JP2007242373A - Fuel cell and its manufacturing method - Google Patents

Fuel cell and its manufacturing method Download PDF

Info

Publication number
JP2007242373A
JP2007242373A JP2006061651A JP2006061651A JP2007242373A JP 2007242373 A JP2007242373 A JP 2007242373A JP 2006061651 A JP2006061651 A JP 2006061651A JP 2006061651 A JP2006061651 A JP 2006061651A JP 2007242373 A JP2007242373 A JP 2007242373A
Authority
JP
Japan
Prior art keywords
fuel cell
positioning
component
separator
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006061651A
Other languages
Japanese (ja)
Inventor
Sadao Ikeda
貞雄 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006061651A priority Critical patent/JP2007242373A/en
Publication of JP2007242373A publication Critical patent/JP2007242373A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell and its manufacturing method wherein even if heat expansion and contraction or the like occur in a constituting parts of the fuel cell, the constituting parts are positioned and assembled at high precision by absorbing or releasing that deformation. <P>SOLUTION: This is the fuel cell 10 having 2 points or more of a positioning part 57 having the positioning face 56 consisting of a face perpendicular to the plate face including a radial line or its parallel line from the plate face center 54 of the fuel cell constituting parts 50. The positioning part 57 has a shape opening toward outside of the fuel cell constituting parts. The positioning part 57 has a face 58 perpendicular to the positioning face 56. The fuel cell constituting parts 50 includes a separator consisting of a metal separator. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、位置決め部を有する燃料電池とその製造方法(位置決め部を有する燃料電池と、位置決め部を利用して組み立てた燃料電池スタックの組み立て方法)に関する。   The present invention relates to a fuel cell having a positioning portion and a manufacturing method thereof (a fuel cell having a positioning portion and a method for assembling a fuel cell stack assembled using the positioning portion).

単位燃料電池はMEA(膜−電極接合体)をセパレータで挟んだものから形成される。固体高分子電解質型燃料電池でセパレータがメタルセパレータからなる場合は、MEAとセパレータの間に樹脂フレームが介在してもよい。セパレータ、樹脂フレーム、MEA、およびそれらの間をシールするシール材は燃料電池構成部品を構成する。
単位燃料電池を複数積層し、燃料電池積層体の両端にエンドプレートを配置し燃料電池積層体に締め付け荷重を付与して、燃料電池スタックが形成される。燃料電池スタックでは、積層される燃料電池は位置決めされなければならない。
特開2003−86232号公報は、セパレータの少なくとも対向2辺に形成した該辺に対してほぼ垂直に窪む凹部と、位置決め治具とを、凹部の端面と治具の端面を合わせて、燃料電池を順次積層することを開示している。
特開2003−86232号公報
The unit fuel cell is formed by sandwiching an MEA (membrane-electrode assembly) between separators. When the separator is a metal separator in a solid polymer electrolyte fuel cell, a resin frame may be interposed between the MEA and the separator. The separator, the resin frame, the MEA, and the sealing material that seals between them constitute a fuel cell component.
A plurality of unit fuel cells are stacked, end plates are arranged at both ends of the fuel cell stack, and a clamping load is applied to the fuel cell stack to form a fuel cell stack. In a fuel cell stack, the stacked fuel cells must be positioned.
Japanese Patent Laid-Open No. 2003-86232 discloses that a recess formed on at least two opposite sides of a separator and recessed substantially perpendicularly to the side, a positioning jig, and the end surface of the recess and the end surface of the jig are combined to form a fuel. Disclosure of sequential stacking of batteries.
JP 2003-86232 A

しかし、燃料電池の構成部品は、熱負荷がかかると熱変形(膨張、収縮)するので、治具でセパレータを隙間なく押さえるとセパレータが熱変形(熱膨張)した時に構成部品が歪んだり曲がったり浮き上がったりする。特にセパレータがメタルセパレータの場合は、セパレータは薄く容易に変形するという課題がある。また、熱変形を吸収するために、セパレータと治具との間に隙間をもたせると、位置決め精度が悪化するという課題が生じる。熱変形以外にも、製造誤差、組み付け誤差などによっても同様の課題が生じる。
本発明の目的は、燃料電池の構成部品に熱膨張、収縮などの変形が生じても、その変形を吸収または逃がして高精度で構成部品を位置決めし、組み立てることができる燃料電池とその製造方法を提供することにある。
However, the components of the fuel cell are thermally deformed (expanded and contracted) when a thermal load is applied. Therefore, if the separator is pressed without gaps with a jig, the components are distorted or bent when the separator is thermally deformed (thermally expanded). It floats up. In particular, when the separator is a metal separator, there is a problem that the separator is thin and easily deformed. Further, if a gap is provided between the separator and the jig in order to absorb thermal deformation, there arises a problem that the positioning accuracy is deteriorated. In addition to thermal deformation, similar problems occur due to manufacturing errors, assembly errors, and the like.
SUMMARY OF THE INVENTION An object of the present invention is to provide a fuel cell capable of positioning and assembling components with high accuracy by absorbing or escaping the deformation even if deformation such as thermal expansion or contraction occurs in the component of the fuel cell, and a manufacturing method thereof. Is to provide.

上記課題を解決する、そして上記目的を達成する、本発明はつぎの通りである。
(1) 燃料電池構成部品の板面中心からの放射線またはその平行線を含む前記板面に垂直な面からなる位置決め面を有する位置決め部を、2箇所以上、有する燃料電池。
(2) 前記位置決め部は燃料電池構成部品の外側に向かって開放する形状を有している(1)記載の燃料電池。
(3) 前記位置決め部は前記位置決め面の他に、該位置決め面に垂直で前記燃料電池構成部品の板面に垂直な面を有する(1)記載の燃料電池。
(4) 前記位置決め面と該垂直面とは円弧面を介して接続しており、該円弧面の円弧半径は、スタック化時の燃料電池位置決め時に該位置決め部に挿入される位置決め部材の挿入端側円弧面の円弧半径より小である(3)記載の燃料電池。
(5) 前記燃料電池構成部品が、セパレータ、樹脂フレーム、シール材、MEA、インシュレータ、エンドプレート、プレッシャプレートのうち、1種以上の部品を含む(1)記載の燃料電池。
(6) 前記燃料電池構成部品が前記セパレータを含み、前記セパレータはメタルセパレータからなる(5)記載の燃料電池。
(7) 前記燃料電池構成部品がほぼ矩形状部材からなり、該矩形状部材の4隅に前記位置決め部が設けられている(1)記載の燃料電池。
(8) 前記燃料電池構成部品がほぼ矩形状部材からなり、該矩形状部材の対向2辺と該対向2辺と直交するもう一つの対向2辺に前記位置決め部が設けられている(1)記載の燃料電池。
(9) 前記燃料電池構成部品がほぼ矩形状部材からなり、該矩形状部材の対向2辺に前記位置決め部が設けられている(1)記載の燃料電池。
(10) 燃料電池構成部品の板面中心からの放射線を含む前記板面に垂直な面からなる位置決め面を有する位置決め部を、2箇所以上、有しており、前記燃料電池を積層して燃料電池スタックを製造する際に、位置決め部材を前記位置決め部の前記位置決め面に接触させて各燃料電池を位置決めする燃料電池の製造方法。
The present invention for solving the above problems and achieving the above object is as follows.
(1) A fuel cell having two or more positioning portions each having a positioning surface composed of a plane perpendicular to the plate surface including radiation from the center of the plate surface of the fuel cell component or parallel lines thereof.
(2) The fuel cell according to (1), wherein the positioning portion has a shape that opens toward the outside of the fuel cell component.
(3) The fuel cell according to (1), wherein the positioning portion has a surface perpendicular to the positioning surface and perpendicular to the plate surface of the fuel cell component in addition to the positioning surface.
(4) The positioning surface and the vertical surface are connected via an arc surface, and the arc radius of the arc surface is an insertion end of a positioning member that is inserted into the positioning portion when the fuel cell is positioned when stacked. The fuel cell according to (3), which is smaller than the arc radius of the side arc surface.
(5) The fuel cell according to (1), wherein the fuel cell component includes at least one component among a separator, a resin frame, a sealing material, an MEA, an insulator, an end plate, and a pressure plate.
(6) The fuel cell according to (5), wherein the fuel cell component includes the separator, and the separator includes a metal separator.
(7) The fuel cell according to (1), wherein the fuel cell component is made of a substantially rectangular member, and the positioning portions are provided at four corners of the rectangular member.
(8) The fuel cell component is composed of a substantially rectangular member, and the positioning portion is provided on two opposing sides of the rectangular member and another two opposing sides orthogonal to the opposing two sides (1) The fuel cell as described.
(9) The fuel cell according to (1), wherein the fuel cell component is formed of a substantially rectangular member, and the positioning portions are provided on two opposite sides of the rectangular member.
(10) There are two or more positioning portions each having a positioning surface composed of a surface perpendicular to the plate surface including radiation from the center of the plate surface of the fuel cell component. A fuel cell manufacturing method for positioning each fuel cell by manufacturing a battery stack by bringing a positioning member into contact with the positioning surface of the positioning portion.

上記(1)〜(9)の燃料電池、および上記(10)の燃料電池の製造方法では、位置決め部材を位置決め部の位置決め面に接触させて各燃料電池を位置決めし、燃料電池スタックを組み立てる。
上記(1)の燃料電池、および上記(10)の燃料電池の製造方法によれば、位置決め面が板面中心からの放射線またはその平行線上にあるので、構成部品に熱変形等の変形が生じても、構成部品の中心位置を維持したまま、位置決め部材と構成部品の位置決め面とが僅かに摺動して構成部品の熱変形等の変形を逃がすことができ、構成部品に変形や浮き上がり等を生じさせることなく、熱変形などの変形を吸収しつつ燃料電池を積層することが可能である。
上記(2)の燃料電池によれば、位置決め部が燃料電池構成部品の外側に向かって開放する形状を有しているので、外側から位置決め部材を構成部品の位置決め部に嵌合可能、抜き外しでき、便利である。セパレータに形成した孔にピンを挿入して位置決めし組み立てる場合、ピンへの挿入、組み立て後のピンの抜取りが困難となる場合があるが、位置決め部が外側に向かって開放する形状を有する場合は、嵌合、抜き外しは容易である。
上記(3)の燃料電池の効果はつぎの通りである。2箇所以上の位置決め部の位置決め面の延長が互いに斜めに交わる場合は、その位置決め部のみで燃料電池の位置出し、位置決めができる。2箇所以上の位置決め部の位置決め面の延長が同一面上にあるときは、構成部品が位置決め面に沿って移動でき、位置決め面に沿う方向の位置決めができなくなるので、位置決め部は位置決め面の他に、該位置決め面に垂直で構成部品の板面に垂直な面を有する必要があり、この垂直面に位置決め部材の挿入側端面を微小な隙間をもって対向させて、構成部品の位置決め面に沿う方向の位置決めをする(垂直面で位置決め面に沿う方向の構成部品の位置決め部材に対するずれ、変形を押さえる)。微小隙間をもたせるのは、構成部品の熱膨張などの変形を逃がすためである。
上記(4)の燃料電池によれば、位置決め部材の挿入側端部のコーナ湾曲の半径を、構成部品の位置決め部のコーナ湾曲の半径より大としたので、位置決め部材を構成部品の位置決め部に挿入した時に、コーナ部同士が干渉することがなく、構成部品の位置決め部の垂直面と位置決め部材の挿入側端面とが当たってずれを防止することができる。
上記(5)の燃料電池によれば、燃料電池構成部品が、セパレータ、樹脂フレーム、シール材、MEA、インシュレータ、エンドプレート、プレッシャプレートを含むことにより、エンドプレートを含む全積層部品の位置決めが可能である。
上記(6)の燃料電池によれば、構成部品がメタルセパレータを含む場合には、反ったり浮き上がったりするメタルセパレータの変形を抑えて、スタックを組み立てることができる。
上記(7)の燃料電池にように、矩形状部材の4隅に位置決め部が設けられる構造は、矩形の長辺が長尺の燃料電池に適用すると好適である。矩形の長辺が長尺で短辺が短尺の燃料電池は、車両の床下などにも搭載できる。
上記(8)の燃料電池にように、矩形状部材の対向2辺と該対向2辺と直交するもう一つの対向2辺に位置決め部が設けられる構造は、矩形の長辺が中尺の燃料電池に適用すると好適である。
上記(9)の燃料電池のように、矩形状部材の対向2辺に位置決め部が設けられる構造は、矩形の長辺が短尺の燃料電池に適用すると好適である。
In the fuel cell according to (1) to (9) and the fuel cell manufacturing method according to (10) above, each fuel cell is positioned by bringing the positioning member into contact with the positioning surface of the positioning portion, and the fuel cell stack is assembled.
According to the fuel cell of the above (1) and the fuel cell manufacturing method of the above (10), since the positioning surface is on the radiation from the center of the plate surface or on the parallel line thereof, deformation such as thermal deformation occurs in the component parts. However, while maintaining the center position of the component, the positioning member and the positioning surface of the component are slightly slid, so that deformation such as thermal deformation of the component can be released. It is possible to stack the fuel cells while absorbing deformations such as thermal deformations without causing the above.
According to the fuel cell of (2) above, since the positioning portion has a shape that opens toward the outside of the fuel cell component, the positioning member can be fitted to the positioning portion of the component from the outside, and is removed. It is possible and convenient. When positioning and assembling by inserting a pin into the hole formed in the separator, it may be difficult to insert into the pin and pull out the pin after assembly, but if the positioning part has a shape that opens to the outside , Fitting and unplugging are easy.
The effect of the fuel cell of (3) is as follows. When the extension of the positioning surface of two or more positioning portions intersects each other obliquely, the fuel cell can be positioned and positioned only by the positioning portions. When the positioning surface extension of two or more positioning parts is on the same surface, the components can move along the positioning surface and positioning in the direction along the positioning surface becomes impossible. In addition, it is necessary to have a surface perpendicular to the positioning surface and perpendicular to the plate surface of the component, and a direction along the positioning surface of the component with the insertion-side end surface of the positioning member facing the vertical surface with a minute gap. (The displacement and deformation of the component in the direction along the positioning surface on the vertical surface with respect to the positioning member are suppressed). The reason why the minute gap is provided is to release deformation such as thermal expansion of the component parts.
According to the fuel cell of the above (4), the radius of corner curvature at the insertion-side end of the positioning member is made larger than the radius of corner curvature of the positioning part of the component part, so the positioning member is used as the positioning part of the component part. When inserted, the corner portions do not interfere with each other, and the vertical surface of the positioning portion of the component and the insertion-side end surface of the positioning member can contact each other to prevent displacement.
According to the fuel cell of (5) above, the fuel cell components include the separator, the resin frame, the seal material, the MEA, the insulator, the end plate, and the pressure plate, so that positioning of all laminated components including the end plate is possible. It is.
According to the fuel cell of the above (6), when the component includes a metal separator, it is possible to assemble the stack while suppressing the deformation of the metal separator that warps or rises.
The structure in which the positioning portions are provided at the four corners of the rectangular member, as in the fuel cell of (7) above, is preferably applied to a fuel cell having a long rectangular side. A fuel cell having a long rectangular side and a short side can be mounted under the floor of a vehicle.
As in the fuel cell of (8) above, the structure in which the positioning portions are provided on the two opposite sides of the rectangular member and the other two opposite sides orthogonal to the two opposite sides is a fuel having a medium long rectangular side. It is suitable when applied to a battery.
The structure in which the positioning portions are provided on the two opposite sides of the rectangular member as in the fuel cell of (9) above is suitable when applied to a fuel cell having a long rectangular side.

以下に、本発明の燃料電池とその製造方法を図1〜図13を参照して説明する。
図1〜図4は本発明の実施例1を示し、図5〜図7は本発明の実施例2を示し、図8〜図10は本発明の実施例3を示す。図11〜図13は本発明の何れの実施例に適用可能である。本発明の全実施例にわたって共通する構成部品、構造には本発明の全実施例にわたって同じ符号を付してある。
Below, the fuel cell of this invention and its manufacturing method are demonstrated with reference to FIGS.
1 to 4 show Embodiment 1 of the present invention, FIGS. 5 to 7 show Embodiment 2 of the present invention, and FIGS. 8 to 10 show Embodiment 3 of the present invention. 11 to 13 are applicable to any embodiment of the present invention. Components and structures common to all the embodiments of the present invention are denoted by the same reference numerals throughout the embodiments of the present invention.

まず、本発明の燃料電池とその製造方法のうち、本発明の全実施例にわたって共通する部分を、たとえば図11〜図13、図1〜図4または図5〜図7を参照して説明する。
本発明が適用される燃料電池(セルともいう)は、たとえば固体高分子電解質型燃料電池10である。燃料電池10は、たとえば燃料電池自動車に搭載される。ただし、自動車以外に用いられてもよい。
図11〜図13に示すように、固体高分子電解質型燃料電池10は、膜−電極接合体(膜−電極アッセンブリ、MEA:Membrane-Electrode Assembly )とセパレータ18との積層体からなる。
膜−電極接合体は、イオン交換膜からなる電解質膜11とこの電解質膜11の一面に配置された触媒層からなる電極(アノード、燃料極)14および電解質膜の他面に配置された触媒層からなる電極(カソード、空気極)17とからなる。膜−電極接合体とセパレータ18との間には、アノード側、カソード側にそれぞれ拡散層(ガス拡散層ともいう)13、16が設けられる。
膜−電極接合体とセパレータ18を重ねてセル10を構成し、セル10を積層してセル積層体とし、セル積層体のセル積層方向両端に、ターミナル20、インシュレータ21、エンドプレート22を配置し、エンドプレート22をセル積層体の外側でセル積層方向に延びる締結部材(たとえば、ボルト24、ナット25)にて固定して、セル積層体にセル積層方向の締結荷重を付与して、燃料電池スタック23を構成する。
First, of the fuel cell of the present invention and the manufacturing method thereof, portions common to all the embodiments of the present invention will be described with reference to FIGS. 11 to 13, FIG. 1 to FIG. 4 or FIG. .
A fuel cell (also referred to as a cell) to which the present invention is applied is, for example, a solid polymer electrolyte fuel cell 10. The fuel cell 10 is mounted on, for example, a fuel cell vehicle. However, it may be used other than an automobile.
As shown in FIGS. 11 to 13, the solid polymer electrolyte fuel cell 10 is composed of a laminate of a membrane-electrode assembly (membrane-electrode assembly, MEA) and a separator 18.
The membrane-electrode assembly includes an electrolyte membrane 11 made of an ion exchange membrane, an electrode (anode, fuel electrode) 14 made of a catalyst layer arranged on one surface of the electrolyte membrane 11, and a catalyst layer arranged on the other surface of the electrolyte membrane. Electrode (cathode, air electrode) 17. Diffusion layers (also referred to as gas diffusion layers) 13 and 16 are provided between the membrane-electrode assembly and the separator 18 on the anode side and the cathode side, respectively.
The cell 10 is formed by stacking the membrane-electrode assembly and the separator 18, the cells 10 are stacked to form a cell stack, and terminals 20, insulators 21, and end plates 22 are arranged at both ends of the cell stack in the cell stacking direction. The end plate 22 is fixed by fastening members (for example, bolts 24 and nuts 25) extending in the cell stacking direction on the outside of the cell stack, and a fastening load in the cell stacking direction is applied to the cell stack. The stack 23 is configured.

セパレータ18には、発電領域51において、アノード14に燃料ガス(水素)を供給するための燃料ガス流路27が形成され、カソード17に酸化ガス(酸素、通常は空気)を供給するための酸化ガス流路28が形成されている。また、セパレータ18にはガス流路27、28と反対側の面に冷媒(通常、冷却水)を流すための冷媒流路26も形成されている。セパレータ18には、非発電領域52において、燃料ガスマニホールド孔30、酸化ガスマニホールド孔31、冷媒マニホールド孔29が形成されている。燃料ガスマニホールド孔30は燃料ガス流路27と連通しており、酸化ガスマニホールド孔31は酸化ガス流路28と連通しており、冷媒マニホールド孔29は冷媒流路26と連通している。
セパレータ18は、カーボンセパレータ、またはメタルセパレータ、または導電性樹脂セパレータからなる。セパレータ18が、メタルセパレータからなる場合、メタルセパレータ18の材料は、たとえば、ステンレススチール、アルミニウムまたはその合金、チタンまたはその合金、マグネシウムまたはその合金、等である。
In the power generation region 51, the separator 18 is formed with a fuel gas flow path 27 for supplying fuel gas (hydrogen) to the anode 14, and an oxidation for supplying oxidizing gas (oxygen, usually air) to the cathode 17. A gas flow path 28 is formed. The separator 18 is also formed with a refrigerant flow path 26 for flowing a refrigerant (usually cooling water) on the surface opposite to the gas flow paths 27 and 28. In the separator 18, a fuel gas manifold hole 30, an oxidizing gas manifold hole 31, and a refrigerant manifold hole 29 are formed in the non-power generation region 52. The fuel gas manifold hole 30 communicates with the fuel gas flow path 27, the oxidizing gas manifold hole 31 communicates with the oxidizing gas flow path 28, and the refrigerant manifold hole 29 communicates with the refrigerant flow path 26.
Separator 18 consists of a carbon separator, a metal separator, or a conductive resin separator. When the separator 18 consists of a metal separator, the material of the metal separator 18 is stainless steel, aluminum or its alloy, titanium or its alloy, magnesium or its alloy, etc., for example.

各セル10の、アノード14側では、水素を水素イオン(プロトン)と電子に変換する電離反応が行われ、水素イオンは電解質膜11中をカソード17側に移動し、カソード17側では酸素と水素イオンおよび電子(隣りのMEAのアノードで生成した電子がセパレータを通してくる、またはセル積層方向一端のセルのアノードで生成した電子が外部回路を通して他端のセルのカソードにくる)から水が生成され、次式にしたがって発電が行われる。
アノード側:H2 →2H+ +2e-
カソード側:2H+ +2e- +(1/2)O2 →H2
An ionization reaction that converts hydrogen into hydrogen ions (protons) and electrons is performed on the anode 14 side of each cell 10, and the hydrogen ions move through the electrolyte membrane 11 to the cathode 17 side. Water is generated from ions and electrons (electrons generated at the anode of the adjacent MEA come through the separator, or electrons generated at the anode of the cell at one end in the cell stacking direction come to the cathode of the other end cell through an external circuit), Power generation is performed according to the following formula.
Anode side: H 2 → 2H + + 2e
Cathode side: 2H + + 2e + (1/2) O 2 → H 2 O

各種流体(燃料ガス、酸化ガス、冷媒)は、互いに、かつ外部から、それぞれシールされる。各セル10のMEAを挟む2つのセパレータ18間は、第1のシール部材32によってシールされており、隣接するセル10同士の間は、第2のシール部材33によってシールされている。セパレータがメタルセパレータからなる場合は、メタルセパレータ18と電解質膜11との間に、非発電領域52において、樹脂フレーム53(発電領域51が中抜きされた樹脂製フレームで、マニホールド孔は具備しているフレーム)が介装される場合があるが、その場合は、メタルセパレータ18と樹脂フレーム53との間、および樹脂フレーム53と電解質膜11との間が第1のシール部材32によってシールされる。
第1のシール部材32は、たとえば接着剤シール(シール接着剤)からなり、第2のシール部材33は、たとえば、シリコーンゴム、フッ素ゴム、EPDM(エチレンプロピレンジエンゴム)等のゴムシール材からなる。ただし、第1のシール部材32、第2のシール部材33とも、接着剤シール剤、またはゴムシール材から構成されてもよい。
Various fluids (fuel gas, oxidizing gas, refrigerant) are sealed from each other and from the outside. The two separators 18 sandwiching the MEA of each cell 10 are sealed by a first sealing member 32, and the adjacent cells 10 are sealed by a second sealing member 33. When the separator is a metal separator, a resin frame 53 (a resin frame in which the power generation region 51 is hollowed out and a manifold hole is provided in the non-power generation region 52 between the metal separator 18 and the electrolyte membrane 11. In this case, the space between the metal separator 18 and the resin frame 53 and the space between the resin frame 53 and the electrolyte membrane 11 are sealed by the first seal member 32. .
The first seal member 32 is made of, for example, an adhesive seal (seal adhesive), and the second seal member 33 is made of, for example, a rubber seal material such as silicone rubber, fluorine rubber, or EPDM (ethylene propylene diene rubber). However, both the first seal member 32 and the second seal member 33 may be made of an adhesive sealant or a rubber seal material.

図1〜図4または図5〜図7に示すように、燃料電池構成部品50は、単セルの構成部品50の場合は、セパレータ18、樹脂フレーム53、シール部材32、33、MEAを含み、燃料電池スタック23の構成部品50の場合は、単セルの構成部品の他に、インシュレータ、エンドプレート、プレッシャプレートも含む。
セパレータ18、とくにメタルセパレータのように、流路やシール部、マニホールド孔加工するための成形時のスプリングバック量や残留応力の差による歪み等により、完全な平坦状でなく若干の反りや歪みがある燃料電池構成部品50を、セル化、スタック化する際には、位置決めされ、熱膨張などの変形による組み付け時の反り、歪み、浮き上がりなどを最小限に維持しながら組立てられることが必要となる。位置決め精度が低いと、セパレータ同士の位置ずれによる膜との接触範囲や、接触抵抗、導電抵抗の差、組み付け力のばらつき、流路の圧力損失のばらつきが大となり、高性能が得にくくなるからである。
As shown in FIG. 1 to FIG. 4 or FIG. 5 to FIG. 7, in the case of the single cell component 50, the fuel cell component 50 includes the separator 18, the resin frame 53, the seal members 32 and 33, and the MEA. The component 50 of the fuel cell stack 23 includes an insulator, an end plate, and a pressure plate in addition to the single cell component.
As with the separator 18, particularly a metal separator, the flow path, the seal portion, the springback amount during molding for machining the manifold hole, and distortion due to the difference in residual stress, etc. may cause slight warpage and distortion rather than a perfect flat shape. When a certain fuel cell component 50 is made into a cell or stacked, it needs to be positioned and assembled while keeping warpage, distortion, lifting, etc. at the time of assembly due to deformation such as thermal expansion to a minimum. . If the positioning accuracy is low, the range of contact with the membrane due to misalignment between the separators, the difference in contact resistance, conductive resistance, variation in assembly force, and variation in pressure loss in the flow path will increase, making it difficult to obtain high performance. It is.

高い位置決め精度を維持しつつ燃料電池構成部品50を、セル化、スタック化するために、本発明の燃料電池10は、燃料電池構成部品50の板面中心54からの放射線55またはその平行線を含む板面に垂直な面からなる位置決め面56を有する位置決め部57を、2箇所以上、有している。   In order to make the fuel cell component 50 into cells and stacks while maintaining high positioning accuracy, the fuel cell 10 of the present invention uses the radiation 55 from the center 54 of the plate surface of the fuel cell component 50 or parallel lines thereof. Two or more positioning portions 57 each having a positioning surface 56 made of a surface perpendicular to the plate surface are included.

位置決め部57は燃料電池構成部品50の外側(板面中心54から遠ざかる方向)に向かって開放する形状を有している。位置決め部57は、たとえば、位置決め部57はほぼ矩形状外形を有する構成部品50の4隅のコーナ部(の少なくとも2つのコーナ部)に形成されたL字状切欠き、または辺に形成された構成部品の内側(板面中心54に近づく方向)に窪むU字状切欠きなどからなる。   The positioning portion 57 has a shape that opens toward the outside of the fuel cell component 50 (in the direction away from the center 54 of the plate surface). The positioning portion 57 is formed, for example, in an L-shaped notch formed in the corner portions (at least two corner portions) of the four corners of the component 50 having a substantially rectangular outer shape, or in a side. It consists of a U-shaped notch or the like that is recessed inside the component (in the direction approaching the plate surface center 54).

位置決め部57は位置決め面56の他に、該位置決め面56に垂直で燃料電池構成部品50の板面に垂直な面58を有していてもよい。面58は、たとえば、位置決め部57がU字状切欠きである場合は、U字の底辺を含む、構成部品50の板面に垂直な面であり、位置決め部57がL字状切欠きである場合は、放射線55に直交する辺を含む、構成部品50の板面に垂直な面である。
位置決め部57には、燃料電池のセル化、スタック化時に、位置決め部材60が挿入され嵌合される。位置決め部57の位置決め面56(位置決め部57がU字状の場合はU字の底辺から立ち上がる対向2辺のうちの少なくとも1辺を含む面)と、該面56に対向する位置決め部材60の面とは、放射線55方向に摺動可能に接触するか、または微小隙間をもって対向する。また、位置決め部57の垂直面58と、該面58に対向する位置決め部材60の挿入側端面62とは、構成部品50と位置決め部材60との膨張差、製造誤差などを吸収できるだけの大きさの隙間をもって、対向する。
In addition to the positioning surface 56, the positioning portion 57 may have a surface 58 that is perpendicular to the positioning surface 56 and perpendicular to the plate surface of the fuel cell component 50. For example, when the positioning portion 57 is a U-shaped notch, the surface 58 is a surface perpendicular to the plate surface of the component 50 including the bottom of the U-shape, and the positioning portion 57 is an L-shaped notch. In some cases, it is a plane that is perpendicular to the plate surface of the component 50 and includes a side that is orthogonal to the radiation 55.
The positioning member 57 is inserted and fitted into the positioning portion 57 when the fuel cell is formed into a cell or stacked. A positioning surface 56 of the positioning portion 57 (a surface including at least one of the two opposing sides rising from the bottom of the U shape when the positioning portion 57 is U-shaped) and a surface of the positioning member 60 facing the surface 56 Slidably contact in the direction of the radiation 55 or face each other with a minute gap. Further, the vertical surface 58 of the positioning portion 57 and the insertion-side end surface 62 of the positioning member 60 facing the surface 58 are large enough to absorb the difference in expansion between the component 50 and the positioning member 60, manufacturing errors, and the like. Opposite with a gap.

位置決め面56と垂直面58とは円弧面59を介して接続しており、該円弧面59の円弧半径は、セル化、スタック化時の燃料電池位置決め時に該位置決め部57に挿入される位置決め部材60の挿入端側円弧面61の円弧半径より小である。そのため、位置決め部材60を構成部品50の位置決め部57に挿入、嵌合させた時には、位置決め部材60の挿入端側円弧面61は構成部品50の円弧面59に干渉することがなく、位置決め部材60の挿入側端面62は構成部品50の垂直面58に当たり得て構成部品50の放射線方向の動きを止め得る。   The positioning surface 56 and the vertical surface 58 are connected via an arc surface 59, and the arc radius of the arc surface 59 is a positioning member that is inserted into the positioning portion 57 when the fuel cell is positioned when the cell is formed or stacked. 60 is smaller than the arc radius of the insertion end side arc surface 61. Therefore, when the positioning member 60 is inserted and fitted into the positioning portion 57 of the component 50, the insertion end side arcuate surface 61 of the positioning member 60 does not interfere with the arcuate surface 59 of the component 50, and the positioning member 60 The insertion-side end face 62 can hit the vertical surface 58 of the component 50 to stop the movement of the component 50 in the radial direction.

本発明の燃料電池10の製造方法(構成部品のセル化、スタック化に係る製造方法)は、燃料電池構成部品50の板面中心54からの放射線55を含む前記板面に垂直な面からなる位置決め面56を有する位置決め部57を、2箇所以上、有しており、燃料電池10を積層して燃料電池スタック23を製造する際に、位置決め部材60を位置決め部57の位置決め面56に、放射線55方向またはそれと平行方向に、摺動可能に接触させて各燃料電池10を位置決めする方法からなる。
複数の位置決め部57のすべてが同一放射線またはそれと平行な線上にある場合は、位置決め部材60で位置決めした時に構成部品50は同一放射方向またはそれと平行方向に位置決め部材60に対して相対移動しその方向に位置決めできないが、その場合は、位置決め部材60の挿入側端面62が構成部品50の垂直面58に当って構成部品50の放射線方向またはそれと平行な方向の動きを止め、構成部品50を放射線方向またはそれと平行な方向に位置決めする。
位置決め部材60は燃料電池またはスタック組み立て後、燃料電池またはスタックから望ましくは取り外される。ただし、位置決め部材60が絶縁材で、取り外さなくても、スペース上、および燃料電池運転上、支障がないならば、取り付けたままにしておいてもよい。
The manufacturing method of the fuel cell 10 according to the present invention (manufacturing method related to the cell formation and stacking of the component parts) includes a surface perpendicular to the plate surface including the radiation 55 from the plate surface center 54 of the fuel cell component 50. There are two or more positioning portions 57 each having a positioning surface 56. When the fuel cell stack 23 is manufactured by stacking the fuel cells 10, the positioning member 60 is placed on the positioning surface 56 of the positioning portion 57. It consists of a method of positioning each fuel cell 10 in a slidable contact in the 55 direction or a direction parallel thereto.
When all of the plurality of positioning portions 57 are on the same radiation or a line parallel thereto, the component 50 moves relative to the positioning member 60 in the same radial direction or in a direction parallel thereto when positioned by the positioning member 60. In this case, the insertion-side end face 62 of the positioning member 60 abuts against the vertical surface 58 of the component 50 to stop the movement of the component 50 in the radiation direction or a direction parallel thereto, and the component 50 is moved in the radiation direction. Or position in a direction parallel to it.
The positioning member 60 is desirably removed from the fuel cell or stack after assembly of the fuel cell or stack. However, even if the positioning member 60 is an insulating material and is not removed, the positioning member 60 may be left attached if there is no problem in space and fuel cell operation.

本発明の燃料電池とその製造方法の、全実施例の共通部分の作用、効果はつぎの通りである。
本発明の燃料電池とその製造方法では、位置決め部材60を構成部品50の位置決め部57の位置決め面56に接触させて各燃料電池10を位置決めし、燃料電池スタック23を組み立てる。
The operations and effects of the common parts of all the embodiments of the fuel cell and the manufacturing method thereof according to the present invention are as follows.
In the fuel cell and the manufacturing method thereof of the present invention, the fuel cell stack 23 is assembled by positioning each fuel cell 10 by bringing the positioning member 60 into contact with the positioning surface 56 of the positioning portion 57 of the component 50.

本発明の燃料電池とその製造方法では、位置決め面56が板面中心54からの放射線55またはその平行線上にあるので、構成部品50に熱変形等の変形が生じても、構成部品50の板面中心54の位置を維持したまま、位置決め部材60と構成部品50の位置決め面56とが僅かに摺動して構成部品50の熱変形等の変形を逃がすことができ、構成部品50に変形や浮き上がり等を生じさせることなく、熱変形などの変形を吸収しつつ燃料電池10を積層することが可能である。   In the fuel cell and the manufacturing method thereof according to the present invention, since the positioning surface 56 is on the radiation 55 from the plate surface center 54 or a parallel line thereof, even if the component 50 is deformed, such as thermal deformation, the plate of the component 50 While the position of the surface center 54 is maintained, the positioning member 60 and the positioning surface 56 of the component 50 can slide slightly, and deformation such as thermal deformation of the component 50 can be released. The fuel cell 10 can be stacked while absorbing deformation such as thermal deformation without causing lift or the like.

また、位置決め部57が燃料電池構成部品50の外側に向かって開放する形状を有しているので、外側から位置決め部材60を構成部品50の位置決め部57に嵌合可能、抜き外しでき、便利である。従来のようにセパレータに形成した孔にピンを挿入して位置決めし組み立てる場合、ピンへの挿入、組み立て後のピンの抜取りが困難となる場合があるが、本発明のように位置決め部57が外側に向かって開放する形状を有する場合は、位置決め部材60の嵌合、抜き外しは容易である。   Further, since the positioning portion 57 has a shape that opens toward the outside of the fuel cell component 50, the positioning member 60 can be fitted to and removed from the positioning portion 57 of the component 50 from the outside, which is convenient. is there. When positioning and assembling by inserting a pin into a hole formed in the separator as in the prior art, it may be difficult to insert the pin into the pin and remove the pin after assembly, but the positioning portion 57 is outside as in the present invention. In the case of having a shape that opens toward, the positioning member 60 can be easily fitted and removed.

2箇所以上の位置決め部57の位置決め面56の延長が互いに斜めに交わる場合は、その2箇所以上の位置決め部57のみで燃料電池10の板面内方向の位置出し、位置決めができる。しかし、2箇所以上の位置決め部57の位置決め面56の延長が同一面またはそれと平行面上にあるときは、構成部品50が位置決め面56に沿って移動でき、位置決め面56に沿う方向の位置決めができなくなるので、位置決め部57は位置決め面56の他に、該位置決め面56に垂直で構成部品50の板面に垂直な面58を有する必要があり、この垂直面58に位置決め部材60の挿入側端面62を微小な隙間をもって対向させて、構成部品50の位置決め面56に沿う方向の位置決めをする。垂直面58で位置決め面56に沿う方向の構成部品50の位置決め部材60に対するずれ、変形を押さえる。位置決め部材60の挿入側端面62と垂直面58との間に微小隙間をもたせるのは、構成部品50の熱膨張などの変形、製造誤差などを逃がすためである。   When the extension of the positioning surfaces 56 of the two or more positioning portions 57 obliquely intersect each other, the fuel cell 10 can be positioned and positioned in the in-plane direction only by the two or more positioning portions 57. However, when the extension of the positioning surface 56 of the two or more positioning portions 57 is on the same plane or a plane parallel thereto, the component 50 can move along the positioning plane 56 and positioning in the direction along the positioning plane 56 can be performed. Therefore, in addition to the positioning surface 56, the positioning portion 57 needs to have a surface 58 that is perpendicular to the positioning surface 56 and perpendicular to the plate surface of the component 50, on the insertion side of the positioning member 60. Positioning in the direction along the positioning surface 56 of the component 50 is performed with the end surfaces 62 facing each other with a minute gap. The vertical surface 58 suppresses the displacement and deformation of the component 50 in the direction along the positioning surface 56 with respect to the positioning member 60. The reason why the minute gap is provided between the insertion-side end face 62 and the vertical face 58 of the positioning member 60 is to release deformation such as thermal expansion of the component 50 and manufacturing errors.

また、位置決め部材60の挿入側端部のコーナ湾曲の半径を、構成部品50の位置決め部57のコーナ湾曲の半径より大としたので、位置決め部材60を構成部品50の位置決め部57に挿入した時に、コーナ部同士が干渉することがなく、構成部品50の位置決め部57の垂直面58と位置決め部材60の挿入側端面62とが当たり得て構成部品50のずれを防止することができる。   Further, since the corner curvature radius of the insertion side end of the positioning member 60 is made larger than the corner curvature radius of the positioning portion 57 of the component 50, the positioning member 60 is inserted into the positioning portion 57 of the component 50. Further, the corner portions do not interfere with each other, and the vertical surface 58 of the positioning portion 57 of the component 50 and the insertion-side end surface 62 of the positioning member 60 can hit each other, and the displacement of the component 50 can be prevented.

燃料電池構成部品が、セパレータ18、セパレータ18がメタルセパレータに場合に設けられる樹脂フレーム53、シール部材32、33、MEA、インシュレータ21、エンドプレート22、プレッシャプレートを含むことにより、エンドプレート22を含む全積層部品の位置決めが可能である。
また、構成部品50がメタルセパレータを含む場合には、厚さが薄いため反ったり浮き上がったりする(両端を押さえられて熱膨張するとメタルセパレータ中央部が上方に湾曲して中央部が浮き上がる)おそれのあるメタルセパレータの変形を抑えて、スタック23を組み立てることができる。
The fuel cell components include the end plate 22 by including the separator 18, the resin frame 53 provided when the separator 18 is a metal separator, the seal members 32 and 33, the MEA, the insulator 21, the end plate 22, and the pressure plate. All laminated parts can be positioned.
Further, when the component 50 includes a metal separator, it may be warped or lifted because it is thin (if the both ends are pressed and thermally expanded, the center part of the metal separator is curved upward and the center part is lifted). The stack 23 can be assembled while suppressing deformation of a metal separator.

つぎに、本発明の各実施例の特有な部分を説明する。
〔実施例3〕−−−図1〜図4
本発明の実施例3の燃料電池とその製造方法では、図1〜図4に示すように、燃料電池構成部品50がほぼ矩形状部材からなり、矩形状部材の4隅に、位置決め部57が設けられている。
位置決め部57は、構成部品50の板面中心54からの放射線55かそれと平行な直線を含む位置決め面56をL字の1辺にもつL字状切欠からなる。L字状切欠は、位置決め面56に垂直な垂直面58を含む。
スタック組み立て時には、矩形状断面をもつ位置決め部材60を位置決め部57の位置決め面56に摺動可能に接触させて、組み立てていく。
Next, the specific part of each embodiment of the present invention will be described.
[Example 3] FIGS. 1-4
In the fuel cell and the manufacturing method thereof according to Embodiment 3 of the present invention, as shown in FIGS. 1 to 4, the fuel cell component 50 is formed of a substantially rectangular member, and positioning portions 57 are provided at four corners of the rectangular member. Is provided.
The positioning portion 57 is composed of an L-shaped notch having a positioning surface 56 including a radiation 55 from the plate surface center 54 of the component 50 or a straight line parallel thereto on one side of the L-shape. The L-shaped notch includes a vertical surface 58 that is perpendicular to the positioning surface 56.
At the time of stack assembly, the positioning member 60 having a rectangular cross section is slidably brought into contact with the positioning surface 56 of the positioning portion 57 for assembly.

本発明の実施例1の作用、効果については、矩形状部材の4隅に位置決め部57が設けられる構造は、矩形の長辺が中尺または長尺の燃料電池に好適に適用できる。矩形の長辺が長尺で短辺が短尺の燃料電池は、短辺を上下方向に向けることにより、車両の床下などにもスペース上容易に搭載することができる。
位置決め部57の数が4個の場合は後述の実施例3の2個の場合より、数が多い分、位置決め部材60を位置決め部57に嵌合させる作業が煩雑になるが、位置決め部57の数が多い分、位置決め精度が高くなる。また、位置決め部57がL字状切欠の場合は後述の実施例2、3のU字状切欠の場合より、位置決め部材60を位置決め部57に嵌合しないで済む分、位置決め部材60を位置決め部57の位置決め面56に当てることが容易になる。
Regarding the operation and effect of the first embodiment of the present invention, the structure in which the positioning portions 57 are provided at the four corners of the rectangular member can be suitably applied to a fuel cell having a rectangular long side that is medium or long. A fuel cell having a long rectangular side and a short short side can be easily mounted in a space under a vehicle floor or the like by directing the short side vertically.
When the number of positioning parts 57 is four, the work of fitting the positioning member 60 to the positioning part 57 is more complicated than the two cases of Example 3 described later. The greater the number, the higher the positioning accuracy. In addition, when the positioning portion 57 is an L-shaped notch, the positioning member 60 is positioned so as not to be fitted to the positioning portion 57 as compared to the U-shaped notches of Examples 2 and 3 described later. It becomes easy to touch the positioning surface 56 of 57.

〔実施例2〕−−−図5〜図7
本発明の実施例2の燃料電池とその製造方法では、図5〜図7に示すように、燃料電池構成部品50がほぼ矩形状部材からなり、該矩形状部材の対向2辺と該対向2辺と直交するもう一つの対向2辺に(したがって、矩形の4辺の各辺に)、位置決め部57が設けられている。
位置決め部57は、構成部品50の板面中心54側に向かって窪んだU字状切欠からなる。各U字状切欠は、対向する位置決め面56と、位置決め面56に垂直な垂直面58を含む。位置決め面58は矩形状部材の辺に平行または垂直であってもよいし、あるいは矩形状部材の辺に平行または垂直な方向から傾斜していてもよい。
スタック組み立て時には、矩形状断面をもつ位置決め部材60を位置決め部57に挿入、嵌合させて、組み立てていく。
[Example 2] --- FIGS. 5 to 7
In the fuel cell and the manufacturing method thereof according to the second embodiment of the present invention, as shown in FIGS. 5 to 7, the fuel cell component 50 is formed of a substantially rectangular member, and the two opposing sides and the two opposing sides of the rectangular member. Positioning portions 57 are provided on two opposite two sides orthogonal to the sides (and thus on each of the four sides of the rectangle).
The positioning portion 57 is a U-shaped notch that is recessed toward the plate surface center 54 side of the component 50. Each U-shaped notch includes an opposing positioning surface 56 and a vertical surface 58 perpendicular to the positioning surface 56. The positioning surface 58 may be parallel or perpendicular to the side of the rectangular member, or may be inclined from a direction parallel or perpendicular to the side of the rectangular member.
At the time of stack assembly, a positioning member 60 having a rectangular cross section is inserted and fitted into the positioning portion 57 for assembly.

本発明の実施例2の作用、効果については、矩形状部材の対向4辺に位置決め部57が設けられる構造は、矩形の長辺が中尺または長尺の燃料電池に好適に適用できる。
位置決め部57の数が4個の場合は後述の実施例3の2個の場合より、位置決め部材60を位置決め部57に嵌合させる作業が煩雑になるが、位置決め部57の数が多い分、位置決め精度が高くなる。
Regarding the operation and effect of the second embodiment of the present invention, the structure in which the positioning portions 57 are provided on the four opposing sides of the rectangular member can be suitably applied to a fuel cell having a rectangular long side that is medium or long.
When the number of positioning parts 57 is four, the work of fitting the positioning member 60 to the positioning part 57 is more complicated than in the case of two examples 3 described later, but because the number of positioning parts 57 is large, Positioning accuracy increases.

〔実施例3〕−−−図8〜図10
本発明の実施例3の燃料電池とその製造方法では、図8〜図10に示すように、燃料電池構成部品50がほぼ矩形状部材からなり、該矩形状部材の対向2辺(望ましくは、矩形の短辺)に位置決め部57が設けられている。
位置決め部57は、構成部品50の板面中心54側に向かって窪んだU字状切欠からなる。各U字状切欠は、対向する位置決め面56と、位置決め面56に垂直な垂直面58を含む。位置決め面58は矩形状部材の辺に平行または垂直であってもよいし、あるいは矩形状部材の辺に平行または垂直な方向から傾斜していてもよい。
スタック組み立て時には、矩形状断面をもつ位置決め部材60を位置決め部57に挿入、嵌合させて、組み立てていく。
[Embodiment 3] FIGS. 8 to 10
In the fuel cell and the manufacturing method thereof according to the third embodiment of the present invention, as shown in FIGS. 8 to 10, the fuel cell component 50 is formed of a substantially rectangular member, and two opposite sides (preferably, the rectangular member) A positioning portion 57 is provided on the short side of the rectangle.
The positioning portion 57 is a U-shaped notch that is recessed toward the plate surface center 54 side of the component 50. Each U-shaped notch includes an opposing positioning surface 56 and a vertical surface 58 perpendicular to the positioning surface 56. The positioning surface 58 may be parallel or perpendicular to the side of the rectangular member, or may be inclined from a direction parallel or perpendicular to the side of the rectangular member.
At the time of stack assembly, a positioning member 60 having a rectangular cross section is inserted and fitted into the positioning portion 57 for assembly.

本発明の実施例3の作用、効果については、矩形状部材の対向2辺に位置決め部57が設けられる構造は、矩形の長辺が短尺の燃料電池に好適に適用できる。位置決め部57の数が少ないほど、位置決め部材60を位置決め部57に嵌合させやすい。しかし、反面、位置決め部57の数が少ないほど、位置決め精度が低下するので、位置決め部57を矩形の短辺に設けることにより、位置決め部材60と位置決め部57との間に微小な隙間があっても矩形状部材の板面中心54まわりの回転量を少なくすることができ、位置決め精度の低下を抑えることができる。   Regarding the operation and effect of the third embodiment of the present invention, the structure in which the positioning portions 57 are provided on the two opposite sides of the rectangular member can be suitably applied to a fuel cell having a long rectangular side. The smaller the number of positioning portions 57, the easier it is to fit the positioning member 60 to the positioning portion 57. However, since the positioning accuracy decreases as the number of positioning portions 57 decreases, by providing the positioning portion 57 on the short side of the rectangle, there is a minute gap between the positioning member 60 and the positioning portion 57. In addition, the amount of rotation around the plate surface center 54 of the rectangular member can be reduced, and a decrease in positioning accuracy can be suppressed.

本発明の実施例1の燃料電池とその製造方法の、構成部品の正面図である。It is a front view of the component of the fuel cell of Example 1 of this invention, and its manufacturing method. 本発明の実施例1の燃料電池とその製造方法の、構成部品と位置決め部材の正面図である。It is a front view of the component of the fuel cell of Example 1 of this invention, and its manufacturing method, and a positioning member. 本発明の実施例1の燃料電池とその製造方法の、燃料電池スタックのセル部位での正面図である。It is a front view in the cell site | part of a fuel cell stack of the fuel cell of Example 1 of this invention, and its manufacturing method. 図3のA部拡大図である。It is the A section enlarged view of FIG. 本発明の実施例2の燃料電池とその製造方法の、構成部品と位置決め部材の正面図である。It is a front view of the component of the fuel cell of Example 2 of this invention, and its manufacturing method, and a positioning member. 図5のB部拡大図である。It is the B section enlarged view of FIG. 図5のC部拡大図である。It is the C section enlarged view of FIG. 本発明の実施例3の燃料電池とその製造方法の、構成部品と位置決め部材の正面図である。It is a front view of the component of the fuel cell of Example 3 of this invention, and its manufacturing method, and a positioning member. 本発明の実施例3の燃料電池とその製造方法の、燃料電池スタックのセル部位での正面図である。It is a front view in the cell part of a fuel cell stack of the fuel cell of Example 3 of this invention, and its manufacturing method. 図8のD部拡大図である。It is the D section enlarged view of FIG. 本発明の燃料電池を組み込んだ燃料電池スタックの側面図である。It is a side view of the fuel cell stack incorporating the fuel cell of the present invention. 本発明の燃料電池を組み込んだ燃料電池スタックの締結荷重付与前の燃料電池の外周部(非発電領域)と位置決め部材の断面図である。It is sectional drawing of the outer peripheral part (non-electric power generation area | region) and positioning member of the fuel cell before the fastening load provision of the fuel cell stack incorporating the fuel cell of this invention. 本発明の燃料電池を組み込んだ燃料電池スタックの締結荷重付与後の燃料電池(発電領域)の断面図である。It is sectional drawing of the fuel cell (electric power generation area | region) after the fastening load provision of the fuel cell stack incorporating the fuel cell of this invention.

符号の説明Explanation of symbols

10 (固体高分子電解質型)燃料電池
11 電解質膜
13、16 拡散層
14 アノード
17 カソード
18 セパレータ
20 ターミナル
21 インシュレータ
22 エンドプレート
23 燃料電池スタック
24、25 締結部材(たとえば、ボルト、ナット)
26 冷媒流路(冷却水流路)
27 燃料ガス流路
28 酸化ガス流路
29 冷媒マニホールド孔
30 燃料ガスマニホールド孔
31 酸化ガスマニホールド孔
32 第1のシール部材
33 第2のシール部材
50 構成部品
51 発電領域
52 非発電領域
53 樹脂フレーム
54 板面中心
55 放射線
56 位置決め面
57 位置決め部
58 垂直面
59 円弧面
60 位置決め部材
61 円弧面
62 挿入側端面
10 (Solid polymer electrolyte type) Fuel cell 11 Electrolyte membranes 13 and 16 Diffusion layer 14 Anode 17 Cathode 18 Separator 20 Terminal 21 Insulator 22 End plate 23 Fuel cell stacks 24 and 25 Fastening members (for example, bolts and nuts)
26 Refrigerant flow path (cooling water flow path)
27 Fuel gas channel 28 Oxidizing gas channel 29 Refrigerant manifold hole 30 Fuel gas manifold hole 31 Oxidizing gas manifold hole 32 First seal member 33 Second seal member 50 Component 51 Power generation region 52 Non-power generation region 53 Resin frame 54 Plate surface center 55 Radiation 56 Positioning surface 57 Positioning portion 58 Vertical surface 59 Arc surface 60 Positioning member 61 Arc surface 62 Insertion side end surface

Claims (10)

燃料電池構成部品の板面中心からの放射線またはその平行線を含む前記板面に垂直な面からなる位置決め面を有する位置決め部を、2箇所以上、有する燃料電池。   A fuel cell having two or more positioning portions each having a positioning surface composed of a plane perpendicular to the plate surface including radiation from the center of the plate surface of the fuel cell component or parallel lines thereof. 前記位置決め部は燃料電池構成部品の外側に向かって開放する形状を有している請求項1記載の燃料電池。   The fuel cell according to claim 1, wherein the positioning portion has a shape that opens toward the outside of the fuel cell component. 前記位置決め部は前記位置決め面の他に、該位置決め面に垂直で前記燃料電池構成部品の板面に垂直な面を有する請求項1記載の燃料電池。   2. The fuel cell according to claim 1, wherein, in addition to the positioning surface, the positioning portion has a surface perpendicular to the positioning surface and perpendicular to a plate surface of the fuel cell component. 前記位置決め面と該垂直面とは円弧面を介して接続しており、該円弧面の円弧半径は、スタック化時の燃料電池位置決め時に該位置決め部に挿入される位置決め部材の挿入端側円弧面の円弧半径より小である請求項3記載の燃料電池。   The positioning surface and the vertical surface are connected via an arc surface, and the arc radius of the arc surface is the arc surface on the insertion end side of the positioning member that is inserted into the positioning portion at the time of fuel cell positioning at the time of stacking The fuel cell according to claim 3, wherein the fuel cell is smaller than the arc radius. 前記燃料電池構成部品が、セパレータ、樹脂フレーム、シール材、MEA、インシュレータ、エンドプレート、プレッシャプレートのうち、1種以上の部品を含む請求項1記載の燃料電池。   2. The fuel cell according to claim 1, wherein the fuel cell component includes at least one component among a separator, a resin frame, a sealing material, an MEA, an insulator, an end plate, and a pressure plate. 前記燃料電池構成部品が前記セパレータを含み、前記セパレータはメタルセパレータからなる請求項5記載の燃料電池。   The fuel cell according to claim 5, wherein the fuel cell component includes the separator, and the separator includes a metal separator. 前記燃料電池構成部品がほぼ矩形状部材からなり、該矩形状部材の4隅に前記位置決め部が設けられている請求項1記載の燃料電池。   2. The fuel cell according to claim 1, wherein the fuel cell component is formed of a substantially rectangular member, and the positioning portions are provided at four corners of the rectangular member. 前記燃料電池構成部品がほぼ矩形状部材からなり、該矩形状部材の対向2辺と該対向2辺と直交するもう一つの対向2辺に前記位置決め部が設けられている請求項1記載の燃料電池。   2. The fuel according to claim 1, wherein the fuel cell component is made of a substantially rectangular member, and the positioning portions are provided on two opposite sides of the rectangular member and another two opposite sides orthogonal to the two opposite sides. battery. 前記燃料電池構成部品がほぼ矩形状部材からなり、該矩形状部材の対向2辺に前記位置決め部が設けられている請求項1記載の燃料電池。   2. The fuel cell according to claim 1, wherein the fuel cell component is formed of a substantially rectangular member, and the positioning portions are provided on two opposite sides of the rectangular member. 燃料電池構成部品の板面中心からの放射線を含む前記板面に垂直な面からなる位置決め面を有する位置決め部を、2箇所以上、有しており、前記燃料電池を積層して燃料電池スタックを製造する際に、位置決め部材を前記位置決め部の前記位置決め面に接触させて各燃料電池を位置決めする燃料電池の製造方法。   There are two or more positioning portions each having a positioning surface formed of a surface perpendicular to the plate surface including radiation from the center of the plate surface of the fuel cell component, and the fuel cells are stacked to form a fuel cell stack. A fuel cell manufacturing method for positioning each fuel cell by manufacturing a positioning member in contact with the positioning surface of the positioning portion.
JP2006061651A 2006-03-07 2006-03-07 Fuel cell and its manufacturing method Pending JP2007242373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006061651A JP2007242373A (en) 2006-03-07 2006-03-07 Fuel cell and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006061651A JP2007242373A (en) 2006-03-07 2006-03-07 Fuel cell and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007242373A true JP2007242373A (en) 2007-09-20

Family

ID=38587704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006061651A Pending JP2007242373A (en) 2006-03-07 2006-03-07 Fuel cell and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007242373A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009146858A (en) * 2007-12-18 2009-07-02 Nippon Telegr & Teleph Corp <Ntt> Planar solid oxide fuel cell stack
CN110098414A (en) * 2019-06-06 2019-08-06 新源动力股份有限公司 A kind of encapsulating structure of fuel battery double plates and fuel cell pile

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009146858A (en) * 2007-12-18 2009-07-02 Nippon Telegr & Teleph Corp <Ntt> Planar solid oxide fuel cell stack
CN110098414A (en) * 2019-06-06 2019-08-06 新源动力股份有限公司 A kind of encapsulating structure of fuel battery double plates and fuel cell pile
CN110098414B (en) * 2019-06-06 2024-04-02 新源动力股份有限公司 Fuel cell bipolar plate and packaging structure of fuel cell stack

Similar Documents

Publication Publication Date Title
JP4747486B2 (en) Fuel cell
JP5412804B2 (en) Fuel cell stack
JP5011627B2 (en) Fuel cell
JP2014096358A (en) Fuel cell stack
JP2007250353A (en) Fuel cell
JP5263927B2 (en) End plate for fuel cell stack and manufacturing method thereof
JP4889880B2 (en) Fuel cell
JP3842109B2 (en) Fuel cell
JP4569084B2 (en) Fuel cell stack structure
JP4042547B2 (en) Fuel cell seal structure
JP5109277B2 (en) Multi-cell module and fuel cell stack
KR101272588B1 (en) Separator gasket for fuel cell
JP2007242373A (en) Fuel cell and its manufacturing method
JP2008078148A (en) Fuel cell
JP4608924B2 (en) Fuel cell stack
US7255944B2 (en) Sealing structure of fuel cell and manufacturing method of same
JP4539069B2 (en) Fuel cell
JP4752253B2 (en) Fuel cell
JP2006269159A (en) Fuel cell stack
JP4556399B2 (en) Fuel cell assembly method
JP5181572B2 (en) Fuel cell separator, separator manufacturing method, and fuel cell manufacturing method
JP6194186B2 (en) Fuel cell
JP5756653B2 (en) Fuel cell stack
JP4765594B2 (en) Fuel cell
JP2007035455A (en) Separator for fuel cell