可能となっている。なお、かん水の温度及び間隔は、夏季等の高温期には培地の温度低下が図れるように、冬季等の低温期には培地の温度低下防止が図れるように設定する。この場合、夜間と昼間とで間隔を変える等してもよい。   The control device 8 includes a known CPU, memory, timer, input unit, display unit, and the like, and alternately performs open / close control of the first and second open / close valves 9 and 10 according to the timer set in the input unit. In addition, when the water level obtained by a water level detection means (not shown) using a float and a contact provided in the drain tank 7 reaches a predetermined value, drain control for operating the pump 11 is executed. Further, as will be described later, the control device 8 controls the supply time of the nutrient solution (hereinafter referred to as “liquid supply time”) and the water supply time (hereinafter referred to as “watering time”) according to the number of times of drainage in the drainage tank 7. The medium temperature control (control method) for changing the temperature can be executed. The temperature and interval of the brine are set so that the temperature of the medium can be reduced in the high temperature period such as summer and the temperature of the medium can be prevented in the low temperature period such as winter. In this case, the interval may be changed between nighttime and daytime.

以上の如く構成された制御システム1の培地温度制御を、図3,4のフローチャートに基づいて説明する。まず、図3に示す肥料の給液側では、S1の判別でタイマーで設定された設定時刻に達すると、S2で排液タンク7で行われた排液回数bの読み取りを行う。次にS3においてポンプ11を作動させて排液タンク7から養液等を排液する。排液が終了するとS4で排液カウントを0にリセットする。
そして、S5で第二開閉弁10を開弁させて供給パイプ4へ養液を流し、各栽培容器2へ養液を供給する。但しここでは、予め設定された排液回数aとS2で読み取られた排液回数bとの比に補正係数cを乗じた値を、基準時間(z秒)に乗じて得た時間で行われる。よって、排液回数bが多いときは給液時間が短く(給液量が少なく)なり、排液回数bが少ないときは給液時間が長く(給液量が多く)なる。演算された給液時間が経過すると、第二開閉弁10を閉弁させて養液の供給を終了する。
The culture medium temperature control of the control system 1 configured as described above will be described based on the flowcharts of FIGS. First, on the fertilizer supply side shown in FIG. 3, when the set time set by the timer in S1 is reached, the number of times b of drainage performed in the drainage tank 7 is read in S2. Next, in S3, the pump 11 is operated to drain the nutrient solution or the like from the drainage tank 7. When the drainage is completed, the drainage count is reset to 0 in S4.
And in S5, the 2nd on-off valve 10 is opened, a nutrient solution is poured to the supply pipe 4, and a nutrient solution is supplied to each cultivation container 2. FIG. However, here, it is performed in a time obtained by multiplying a reference time (z seconds) by a value obtained by multiplying a ratio of a preset number of drains a and the number of drains b read in S2 by a correction coefficient c. . Therefore, when the number of times of liquid discharge b is large, the liquid supply time is short (the amount of liquid supply is small), and when the number of times of liquid discharge b is small, the liquid supply time is long (the amount of liquid supply is large). When the calculated liquid supply time has elapsed, the second on-off valve 10 is closed and the supply of the nutrient solution is terminated.

こうして養液が培地へ供給されると、各栽培容器2においては、培地を通過した養液は内容器13を通って外容器12の底部に水と共に貯留し、所定の液量に達すると分岐管5及び排液パイプ6を介して排液タンク7に送られる。排液タンク7の水位が所定値に達すると、前述のようにポンプ11が作動して排液が行われるが、この排液回数bがS6でカウントされ、設定時刻になると再びS1からの処理が繰り返される。   When the nutrient solution is supplied to the culture medium in this way, in each cultivation container 2, the nutrient solution that has passed through the culture medium is stored together with water at the bottom of the outer container 12 through the inner container 13, and branches when reaching a predetermined fluid amount. It is sent to the drainage tank 7 through the pipe 5 and the drainage pipe 6. When the water level in the drainage tank 7 reaches a predetermined value, the pump 11 is operated and the drainage is performed as described above. This drainage count b is counted in S6, and when the set time is reached, the processing from S1 is performed again. Is repeated.

一方、図4に示すかん水側では、S11の判別で設定時刻に達すると、まずS12で、図3のS5でなされた直前の給液から待機時間(w秒)経過したか否かが判別される。ここで当該時間経過していると、S13で養液側と同様に排液回数bの読み取りが行われた後、S14において排液タンク7から養液等が排液され、S15で排液カウントが0にリセットされる。このように直前の給液から待機時間の経過を待つのは、培地に供給された肥料を短時間で流出させず有効に利用するためである。
そして、S16で第一開閉弁9を開弁させてかん水を行う。このかん水も、予め設定された排液回数aとS13で読み取られた排液回数bとの比に補正係数cを乗じた値を、基準時間(y秒)に乗じて得た時間で行われる。よって、排液回数bが多いときはかん水時間が短く(水量が少なく)なり、排液回数bが少ないときはかん水時間が長く(水量が多く)なる。演算されたかん水時間が経過すると、第一開閉弁9を閉弁させてかん水を終了する。
On the other hand, in the watering side shown in FIG. 4, when the set time is reached in the determination of S11, first, in S12, it is determined whether or not a standby time (w seconds) has elapsed since the immediately preceding liquid supply made in S5 of FIG. The If the time has elapsed, the number of times of drainage b is read in S13 as in the nutrient solution side, and then the nutrient solution and the like are drained from the drainage tank 7 in S14, and the drainage count is counted in S15. Is reset to zero. The reason for waiting for the elapse of the waiting time from the immediately preceding liquid supply is to effectively use the fertilizer supplied to the culture medium without flowing out in a short time.
In step S16, the first on-off valve 9 is opened to perform watering. This irrigation is also performed in a time obtained by multiplying a value obtained by multiplying a ratio of the preset number of drains a and the number of drains b read in S13 by a correction coefficient c by a reference time (y seconds). . Therefore, when the number of times of draining b is large, the watering time is short (the amount of water is small), and when the number of times of draining b is small, the watering time is long (the amount of water is large). When the calculated watering time elapses, the first on-off valve 9 is closed to end watering.

なお、かん水が行われた場合も、各栽培容器2においては、培地を通過した水は内容器13を通って外容器12の底部に養液と共に貯留し、所定の液量に達すると分岐管5及び排液パイプ6を介して排液タンク7に送られる。排液タンク7の水位が所定値に達するとポンプ11が作動して排液が行われるが、この排液回数bがS17でカウントされ、設定時刻になると再びS11からの処理が繰り返される。   In addition, even when irrigation is performed, in each cultivation container 2, the water that has passed through the culture medium is stored together with the nutrient solution at the bottom of the outer container 12 through the inner container 13, and reaches a predetermined liquid amount. 5 and the drainage pipe 6 to the drainage tank 7. When the water level in the drainage tank 7 reaches a predetermined value, the pump 11 is operated and drainage is performed. This drainage count b is counted in S17, and the processing from S11 is repeated again at the set time.

このように上記形態の制御システム1によれば、栽培容器2として、排出口14を備えた外容器12と、その外容器12内に支持されて深底部17を備えた内容器13とからなり、深底部17に外容器12内と深底部17内とを連通させるスリット20,21を有して、内容器13に供給した養液及び水を排出口14の位置までの水位で外容器12に貯留可能としたものを用い、この栽培容器2へ養液と所定温度の水とを所定間隔で交互に供給するようにしたことで、養液と交互に供給される所定温度の水によって培地温度を適正に制御可能となり、植物の品質が向上し、収量の増加に繋がる。而も、栽培容器2にはその構造によって一定量の養液等のみが確保されるため、肥料が効率よく利用されると共に、培地が過湿状態にならず根腐れを生じさせない。また、排液の肥料成分も少なくなるため、掛け流し式にしても環境負荷を少なくすることができる。さらに、養液を循環させなくてもよいので、病原菌の感染も好適に防止可能となる上、濾過装置や殺菌装置等の付加装置が不要となることで低コストでの実現も期待できる。   Thus, according to the control system 1 of the said form, it consists of the outer container 12 provided with the discharge port 14, and the inner container 13 provided with the deep bottom part 17 supported in the outer container 12 as the cultivation container 2. The deep bottom portion 17 has slits 20 and 21 that allow the inside of the outer container 12 and the inside of the deep bottom portion 17 to communicate with each other, and the nutrient solution and water supplied to the inner vessel 13 are at the water level up to the position of the discharge port 14. In this case, the nutrient solution and water at a predetermined temperature are alternately supplied to the cultivation container 2 at a predetermined interval, so that the culture medium is supplied with the water at a predetermined temperature supplied alternately with the nutrient solution. Temperature can be properly controlled, plant quality is improved, and yield is increased. In addition, since only a certain amount of nutrient solution or the like is secured in the cultivation container 2 due to its structure, the fertilizer is efficiently used, and the medium does not become overhumid and does not cause root rot. In addition, since the fertilizer component of the drainage is reduced, the environmental load can be reduced even if it is a flow-through type. Furthermore, since it is not necessary to circulate the nutrient solution, it is possible to suitably prevent infection with pathogenic bacteria, and it can be expected to be realized at low cost by eliminating the need for additional devices such as a filtration device and a sterilization device.

特にここでは、直前の給液又はかん水からの排液タンク7での排液回数に応じて栽培容器2への養液及び水の供給量を変更するようにしているため、雨天時等で排液量が多いときは養液及び水の供給を少なくして過湿状態を防ぎ、乾燥時等で排液量が少ないときは養液及び水の供給を多くして肥料や水分の欠乏状態を防ぐといった天候に合わせた対応が可能となっている。   In particular, since the supply amount of the nutrient solution and water to the cultivation container 2 is changed according to the number of times of drainage in the drainage tank 7 from the immediately preceding liquid supply or irrigation water, it is drained in rainy weather etc. Reduce supply of nutrient solution and water to prevent overhumidity when the amount of liquid is large, and increase supply of nutrient solution and water to reduce deficiency of fertilizer and water when the amount of drainage is low during drying. It is possible to respond to the weather such as prevention.

図5は、かん水による培地温度の変化を示すグラフで、aが水温、bが培地温度、cがかん水を行わない場合の培地温度を夫々示す。なお、かん水は1つの栽培容器当たり250ml/minで実行したもので、培地温度は培地表面から10cmの深さで測定している。
このグラフで明らかな通り、かん水温度の変化(約15℃〜23℃)に追従する格好で培地温度も変化しており、かん水による培地温度の制御が可能であることが理解できる。
FIG. 5 is a graph showing changes in medium temperature due to irrigation, where a is the water temperature, b is the medium temperature, and c is the medium temperature when no irrigation is performed. In addition, irrigation was performed at 250 ml / min per one cultivation container, and the medium temperature was measured at a depth of 10 cm from the surface of the medium.
As is apparent from this graph, the medium temperature also changes in a manner that follows the change in the irrigation temperature (about 15 ° C. to 23 ° C.), and it can be understood that the medium temperature can be controlled by irrigation.

なお、上記形態では、養液等を排液タンクに一旦貯留し、所定水位で排液するようにしているが、排液回数に応じた給液及びかん水時間の補正を行わないのであれば、排液タンクやポンプを省略することもできる。
また、水の供給も、養液のように一旦タンクに貯留してから供給するようにして、ヒータや給湯装置等の加熱手段や冷却手段によって所定温度の温水や冷水としてから供給すれば、培地の温度制御がより効果的に実行できる。勿論水は上水道に限らず、地下水等も用いることができる。
さらに、制御手段としては、上記形態の制御装置に限らず、タイマーと、タイマーのタイムアップでONするポンプ等との組み合わせで培地温度制御を実行する等、より簡略化を図っても差し支えない。
In the above form, nutrient solution or the like is temporarily stored in the drainage tank and drained at a predetermined water level, but if the liquid supply and irrigation time are not corrected according to the number of drains, The drain tank and pump can be omitted.
In addition, if the supply of water is once stored in a tank like a nutrient solution and then supplied as hot water or cold water at a predetermined temperature by a heating means such as a heater or a hot water supply device or a cooling means, Temperature control can be performed more effectively. Of course, the water is not limited to the water supply, and groundwater can also be used.
Furthermore, the control means is not limited to the control device of the above embodiment, and it may be further simplified, for example, the culture medium temperature control may be executed by a combination of a timer and a pump that is turned on when the timer expires.

一方、栽培容器では、排出口や分岐管は各栽培容器に複数設けてもよいし、内容器のスリットの位置や形状等も適宜変更できる。勿論容器自体の大きさや形状も変更可能である。
また、培地としては、ロックウール以外に、フェノール発泡樹脂も使用できる。フェノール発泡樹脂は、フェノール樹脂に有機酸、ノンフロン系発泡剤を加えて製造される培地で、最大容水時の液相率が約51%で、ロックウールの85%に比較して小さく、また、気相率が約44%で、逆にロックウールの10%に比較して大きい特性を有する。従って、酸素濃度を好適に保持できて過湿になりにくく、根腐れをより効果的に防止できる。特に、培地と貯水部との間に空間がある上記形態の栽培容器と組み合わせれば、過湿防止に一層有利である。
その他、養液と水とを供給するパイプを夫々別個に設けたり、供給パイプを栽培容器に直結したり等、制御システム自体の具体的な構成は本発明の趣旨を逸脱しない範囲で適宜変更可能である。
On the other hand, in the cultivation container, a plurality of outlets and branch pipes may be provided in each cultivation container, and the position and shape of the slit of the inner container can be changed as appropriate. Of course, the size and shape of the container itself can be changed.
In addition to rock wool, a phenol foam resin can also be used as the medium. Phenolic foamed resin is a medium produced by adding an organic acid and a non-fluorocarbon foaming agent to phenolic resin. The liquid phase ratio at maximum water capacity is about 51%, which is smaller than 85% of rock wool. The gas phase rate is about 44%, and conversely, it has large characteristics compared with 10% of rock wool. Therefore, the oxygen concentration can be suitably maintained, it is difficult to become excessively humid, and root rot can be more effectively prevented. In particular, the combination with the cultivation container having the above-described form having a space between the culture medium and the water storage part is more advantageous for preventing excessive moisture.
In addition, the specific configuration of the control system itself can be changed as appropriate without departing from the spirit of the present invention, such as separately providing pipes for supplying nutrient solution and water, or connecting the supply pipe directly to the cultivation container. It is.

制御システムの一例を示す概略図である。It is the schematic which shows an example of a control system. 栽培容器の分解斜視図である。It is a disassembled perspective view of a cultivation container. 肥料の給液制御のフローチャートである。It is a flowchart of the liquid supply control of a fertilizer. かん水制御のフローチャートである。It is a flowchart of irrigation control. かん水による培地温度の変化を示すグラフである。It is a graph which shows the change of the culture medium temperature by irrigation.

符号の説明Explanation of symbols

1・・制御システム、2・・栽培容器、3・・養液タンク、4・・供給パイプ、5・・分岐管、6・・排液パイプ、7・・排液タンク、8・・制御装置、9・・第一開閉弁、10・・第二開閉弁、11・・ポンプ、12・・外容器、13・・内容器、14・・排出口、16・・上板、17・・深底部、19・・突部。
1 .... Control system 2 .... Cultivation vessel 3 .... Nutrient tank 4 .... Supply pipe 5 .... Branch pipe 6 .... Drain pipe 7 ... Drain tank 8 ... Control device , 9 .. First on-off valve, 10 .. Second on-off valve, 11 .. Pump, 12 .. Outer container, 13 .. Inner container, 14 .. Discharge port, 16 .. Upper plate, 17. Bottom, 19 ... projection.

Claims (4)

植物を植えた培地を収容する栽培容器に、所定の供給手段によって養液及び水を供給する養液栽培において、前記培地の温度を制御する方法であって、
前記栽培容器として、所定高さに排出口を備えた外容器と、その外容器内に支持されて前記培地の収容部を備えた内容器とからなり、前記内容器の収容部に前記外容器内と収容部内とを連通させる連通部を有して、前記内容器に供給した養液及び水を前記排出口位置までの水位で前記外容器に貯留可能としたものを用い、
前記栽培容器に養液と所定温度の水とを所定間隔で交互に供給することで、前記培地の温度を制御することを特徴とした養液栽培における培地温度の制御方法。
In the nutrient solution culture in which the nutrient solution and water are supplied by a predetermined supply means to the cultivation container that contains the medium in which the plant is planted, the temperature of the medium is controlled,
The cultivation container includes an outer container having a discharge port at a predetermined height, and an inner container that is supported in the outer container and includes a storage part for the culture medium. The outer container is provided in the storage part of the inner container. It has a communication part that communicates the inside and the inside of the accommodating part, and uses the nutrient solution and water supplied to the inner container that can be stored in the outer container at the water level up to the discharge port position,
A method for controlling a medium temperature in hydroponics, wherein the temperature of the medium is controlled by alternately supplying a nutrient solution and water at a predetermined temperature to the cultivation container at predetermined intervals.
栽培容器の排出口から流出した養液等を回収する排液タンクと、その排液タンクでの水位が所定量に達すると、前記排液タンクの養液等を排液する排液手段とを備えたものにあっては、前記排液手段による排液回数に応じて前記栽培容器への養液と水との供給量を変更するようにした請求項1に記載の養液栽培における培地温度の制御方法。   A drainage tank that collects nutrient solution etc. flowing out from the outlet of the cultivation container, and a drainage means that drains the nutrient solution etc. in the drainage tank when the water level in the drainage tank reaches a predetermined amount The medium temperature in hydroponics according to claim 1, wherein the supply amount of the nutrient solution and water to the cultivation container is changed according to the number of times of drainage by the drainage means. Control method. 植物を植えた培地を収容する栽培容器と、その栽培容器に養液及び水を供給する供給手段と、その供給手段を制御する制御手段と、を備えた養液栽培において前記培地の温度を制御するシステムであって、
前記栽培容器を、所定高さに排出口を備えた外容器と、その外容器内に支持されて前記培地の収容部を備えた内容器とからなり、前記内容器の収容部に前記外容器内と収容部内とを連通させる連通部を有して、前記内容器に供給した養液及び水を前記排出口位置までの水位で前記外容器に貯留可能としたものとし、
前記制御手段が、前記供給手段によって前記栽培容器へ養液と所定温度の水とを所定間隔で交互に供給させることで、前記培地の温度を制御することを特徴とした養液栽培における培地温度の制御システム。
Controlling the temperature of the culture medium in hydroponics comprising a cultivation container that contains a culture medium in which plants are planted, a supply means that supplies nutrient solution and water to the cultivation container, and a control means that controls the supply means A system that
The cultivation container is composed of an outer container having a discharge port at a predetermined height and an inner container supported in the outer container and having an accommodating part for the culture medium. The outer container is provided in the accommodating part of the inner container. It has a communication part that allows communication between the inside and the storage part, and the nutrient solution and water supplied to the inner container can be stored in the outer container at the water level up to the discharge port position,
Medium temperature in hydroponics, wherein the control means controls the temperature of the culture medium by alternately supplying nutrient solution and water at a predetermined temperature at predetermined intervals to the cultivation container by the supply means. Control system.
栽培容器の排出口から流出した養液等を回収する排液タンクと、その排液タンクでの水位が所定量に達すると、前記排液タンクの養液等を排液する排液手段とを備えたものにあっては、前記排液手段による排液回数に応じて前記栽培容器への養液と水との供給量を変更するようにした請求項3に記載の養液栽培における培地温度の制御システム。
A drainage tank that collects nutrient solution etc. flowing out from the outlet of the cultivation container, and a drainage means that drains the nutrient solution etc. in the drainage tank when the water level in the drainage tank reaches a predetermined amount The medium temperature in hydroponics according to claim 3, wherein the supply amount of the nutrient solution and water to the cultivation container is changed according to the number of times of drainage by the drainage means. Control system.
JP2006069681A 2006-03-14 2006-03-14 Method and system for controlling temperature of culture media in hydroponics Pending JP2007244242A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006069681A JP2007244242A (en) 2006-03-14 2006-03-14 Method and system for controlling temperature of culture media in hydroponics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006069681A JP2007244242A (en) 2006-03-14 2006-03-14 Method and system for controlling temperature of culture media in hydroponics

Publications (1)

Publication Number Publication Date
JP2007244242A true JP2007244242A (en) 2007-09-27

Family

ID=38589190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006069681A Pending JP2007244242A (en) 2006-03-14 2006-03-14 Method and system for controlling temperature of culture media in hydroponics

Country Status (1)

Country Link
JP (1) JP2007244242A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103535253A (en) * 2013-10-23 2014-01-29 镇江市丹徒区紫杉生态农业园 Cultivating method of rose nutrient solution
CN105145315A (en) * 2015-07-01 2015-12-16 王文琪 Plantation infusion tube and soft surface cultivation system
CN115644046A (en) * 2022-11-14 2023-01-31 福州市长乐区雪美农业开发有限公司 A heat sink for soilless culture nutrient solution

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5088447U (en) * 1973-12-15 1975-07-26
JPS50102330U (en) * 1974-01-28 1975-08-23
JPS50155262U (en) * 1974-06-13 1975-12-23
JPS6336720A (en) * 1986-07-31 1988-02-17 株式会社誠和 Method and apparatus for supplying hydroponic liquid in hydroponic culture
JPS6416534A (en) * 1987-07-10 1989-01-20 Yamamoto Sangyo Kk Control of nutrient absorption in hydroponic culture
JPH01167153U (en) * 1988-04-27 1989-11-24
JPH0837964A (en) * 1994-07-27 1996-02-13 Sekisui Plastics Co Ltd Water storage-type planter
JP2000354422A (en) * 1999-06-15 2000-12-26 Kiyoshi Yamada Plant cultivation unit
JP2004222552A (en) * 2003-01-21 2004-08-12 Heihachiro Yamaguchi Simple type nutriculture container

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5088447U (en) * 1973-12-15 1975-07-26
JPS50102330U (en) * 1974-01-28 1975-08-23
JPS50155262U (en) * 1974-06-13 1975-12-23
JPS6336720A (en) * 1986-07-31 1988-02-17 株式会社誠和 Method and apparatus for supplying hydroponic liquid in hydroponic culture
JPS6416534A (en) * 1987-07-10 1989-01-20 Yamamoto Sangyo Kk Control of nutrient absorption in hydroponic culture
JPH01167153U (en) * 1988-04-27 1989-11-24
JPH0837964A (en) * 1994-07-27 1996-02-13 Sekisui Plastics Co Ltd Water storage-type planter
JP2000354422A (en) * 1999-06-15 2000-12-26 Kiyoshi Yamada Plant cultivation unit
JP2004222552A (en) * 2003-01-21 2004-08-12 Heihachiro Yamaguchi Simple type nutriculture container

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103535253A (en) * 2013-10-23 2014-01-29 镇江市丹徒区紫杉生态农业园 Cultivating method of rose nutrient solution
CN105145315A (en) * 2015-07-01 2015-12-16 王文琪 Plantation infusion tube and soft surface cultivation system
CN115644046A (en) * 2022-11-14 2023-01-31 福州市长乐区雪美农业开发有限公司 A heat sink for soilless culture nutrient solution

Similar Documents

Publication Publication Date Title
JP2008253165A (en) Cultivation container and cultivation device using the same
BR112016011026B1 (en) auto-irrigation system for multiple plant containers
KR102124048B1 (en) A crop cultivation apparatus having aquarium
KR101549189B1 (en) hydroponics cultivation device
JP2007244242A (en) Method and system for controlling temperature of culture media in hydroponics
JP2007300854A (en) Device and method for hydroponic culture
JP7314616B2 (en) Hydroponics member, hydroponics method, and hydroponics system
KR20120005610A (en) Apparauts for growing strawberry seedlings
JP2019180252A (en) Plant cultivation device and plant cultivation method
JP2010068735A (en) Automatically watering planter
IL87849A (en) Method and apparatus for supplementing the feed solution of hydrocultures with desalinated water
JP4570676B2 (en) Tree planting equipment
JP2011139695A (en) Water level adjusting device for adding water pouring-water for water tank or water receiving vessel
KR101357111B1 (en) Hydroponics cultivation device
GB2420483A (en) Hydroponic system with siphon
WO2018042570A1 (en) Cultivation device, wall surface greening system and method for circulating nutrient solution
JPH089806A (en) Solution culture system
JP4896189B2 (en) Hydroponics equipment
JP2995653B2 (en) Watering tank for cultivation container and supply container for cultivation container
JPS6229924A (en) Hydroponic plant growing apparatus
JP2010226963A (en) Hydroponics method and hydroponics device
JP7494574B2 (en) Hydroponic cultivation method
CN202354140U (en) Automatic water supply flowerpot
RU2251255C1 (en) Apparatus for automatic irrigation of plants in pots
JP2010183874A (en) Device for cultivating plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101207