JP2007242891A - Heat radiator plate of copper or copper-contained alloy, and its joining method - Google Patents

Heat radiator plate of copper or copper-contained alloy, and its joining method Download PDF

Info

Publication number
JP2007242891A
JP2007242891A JP2006063187A JP2006063187A JP2007242891A JP 2007242891 A JP2007242891 A JP 2007242891A JP 2006063187 A JP2006063187 A JP 2006063187A JP 2006063187 A JP2006063187 A JP 2006063187A JP 2007242891 A JP2007242891 A JP 2007242891A
Authority
JP
Japan
Prior art keywords
alloy
thermal expansion
heat
heat sink
expansion coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006063187A
Other languages
Japanese (ja)
Other versions
JP4954575B2 (en
Inventor
Seimei Terao
星明 寺尾
Hiroki Ota
裕樹 太田
Hideaki Kohiki
英明 小日置
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
JFE Precision Corp
Original Assignee
JFE Steel Corp
JFE Precision Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, JFE Precision Corp filed Critical JFE Steel Corp
Priority to JP2006063187A priority Critical patent/JP4954575B2/en
Publication of JP2007242891A publication Critical patent/JP2007242891A/en
Application granted granted Critical
Publication of JP4954575B2 publication Critical patent/JP4954575B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of joining a DBA substrate and a heat radiating member by brazing or by soldering, and also a heat radiator plate manufactured by the joining method. <P>SOLUTION: A Cu plate or a Cu-contained alloy is joined to a foil or a particle-like Sn-based alloy by inserting the foil or the particle-like Sn-based alloy between the Cu or the Cu-contained alloy, and heating the alloys at a temperature not lower than the melting point of the Sn-based alloy. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電子機器に搭載された半導体素子等の発熱体から発生する熱を速やかに放散させるために用いられる放熱板(いわゆるヒートシンク材)、およびその接合方法に関し、特に優れた耐熱衝撃性を有し、パワー半導体モジュールのように発熱量の大きいモジュールに使用可能な放熱板およびその接合方法に関するものである。   The present invention relates to a heat radiating plate (so-called heat sink material) used for quickly dissipating heat generated from a heating element such as a semiconductor element mounted on an electronic device, and a joining method thereof. The present invention relates to a heat sink that can be used for a module having a large calorific value, such as a power semiconductor module, and a joining method thereof.

半導体素子等の電子部品を搭載した電子機器を作動させる際には、電子回路への通電に伴い電子部品が発熱する。電子機器が高出力であれば、作動時の発熱量は増加する。発熱によって温度が上昇し過ぎると半導体素子の特性が変化し、電子機器の動作が不安定になる。また長時間にわたって使用することによって過剰な高温に曝されると、電子部品の接合材(たとえばハンダ等)や絶縁材(たとえば合成樹脂等)が変質して、電子機器の故障の原因になる。そのため電子部品から発熱する熱を速やかに放散させる必要がある。そこで、放熱板を介して熱を放散させる技術が種々検討されている。   When an electronic device equipped with an electronic component such as a semiconductor element is operated, the electronic component generates heat as the electronic circuit is energized. If the electronic device has a high output, the amount of heat generated during operation increases. If the temperature rises too much due to heat generation, the characteristics of the semiconductor element change and the operation of the electronic device becomes unstable. Further, when exposed to an excessively high temperature after being used for a long period of time, a bonding material (for example, solder) or an insulating material (for example, synthetic resin) of an electronic component is altered, causing a failure of the electronic device. Therefore, it is necessary to quickly dissipate heat generated from the electronic components. Therefore, various techniques for dissipating heat through a heat sink have been studied.

放熱板にはW,Moやセラミックス等の熱膨張率の低い成分と、Al,Cu等の熱伝導率の高い成分を組み合わせ、しかも互いに合金化しない等、それぞれの成分の有する熱特性を阻害しないように複合化させた組織を有する材料が用いられている。
たとえば特許文献1には、W−Cu,Mo−Cu等の金属−金属系複合材料を用いた放熱板が開示されている。この特許文献1では高価なWやMoを使用するのに対して、比較的安価なCrを使用し、熱膨張率を熱処理にて調整したCr−Cu材を放熱板に適用する技術も検討されている。
The heat sink does not impair the thermal properties of each component, such as combining components with low thermal expansion such as W, Mo and ceramics and components with high thermal conductivity such as Al and Cu and not alloying each other. A material having a complexed structure is used.
For example, Patent Document 1 discloses a heat sink using a metal-metal composite material such as W-Cu or Mo-Cu. In this patent document 1, while using expensive W and Mo, a technique of using a relatively inexpensive Cr and applying a Cr—Cu material whose thermal expansion coefficient is adjusted by heat treatment to the heat sink is also examined. ing.

特許文献2には、SiC−Al,Cu2O−Cu等のセラミックス−金属系複合材料を用いた放熱板が開示されている。
これらの放熱板を使用する際には、放熱板の片方の面に電子部品をロウ付またはハンダ付し、放熱板の他方の面に電子部品の熱を効率良く放散するための熱放散部材を接合する。たとえば、電子部品(すなわち半導体素子)の基板として使用するAlNにAl電極をダイレクトボンディングした基板(いわゆるDBA基板)の熱膨張率は5〜7×10-6-1であるのに対して、放熱板として使用されるW−Cu系複合材料の熱膨張率は6〜9×10-6-1,Mo−Cu系複合材料の熱膨張率は7〜14×10-6-1であり、いずれも大差のない熱膨張率を有している。
Patent Document 2 discloses a heat dissipation plate using a ceramic-metal composite material such as SiC-Al, Cu 2 O—Cu.
When using these heatsinks, electronic parts are brazed or soldered on one side of the heatsink, and the heat dissipation member for efficiently dissipating the heat of the electronic parts on the other side of the heatsink Join. For example, the thermal expansion coefficient of a substrate (so-called DBA substrate) obtained by directly bonding an Al electrode to AlN used as a substrate for an electronic component (ie, a semiconductor element) is 5 to 7 × 10 −6 K −1 . The thermal expansion coefficient of the W-Cu based composite material used as a heat sink is 6-9 × 10 −6 K −1 , and the thermal expansion coefficient of the Mo—Cu based composite material is 7-14 × 10 −6 K −1 . Yes, all have a coefficient of thermal expansion that is not significantly different.

ところが汎用の熱放散部材として使用される純Al,Al合金,純Cu,Cu合金の熱膨張率は16〜24×10-6-1であり、上記の基板や放熱板の熱膨張率とは大幅に異なる。そのため、放熱板の片方の面にDBA基板をロウ付やハンダ付等で温度を上げて接合し、放熱板の他方の面に熱放散部材を同様に接合した場合、放熱板とDBA基板との接合面に熱歪みに起因する問題は生じないが、放熱板と熱放散部材との接合面では熱歪みによる剥離等の問題が生じる。 However, the thermal expansion coefficient of pure Al, Al alloy, pure Cu, and Cu alloy used as a general-purpose heat dissipation member is 16 to 24 × 10 −6 K −1 , Is significantly different. Therefore, when the DBA substrate is joined to one surface of the heat sink by brazing or soldering, and the heat dissipation member is similarly joined to the other surface of the heat sink, the heat sink and the DBA substrate Although a problem caused by thermal strain does not occur on the joint surface, problems such as peeling due to thermal strain occur on the joint surface between the heat sink and the heat dissipation member.

このため、従来のW−Cu,Mo−Cu等の金属−金属系複合材料や、SiC−Al,Cu-2O−Cu等のセラミックス−金属系複合材料を用いた放熱板をAl(熱膨張率23.5×10-6-1)やCu(熱膨張率17.6×10-6-1)、あるいはそれらに合金元素を加えた合金製の熱放散部材上にロウ付やハンダ付による接合を試みると、接合時の反りの発生や、使用時の温度の上昇下降に伴う熱サイクルにより接合面で亀裂が発生する等の問題が生じてしまい、安定して熱を放散することができない。したがって従来の放熱板では、ネジ止め等で機械的に接合することが多かった。ネジ止めの場合は、接合面にミクロな空隙が生じてしまい、熱の放散が不十分になるという問題があるので、熱伝導性の良いグリースを充填する等の対策が採用されているが、十分な放熱特性は得られていない。 Therefore, the conventional W-Cu, metals such as Mo-Cu - metallic and composite materials, SiC-Al, Cu- 2 O -Cu or the like of the ceramic - the heat radiating plate using a metal-based composite material Al (thermal expansion 23.5 × 10 -6 K -1 ), Cu (thermal expansion coefficient 17.6 × 10 -6 K -1 ), or alloy heat-dissipating members with alloying elements added to them by brazing or soldering If attempted, problems such as the occurrence of warpage during bonding and the occurrence of cracks on the bonding surface due to thermal cycles accompanying the rise and fall of temperature during use will occur, and heat cannot be dissipated stably. Therefore, conventional heat sinks are often mechanically joined by screws or the like. In the case of screwing, there is a problem that micro voids are generated on the joint surface and heat dissipation becomes insufficient, so measures such as filling with grease with good thermal conductivity are adopted, Sufficient heat dissipation characteristics are not obtained.

熱膨張率の差に起因する熱歪みによって生じる問題を解決するための対策として、粉末成形体に溶融金属を含浸させることにより、放熱板の対向する2面の熱膨張率を調整し、それぞれの面に接合される部材(DBA基板または熱放散部材)の熱膨張率に近い値とする技術が検討されている。このようにして放熱板の熱膨張率を、接合される相手材の熱膨張率に合わせることにより、DBA基板および熱放散部材との間をロウ付あるいはハンダ付といった接合時に加熱を必要とする接合方法により接合することが可能となる。その結果、電子部品から発する熱を効率良く熱放散部材まで伝えることが可能となり、電子部品の出力増加に伴う温度上昇を防止できるばかりでなく、耐熱衝撃性も大幅に改善される。しかし、粉末成形体に含浸させる溶融金属の歩留りが低く、経済的に不利であるという問題が残されている。
特公平5-38457号公報 特開2002-212651号公報
As a measure to solve the problem caused by thermal distortion caused by the difference in thermal expansion coefficient, the thermal expansion coefficient of the two opposing surfaces of the heat sink is adjusted by impregnating the powder compact with molten metal, A technique for studying a value close to the coefficient of thermal expansion of a member (DBA substrate or heat dissipating member) to be joined to the surface has been studied. By joining the thermal expansion coefficient of the heat radiating plate to the thermal expansion coefficient of the mating material to be joined in this way, joining that requires heating during joining such as brazing or soldering between the DBA substrate and the heat dissipation member. It becomes possible to join by the method. As a result, it is possible to efficiently transmit heat generated from the electronic component to the heat dissipating member, which not only prevents an increase in temperature accompanying an increase in output of the electronic component, but also greatly improves thermal shock resistance. However, there remains a problem that the yield of the molten metal impregnated in the powder compact is low and economically disadvantageous.
Japanese Patent Publication No. 5-38457 JP 2002-212651 A

本発明は上記のような問題を解消すべく、熱膨張係数の異なる2種または3種以上のCuまたはCu含有合金を安価に効率良く接合する技術を提供しようとするものであり、DBA基板および熱放散部材をロウ付あるいはハンダ付により接合することが可能な放熱板を製造するための接合方法、およびその接合方法で製造した放熱板を提供することを目的とする。   In order to solve the above-described problems, the present invention is to provide a technique for efficiently joining two or more kinds of Cu or Cu-containing alloys having different thermal expansion coefficients at low cost. It aims at providing the joining method for manufacturing the heat sink which can join a heat-dissipating member by brazing or soldering, and the heat sink manufactured by the joining method.

放熱板の熱特性として、半導体等の熱を発する電子部品を接合する面は、従来の放熱板のように低い熱膨張率を有している。一方、冷却フィンを有する冷却器に代表される熱放散部材との接合面は、CuやAlの熱膨張率に近い材料を用いることが望まれる。
放熱板の上下面の特性を変化させる材料として、熱間圧延を用いたクラッド材が知られている。たとえばW板とCu板を組み合わせたクラッド材の場合は、熱膨張率の差が大きいので、高温で接合を行なった後の冷却時に両者の熱膨張率の差に起因して反りが発生する。したがってクラッド材を用いた電子部品を安定して製造するのは困難である。
As a thermal characteristic of the heat sink, a surface to which an electronic component that generates heat, such as a semiconductor, is bonded has a low coefficient of thermal expansion like a conventional heat sink. On the other hand, it is desirable to use a material close to the thermal expansion coefficient of Cu or Al for the joint surface with a heat dissipation member typified by a cooler having cooling fins.
A clad material using hot rolling is known as a material that changes the characteristics of the upper and lower surfaces of the heat sink. For example, in the case of a clad material in which a W plate and a Cu plate are combined, the difference in coefficient of thermal expansion is large, so that warpage occurs due to the difference in coefficient of thermal expansion between the two after cooling at a high temperature. Therefore, it is difficult to stably manufacture an electronic component using a clad material.

これに対して本発明では、熱膨張率の異なる2種または3種以上のCuまたはCu含有合金の間にSn基合金を挟み込み、これらをSn基合金の液相線温度以上に加熱することによってCuとSnの反応を促進させ、CuまたはCu含有合金の接合を行なう。したがって、接合を行なう温度が従来のクラッド材と比べて低いので、接合される材料間の熱膨張率差に起因する熱歪みの発生を抑制できる。さらに、接合される材料間に存在するSn基合金は、室温近傍においてもクリープ変形を起こすので、発生した熱歪みを吸収することができる。その結果、本発明の接合方法を適用して製造した放熱板は、熱歪みを大幅に軽減できるという優れた特性を発揮する。   On the other hand, in the present invention, an Sn-based alloy is sandwiched between two or three or more Cu or Cu-containing alloys having different thermal expansion coefficients, and these are heated above the liquidus temperature of the Sn-based alloy. Promotes the reaction between Cu and Sn, and joins Cu or Cu-containing alloys. Therefore, since the temperature at which the bonding is performed is lower than that of the conventional cladding material, it is possible to suppress the occurrence of thermal distortion due to the difference in thermal expansion coefficient between the materials to be bonded. Furthermore, the Sn-based alloy that exists between the materials to be joined undergoes creep deformation even near room temperature, so that the generated thermal strain can be absorbed. As a result, the heat radiating plate manufactured by applying the joining method of the present invention exhibits excellent characteristics that thermal distortion can be greatly reduced.

具体的には、熱膨張率の異なる材料を接合した場合に生じる反りが少なく、冷間で簡単な平面矯正を行なうことによって、平坦な面を得ることができる。また、放熱板として使用すれば、極めて優れた耐熱衝撃性を発揮する。
クラッド材を製造するためには圧延等の工程が必要であるから、同じ材質のクラッド材の大量生産に適しているが、多品種の少量生産には適していない。
Specifically, there is little warping that occurs when materials having different coefficients of thermal expansion are joined, and a flat surface can be obtained by performing simple flat surface correction in the cold. In addition, when used as a heat sink, it exhibits extremely excellent thermal shock resistance.
Since a process such as rolling is necessary to manufacture the clad material, it is suitable for mass production of the same clad material, but is not suitable for mass production of various products.

これに対して本発明では、合金の組み合わせ、各層の厚さを任意に選択して製造できるので、各モジュールの製造に無駄のない最適な放熱板の設計が可能である。つまり本発明は、同一品種の大量生産のみならず多品種の少量生産に適している。
すなわち本発明は、熱膨張率の異なるCuまたはCu含有合金の接合方法において、箔または粒状のSn基合金をCuまたはCu含有合金の間に挟み込み、Sn基合金の融点以上の温度に加熱することによって、CuまたはCu含有合金を接合する接合方法である。
On the other hand, in the present invention, the combination of alloys and the thickness of each layer can be selected and manufactured, so that an optimal heat sink can be designed without waste in the manufacture of each module. In other words, the present invention is suitable not only for mass production of the same variety but also for small production of many types.
That is, according to the present invention, in a joining method of Cu or Cu-containing alloys having different coefficients of thermal expansion, a foil or a granular Sn-based alloy is sandwiched between Cu or Cu-containing alloys and heated to a temperature equal to or higher than the melting point of the Sn-based alloy. Is a joining method for joining Cu or a Cu-containing alloy.

また本発明は、上記した接合方法でCuまたはCu含有合金を接合することによって得られる放熱板である。   Moreover, this invention is a heat sink obtained by joining Cu or Cu containing alloy with the above-mentioned joining method.

本発明によれば、DBA基板および熱放散部材をロウ付あるいはハンダ付により接合することが可能であり、放熱板を安価かつ高効率で製造できる。   According to the present invention, the DBA substrate and the heat dissipating member can be joined by brazing or soldering, and the heat sink can be manufactured at low cost and with high efficiency.

まず本発明を適用するCuおよびCu含有合金について説明する。
本発明を適用する低熱膨張率のCu含有合金は、熱膨張率が6〜13×10-6-1の範囲のものが好ましい。そのCu含有合金はCu−W系合金,Cu−Mo系合金,Cu−Cr系合金等が好ましい。ただし、Cu含有量が10体積%未満では、十分な熱伝導率が得られない。したがって、Cu含有量は10体積%以上が好ましい。
First, Cu and a Cu-containing alloy to which the present invention is applied will be described.
The Cu-containing alloy having a low coefficient of thermal expansion to which the present invention is applied preferably has a coefficient of thermal expansion of 6 to 13 × 10 −6 K −1 . The Cu-containing alloy is preferably a Cu-W alloy, a Cu-Mo alloy, a Cu-Cr alloy, or the like. However, if the Cu content is less than 10% by volume, sufficient thermal conductivity cannot be obtained. Therefore, the Cu content is preferably 10% by volume or more.

一方、高熱膨張率のCuまたはCu含有合金は、熱膨張率が15〜25×10-6-1の範囲のものが好ましい。そのCu含有合金はCu−Cr系合金,Cu−Zn系合金,Cu−Sn系合金等が好ましい。ただし、熱伝導率の高い純Cuが最も適している。
次に、CuまたはCu含有合金の接合に用いるSn基合金について説明する。
本発明で使用するSn基合金の成分は特に限定しない。つまり、純Snの他に一般のハンダ用合金を使用することができる。ただし、Pbの使用に関する規制が厳しくなっているので、Sn−Ag系合金,Sn−Cu系合金,Sn−Ag−Cu系合金,Sn−Zn系合金等のPbを含有しないハンダ用合金が好ましい。
On the other hand, the high thermal expansion coefficient Cu or Cu-containing alloy preferably has a thermal expansion coefficient in the range of 15 to 25 × 10 −6 K −1 . The Cu-containing alloy is preferably a Cu-Cr alloy, a Cu-Zn alloy, a Cu-Sn alloy, or the like. However, pure Cu with high thermal conductivity is most suitable.
Next, an Sn-based alloy used for joining Cu or Cu-containing alloys will be described.
The components of the Sn-based alloy used in the present invention are not particularly limited. That is, a general solder alloy can be used in addition to pure Sn. However, since the regulations regarding the use of Pb are becoming stricter, solder alloys that do not contain Pb, such as Sn-Ag alloys, Sn-Cu alloys, Sn-Ag-Cu alloys, Sn-Zn alloys, are preferable. .

ただし本発明では、箔状または粒状のSn基合金を使用する。その理由は、後述する加熱溶融の段階でSn基合金を均一かつ容易に溶解させるためである。
箔状のSn基合金を使用する場合は、その厚さが0.25mmを超えると耐熱衝撃性および経済性で不利である。したがって、箔状のSn基合金の厚さは0.25mm以下が好ましい。
粒状のSn基合金を使用する場合は、その直径が0.5mmを超えると耐熱衝撃性および経済性で不利である。したがって、粒状のSn基合金の直径は0.5mm以下が好ましい。また、粒状のSn基合金が接合面に安定して定着するように、ペースト(たとえばソルダーペースト等)を使用しても良い。
However, in the present invention, a foil-like or granular Sn-based alloy is used. This is because the Sn-based alloy is uniformly and easily dissolved at the stage of heating and melting described later.
When a foil-like Sn-based alloy is used, if the thickness exceeds 0.25 mm, it is disadvantageous in terms of thermal shock resistance and economy. Therefore, the thickness of the foil-like Sn-based alloy is preferably 0.25 mm or less.
When using a granular Sn-based alloy, if its diameter exceeds 0.5 mm, it is disadvantageous in terms of thermal shock resistance and economy. Therefore, the diameter of the granular Sn-based alloy is preferably 0.5 mm or less. Further, a paste (for example, a solder paste) may be used so that the granular Sn-based alloy is stably fixed on the joint surface.

次いで、本発明の接合方法について説明する。
本発明の接合方法では、CuまたはCu含有合金の間にSn基合金を挟み、そのSn基合金の融点以上に加熱する。この加熱温度の上限は、下記の (a),(b) のうちのいずれか低い温度とする。
(a) Sn基合金の沸点
(b) CuまたはCu含有合金の融点
ただし加熱温度がSn基合金の融点+100℃を超えると、SnとCuが反応して延性や熱伝導性の低い金属間化合物が生成するので、放熱板としての特性が劣化する。したがって、加熱温度はSn基合金の融点+100℃以下が好ましい。
Next, the joining method of the present invention will be described.
In the joining method of the present invention, an Sn-based alloy is sandwiched between Cu or a Cu-containing alloy and heated to the melting point or higher of the Sn-based alloy. The upper limit of this heating temperature is the lower of (a) and (b) below.
(a) Boiling point of Sn-based alloy
(b) Melting point of Cu or Cu-containing alloy However, if the heating temperature exceeds the melting point of Sn-based alloy + 100 ° C, Sn and Cu react to produce an intermetallic compound with low ductility and thermal conductivity. The characteristics of the will deteriorate. Therefore, the heating temperature is preferably the melting point of the Sn-based alloy + 100 ° C. or less.

このようにして加熱することによって、Sn基合金のみが溶解し、その後、冷却されることによってCuまたはCu含有合金を接合する。
ところでCr−Cu系合金は、熱処理によって熱膨張率を調整することが可能である。例えば550℃で熱処理を施してCr−Cu系合金の熱膨張率を低下することができる。したがって550℃に加熱して接合すれば、Cr−Cu系合金の接合と熱膨張率の調整を同時に達成できる。
By heating in this way, only the Sn-based alloy is melted, and then Cu or the Cu-containing alloy is joined by being cooled.
By the way, the thermal expansion coefficient of a Cr-Cu alloy can be adjusted by heat treatment. For example, heat treatment can be performed at 550 ° C. to reduce the coefficient of thermal expansion of the Cr—Cu alloy. Therefore, if it joins by heating to 550 degreeC, joining of a Cr-Cu type alloy and adjustment of a thermal expansion coefficient can be achieved simultaneously.

またSn基合金の融点以上に加熱して保持する時間が5秒未満では、十分な接合強度が得られない。一方、保持時間が1時間を超えると、 SnとCuが反応して延性や熱伝導性の低い金属間化合物が生成するので、放熱板としての特性が劣化する。したがって、保持時間は5秒〜1時間の範囲内が好ましい。
加熱する際の雰囲気は、不活性ガス雰囲気,還元性ガス雰囲気,真空雰囲気であることが好ましい。加熱炉内をこれらの雰囲気に保ちながら加熱しても良いし、あるいはこれらの雰囲気に保たれた密閉容器内に封入した後に加熱しても良い。また不活性ガスや還元性ガスの吹き付け(いわゆるパージ)を行ないながら加熱しても良い。
In addition, if the time of heating and holding above the melting point of the Sn-based alloy is less than 5 seconds, sufficient bonding strength cannot be obtained. On the other hand, if the holding time exceeds 1 hour, Sn and Cu react to produce an intermetallic compound having low ductility and thermal conductivity, so the characteristics as a heat sink deteriorate. Therefore, the holding time is preferably in the range of 5 seconds to 1 hour.
The atmosphere for heating is preferably an inert gas atmosphere, a reducing gas atmosphere, or a vacuum atmosphere. Heating may be performed while keeping the inside of the heating furnace in these atmospheres, or heating may be performed after sealing in a sealed container kept in these atmospheres. Further, heating may be performed while spraying an inert gas or a reducing gas (so-called purge).

本発明のCuまたはCu含有合金の接合方法は、単独で行なっても良いし、あるいはDBA基板との接合,熱放散部材との接合と組み合わせて行なっても良い。
また、本発明の接合方法を適用して接合した放熱板は、2種または3種以上のCuまたはCu含有合金を接合したままの状態で使用できるが、必要に応じて腐食あるいは電食に対する性能を向上させるため,あるいはDBA基板やアルミ板をハンダ接合するために、表面にNiめっき等を施して使用することも可能である。
The Cu or Cu-containing alloy bonding method of the present invention may be performed alone or in combination with bonding to a DBA substrate or bonding to a heat dissipation member.
In addition, the heat sinks joined by applying the joining method of the present invention can be used with two or more kinds of Cu or Cu-containing alloys being joined, but if necessary, performance against corrosion or electrolytic corrosion. It is also possible to use Ni plating or the like on the surface in order to improve the resistance or to solder the DBA substrate or aluminum plate.

図1は、本発明を適用して製造した放熱板の例を模式的に示す断面図である。放熱板1は、図1に示す通り、低熱膨張率のCu含有合金1aと高熱膨張率のCuまたはCu含有合金1bとをSn基合金1cを介して接合した構成となっている。
熱膨張率の差に起因する反りの防止が厳しく要求される用途に用いる放熱板1は、図2に示すように、低熱膨張率のCu含有合金1aを2枚の高熱膨張率のCuまたはCu含有合金1bで挟み、それらをSn基合金1cを介して接合した構成としても良い。
FIG. 1 is a cross-sectional view schematically showing an example of a heat sink manufactured by applying the present invention. As shown in FIG. 1, the heat radiating plate 1 has a configuration in which a Cu-containing alloy 1a having a low thermal expansion coefficient and Cu or a Cu-containing alloy 1b having a high thermal expansion coefficient are joined via an Sn-based alloy 1c.
As shown in FIG. 2, the heat sink 1 used for the use in which the prevention of the warp caused by the difference in the thermal expansion coefficient is strictly required is composed of two Cu-containing alloys 1a having a low thermal expansion coefficient or Cu or Cu having a high thermal expansion coefficient. A configuration may be adopted in which the alloy is sandwiched between the contained alloys 1b and joined via the Sn-based alloy 1c.

放熱板1の厚さ(すなわち低熱膨張率のCu含有合金1aの厚さ,高熱膨張率のCuまたはCu含有合金1bの厚さ,Sn基合金1cの厚さ)は、適宜、必要に応じて調整することができる。したがって、放熱板1の熱膨張率を任意に調整することが可能である。   The thickness of the heat sink 1 (that is, the thickness of the Cu-containing alloy 1a having a low coefficient of thermal expansion, the thickness of the Cu or Cu-containing alloy 1b having a high coefficient of thermal expansion, the thickness of the Sn-based alloy 1c) is appropriately determined as necessary. Can be adjusted. Therefore, the coefficient of thermal expansion of the heat sink 1 can be arbitrarily adjusted.

〔実施例1〕
Cr粉を型枠内に充填し、さらに水素雰囲気中で焼結して、気孔率が50体積%の焼結体(50mm×50mm×2mm)を作製した。この焼結体の上にCu板を載置し、真空中で1200℃に加熱してCuを溶解して、焼結体内に含浸させた。こうして得られたCr−Cu複合金属材料に対して、熱処理(550℃,1時間)を施し、熱膨張率が室温〜200℃の範囲で平均11×10-6-1となるように調整した。次いで、フライス盤で厚さ1.5mmに加工した。
[Example 1]
Cr powder was filled into a mold and further sintered in a hydrogen atmosphere to produce a sintered body (50 mm × 50 mm × 2 mm) with a porosity of 50% by volume. A Cu plate was placed on the sintered body, heated to 1200 ° C. in a vacuum to dissolve Cu, and impregnated in the sintered body. The Cr—Cu composite metal material obtained in this way is heat treated (550 ° C., 1 hour) and adjusted so that the thermal expansion coefficient becomes an average of 11 × 10 −6 K −1 in the range of room temperature to 200 ° C. did. Next, it was processed to a thickness of 1.5 mm with a milling machine.

またフライス盤を用いて、純Cu片から50mm×50mm×1.5mmの純Cu板を切り出した。
このようにして作製したCr−Cu複合金属材料と純Cu板(熱膨張率17.6×10-6-1)の間に純Sn箔(厚さ0.05mm)を挟み、さらに水素ガスをパージした炉内で熱処理(加熱温度:232℃以上での保持時間が30分で最高到達温度が250℃)を行ない、Cr−Cu複合金属材料と純Cu板とを接合して放熱板を作製した。その後、電解Niめっきを施して、放熱板の表面に厚さ5μmのNiめっき層を形成した。
In addition, a 50 mm × 50 mm × 1.5 mm pure Cu plate was cut out from the pure Cu piece using a milling machine.
A pure Sn foil (thickness 0.05 mm) was sandwiched between the Cr—Cu composite metal material thus produced and a pure Cu plate (thermal expansion coefficient 17.6 × 10 −6 K −1 ), and hydrogen gas was further purged. Heat treatment was performed in the furnace (heating temperature: 232 ° C. or higher holding time of 30 minutes and maximum temperature reached 250 ° C.), and a Cr—Cu composite metal material and a pure Cu plate were joined to produce a heat sink. Thereafter, electrolytic Ni plating was applied to form a 5 μm thick Ni plating layer on the surface of the heat sink.

図3は、この放熱板を用いて作製した電子部品冷却体を模式的に示す断面図である。図3に示すように、放熱板1の低熱膨張率のCu含有合金1a(すなわちCr−Cu複合金属材料)の側にDBA基板2をハンダ付し、高熱膨張率のCuまたはCu含有合金1b(すなわち純Cu板)の側に熱放散部材3をハンダ付した。また、DBA基板2に半導体素子4をハンダ付した。なお熱放散部材3には、冷却フィンを有するAl合金板を使用した。これを発明例1の電子部品冷却体とする。   FIG. 3 is a cross-sectional view schematically showing an electronic component cooling body manufactured using this heat radiating plate. As shown in FIG. 3, the DBA substrate 2 is soldered to the low thermal expansion Cu-containing alloy 1a (that is, Cr—Cu composite metal material) side of the heat radiating plate 1, and the high thermal expansion Cu or Cu-containing alloy 1b ( That is, the heat dissipating member 3 was soldered to the side of the pure Cu plate. Further, the semiconductor element 4 was soldered to the DBA substrate 2. For the heat dissipating member 3, an Al alloy plate having cooling fins was used. This is the electronic component cooling body of Invention Example 1.

また、発明例2として、発明例1と同様の方法で作製したCu−Mo合金(熱膨張率10×10-6-1)を低熱膨張率のCu含有合金1aとし、純Cu板(熱膨張率17.6×10-6-1)を高熱膨張率のCuまたはCu含有合金1bとして作製した放熱板1を用いて、発明例と同様に電子部品冷却体を作製した。
一方、比較例1として、上記のCu−Mo合金の3mm厚のものを放熱板として用いて、同様の電子部品冷却体を作製した。
Further, as Invention Example 2, a Cu-Mo alloy (thermal expansion coefficient 10 × 10 −6 K −1 ) produced by the same method as that of Invention Example 1 was used as a Cu-containing alloy 1a having a low thermal expansion coefficient, and a pure Cu plate (thermal An electronic component cooling body was produced in the same manner as the invention example, using the heat sink 1 produced as Cu or Cu-containing alloy 1b having an expansion coefficient of 17.6 × 10 −6 K −1 ).
On the other hand, as Comparative Example 1, a similar electronic component cooling body was manufactured using the above-described Cu-Mo alloy having a thickness of 3 mm as a heat sink.

発明例1,2と比較例1の電子部品冷却体の熱衝撃試験を行なった。熱衝撃試験は、WINTEC LT20型(楠本化成製)液槽式熱衝撃試験器を用い、設定温度を−40℃, 120℃とし、各槽での保持時間を5分として行なった。こうして繰り返し熱衝撃を付加し、各電子部品冷却体の超音波探傷試験を行なって、熱衝撃の付加回数(以下、サイクルという)とクラックや剥離の発生との関係を調査した。   Thermal shock tests of the electronic component cooling bodies of Invention Examples 1 and 2 and Comparative Example 1 were performed. The thermal shock test was carried out using a WINTEC LT20 type (manufactured by Enomoto Kasei) liquid tank type thermal shock tester with the set temperatures being −40 ° C. and 120 ° C. and holding times in each tank being 5 minutes. In this way, repeated thermal shocks were applied, and an ultrasonic flaw detection test of each electronic component cooling body was conducted to investigate the relationship between the number of thermal shocks applied (hereinafter referred to as a cycle) and the occurrence of cracks and peeling.

その結果、比較例1の電子部品冷却体は、1000サイクルで放熱板1と熱放散部材3の接合面にクラックが発生した。
これに対して発明例1,2の電子部品冷却体は、3000サイクル終了した後でも剥離やクラックは認められなかった。
〔実施例2〕
Cr粉を型枠内に充填し、さらに水素雰囲気中で焼結して、気孔率が50体積%の焼結体(50mm×50mm×2mm)を作製した。この焼結体の上にCu板を載置し、真空中で1200℃に加熱してCuを溶解して、焼結体内に含浸させた。こうして得られたCr−Cu複合金属材料に対して、熱処理(550℃,1時間)を施し、熱膨張率が室温〜200℃の範囲で平均11×10-6-1となるように調整した。次いで、フライス盤で厚さ1.5mmに加工した。
As a result, in the electronic component cooling body of Comparative Example 1, cracks occurred on the joint surface between the heat sink 1 and the heat dissipating member 3 in 1000 cycles.
On the other hand, in the electronic component cooling bodies of Invention Examples 1 and 2, no peeling or cracking was observed even after 3000 cycles were completed.
[Example 2]
Cr powder was filled into a mold and further sintered in a hydrogen atmosphere to produce a sintered body (50 mm × 50 mm × 2 mm) with a porosity of 50% by volume. A Cu plate was placed on the sintered body, heated to 1200 ° C. in a vacuum to dissolve Cu, and impregnated in the sintered body. The Cr—Cu composite metal material obtained in this way is heat treated (550 ° C., 1 hour) and adjusted so that the thermal expansion coefficient becomes an average of 11 × 10 −6 K −1 in the range of room temperature to 200 ° C. did. Next, it was processed to a thickness of 1.5 mm with a milling machine.

またフライス盤を用いて、純Cu片から50mm×50mm×1.5mmの純Cu板を切り出した。
このようにして作製したCr−Cu複合金属材料と純Cu板(熱膨張率17.6×10-6-1)の間に粒状のSn(直径0.1mm)を挟み、さらに水素ガスをパージした炉内で熱処理(加熱温度:232℃以上での保持時間が30分で最高到達温度が250℃)を行ない、Cr−Cu複合金属材料と純Cu板とを接合して放熱板を作製した。
In addition, a 50 mm × 50 mm × 1.5 mm pure Cu plate was cut out from the pure Cu piece using a milling machine.
A furnace in which granular Sn (diameter: 0.1 mm) is sandwiched between the Cr—Cu composite metal material thus produced and a pure Cu plate (thermal expansion coefficient 17.6 × 10 −6 K −1 ) and further purged with hydrogen gas Heat treatment (heating temperature: holding time at 232 ° C. or higher is 30 minutes and maximum temperature reached 250 ° C.) was performed, and a Cr—Cu composite metal material and a pure Cu plate were joined to produce a heat sink.

さらに放熱板1(厚さ3mm)に冷間圧延を施して厚さ1.5mmとした後、50mm×50mmの寸法に打ち抜いた。その後、電解Niめっきを施して、放熱板の表面に厚さ5μmのNiめっき層を形成した。
この放熱板1の低熱膨張率のCu含有合金1a(すなわちCr−Cu複合金属材料)の側にDBA基板2をハンダ付し、高熱膨張率のCuまたはCu含有合金1b(すなわち純Cu板)の側に熱放散部材3をハンダ付した。また、DBA基板2に半導体素子4をハンダ付した。なお熱放散部材3には、冷却フィンを有するAl合金板を使用した。これを発明例3の電子部品冷却体とする。
Further, the heat sink 1 (thickness 3 mm) was cold-rolled to a thickness of 1.5 mm, and then punched to a size of 50 mm × 50 mm. Thereafter, electrolytic Ni plating was applied to form a 5 μm thick Ni plating layer on the surface of the heat sink.
The DBA substrate 2 is soldered to the low thermal expansion coefficient Cu-containing alloy 1a (that is, Cr—Cu composite metal material) side of the heat radiating plate 1, and the high thermal expansion coefficient Cu or Cu-containing alloy 1b (that is, pure Cu plate) The heat dissipation member 3 was soldered to the side. Further, the semiconductor element 4 was soldered to the DBA substrate 2. For the heat dissipating member 3, an Al alloy plate having cooling fins was used. This is the electronic component cooling body of Invention Example 3.

一方、比較例2として、厚さ1.5mmで50mm×50mmの純Cu板(熱膨張率17.6×10-6-1)を放熱板1として用いて、発明例3と同様に電子部品冷却体を作製した。
さらに比較例3として、厚さ1.5mmで50mm×50mmのCu−Mo合金(熱膨張率10×10-6-1)を放熱板1として用いて、発明例3と同様に電子部品冷却体を作製した。
発明例3と比較例2,3の電子部品冷却体の熱衝撃試験を行なった。熱衝撃試験は、WINTEC LT20型(楠本化成製)液槽式熱衝撃試験器を用い、設定温度を−40℃,120℃とし、各槽での保持時間を5分として行なった。こうして繰り返し熱衝撃を付加し、各電子部品冷却体の超音波探傷試験を行なって、熱衝撃の付加回数(以下、サイクルという)とクラックや剥離の発生との関係を調査した。
On the other hand, as Comparative Example 2, a pure Cu plate (thermal expansion coefficient: 17.6 × 10 −6 K −1 ) having a thickness of 1.5 mm and a thickness of 50 mm × 50 mm was used as the heat radiating plate 1, and the electronic component cooling body as in Invention Example 3. Was made.
Furthermore, as Comparative Example 3, an electronic component cooling body as in Invention Example 3, using a Cu—Mo alloy (thermal expansion coefficient 10 × 10 −6 K −1 ) of 1.5 mm in thickness and 50 mm × 50 mm as the heat sink 1. Was made.
Thermal shock tests were performed on the electronic component cooling bodies of Invention Example 3 and Comparative Examples 2 and 3. The thermal shock test was performed by using a WINTEC LT20 type (manufactured by Enomoto Kasei) liquid tank type thermal shock tester, with the set temperatures being −40 ° C. and 120 ° C., and holding times in each tank being 5 minutes. In this way, repeated thermal shocks were applied, and an ultrasonic flaw detection test of each electronic component cooling body was conducted to investigate the relationship between the number of thermal shocks applied (hereinafter referred to as a cycle) and the occurrence of cracks and peeling.

その結果、比較例2の電子部品冷却体は、1000サイクルで放熱板1とDBA基板2の接合面が剥離した。比較例3の電子部品冷却体は、1000サイクルで放熱板1と熱放散部材3の接合面にクラックが発生した。
これに対して発明例3の電子部品冷却体は、3000サイクル終了した後でも剥離やクラックは認められなかった。
As a result, in the electronic component cooling body of Comparative Example 2, the bonding surface between the heat sink 1 and the DBA substrate 2 was peeled off in 1000 cycles. In the electronic component cooling body of Comparative Example 3, cracks occurred on the joint surface between the heat radiating plate 1 and the heat dissipating member 3 in 1000 cycles.
On the other hand, in the electronic component cooling body of Invention Example 3, no peeling or cracking was observed even after 3000 cycles were completed.

本発明を適用した製造した放熱板の例を模式的に示す断面図である。It is sectional drawing which shows typically the example of the manufactured heat sink to which this invention is applied. 本発明を適用した製造した放熱板の他の例を模式的に示す断面図である。It is sectional drawing which shows typically the other example of the manufactured heat sink which applied this invention. 本発明による放熱板を用いて作製した電子部品冷却体を模式的に示す断面図である。It is sectional drawing which shows typically the electronic component cooling body produced using the heat sink by this invention.

符号の説明Explanation of symbols

1 放熱板
1a 低熱膨張率のCu含有合金
1b 高熱膨張率のCuまたはCu含有合金
1c Sn基合金
2 DBA基板
3 熱放散部材
4 半導体素子
5a ハンダ
5b ハンダ
5c ハンダ
1 Heat sink
1a Cu-containing alloy with low thermal expansion coefficient
1b High thermal expansion coefficient Cu or Cu-containing alloy
1c Sn-based alloy 2 DBA substrate 3 Heat dissipation member 4 Semiconductor element
5a Solder
5b Solder
5c solder

Claims (2)

熱膨張率の異なるCuまたはCu含有合金の接合方法において、箔または粒状のSn基合金をCuまたはCu含有合金の間に挟み込み、前記Sn基合金の融点以上の温度に加熱することによって、前記CuまたはCu含有合金を接合することを特徴とするCuまたはCu含有合金の接合方法。   In the joining method of Cu or Cu-containing alloy having different thermal expansion coefficients, the Cu or Cu-containing alloy is sandwiched between Cu or Cu-containing alloy and heated to a temperature equal to or higher than the melting point of the Sn-based alloy. Alternatively, a Cu or Cu-containing alloy joining method characterized by joining a Cu-containing alloy. 請求項1に記載の接合方法によって2種または3種以上のCuまたはCu含有合金を接合してなることを特徴とする放熱板。
A heat radiating plate obtained by joining two or more kinds of Cu or Cu-containing alloys by the joining method according to claim 1.
JP2006063187A 2006-03-08 2006-03-08 Heat sink made of copper or copper-containing alloy and joining method thereof Expired - Fee Related JP4954575B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006063187A JP4954575B2 (en) 2006-03-08 2006-03-08 Heat sink made of copper or copper-containing alloy and joining method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006063187A JP4954575B2 (en) 2006-03-08 2006-03-08 Heat sink made of copper or copper-containing alloy and joining method thereof

Publications (2)

Publication Number Publication Date
JP2007242891A true JP2007242891A (en) 2007-09-20
JP4954575B2 JP4954575B2 (en) 2012-06-20

Family

ID=38588140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006063187A Expired - Fee Related JP4954575B2 (en) 2006-03-08 2006-03-08 Heat sink made of copper or copper-containing alloy and joining method thereof

Country Status (1)

Country Link
JP (1) JP4954575B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012221971A (en) * 2011-04-04 2012-11-12 Sumitomo Metal Electronics Devices Inc Heat sink and package for housing high heat dissipation type semiconductor element using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002043481A (en) * 2000-07-19 2002-02-08 Sumitomo Metal Ind Ltd Ceramic module and its manufacturing method
JP2002222905A (en) * 2001-01-25 2002-08-09 Hitachi Ltd Power module, composite substrate thereof and bonding solder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002043481A (en) * 2000-07-19 2002-02-08 Sumitomo Metal Ind Ltd Ceramic module and its manufacturing method
JP2002222905A (en) * 2001-01-25 2002-08-09 Hitachi Ltd Power module, composite substrate thereof and bonding solder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012221971A (en) * 2011-04-04 2012-11-12 Sumitomo Metal Electronics Devices Inc Heat sink and package for housing high heat dissipation type semiconductor element using the same

Also Published As

Publication number Publication date
JP4954575B2 (en) 2012-06-20

Similar Documents

Publication Publication Date Title
JP6307832B2 (en) Power module board, power module board with heat sink, power module with heat sink
JP6044097B2 (en) Power module substrate with heat sink, power module substrate with cooler, and power module
EP3057125B1 (en) Substrate for heat sink-equipped power module, and production method for same
KR102097177B1 (en) Power module substrate, power module substrate with heat sink, and power module
TWI609461B (en) Method of jointed body, and method of producing substrate for power module
CN107427968B (en) Solder material for semiconductor device
JP5186719B2 (en) Ceramic wiring board, manufacturing method thereof, and semiconductor module
JP5829403B2 (en) Insulating substrate for heat dissipation and manufacturing method thereof
WO2003046981A1 (en) Module structure and module comprising it
US9773721B2 (en) Lead-free solder alloy, connecting member and a method for its manufacture, and electronic part
JP2011124585A (en) Ceramic wiring board and manufacturing method and semiconductor module of the same
CN107546131A (en) A kind of preparation method for being used to encapsulate the metal shell of electronic building brick
JP2014222788A (en) Method for manufacturing substrate for power module, method for manufacturing substrate for power module with heat sink, and method for manufacturing power module
WO2018168858A1 (en) Solder material
CN107431051A (en) Manufacture method with gelled power module substrate
JP4104429B2 (en) Module structure and module using it
JP6819299B2 (en) Joined body, substrate for power module, manufacturing method of joined body and manufacturing method of substrate for power module
JP4954575B2 (en) Heat sink made of copper or copper-containing alloy and joining method thereof
JP4592486B2 (en) Semiconductor module
JP2007326137A (en) Lead-free solder material, semi-conductor device, and manufacturing method of semi-conductor device
JP4799069B2 (en) Heat sink used in electronic equipment
JP5203896B2 (en) Semiconductor device and manufacturing method thereof
JP7267522B1 (en) Bonding materials and semiconductor devices
JP4461268B2 (en) Semiconductor device component, manufacturing method thereof, and semiconductor device using the same
JP2014147966A (en) Joining material, joining method, joining structure, and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120314

R150 Certificate of patent or registration of utility model

Ref document number: 4954575

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees