JP2007242844A - Laminated core excellent in dimensional accuracy and manufacturing method thereof - Google Patents

Laminated core excellent in dimensional accuracy and manufacturing method thereof Download PDF

Info

Publication number
JP2007242844A
JP2007242844A JP2006062415A JP2006062415A JP2007242844A JP 2007242844 A JP2007242844 A JP 2007242844A JP 2006062415 A JP2006062415 A JP 2006062415A JP 2006062415 A JP2006062415 A JP 2006062415A JP 2007242844 A JP2007242844 A JP 2007242844A
Authority
JP
Japan
Prior art keywords
laminated
laminated core
dimensional accuracy
soft magnetic
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006062415A
Other languages
Japanese (ja)
Other versions
JP4844181B2 (en
Inventor
Tsunehiro Yamaji
常弘 山路
Katsuji Kasai
勝司 笠井
Yuji Okada
有司 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006062415A priority Critical patent/JP4844181B2/en
Publication of JP2007242844A publication Critical patent/JP2007242844A/en
Application granted granted Critical
Publication of JP4844181B2 publication Critical patent/JP4844181B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for stably manufacturing a laminated core excellent in dimensional accuracy with improved productivity, and to provide the laminated core manufactured according to this method. <P>SOLUTION: For example, two holes for registration are provided in a soft magnetic steel plate when the soft magnetic plate is stamped into a predetermined shape. Then, when a plurality of the soft magnetic steel plates are laminated, rivets are inserted into the holes for registration, and the lamination is fixed while adjusting the squareness thereof to obtain the laminated core. Usually, the subsequently carried out steps of impregnating the lamination with an adhesive, molding it by restraining it with a molding jig, and carrying out drying and baking treatment, can be omitted. Further, the lamination is rotated about the rivet inserted into the hole for registration before fixing the lamination to remove the iron powder occurred on the stamped surface to prevent the occurrence of a clearance between the laminated cores. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、リアクトル鉄芯等に用いられる積層コアの製造方法およびそれにより製造される積層コアに関するものである。   The present invention relates to a method for producing a laminated core used for a reactor iron core and the like, and a laminated core produced thereby.

電気機器などの鉄心となる薄鋼板の打ち抜き加工は、プレスにより鉄板をかしめて一体化させた状態で打抜き加工する方法により行われる。   Punching of a thin steel plate serving as an iron core of an electric device or the like is performed by a method of punching in a state where the iron plate is crimped and integrated by a press.

しかしながら、上記かしめにより加工する方法は、板厚が0.2mm以下の薄鋼板に対しては、かしめ部の圧着強度が弱いために十分にかしめることができないという問題があり、用いることができない。また、Si:4.0%以上の軟磁性鋼板についても、材料が脆くなってしまうため用いることができない。   However, the method of processing by caulking cannot be used for thin steel plates having a plate thickness of 0.2 mm or less due to the fact that the crimping strength of the caulking portion is weak and cannot be used sufficiently. . Also, a soft magnetic steel sheet having Si: 4.0% or more cannot be used because the material becomes brittle.

そのため、上記板厚が0.2mm以下の薄い鋼板やSi:4.0%以上の軟磁性鋼板を用いて積層コアを製造する場合、積層接着方式がとられている。この積層接着方式とは、例えば軟磁性鋼板をまず所定の形状に打ち抜き加工し、次いで、複数枚積層し、得られた積層体を治具により固定する方法である。   Therefore, when a laminated core is manufactured using a thin steel plate having a thickness of 0.2 mm or less or a soft magnetic steel plate having Si: 4.0% or more, a laminated adhesion method is employed. This lamination bonding method is a method in which, for example, a soft magnetic steel sheet is first punched into a predetermined shape, then a plurality of layers are laminated, and the obtained laminate is fixed with a jig.

しかしながら、上記積層接着方式は手作業に頼る部分が多いため、生産性が悪く、加工コストが高くなってしまう。加工コストを低減するために、プレス型内で接着させたとしても製品コアの直角度が悪化し寸法制度が劣化するという問題がある。   However, since the laminated adhesive method has many parts that rely on manual work, the productivity is poor and the processing cost is high. In order to reduce the processing cost, there is a problem in that the perpendicularity of the product core is deteriorated and the dimensional system is deteriorated even if they are bonded in the press die.

このような状況を受けて、本発明者らは、上記技術の課題を解決する積層コアの製造方法として、打ち抜き加工後の軟磁性鋼板(バラコアともいう)を複数枚積層した後、積層体に対して接着剤を含浸させ、離型材としてフッ素樹脂コ−ティング板を用いて、成型用治具で拘束して成型した後に乾燥、焼付を行う方法を提案している(特許文献1)
しかしながら、特許文献1をもってしても、寸法精度に優れた積層コアを生産性よく製造することは難しいのが現状である。
Under these circumstances, the present inventors, as a method for producing a laminated core that solves the above-mentioned problems, laminated a plurality of punched soft magnetic steel plates (also called bulk cores), On the other hand, a method is proposed in which drying and baking are performed after impregnating an adhesive, using a fluororesin coating plate as a release material, constraining with a molding jig and molding (Patent Document 1).
However, even with Patent Document 1, it is difficult to manufacture a laminated core having excellent dimensional accuracy with high productivity.

一方、軟磁性鋼板をプレスにより所定の形状に打ち抜き加工する際に、打ち抜き加工面に鉄粉が生じ、これが積層コア間に入り込み、積層コア間に隙間を生じさせることがある。積層コア間に隙間を生じると、占積率が下がることで磁気特性が劣化してしまう。また、後工程での接着や、コアどうしを接合するためやリアクトル全体の騒音防止のために行う樹脂モールド(以下、ポッティングと称す)において高熱の樹脂を積層コア間に流しこみ加工する際に、コア割れを起こしてしまう。特にSi量が4.0%以上の高けい素鋼板は脆いため、鉄粉が発生しやすい。
特開2005−19640号公報
On the other hand, when a soft magnetic steel sheet is punched into a predetermined shape by a press, iron powder is generated on the punched surface, which may enter between the laminated cores and cause gaps between the laminated cores. If a gap is generated between the laminated cores, the space factor is lowered, so that the magnetic characteristics are deteriorated. In addition, when pouring high-temperature resin between laminated cores in a resin mold (hereinafter referred to as potting) that is used for bonding in subsequent processes, joining cores or preventing noise of the entire reactor, The core will break. In particular, high silicon steel sheets with a Si content of 4.0% or more are brittle, and iron powder is easily generated.
Japanese Patent Laid-Open No. 2005-19640

本発明は、上記の事情に鑑み、寸法精度に優れた積層コアを生産性よく安定して製造する方法およびその方法により製造された積層コアを提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide a method for stably producing a laminated core having excellent dimensional accuracy with high productivity and a laminated core produced by the method.

本発明者らは、上記課題を解決すべく鋭意研究した。その結果、積層体を固定する際にリベットを用いることが寸法精度の向上に対して有効であり、リベットを用いるにあたっては、位置決め用穴を軟磁性鋼板に事前に設け、位置決め用穴にリベットを差込むことにより、生産性を悪くすることなく、寸法精度に優れた積層コアが得られることを見出した。また、位置決め用穴に差込まれたリベットを支点に積層体を回転させることで、プレス打ち抜き加工面に発生した鉄粉を除去することが可能となることも見出した。例えば、リベットを支点に積層体を回転させ、この時、遠心力を利用することにより、積層コア間に隙間を生じさせる原因となっていた鉄粉が完全に除去され、磁気特性の劣化が防止される。   The present inventors have intensively studied to solve the above problems. As a result, using rivets when fixing the laminate is effective for improving dimensional accuracy. When using rivets, positioning holes are provided in the soft magnetic steel plate in advance, and rivets are provided in the positioning holes. It has been found that a laminated core with excellent dimensional accuracy can be obtained without deteriorating productivity by being inserted. It has also been found that the iron powder generated on the press punched surface can be removed by rotating the laminate around the rivet inserted into the positioning hole. For example, by rotating the laminated body with rivets as fulcrums and using centrifugal force at this time, iron powder that caused gaps between the laminated cores is completely removed, preventing deterioration of magnetic properties Is done.

本発明は、以上の知見に基づきなされたもので、その要旨は以下のとおりである。
[1]所定の形状に打ち抜き加工して得られる軟磁性鋼板を、複数枚積層し積層体となし積層コアを製造する方法において、位置決め用穴を前記軟磁性鋼板に設け、前記複数枚積層する際に、前記位置決め用穴にリベットを差込み、積層体を固定することを特徴とする寸法精度に優れた積層コアの製造方法。
[2]前記[1]において、リベットにより積層体を固定後、前記積層体積層部を接着剤で接着することを特徴とする寸法精度に優れた積層コアの製造方法。
[3]前記[1]または[2]において、前記軟磁性鋼板をSi量:4.0mass%以上の高けい素鋼板とすることを特徴とする寸法精度に優れた積層コアの製造方法。
[4]前記[1]〜[3]のいずれかにおいて、前記軟磁性鋼板の板厚が0.2mm以下であることを特徴とする寸法精度に優れた積層コアの製造方法。
[5]前記[1]〜[4]のいずれかにおいて、積層体を固定する前に、位置決め用穴に差込まれたリベットを支点に積層体を回転させ、打ち抜き加工面に発生した鉄粉を除去することを特徴とする寸法精度に優れた積層コアの製造方法。
[6]前記[1]〜[5]のいずれかに記載の積層コアの製造方法により製造された積層コア。
The present invention has been made based on the above findings, and the gist thereof is as follows.
[1] In a method for producing a laminated body and a laminated core by laminating a plurality of soft magnetic steel plates obtained by punching into a predetermined shape, positioning holes are provided in the soft magnetic steel plates, and the plurality of the laminated laminates are laminated. In this case, a method for manufacturing a laminated core having excellent dimensional accuracy, wherein a rivet is inserted into the positioning hole and the laminated body is fixed.
[2] A method for producing a laminated core with excellent dimensional accuracy, wherein, in [1], after the laminated body is fixed with rivets, the laminated body laminated portion is bonded with an adhesive.
[3] A method for producing a laminated core having excellent dimensional accuracy, wherein, in [1] or [2], the soft magnetic steel plate is a high silicon steel plate having an Si content of 4.0 mass% or more.
[4] In any one of [1] to [3], the thickness of the soft magnetic steel plate is 0.2 mm or less, and the method for producing a laminated core having excellent dimensional accuracy.
[5] In any one of the above [1] to [4], before fixing the laminated body, the laminated body is rotated with the rivet inserted into the positioning hole as a fulcrum, and the iron powder generated on the punched surface The manufacturing method of the lamination | stacking core excellent in the dimensional accuracy characterized by removing this.
[6] A laminated core produced by the method for producing a laminated core according to any one of [1] to [5].

発明によれば、安価に且つ高い生産効率で、寸法精度良く、積層コアを製造することができる。さらに、本発明の積層コアは、積層コア間に隙間を生じさせる原因となっていた鉄粉等が完全に除去されているので、コア割れを生じることもなく、磁気特性にも優れている。
特に、本発明の製造方法は板厚が0.2mm以下の薄い材料やSi量:4.0mass%以上の高けい素鋼板に対して非常に有効な方法である。
According to the invention, a laminated core can be manufactured at low cost with high production efficiency and high dimensional accuracy. Furthermore, the laminated core of the present invention is completely free of iron powder and the like that caused gaps between the laminated cores, and therefore has no core cracking and excellent magnetic properties.
In particular, the manufacturing method of the present invention is a very effective method for a thin material having a thickness of 0.2 mm or less and a high silicon steel plate having an Si content of 4.0 mass% or more.

以下に、本発明の積層コアの製造方法を、工程を追って詳細に説明する。   Below, the manufacturing method of the lamination | stacking core of this invention is demonstrated in detail later on process.

軟磁性鋼板を打ち抜き素材として使用し、所定形状に打ち抜き加工する。生産性の観点から、打ち抜き加工を施される素材鋼板として帯状の鋼板(鋼帯ともいう)を用い、プレス機を用いてプレスにより連続打ち抜き加工することが望ましい。
また、本発明では生産性の観点から、打ち抜き加工する際、リベットを差込むための位置決め用穴を軟磁性鋼板に設けることが好ましい。例えば、プレスによる打ち抜き加工工程において、鋼帯に位置決め用の穴を形成し、次いで所定形状に打ち抜くようにすればよく、具体的には、1台のプレス機に上記穴形成用金型と打ち抜き用の金型をセットし、軟磁性鋼板への穴形成、所定形状の打ち抜きを連続して行うようにすればよい。また、若干生産性は劣るが、所定形状に打ち抜き後、積層する前に別工程にて穴形成を行ってもよい。
このように、軟磁性鋼板に位置決め用の穴をあけ、そこにリベットを差し込み、積層体を固定することで、直角度精度に優れる積層コアが生産効率良く得られることになる。
A soft magnetic steel plate is used as a punching material and punched into a predetermined shape. From the viewpoint of productivity, it is desirable to use a strip-shaped steel plate (also referred to as a steel strip) as a material steel plate to be punched, and to perform continuous punching by press using a press machine.
In the present invention, from the viewpoint of productivity, it is preferable to provide positioning holes for inserting rivets in the soft magnetic steel sheet when punching. For example, in a punching process using a press, a hole for positioning may be formed in a steel strip, and then punched into a predetermined shape. Specifically, the above-mentioned hole forming die and the punch are punched into one press machine. For example, a metal mold may be set, and hole formation in a soft magnetic steel sheet and punching of a predetermined shape may be continuously performed. Moreover, although productivity is slightly inferior, after punching into a predetermined shape, holes may be formed in a separate process before lamination.
In this way, by making a positioning hole in the soft magnetic steel sheet, inserting a rivet into the hole, and fixing the laminated body, a laminated core having excellent squareness accuracy can be obtained with high production efficiency.

なお、位置決め用穴は積層コアに1ヶ所以上設けることとするが、積層体のズレ防止、位置決め精度向上のために、2ヶ所以上設けることが好ましい。
リベット穴径は、磁路を阻害しないよう、可能な限り小さくすることが好ましい。例えば、板厚0.10mm、Si量:6.5mass%の高けい素鋼板を使用し、I型形状コアを製造しようとする場合、コアサイズにもよるが、リベット穴径は2〜10mm程度が好ましい。
リベット外径は、穴との公差を可能な限り小さくすることが好ましい。
また、穴あけ位置は、特に限定するものではないが、積層鋼板間に隙間ができずに積層体の形状が保てるように適宜設定すればよく、例えば、1ヶ所の場合は積層体中央、2ヶ所以上の場合は板幅方向あるいは板長さ方向の中心線に対し、左右対称となるなど、対称な配置となるように位置決めをすることが好ましい。
Although one or more positioning holes are provided in the laminated core, it is preferable to provide two or more holes in order to prevent misalignment of the laminated body and improve positioning accuracy.
The rivet hole diameter is preferably as small as possible so as not to disturb the magnetic path. For example, when using a high silicon steel sheet with a plate thickness of 0.10 mm and a Si content of 6.5 mass% and trying to manufacture an I-shaped core, the rivet hole diameter is about 2 to 10 mm, depending on the core size. preferable.
The outer diameter of the rivet is preferably as small as possible with respect to the hole.
Further, the drilling position is not particularly limited, but may be set as appropriate so that a gap is not formed between the laminated steel sheets and the shape of the laminated body can be maintained. In the above case, it is preferable to perform positioning so as to be symmetrical with respect to the center line in the plate width direction or the plate length direction.

次いで、打ち抜き加工後、位置決め用穴が設けられた軟磁性鋼板(バラコア)を所定の枚数積層して積層体とする。この時、打ち抜いた個々の軟磁性鋼板がバラバラにならないように、位置決め用穴にリベットを差込み、積層体を固定し、直角度精度を整える。穴に差込むリベットの材質は、特に規定はしないが、コア形状を維持するための強度を有する材質であれば良い。例えばアルミ製リベット等が挙げられる。また、絶縁物であればさらに好ましい。
なお、このリベットで固定した段階で最終製品としても良いし、リベットで位置決めし仮固定した状態で、さらに接着剤を積層体全体に浸透させ、最終製品とすることもできる。
リベットで固定した段階で最終製品とする場合、積層体の積層部に対して接着剤を塗布し、乾燥、焼付を行うことが好ましい。積層部に接着剤を塗布することにより、より一層直角度精度が向上する。
この時、使用する接着剤の種類は特に限定されない。また、接着剤は乾燥、焼付工程までに硬化していることが好ましいが、必ずしも完全に硬化している必要はなく、ある程度の接着強度が得られるまで硬化していればよい。比較的短時間のうちにある程度の接着強度が得られるような接着剤を使用することもできる。塗布量は、コアの大きさ、積み厚により適量を加減する。乾燥、焼付温度は100℃〜200℃、10分以上、3時間以下が好ましい。接着剤に瞬間接着剤を使用する場合は、コア寸法の条件等により、焼付は省略することができる。
Next, after punching, a predetermined number of soft magnetic steel plates (bara cores) provided with positioning holes are laminated to form a laminate. At this time, rivets are inserted into the positioning holes so that the punched individual soft magnetic steel plates do not fall apart, and the laminated body is fixed to adjust the squareness accuracy. The material of the rivet to be inserted into the hole is not particularly specified, but any material having strength for maintaining the core shape may be used. Examples include aluminum rivets. Further, an insulator is more preferable.
The final product may be obtained at the stage of fixing with the rivets, or the final product may be obtained by further infiltrating the entire laminate with the adhesive positioned and temporarily fixed with the rivets.
When a final product is obtained at the stage of fixing with rivets, it is preferable to apply an adhesive to the laminated portion of the laminate, and dry and bake. By applying the adhesive to the laminated portion, the squareness accuracy is further improved.
At this time, the type of adhesive used is not particularly limited. Moreover, although it is preferable that the adhesive is hardened by a drying and baking process, it does not necessarily need to be hardened completely, and it should just be hardened until a certain amount of adhesive strength is obtained. It is also possible to use an adhesive that provides a certain level of adhesive strength within a relatively short time. The amount to be applied is adjusted depending on the size and thickness of the core. The drying and baking temperature is preferably 100 ° C. to 200 ° C., 10 minutes or more and 3 hours or less. When an instantaneous adhesive is used as the adhesive, baking can be omitted depending on the core dimension conditions and the like.

積層体をリベットで位置決めし仮固定した状態で、さらに浸透接着剤を積層体全体に含浸させる場合、その方法としては、大気中毛細管現象を利用して浸透させる方法(常圧含浸方法)や真空含浸方法があげられる。ただし、積層体を接着剤の中に入れ、含浸するにあたっては、積層体と接着剤をトレー等に入れ、常圧で含浸する方法では、積層体の下部5分の1から5分の4程度まで接着剤中に浸漬するものとする。積層体を全て覆うように接着剤に浸漬した場合、全ての側面から接着剤が浸透し、積層体の中心部分に空気が溜まり、コア強度に悪影響を及ぼし好ましくない。真空含浸する方法では、積層体を接着剤の中に完全に浸漬させる必要がある。
この時、使用する接着剤としては、熱硬化型接着剤が好ましい。特に、アクリル系樹脂またはエポキシ系樹脂の熱硬化型接着剤とすることが好ましい。例えば、自動車用部品等で使用される場合は、零下から150℃程度までのヒートサイクルを受けながら使用されるため、温度変化に対する接着強度が必要であり、接着剤として、1液性のアクリル系接着剤やエポキシ系接着剤を使用することが好ましい。
次いで、接着剤含浸後の積層体に対して、乾燥、焼付処理をし、軟磁性鋼帯間が完全接着された積層コアを得る。乾燥、焼付処理は、例えば電気炉、熱風乾燥炉、誘導加熱炉等を用いることができる。この時の乾燥、焼付処理は、通常100〜200℃で10分以上行うことが好ましい。
When the laminate is positioned and temporarily fixed with rivets and the entire laminate is further impregnated with the laminate, a method of impregnation using atmospheric capillary action (atmospheric pressure impregnation method) or vacuum is used. Examples of the impregnation method. However, when the laminate is put into an adhesive and impregnated, the method of placing the laminate and the adhesive in a tray or the like and impregnating at normal pressure is about 1/5 to 4/5 at the bottom of the laminate. It shall be immersed in the adhesive. When the laminate is immersed in the adhesive so as to cover the entire laminate, the adhesive penetrates from all sides, and air accumulates in the central portion of the laminate, which adversely affects the core strength. In the method of vacuum impregnation, it is necessary to completely immerse the laminate in the adhesive.
At this time, as the adhesive to be used, a thermosetting adhesive is preferable. In particular, a thermosetting adhesive of acrylic resin or epoxy resin is preferable. For example, when used in automotive parts, etc., since it is used while undergoing a heat cycle from below zero to about 150 ° C., adhesive strength against temperature changes is required, and as a one-component acrylic system as an adhesive It is preferable to use an adhesive or an epoxy adhesive.
Next, the laminated body impregnated with the adhesive is dried and baked to obtain a laminated core in which the soft magnetic steel strips are completely bonded. For the drying and baking treatment, for example, an electric furnace, a hot air drying furnace, an induction heating furnace, or the like can be used. The drying and baking treatment at this time is usually preferably performed at 100 to 200 ° C. for 10 minutes or longer.

なお、本発明では、打ち抜き加工後の軟磁性鋼板の組成に特に制限はなく、Si含有量が4.0mass%以上の高珪素鋼板や非晶質薄鋼板についても何ら問題なく使用することができる。   In the present invention, the composition of the soft magnetic steel sheet after punching is not particularly limited, and high silicon steel sheets and amorphous thin steel sheets having a Si content of 4.0 mass% or more can be used without any problems. .

また、打ち抜き加工後の軟磁性鋼板の板厚にも特別な制限はないが、特にかしめが困難な0.2mm以下、とりわけ0.15mm以下の板厚の軟磁性鋼板に適しており、本発明ではこのような極く薄い鋼板についても何ら問題なく使用できる。   Further, the thickness of the soft magnetic steel sheet after punching is not particularly limited, but is particularly suitable for a soft magnetic steel sheet having a thickness of 0.2 mm or less, particularly 0.15 mm or less, which is difficult to be caulked. Then, such a very thin steel plate can be used without any problem.

(本発明例)
本発明例の製作工程を表1に示す。
板厚0.1mm、材料幅60mm、の6.5%けい素鋼板を使用し、打ち抜き長さ(切断長さ)を30mmでプレスにより打ち抜き加工した。この時、図1に示すように、2ヶ所にリベットを差し込むための位置決め用穴を設けた。なお、穴を設けるにあたっては、穴径は4mm、リベット外径は3.6mm、穴あけの位置は板幅方向の中心線に対して左右対称となるよう、それぞれフープ幅の3分の1の位置(幅方向端部から20mm)とした。
次いで、位置決め用穴にリベットを差込み、所定の枚数積層して積層体として直角度精度を整え固定し図1に示す積層コア(幅60mm、長さ30mm、積み厚40mm)を製作した。なお、リベットとしてはアルミ製リベットを用いた。
(Example of the present invention)
The manufacturing process of the example of the present invention is shown in Table 1.
A 6.5% silicon steel sheet having a thickness of 0.1 mm and a material width of 60 mm was used, and the punching length (cutting length) was 30 mm by stamping. At this time, as shown in FIG. 1, positioning holes for inserting rivets were provided in two places. When providing the holes, the hole diameter is 4 mm, the rivet outer diameter is 3.6 mm, and the position of the hole is symmetric with respect to the center line in the plate width direction at a position of one third of the hoop width ( 20 mm from the end in the width direction).
Next, rivets were inserted into the positioning holes, a predetermined number of layers were stacked, and the squareness accuracy was adjusted and fixed as a layered product to produce a layered core (width 60 mm, length 30 mm, stacking thickness 40 mm) shown in FIG. As the rivet, an aluminum rivet was used.

(比較例)
上記本発明例と同様の材料を用いて、同様に打ち抜き加工を行った。次いで、表1に示す工程により、積層コアを製作した。なお、製作するにあたって、接着剤としては、アクリル系接着剤を用い、乾燥・焼き付けは150℃、90分間とした。
上記により得られた本発明例および比較例の積層コアに対して、コア検査として寸法精度を測定したところ、比較例と本発明例は同等の直角度1%以下寸法精度を示した。なお、寸法精度は、図2に示すように、積層体の積層方向の厚みaと積層体の側面と直角度ゲージ垂直面の最大すき間bを用いて直角度をa/bを求め、このa/bの値(100倍して%表示)で評価した。
(Comparative example)
Using the same material as that of the above-described example of the present invention, punching was performed in the same manner. Next, a laminated core was manufactured by the process shown in Table 1. In manufacturing, an acrylic adhesive was used as the adhesive, and drying and baking were performed at 150 ° C. for 90 minutes.
When the dimensional accuracy was measured as a core inspection for the laminated cores of the present invention example and the comparative example obtained as described above, the comparative example and the present invention example showed equivalent dimensional accuracy of 1% or less of the perpendicularity. As shown in FIG. 2, the dimensional accuracy is obtained by calculating the squareness a / b using the thickness a in the stacking direction of the laminate and the maximum gap b between the side surface of the laminate and the perpendicular surface of the perpendicular gauge. Evaluation was made using the value of / b (multiplied by 100 and expressed in%).

Figure 2007242844
Figure 2007242844

表1より、本発明例では、同等の寸法精度であるにも拘わらず、比較例に比べ、工程が大幅に省略されている。これにより、寸法精度を維持しつつ、工程を大幅に省略することによりコスト低減が図れることがわかる。   From Table 1, in the example of the present invention, although the dimensional accuracy is equivalent, the steps are greatly omitted compared to the comparative example. Thus, it can be seen that the cost can be reduced by largely omitting the steps while maintaining the dimensional accuracy.

(本発明例)
本発明例の製作工程を表2に示す。
板厚0.1mm、材料幅80mmの6.5%けい素鋼板を使用し、総抜きで、U型形状の打ち抜き加工を行った。この時、図3に示すように、2ヶ所にリベットを差し込むための位置決め用穴を設けた。なお、穴を設けるにあたっては、穴径は5mm、リベット外径は4.6mm、穴あけの位置は図3の位置とした。
次いで、位置決め用穴にリベットを差込み、所定の枚数積層して積層体として仮固定した後、アクリル系接着剤を用いて真空含浸し、150℃×2時間の条件で乾燥・焼き付けを行い、図3に示す積層コアを製作した。なお、リベットとしてはアルミ製リベットを用いた。
(Example of the present invention)
The manufacturing process of the example of the present invention is shown in Table 2.
A 6.5% silicon steel sheet with a thickness of 0.1 mm and a material width of 80 mm was used, and a U-shaped punching process was performed with total blanking. At this time, as shown in FIG. 3, positioning holes for inserting rivets were provided in two places. In addition, when providing a hole, the hole diameter was 5 mm, the rivet outer diameter was 4.6 mm, and the drilling position was the position shown in FIG.
Next, rivets are inserted into the positioning holes, a predetermined number of layers are laminated and temporarily fixed as a laminated body, then vacuum impregnated with an acrylic adhesive, and dried and baked at 150 ° C. for 2 hours. The laminated core shown in 3 was manufactured. As the rivet, an aluminum rivet was used.

(比較例)
比較例として、上記実施例2、本発明例と同様の材料を用いて、同様に打ち抜き加工を行った。次いで、表2に示す工程により、積層コアを製作した。なお、製作するにあたって、接着剤としては、アクリル系接着剤を用い、乾燥・焼き付けは150℃、2時間とした。
上記により得られた本発明例および比較例の積層コアに対して、コア検査として寸法精度を測定したところ、比較例と本発明例は同等の直角度1%以下の寸法精度を示した。なお、寸法精度は実施例1と同様の方法で行った。
(Comparative example)
As a comparative example, punching was performed in the same manner using the same material as in Example 2 and the present invention. Subsequently, the laminated core was manufactured according to the process shown in Table 2. In manufacturing, an acrylic adhesive was used as the adhesive, and drying and baking were performed at 150 ° C. for 2 hours.
When the dimensional accuracy was measured as a core inspection for the laminated cores of the present invention example and the comparative example obtained as described above, the comparative example and the present invention example showed the same dimensional accuracy of 1% or less of the perpendicularity. The dimensional accuracy was measured by the same method as in Example 1.

Figure 2007242844
Figure 2007242844

表2より、本発明例では、同等の寸法精度であるにも拘わらず、比較例に比べ、工程が大幅に省略されている。これにより、寸法精度を維持しつつ、工程を大幅に省略することによりコスト低減が図れることがわかる。   From Table 2, in the example of the present invention, although the dimensional accuracy is equivalent, the process is greatly omitted as compared with the comparative example. Thus, it can be seen that the cost can be reduced by largely omitting the steps while maintaining the dimensional accuracy.

(本発明例)
板厚0.1mm、材料幅80mmの6.5%けい素鋼板を使用し、図3に示すように、総抜きで、U型形状の打ち抜き加工を行った。この時、図3に示すように、2ヶ所にリベットを差し込むための位置決め用穴を設けた。なお、穴を設けるにあたっては、穴径は5mm、リベット外径は4.6mm、穴あけの位置は図3の位置とした。
次いで、位置決め用穴のうち1ヶ所にリベットを差込み、所定の枚数積層して積層体とした後、このリベットを支点に積層体を回転させ、遠心力でプレス加工面にある鉄粉を除去した。その後、位置決め用穴のうちの残りの1ヶ所にもリベットを差込み直角度精度を整え仮固定し、次いで、アクリル系接着剤を真空含浸し、150℃×2時間の条件で乾燥・焼き付けを行い、積層コアを製作した。なお、リベットとしてはアルミ製リベットを用いた。
(Example of the present invention)
A 6.5% silicon steel sheet having a thickness of 0.1 mm and a material width of 80 mm was used, and as shown in FIG. At this time, as shown in FIG. 3, positioning holes for inserting rivets were provided in two places. In addition, when providing a hole, the hole diameter was 5 mm, the rivet outer diameter was 4.6 mm, and the drilling position was the position shown in FIG.
Next, after inserting a rivet into one of the positioning holes and laminating a predetermined number of layers to form a laminated body, the laminated body was rotated using this rivet as a fulcrum, and the iron powder on the pressed surface was removed by centrifugal force. . After that, insert a rivet into the remaining one of the positioning holes, adjust the squareness accuracy and temporarily fix it, then vacuum impregnate with acrylic adhesive, and dry and bake under conditions of 150 ° C x 2 hours A laminated core was produced. As the rivet, an aluminum rivet was used.

(比較例)
比較例としては、上記実施例3、本発明例において、リベットを支点に積層体を回転させることなしに(遠心力による鉄粉除去を実施せず)、それ以外を実施例3本発明例と同様の方法にて行い積層、コアを製作した。
上記により得られた本発明例および比較例の積層コアに対して、積層コア間にすき間が発生しているかどうかの検査を目視にて行った。なお、積層コア間の積層面にできたすきま長さが5mm以上の場合をすき間発生ありとした。
その結果、本発明例ではすき間は発生しておらず、比較例ではすき間が発生していた。このように、本発明例では、鉄粉を除去することにより、積層コア間のすきま発生を防止し、これにより、後工程の接着やポッティングでのコア割れを防止することができた。
(Comparative example)
As a comparative example, in the above Example 3 and the present invention example, without rotating the laminated body with the rivet as a fulcrum (without removing iron powder by centrifugal force), the other examples are the same as Example 3 and the present invention example. Lamination and cores were made in the same manner.
The laminated cores of the present invention and the comparative example obtained as described above were visually inspected for whether or not a gap was generated between the laminated cores. It should be noted that a gap occurred when the gap length formed on the laminated surface between the laminated cores was 5 mm or more.
As a result, no gap was generated in the example of the present invention, and a gap was generated in the comparative example. As described above, in the present invention example, the generation of a gap between the laminated cores was prevented by removing the iron powder, thereby preventing the core cracking in the subsequent process or potting.

本発明の積層コアは磁気特性に優れており、なおかつ寸法精度にも優れているため、電気機器などの鉄心材料を中心に、多様な用途での使用が可能となる。   Since the laminated core of the present invention has excellent magnetic properties and excellent dimensional accuracy, it can be used in various applications, mainly iron core materials such as electrical equipment.

打ち抜き加工後、リベット差し込み前の積層体を示す斜視図である。(実施例1)It is a perspective view which shows the laminated body after a punching process and before rivet insertion. Example 1 積層体の積層面と側面の直角度を示す図である。(実施例1、2)It is a figure which shows the perpendicularity of the lamination surface and side surface of a laminated body. (Examples 1 and 2) 打ち抜き加工後、リベット差し込み前の積層体を示す斜視図である。(実施例2、3)It is a perspective view which shows the laminated body after a punching process and before rivet insertion. (Examples 2 and 3)

Claims (6)

所定の形状に打ち抜き加工して得られる軟磁性鋼板を、複数枚積層し積層体となし積層コアを製造する方法において、
位置決め用穴を前記軟磁性鋼板に設け、
前記複数枚積層する際に、前記位置決め用穴にリベットを差込み、積層体を固定することを特徴とする寸法精度に優れた積層コアの製造方法。
In a method of manufacturing a laminated core and a laminated core by laminating a plurality of soft magnetic steel plates obtained by punching into a predetermined shape,
A positioning hole is provided in the soft magnetic steel sheet,
A method for manufacturing a laminated core having excellent dimensional accuracy, wherein, when the plural sheets are laminated, a rivet is inserted into the positioning hole to fix the laminated body.
リベットにより積層体を固定後、前記積層体積層部を接着剤で接着することを特徴とする請求項1に記載の寸法精度に優れた積層コアの製造方法。   The method for producing a laminated core with excellent dimensional accuracy according to claim 1, wherein the laminated body is bonded with an adhesive after the laminated body is fixed with a rivet. 前記軟磁性鋼板をSi量:4.0mass%以上の高けい素鋼板とすることを特徴とする請求項1または2に記載の寸法精度に優れた積層コアの製造方法。   The method for producing a laminated core with excellent dimensional accuracy according to claim 1 or 2, wherein the soft magnetic steel sheet is a high silicon steel sheet having an Si content of 4.0 mass% or more. 前記軟磁性鋼板の板厚が0.2mm以下であることを特徴とする請求項1〜3のいずかに記載の寸法精度に優れた積層コアの製造方法。   The method for producing a laminated core with excellent dimensional accuracy according to any one of claims 1 to 3, wherein the thickness of the soft magnetic steel sheet is 0.2 mm or less. 積層体を固定する前に、位置決め用穴に差込まれたリベットを支点に積層体を回転させ、打ち抜き加工面に発生した鉄粉を除去することを特徴とする請求項1〜4のいずれかに記載の寸法精度に優れた積層コアの製造方法。   Before fixing a laminated body, a laminated body is rotated by using the rivet inserted in the positioning hole as a fulcrum, and the iron powder generated on the punching surface is removed. The manufacturing method of the laminated core excellent in the dimensional accuracy of description. 請求項1〜5のいずれかに記載の積層コアの製造方法により製造された積層コア。   The laminated core manufactured by the manufacturing method of the laminated core in any one of Claims 1-5.
JP2006062415A 2006-03-08 2006-03-08 Manufacturing method of laminated core having excellent dimensional accuracy and laminated core Active JP4844181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006062415A JP4844181B2 (en) 2006-03-08 2006-03-08 Manufacturing method of laminated core having excellent dimensional accuracy and laminated core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006062415A JP4844181B2 (en) 2006-03-08 2006-03-08 Manufacturing method of laminated core having excellent dimensional accuracy and laminated core

Publications (2)

Publication Number Publication Date
JP2007242844A true JP2007242844A (en) 2007-09-20
JP4844181B2 JP4844181B2 (en) 2011-12-28

Family

ID=38588102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006062415A Active JP4844181B2 (en) 2006-03-08 2006-03-08 Manufacturing method of laminated core having excellent dimensional accuracy and laminated core

Country Status (1)

Country Link
JP (1) JP4844181B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58166287A (en) * 1982-03-27 1983-10-01 原子燃料工業株式会社 Nuclear fuel assembly
JPH11186062A (en) * 1997-12-24 1999-07-09 Nkk Corp Low-noise laminated core
JP2001157396A (en) * 1999-11-29 2001-06-08 Mitsubishi Electric Corp Manufacturing method of rotor of rotary electric machine and rotor core

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58166287A (en) * 1982-03-27 1983-10-01 原子燃料工業株式会社 Nuclear fuel assembly
JPH11186062A (en) * 1997-12-24 1999-07-09 Nkk Corp Low-noise laminated core
JP2001157396A (en) * 1999-11-29 2001-06-08 Mitsubishi Electric Corp Manufacturing method of rotor of rotary electric machine and rotor core

Also Published As

Publication number Publication date
JP4844181B2 (en) 2011-12-28

Similar Documents

Publication Publication Date Title
JP5285020B2 (en) Laminated iron core and manufacturing method thereof
JP3725776B2 (en) Method for manufacturing laminated iron core and apparatus for manufacturing the same
JP5915075B2 (en) Manufacturing method of laminated core
US8729748B2 (en) Split stator and manufacturing method thereof
JP2009072014A (en) Core block, core, stator for electric motor, and its electric motor
JP4987216B2 (en) Laminated core with excellent dimensional accuracy and manufacturing method thereof
JPWO2011077830A1 (en) Laminated core, electric motor provided with the laminated core, and laminated core manufacturing method
JP2004111509A (en) Laminated iron core having excellent iron loss characteristic and its manufacturing method
JP4008170B2 (en) Iron core manufacturing method and apparatus suitable for the method
JP2009038915A (en) Method for manufacturing stator core
JP3313965B2 (en) Manufacturing method of laminated iron core using amorphous alloy foil strip
JP5122754B2 (en) Manufacturing method of iron core for closed magnetic circuit reactor excellent in lamination accuracy and iron core for closed magnetic circuit reactor
JP4844181B2 (en) Manufacturing method of laminated core having excellent dimensional accuracy and laminated core
JP4987215B2 (en) Laminated core with excellent dimensional accuracy and manufacturing method thereof
JP4115640B2 (en) Manufacturing method of laminated iron core
JP4987224B2 (en) Manufacturing method of laminated core
JP2005019643A (en) Laminated core excellent in dimensional accuracy and its manufacturing method
KR102109279B1 (en) A manufacturing method of stacked core for transformer with excellent no-load loss
CN111295252A (en) Multi-layer blanking method for producing metal parts
JP2005019641A (en) Laminated core excellent in dimensional accuracy and its manufacturing method
JP2005340691A (en) Process for producing laminated core excellent in dimensional precision and core strength
JP2005340705A (en) Process for producing laminated core excellent in dimensional precision and core strength
JP4792756B2 (en) Manufacturing method of laminated core with excellent dimensional accuracy
JP3842146B2 (en) Manufacturing method of laminated iron core
CN114746966B (en) Magnetic core assembly and process for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110408

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110804

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110926

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4844181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250