JP2007240822A - プラズマディスプレイパネル駆動回路およびプラズマディスプレイ装置 - Google Patents

プラズマディスプレイパネル駆動回路およびプラズマディスプレイ装置 Download PDF

Info

Publication number
JP2007240822A
JP2007240822A JP2006062317A JP2006062317A JP2007240822A JP 2007240822 A JP2007240822 A JP 2007240822A JP 2006062317 A JP2006062317 A JP 2006062317A JP 2006062317 A JP2006062317 A JP 2006062317A JP 2007240822 A JP2007240822 A JP 2007240822A
Authority
JP
Japan
Prior art keywords
circuit
sustain
switch element
voltage
plasma display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006062317A
Other languages
English (en)
Inventor
Hideki Nakada
秀樹 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006062317A priority Critical patent/JP2007240822A/ja
Publication of JP2007240822A publication Critical patent/JP2007240822A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Gas Discharge Display Tubes (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

【課題】プラズマディスプレイパネル駆動回路において、走査電極駆動回路の維持電圧供給源から、走査電極までのインピーダンスが高いため、放電電流が充分に供給できずプラズマディスプレイパネルの発光効率を高める妨げになっていると同時に、回路損失が増大している。
【解決手段】プラズマディスプレイパネル駆動回路は、少なくとも維持回路と書込み回路を1つの回路基板上に配置し、維持回路の維持電圧供給源から走査電極までの距離を短くする。また、1つの回路基板上に配置したことで、コネクタやねじといったインダクタンスを増大する成分を放電電流経路から除去することができる。このように維持回路と書込み回路を配置することで、急峻な放電電流でもプラズマディスプレイパネルに供給することができるようになり、発光効率の高いプラズマディスプレイ装置を提供することができる。
【選択図】図1

Description

本発明は、壁掛けテレビや大型モニターに用いられるプラズマディスプレイパネルの駆動回路およびプラズマディスプレイ装置に関する。
AC型として代表的な交流面放電型プラズマディスプレイパネル(以下、「PDP」と略記する)は、面放電を行う走査電極および維持電極を配列して形成したガラス基板からなる前面板と、データ電極を配列して形成したガラス基板からなる背面板とを、両電極がマトリックスを組むように、しかも間隙に放電空間を形成するように平行に対向配置し、その外周部をガラスフリット等の封着材によって封着することにより構成されている。そして、前面板と背面板との両基板間には、隔壁によって区画された放電セルが設けられ、この隔壁間のセル空間に蛍光体層が形成された構成である。このような構成のPDPにおいては、ガス放電により紫外線を発生させ、この紫外線で赤色(R)、緑色(G)および青色(B)の各色の蛍光体を励起して発光させることによりカラー表示を行っている。
図14は、PDP10の構造を示す斜視図である。第1の基板であるガラス製の前面板20上には、ストライプ状の走査電極22とストライプ状の維持電極23とで対をなす表示電極が複数形成されている。そして走査電極22と維持電極23とを覆うように誘電体層24が形成され、その誘電体層24上に保護層25が形成されている。
第2の基板である背面板30上には、走査電極22および維持電極23と立体交差するように、誘電体層33で覆われた複数のストライプ状のデータ電極32が形成されている。誘電体層33上にはデータ電極32と平行に複数の隔壁34が配置され、この隔壁34間の誘電体層33上に蛍光体層35が設けられている。また、データ電極32は隣り合う隔壁34の間の位置に配置されている。
これら前面板20と背面板30とは、走査電極22および維持電極23とデータ電極32とが直交するように、微小な放電空間を挟んで対向配置されるとともに、その外周部をガラスフリット等の封着材によって封着している。そして放電空間には、例えばネオン(Ne)とキセノン(Xe)の混合ガスが放電ガスとして封入されている。放電空間は、隔壁34によって複数の区画に仕切られており、各区画には赤色(R)、緑色(G)および青色(B)の各色に発光する蛍光体層35が順次配置されている。そして、走査電極22および維持電極23とデータ電極32とが交差する部分に放電セルが形成され、各色に発光する蛍光体層35が形成された隣接する3つの放電セルにより1つの画素が構成される。この画素を構成する放電セルが形成された領域が画像表示領域となり、画像表示領域の周囲は、ガラスフリットが形成された領域等のように画像表示が行われない非表示領域となる。
図15は、PDP10の電極配列図である。行方向にn行の走査電極SC1〜SCn(図14の走査電極22)とn行の維持電極SU1〜SUn(図14の維持電極23)とが交互に配列され、列方向にはm列のデータ電極D1〜Dm(図14のデータ電極32)が配列されている。そして、一対の走査電極SCi、維持電極SUi(i=1〜n)と1つのデータ電極Dj(j=1〜m)とを含む放電セルCi,jが放電空間内に形成され、放電セルCの総数は(m×n)個になる。
このような構成のPDP10においては、ガス放電により紫外線を発生させ、その紫外線でR、G、Bの各色の蛍光体を励起して発光させることによりカラー表示を行っている。また、PDP10は、1フィールド期間を複数のサブフィールドに分割し、発光させるサブフィールドの組み合わせによって駆動されることにより階調表示を行う。各サブフィールドは初期化期間、書込み期間および維持期間からなり、画像データを表示するために、初期化期間、書込み期間および維持期間でそれぞれ異なる信号波形を各電極に印加している。
図16は、PDP10の各電極に印加する各駆動電圧波形を示す図である。図16に示すように、各サブフィールドは初期化期間、書込み期間、維持期間を有している。また、それぞれのサブフィールドは発光期間の重みを変えるため維持期間における維持パルスの数を異ならせている以外はほぼ同様の動作を行い、各サブフィールドにおける動作原理もほぼ同様であるので、ここでは1つのサブフィールドについてのみ動作を説明する。
まず、初期化期間では、例えば、正のパルス電圧を全ての走査電極SC1〜SCnに印加し、走査電極SC1〜SCnおよび維持電極SU1〜SUnを覆う誘電体層24上の保護層25および蛍光体層35上に必要な壁電荷を蓄積する。加えて、放電遅れを小さくして書込み放電を安定して発生させるためのプライミング(放電のための起爆剤=励起粒子)を発生させるという働きを持つ。
具体的には、初期化期間前半部では、データ電極D1〜Dm、維持電極SU1〜SUnをそれぞれ0(V)に保持し、走査電極SC1〜SCnには、データ電極D1〜Dmに対して放電開始電圧以下の電圧Vi1から、放電開始電圧を超える電圧Vi2に向かって緩やかに上昇する傾斜波形電圧を印加する。この傾斜波形電圧が上昇する間に、走査電極SC1〜SCnと維持電極SU1〜SUn、データ電極D1〜Dmとの間でそれぞれ1回目の微弱な初期化放電が起こる。そして、走査電極SC1〜SCn上部に負の壁電圧が蓄積されるとともに、データ電極D1〜Dm上部および維持電極SU1〜SUn上部には正の壁電圧が蓄積される。ここで、電極上部の壁電圧とは電極を覆う誘電体層上に蓄積された壁電荷により生じる電圧を表す。
初期化期間後半部では、維持電極SU1〜SUnを正電圧Veに保ち、走査電極SC1〜SCnには、維持電極SU1〜SUnに対して放電開始電圧以下となる電圧Vi3から放電開始電圧を超える電圧Vi4に向かって緩やかに下降する傾斜波形電圧を印加する。この間に、走査電極SC1〜SCnと維持電極SU1〜SUn、データ電極D1〜Dmとの間でそれぞれ2回目の微弱な初期化放電が起こる。そして、走査電極SC1〜SCn上部の負の壁電圧および維持電極SU1〜SUn上部の正の壁電圧が弱められ、データ電極D1〜Dm上部の正の壁電圧は書込み動作に適した値に調整される。以上により初期化動作が終了する(以下、初期化期間に各電極に印加される駆動電圧波形を「初期化波形」と略記する)。
次に、書込み期間では、全ての走査電極SC1〜SCnに順次負の走査パルスを印加することによって走査を行う。そして、走査電極SC1〜SCnを走査している間に、表示データにもとづきデータ電極D1〜Dmに正の書込みパルス電圧を印加する。こうして走査電極SC1〜SCnとデータ電極D1〜Dmとの間に書込み放電が発生し、走査電極SC1〜SCn上の保護層25の表面に壁電荷が形成される。
具体的には、書込み期間では、走査電極SC1〜SCnを一旦電圧Vscnに保持する。次に、放電セルCp,1〜Cp,m(pは1〜nの整数)の書込み動作では、走査電極SCpに走査パルス電圧−Vadを印加するとともに、データ電極D1〜Dmのうちp行目に表示すべき映像信号に対応するデータ電極Dq(DqはD1〜Dmのうち映像信号にもとづき選択されるデータ電極)に正の書込みパルス電圧Vdを印加する。こうして、書込みパルス電圧が印加されたデータ電極Dqと走査パルス電圧が印加された走査電極SCPとの交差部に対応する放電セルCp,qで書込み放電が発生する。この書込み放電により放電セルCp,qの走査電極SCp上部に正電圧が蓄積され、維持電極SUp上部に負電圧が蓄積されて、書込み動作が終了する。以下、同様の書込み動作をn行目の放電セルCn,qに至るまで行い、書込み動作が終了する。
続く維持期間では、一定の期間、走査電極SC1〜SCnと維持電極SU1〜SUnとの間に放電を維持するのに充分な電圧を印加する。これにより、走査電極SC1〜SCnと維持電極SU1〜SUnとの間に放電プラズマが生成され、一定の期間、蛍光体層を励起発光させる。このとき、書込み期間において書込みパルス電圧が印加されなかった放電空間では、放電は発生せず蛍光体層35の励起発光は起こらない。
具体的には、維持期間では、走査電極SC1〜SCnを0(V)に一旦戻した後、維持電極SU1〜SUnを0(V)に戻す。その後、走査電極SC1〜SCnに正の維持パルス電圧Vsusを印加する。このとき、書込み放電を起こした放電セルCp,qにおける走査電極SCp上部と維持電極SUp上部との間の電圧は、正の維持パルス電圧Vsusに加えて、書込み期間において走査電極SCp上部および維持電極SUp上部に蓄積された壁電圧が加算されて、放電開始電圧より大きくなり、1回目の維持放電が発生する。そして、維持放電を起こした放電セルCp,qでは、維持放電発生時における走査電極SCPと維持電極SUpとの電位差を打ち消すように走査電極SCp上部に負電圧が蓄積され、維持電極SUp上部に正電圧が蓄積される。こうして、1回目の維持放電が終了する。1回目の維持放電の後、走査電極SC1〜SCnを0(V)に戻し、その後、維持電極SU1〜SUnにVsusを印加する。このとき、1回目の維持放電を起こした放電セルCp,qにおける走査電極SCp上部と維持電極SUp上部との間の電圧は、正の維持パルス電圧Vsusに加えて、1回目の維持放電において走査電極SCp上部および維持電極SUp上部に蓄積された壁電圧が加算されて放電開始電圧より大きくなり、2回目の維持放電が発生する。以降同様に、走査電極SC1〜SCnと維持電極SU1〜SUnとに維持パルスを交互に印加することにより、書込み放電を起こした放電セルCp,qに対して維持パルスの回数だけ維持放電が継続して行われる。
図17は、PDP10を組み込んだプラズマディスプレイ装置の電気的構成を示すブロック図である。図17に示すプラズマディスプレイ装置は、ADコンバータ1、映像信号処理回路2、サブフィールド処理回路3、データ電極駆動回路4、走査電極駆動回路5、維持電極駆動回路6、PDP10を備えている。
ADコンバータ1は、入力されたアナログの映像信号をデジタルの映像信号に変換する。映像信号処理回路2は、入力されたデジタルの映像信号を発光期間の重みの異なる複数のサブフィールドの組み合わせによってPDP10に発光表示するため、1フィールドの映像信号から各サブフィールドの制御を行うサブフィールドデータに変換する。
サブフィールド処理回路3は、映像信号処理回路2で作成されたサブフィールドデータからデータ電極駆動回路用制御信号、走査電極駆動回路用制御信号および維持電極駆動回路用制御信号を生成し、データ電極駆動回路4、走査電極駆動回路5、維持電極駆動回路6へそれぞれ出力する。
PDP10は、上述したとおり、行方向にn行の走査電極SC1〜SCn(図14の走査電極22)とn行の維持電極SU1〜SUn(図14の維持電極23)とが交互に配列され、列方向にm列のデータ電極D1〜Dm(図14のデータ電極32)が配列されている。そして、一対の走査電極SCi、維持電極SUi(i=1〜n)と1つのデータ電極Dj(j=1〜m)とを含む放電セルCi,jが放電空間内に(m×n)個形成され、赤色、緑色および青色の各色に発光する3つの放電セルにより1つの画素が構成される。
データ電極駆動回路4は、データ電極駆動回路用制御信号にもとづいて各データ電極Djを独立して駆動する。
走査電極駆動回路5は、各走査電極SC1〜SCnをそれぞれ独立して駆動することができる。そして、走査電極駆動回路用制御信号にもとづいて各走査電極SC1〜SCnを独立して駆動する。
維持電極駆動回路6は、PDP10の全ての維持電極SU1〜SUnをまとめて駆動することができる。そして、維持電極駆動回路用制御信号にもとづいて維持電極SU1〜SUnを駆動する。
このような駆動電圧を印加するためのプラズマディスプレイパネル駆動回路の具体的な回路構成を図18に示す。走査電極駆動回路5は、維持回路51、初期化回路52、書込み回路53、回収回路54および書込み電圧供給回路55を備えている。
維持回路51は、第一のハイサイド維持スイッチ素子S5、第一のローサイド維持スイッチ素子S6と電圧値Vsusの電圧源V1とを有する。回収回路54は、第一のインダクタL1と第一の回収コンデンサC1と第一のハイサイド回収スイッチ素子S1、第一のローサイド回収スイッチ素子S2と第一のハイサイド回収ダイオードD1、第一のローサイド回収ダイオードD2とを有する。回収回路54はPDP10の容量性負荷(走査電極SC1〜SCnに生じた容量性負荷)と第一のインダクタL1とをLC共振させて、電力の回収および供給を行う。電力の回収時には、走査電極SC1〜SCnに生じた容量性負荷に蓄えられた電力を、第一のローサイド回収ダイオードD2および第一のローサイド回収スイッチ素子S2を介して第一の回収コンデンサC1に移動させる。電力の供給時には、第一の回収コンデンサC1に蓄えられた電力を、第一のハイサイド回収スイッチ素子S1および第一のハイサイド回収ダイオードD1を介してPDP10(走査電極SC1〜SCn)に移動する。こうして維持期間における走査電極SC1〜SCnの駆動を行う。したがって回収回路54では、維持期間において、電源から電力を供給されることなく、LC共振によって走査電極SC1〜SCnの駆動を行うため、理論的には消費電力は0となる。
一方、維持回路51は、電圧値Vsusの電圧源V1から第一のハイサイド維持スイッチ素子S5を介して走査電極SC1〜SCnに電力を供給して走査電極SC1〜SCnを電圧値Vsusにクランプし、また、走査電極SC1〜SCnを第一のローサイド維持スイッチ素子S6を介して接地電位にクランプすることによって、走査電極SC1〜SCnの駆動を行う。したがって、維持回路51による走査電極SC1〜SCnの駆動時においては、電力供給のインピーダンスが非常に小さく維持パルスの立ち上がり立ち下がりは急峻になるが、電源から電力が供給されることによる消費電力が発生する。
こうして維持回路51および回収回路54は、各スイッチ素子S1、S2、S5、S6の切替えによって、電力回収と電圧クランプとの動作を切替え、走査電極SC1〜SCnに印加するための維持パルスを発生する。このとき、LC共振を利用した回収回路54では、維持パルスの電圧が極大値になるまで電力供給を行い、その後維持回路51の電圧クランプ動作に切替えることで、電力回収を最大限に利用した駆動を行うことができ、走査電極駆動回路5の消費電力を低減することができる。
なお、各スイッチ素子S1、S2、S5、S6は、MOSFET等のスイッチ動作を行う一般に知られた素子からなる。MOSFETは、一般にボディダイオードと呼ばれる寄生ダイオード(MOSFETの構造に寄生して発生するダイオード)が、スイッチ動作を行う部分に対して並列に、かつスイッチ動作を行う部分に対してアノード、カソードが逆向きに生成される(以下、このような構成を「逆並列」と記す)。そのため、スイッチ素子は、スイッチ動作が遮断状態であってもボディダイオードに対して順方向となる電流を流すことができる。これらのスイッチ素子は、MOSFETではなくIGBT等のスイッチ動作を行う素子を用いて、逆並列ダイオードを別途備えたものであってもよい。
初期化回路52は、MOSFETあるいはIGBT等のスイッチ動作を行う一般に知られた素子からなる。ハイサイド初期化スイッチ素子S11、ローサイド初期化スイッチ素子S12、第一の分離スイッチ素子S9、第二の分離スイッチ素子S10と電圧値Vsetの電圧源V3と負の電圧値−Vadの電圧源V2とを有している。そして、電圧源V3からハイサイド初期化スイッチ素子S11を介して走査電極SC1〜SCnに電力を供給し、また、電圧源V2からローサイド初期化スイッチ素子S12を介して走査電極SC1〜SCnに負の電位となる電力を供給して、初期化波形を発生する。また、第二の分離スイッチ素子S10は、ハイサイド初期化スイッチ素子S11が導通(以下、スイッチ素子を導通させることを「オン」と略記する)しているときに、電圧源V3から主放電経路(維持回路51、初期化回路52、書込み回路53、回収回路54、書込み電圧発生回路55が共通して接続され、走査電極SC1〜SCnへ供給する電力および走査電極SC1〜SCnからの回収電力が流れる経路)を通じて第一の維持スイッチ素子S5のボディダイオード(IGBTの場合は逆並列ダイオード)を通って電圧源V1に電流が流れ込むのを防ぐ。すなわち、第二の分離スイッチ素子S10は上記のような電流を遮断(以下、スイッチ素子を遮断させることを「オフ」と略記する)するべく配置され、ハイサイド初期化スイッチ素子S11が導通している期間は第二の分離スイッチ素子S10はオフする。同様に、第一の分離スイッチ素子S9は、ローサイド初期化スイッチ素子S12がオンしている時に、第一のローサイド維持スイッチ素子S6のボディダイオードを通って、接地電位から放電経路を通じて電圧源V2に電流が流れ込むのを防ぐ。すなわち、第一の分離スイッチ素子S9は上記のような電流をオフするべく配置され、ローサイド初期化スイッチ素子S12が導通している期間は第一の分離スイッチ素子S9はオフする。
こうして初期化回路52は図16に示すような初期化波形を発生させる。初期化期間前半部では、データ電極D1〜Dmに対して放電開始電圧以下の電圧Vi1から、放電開始電圧を超える電圧Vi2、すなわちVsetに向かって緩やかに上昇する傾斜波形を発生させ、初期化期間後半部では、維持電極SU1〜SUnに対して放電開始電圧以下となる電圧Vi3から放電開始電圧を超える電圧Vi4、すなわち−Vadに向かって緩やかに下降する傾斜波形を発生させる。
書込み電圧発生回路55は、電圧値Vscnの電圧源V4と、電圧源V4へ流れ込む電流を防止するダイオードD5と、電圧値Vscnの電圧を後述するスキャンドライバIC1の一方の入力端に供給するための書込み電圧供給ハイサイドスイッチ素子S13と、スキャンドライバIC1の2つの入力端を短絡するための書込み電圧供給ローサイドスイッチ素子S14とを有する。
書込み回路53は、2つの入力口を有しスイッチ動作により2つの入力口に入力される電力のいずれか一方を出力して走査パルス波形を生成するスキャンドライバであるIC1を有する。
書込み期間では、全ての走査電極SC1〜SCnに順次負の走査パルスを印加することによって走査を行う。そのために、書込み期間では、電圧源V4から供給される電圧値Vscnの電力を書込み電圧供給ハイサイドスイッチ素子S13をオンにして、スキャンドライバIC1の一方の入力口に入力する。また、初期化回路52のローサイド初期化スイッチ素子S12をオンにして、電圧源V2から負の電圧値−Vadの電力をスキャンドライバIC1の他方の入力口に入力する。そして、電圧源V4から供給される電力と電圧源V2から供給される電力とのいずれか一方の電力がスキャンドライバIC1で選択され、走査電極SC1〜SCnに供給される構成としている。すなわち、スキャンドライバIC1は、負の走査パルスを印加するタイミングでは電圧源V2からの電力を、それ以外の時には電圧源V4からの電力を走査電極SC1〜SCnに供給するようにスイッチ動作する。
なお、上述したように維持回路51を初期化回路52から電気的に分離するために、維持回路51と初期化回路52との間には、第一の分離スイッチ素子S9および第二の分離スイッチ素子S10が直列に、かつそれぞれのボディダイオードが互いに逆方向となるようにして挿入されている(以下、このようなダイオード同士を互いに逆方向にしての接続を「バックトゥバック接続」と記す)。このような構成とすることにより、第一の分離スイッチS9および第二の分離スイッチS10を同時にオフにすれば、維持回路51から初期化回路52のハイサイド初期化スイッチ素子S11やローサイド初期化スイッチ素子S12へ流れる電流と、初期化回路52のハイサイド初期化スイッチ素子S11やローサイド初期化スイッチ素子S12から維持回路51へ流れる電流とのいずれの電流も遮断することができる。
これは、初期化回路52の電圧源V3からの電力供給時に、それよりも電位の低い維持回路51の電圧源V1の影響を受けないようにするためであり、また、初期化回路52における負の電位の電圧源V2からの電力供給時に、それよりも高い電位、すなわち維持回路51のクランプ部の接地電位(以下、「GND」と略記する)の影響を受けないようにするためである。
電圧源V3による電力供給時には、電圧値Vsetの電圧源V3からそれよりも電位の低い電圧源V1へ主放電経路を介して電流が流れ込む恐れがあり、そのような場合には主放電経路の電位が電圧源V3の電位Vsetよりも低下してしまい本来の駆動電圧波形を生成することが困難となる。また、負の電圧値−Vadの電圧源V2による電力供給時には、電圧源V2よりも電位の高いクランプ部のGNDから電圧源V2へ主放電経路を介して電流が流れ込む恐れがあり、そのような場合には、主放電経路の電位が電圧源V2の負の電圧値−Vadよりも上昇してしまい本来の駆動電圧波形を生成することが困難となる。
しかし、初期化回路52によって走査電極SC1〜SCnの駆動が行われる初期化期間において、第一の分離スイッチS9、第二の分離スイッチS10をオフにすることで、維持回路51を初期化回路52の電圧源V2および電圧源V3から電気的に分離することができ、そのような電流の流れ込みを遮断することができる。したがって、第一の分離スイッチ素子S9および第二の分離スイッチS10は、維持回路51によって走査電極SC1〜SCnの駆動が行われる期間のみオンにし、それ以外の初期化期間等ではオフにする。
なお、維持回路51によって走査電極SC1〜SCnの駆動が行われる期間は、ハイサイド初期化スイッチ素子S11、ローサイド初期化スイッチ素子S12をオフにすることにより電圧源V2および電圧源V3を主放電経路から電気的に分離することができる。これは、電圧源V3が電圧源V1よりも電位が高く、かつボディダイオードが電圧源V3から主放電経路へ流れる電流を遮断するようにハイサイド初期化スイッチ素子S11が配置されているからであり、また、電圧源V2がGNDよりも電位が低く、かつボディダイオードが主放電経路から電圧源V2へ流れる電流を遮断するようにローサイド初期化スイッチ素子S12が配置されているからである。
なお、維持電極駆動回路6にも走査電極駆動回路5と同様の維持回路ならびに回収回路を有する。すなわち、第二の回収インダクタL2と第二の回収コンデンサC2と第二のハイサイド回収スイッチ素子S3、第二のローサイド回収スイッチ素子S4と第二のハイサイド回収ダイオードD3、第二のローサイド回収ダイオードD4とを有する回収回路と、第二のハイサイド維持スイッチ素子、第二のローサイド維持スイッチ素子S8と電圧値Vsusの電圧源V1とを有する維持回路とからなり、PDP10の容量性負荷(維持電極SU1〜SUnに生じた容量性負荷)と第二のインダクタL2とのインダクタンスを共振させて、第二の回収コンデンサC2に電力の回収を行う構成であるが、その動作は維持回路51ならびに回収回路54と同様であるので説明を省略する。
このような各回路の配置を図19を用いて説明する。図19は、従来のプラズマディスプレイ装置を背面側から見た配置の一例を示す平面図である。
PDP10の両側縁部には、走査電極22および維持電極23の電極引出部に接続された表示電極用配線部材としてのフレキシブル配線板21が設けられ、シャーシ部材26の外周部を通して背面側に引き回される。走査電極22に接続されたフレキシブル配線板21は走査電極駆動回路5の書込み回路53に接続され、維持電極23に接続されたフレキシブル配線板21は維持電極駆動回路6に接続されている。
一方、PDP10の下部および上部縁部には、データ電極32の電極引出部に接続されたデータ電極用配線部材としてのフレキシブル配線板31が設けられ、そしてそのフレキシブル配線板31は、データ電極駆動回路4の複数のデータドライバ(図示せず)に電気的に接続されるとともに、シャーシ部材26の外周部を通して背面側に引き回され、前記シャーシ部材26の背面側の下部および上部位置に配置されたデータ電極駆動回路4に接続されている。
サブフィールド処理回路3は、図17に示すように、データ電極駆動回路4、走査電極駆動回路5および維持電極駆動回路6に信号を供給するため、それぞれの駆動回路と電気的に接続されている。なお、それぞれの駆動回路を駆動するための電源回路やADコンバータ1、映像信号処理回路2については、図19の平面図には図示しない。ADコンバータ1および映像信号処理回路2は、サブフィールド処理回路3の回路基板に含まれる場合もある。
それぞれの駆動回路は以上のような配置をしており、特に走査電極駆動回路5における、維持回路51および初期化回路52については、同一の回路基板上に配置され、書込み回路53は電気的に接続された異なる回路基板上に配置されている。これは、回路基板サイズの制約や製造および組み立て方法の都合上、別回路基板にすることが望ましいため、別回路基板を接続する構成となっている。
また、PDP10の駆動波形として維持電極を常に接地電位にする第2の従来技術が開示されている(例えば特許文献1参照)。この技術は、上記の第1の従来技術における維持電極駆動回路6を削除することで、安価なプラズマディスプレイ装置を実現することを目的とする。第2の従来技術の場合、維持期間において走査電極22に印加する電圧は+Vsusおよび−Vsusとなる。一方、維持電極23に印加する電圧は接地電位(0V)となる。したがって、走査電極駆動回路の具体的な回路構成は第1の従来技術と第2の従来技術では異なるものの、電圧を印加することによってPDP10のそれぞれの電極に流れ込む放電電流の経路は同様である。すなわち、第1の従来技術においては、放電電流はS5、S9、S10の各スイッチ素子を経由して走査電極22に流れる。第2の従来技術の場合も同様に、放電電流は少なくとも3つのスイッチ素子を経由する(図示しない)。
特開2005−338839号公報
それぞれの従来技術に示す各スイッチ素子は大電流を流すためのMOSFETあるいはIGBTといったトランジスタが使われている。これらは、リード部品タイプを使用している。一方、書込み期間で使用するスキャンドライバは表面実装タイプを使用している。それらが実装される電気回路基板は独立に構成されており、電気的な接続は、基板端面で、ねじによる接続か、あるいは、それぞれの回路基板に実装されたコネクタ等にて接続されている。しかしながら、いずれの電気的接続方法についても、維持電圧を印加する最初のスイッチ素子からPDPの走査電極に印加されるまでの経路には回路基板の配線パターン、ねじ、あるいはコネクタなどの経路を通じて電流を流すため、寄生の抵抗成分および寄生のインダクタンス成分が重畳する。特に、この寄生インダクタンスの存在により、PDPが高効率に放電する時に必要としている周波数の高いパルス状の放電電流を流すことができない。その結果、放電電流の周波数が電気回路および構造によって抑制されてしまうため、PDPの発光効率が低くなってしまう。すなわち、維持電圧を印加するトランジスタから走査電極までの物理的な配線距離が長いことと、コネクタあるいはねじといった放電電流経路に介在する部品が、PDPの高効率駆動を妨げている。
また、従来技術では放電電流が流れる経路に複数のスイッチ素子が配置されているので、各スイッチ素子で電流が流れることに伴う損失が発生する。また、電流が流れることによる電圧低下も発生する。とくに、電極に印加される電圧が放電電流の大きさによって変動してしまうと、電極間に印加される電界強度が変化してしまうため、その結果、発光輝度が変化してしまう。すなわち、維持電圧を印加するトランジスタから走査電極までの放電経路に本来不要であるスイッチ素子が介在すると、PDPの高効率駆動を妨げると同時に、ディスプレイとしての表示品質が低下するという問題が生じる。
本発明は上記の課題に鑑み、PDPを高効率に駆動するために、物理的な配線距離を短くするプラズマディスプレイパネル駆動回路ならびにプラズマディスプレイ装置を提供することを目的とする。また、放電経路におけるスイッチ素子の個数を削減することにより、表示品質を向上させ、かつ、高効率駆動を実現するプラズマディスプレイパネル駆動回路ならびにプラズマディスプレイ装置を提供することを目的とする。また、放電経路上に介在する部品を少なくするプラズマディスプレイパネル駆動回路を提供することを目的とする。
本発明によるプラズマディスプレイパネル駆動回路は、初期化回路、書込み回路、維持回路を備え、書込み回路と維持回路とを同一基板上に配置してある。あるいは、初期化回路、書込み回路、維持回路を同一基板上に配置してある。
維持回路と書込み回路を少なくとも同一基板上に配置することで、放電経路におけるコネクタあるいはねじといった、インピーダンス、特にインダクタンスを増大させる原因を除去することができる。また、維持電圧を印加するスイッチ素子から走査電極までの物理的な配線距離を短くすることができるので、PDPを高効率に駆動可能なプラズマディスプレイパネル駆動回路を提供することができる。
また、本発明による維持回路は、少なくとも1つの電圧源と少なくとも1つのスイッチ素子を含み、電圧源からスイッチ素子を経由してプラズマディスプレイパネルの電極に電圧を供給する。また、初期化回路は、少なくとも1つの電圧源と、少なくとも1つのスイッチ素子を含み、電圧源からスイッチ素子を経由してプラズマディスプレイパネルの電極に電圧を供給する。また、走査電極駆動回路に使用するスイッチ素子の少なくとも1つは逆阻止IGBTであってもよい。
維持回路において、電圧源は例えばコンデンサなどの部品でもよい。維持期間においてパネルに印加する電圧の理想的な電圧源としては、高い周波数の電流も低インピーダンスで供給できるフィルムコンデンサやセラミックコンデンサであってもよい。本発明によればコンデンサなどの電圧源からスイッチ素子を1つ経由して放電電流が書込み回路まで到達することができるので、途中に不要なスイッチ素子を介在しない。したがって、回路損失が少ないプラズマディスプレイパネル駆動回路を提供することができる。また、スイッチ素子が1つであるため、放電電流によってパネル印加電圧が低下する電圧変動量が最小になるため、表示品質の高いプラズマディスプレイ装置を提供することができる。初期化回路に関しても同様である。また、逆阻止IGBTを使用することで、電圧の逆バイアスが印加されるのを防止するためにIGBTとダイオードとを直列接続するような回路中の場所に対して、IGBTとダイオードの両方の損失の和よりも逆阻止IGBTの損失の方が少なくなるため、高効率駆動を実現することができる。
また、本発明の維持回路に含むスイッチ素子の少なくとも1つの素子は、プラズマディスプレイパネルの走査線数全体の1/nの走査線(nは自然数)を駆動する。
本発明によれば、複数の維持回路でプラズマディスプレイパネルの走査電極を駆動することができるので、走査電極に極めて物理的に近い場所から、維持電圧を走査電極に印加することが可能となり、より高効率駆動を実現することができる。これは、特に大画面のディスプレイ装置の場合においては、走査電極が物理的に広く分布しているため、1つの維持回路のスイッチ素子から走査電極までの配線距離が、電極の位置によって短いところと長いところが生じてしまう。その結果、配線距離が遠い走査電極の画素では、高効率に駆動できないことがあると同時に、表示品質を低下させる。本発明によれば、ある単位の走査電極毎に、複数の維持回路のスイッチ素子を設けることができるので、走査電極までの配線距離の不均一性を解消しつつ、短配線化することができるため、PDPの高効率駆動を実現することができる。
また、本発明のプラズマディスプレイパネル駆動回路は、少なくとも2つの基板の維持回路出力端が電気的に接続している。
本発明によれば、複数の維持回路を備えたプラズマディスプレイパネル駆動回路において、維持回路出力端が電気的に接続しているので、複数の維持回路毎に微小な印加電圧のアンバランスを解消することができる。したがって、異なる維持回路の出力を走査電極に印加する場合に、維持回路出力端が接続されるので、すべての走査電極に印加される維持電圧を等しくすることができる。その結果、表示品質の高いプラズマディスプレイ装置を提供することができる。この発明は、特に、負荷に偏りがある場合に有効である。すなわち、表示する画像によっては、複数の維持回路のうち、特定の維持回路にかかる負荷が大きく、他の維持回路にかかる負荷が小さいという現象が発生する。このような場合、負荷の大きな画像を駆動する維持回路は放電電流が大きいので、その維持回路が受け持つ走査線の電極に印加される電圧が低下するため、発光輝度が低下する。一方、負荷の小さな画像を駆動する維持回路は放電電流が大きいので、その維持回路が受け持つ走査線の電極に印加される電圧は低下せず、発光輝度は設計通りとなる。その結果、表示画像は、負荷が大きいところだけ暗く表示されてしまうなどの表示品質が低下してしまう。本発明はこのような表示品質を低下することを防ぎ、表示品質の高いプラズマディスプレイ装置を提供することができる。
また、本発明はプラズマディスプレイパネルの維持電極は接地電位に固定している。
本発明によれば、維持電極側のスイッチ素子を削除して、直接接地電位に接続することができるので、放電経路から少なくとも1つのスイッチ素子を削減できるため、回路損失が少なく、かつ、表示品質の高いプラズマディスプレイ装置を提供することができる。
本発明によるプラズマディスプレイパネル駆動回路は上記の通り、放電経路を短配線化できるので、放電電流が回路の性能によって抑制されることなくPDPに供給される。したがって、PDPを高い発光効率で駆動することができる。また、放電経路におけるスイッチ素子を最小限に構成することができるので、回路損失が少ないプラズマディスプレイパネル駆動回路を提供することができる。同時に、スイッチ素子による電圧低下も最小になるので、放電電流の変動による発光輝度のばらつきも低下し、表示品質の高いプラズマディスプレイ装置を提供することができる。
以下、本発明の最良の実施の形態について、図面を参照しつつ説明する。
(実施の形態1)
図1は本発明の実施の形態1である走査電極駆動回路5Aの具体的な回路図である。走査電極駆動回路5Aは、大別して維持回路51A、初期化回路52A、書込み回路53A、回収回路54Aおよび書込み電圧供給回路55Aから構成されている。それぞれの回路は書込み回路53Aに含まれるスキャンドライバIC1のハイサイド側端子IC1Aかローサイド側端子IC1Bのいずれかあるいは両方に接続される。
維持回路51Aは少なくとも2つのスイッチ素子を含む。これらのスイッチ素子は、維持期間においてPDP10に維持電圧Vsusを供給するための第一のハイサイド維持スイッチ素子S5と、接地電位を供給するための第一のローサイド維持スイッチ素子S6である。第一のハイサイド維持スイッチ素子S5のソース端子は接続点IC1Bに接続されドレイン端子は維持電圧Vsusを供給する電圧源V1に接続される。第一のローサイド維持スイッチ素子S6のドレイン端子は接続点IC1Aに接続され、ソース端子は接地電位に接続される。初期化回路52Aは少なくとも2つのスイッチ素子を含む。これらのスイッチ素子は、初期化期間において、PDP10に正の初期化電圧Vsetを供給するためのハイサイド初期化スイッチ素子S11と、負の初期化電圧−Vadを供給するためのローサイド初期化スイッチ素子S12である。ハイサイド初期化スイッチ素子S11のソース端子は接続点IC1Aに接続され、ドレイン端子は正の初期化電圧Vsetを供給する電圧源V3に接続される。ローサイド初期化スイッチ素子S12のドレイン端子は接続点IC1Bに接続され、ソース端子は負の初期化電圧−Vadを供給する電圧源V2に接続される。回収回路54Aは第一のハイサイドインダクタL1A、第一のハイサイド回収ダイオードD1、第一のハイサイド回収スイッチ素子S1、第一のローサイドインダクタL1B、第一のローサイド回収ダイオードD2、第一のローサイド回収スイッチ素子S2および第一の回収コンデンサC1を含む。第一のハイサイドインダクタL1Aの一端は接続点IC1Bに接続され、他端は第一のハイサイド回収ダイオードD1のカソード端子に接続される。第一のハイサイド回収ダイオードD1のアノード端子は第一のハイサイド回収スイッチ素子S1のソース端子に接続され、第一のハイサイド回収スイッチ素子S1のドレイン端子は第一の回収コンデンサC1の一端に接続される。第一の回収コンデンサC1のこの一端には第一のローサイド回収スイッチ素子S2のソース端子も接続される。第一のローサイド回収スイッチ素子S2のドレイン端子は第一のローサイド回収ダイオードD2のカソード端子が接続され、第一のローサイド回収ダイオードD2のアノード端子は第一のローサイド回収インダクタL1Bの一端が接続される。第一のローサイド回収インダクタL1Bの他端は接続点IC1Aに接続される。第一の回収コンデンサC1の他端は接地電位に接続される。書込み電圧供給回路55Aは少なくともダイオードD5と書込み電圧供給ハイサイドスイッチ素子S13を含む。ダイオードD5のアノード端子は書込み電圧Vscnを供給する電圧源V4に接続され、カソード端子は書込み電圧供給ハイサイドスイッチ素子S13のドレイン端子に接続され、書込み電圧供給ハイサイドスイッチ素子S13のソース端子は接続点IC1Aに接続される。上記のように接続されることで、走査電極駆動回路5Aが構成される。
次に、走査電極駆動回路5Aの具体的な回路配置を図2に示す。走査電極駆動回路5Aは、第一の回路基板56と、第二の回路基板57から構成される。第一の回路基板56と第二の回路基板57とはコネクタあるいはねじ等の電気伝導性を有する物質にて接続している。フレキシブル配線板21はPDP10の走査電極と走査電極駆動回路5Aを接続するもので、従来技術と同様である。本発明においては、第一の回路基板56および第二の回路基板57に配置される回路は(表1)の構成Aから構成Hのいずれでもよい。いずれの構成においても第一の回路基板56には少なくとも書込み回路53Aと維持回路51Aが含まれる。
Figure 2007240822
従来技術では(表1)に示すように書込み回路53Aのみ、あるいは、書込み回路53Aと書込み電圧供給回路55Aとが第一の回路基板56に含まれており、その他の回路は第二の回路基板に含まれる。従来技術では、書込み回路と維持回路とを別の回路基板に配置していたため、維持電圧をPDP10に供給する放電経路には、コネクタあるいはねじ等の基板を接続する部品が含まれている。この接続部品が放電経路の低インピーダンス化および低インダクタンス化を妨げている。その結果、PDP10に必要な放電電流を供給することができず、PDP10の発光効率が低い状況であると同時に、プラズマディスプレイパネル駆動回路の損失低減を妨げていた。本発明によれば、書込み回路53Aと維持回路51Aとを同一の回路基板上に配置することによって、維持電圧VsusからPDP10の走査電極に至るまでの放電経路のインピーダンスを最小にすることができる。その結果、放電電流を充分に供給することができるので、発光効率の高いプラズマディスプレイ装置を提供することができる。また、放電電流が大きくても電圧源から走査電極までのインピーダンスが低いので、回路損失の少ないプラズマディスプレイパネル駆動回路を提供することができる。PDPの場合、パネルが必要とする放電電流は数メガヘルツの周波数帯であり、ピーク値が100アンペアを超える電流である。したがって、配線パターンのインダクタンスが10ナノヘンリー増えるだけで、放電電流の形状も異なってくる。よって、回路基板における回路の配置や配線が、PDPの発光効率にきわめて大きく関係してくる。本発明はそのようなPDP特有の課題を解決するものである。
次に、各回路における各スイッチ素子の具体的な動作方法を図3を用いて説明する。図3は初期化期間、書込み期間、維持期間において、走査電極SC1〜SCnおよび維持電極SU1〜SUnに印加する電圧の代表的な波形と、各スイッチ素子のオンオフ状態を示す波形図である。なお、走査電極に印加する電圧波形および維持電極に印加する電圧波形は、従来技術の波形を参考に掲載したものであり、本発明はこの波形に制限されるものではない。走査電極に印加する電圧波形は正の初期化電圧Vsetが維持電圧Vsusよりも大きく、負の初期化電圧−Vadが接地電位よりも小さい場合における初期化動作の一例を示したものであり、本発明はこの波形に制限されない。以下、各スイッチ素子のオンオフ状態を、モードIからモードVIIに分類して説明する。なお、図3においては、各スイッチ素子のオンオフ状態について、斜線部がオンを示し、×はオンオフのいずれでもよいことを示し、それ以外はオフを示すものとする。
<モードI>
ハイサイド書込みスイッチ素子S15と第一のローサイド維持スイッチ素子S6をオンする。この動作により、走査電極SC1〜SCnのすべてに接地電位が印加される。モードIにおいては、第一のローサイド回収スイッチ素子S2はオンオフいずれでの状態でもよいが、それ以外の各スイッチ素子はオフにする。
<モードII>
第一のローサイド維持スイッチ素子S6をオフにし、ハイサイド初期化スイッチ素子S11をオンにする。この動作により、走査電極SC1〜SCnには正の初期化電圧が印加されその印加電圧はVsetまで上昇する。この上昇する電圧波形は、図3の波形に制限されず、いずれの駆動波形でもよく、モードIIIに移行するまでに電圧がVsetまで到達すればよい。モードIIにおいては、それ以外の各スイッチ素子はオフにする。
なお、スキャンドライバIC1の絶対最大定格電圧をVmaxとした時、Vset−Vmax>Vsusとなる場合は、維持回路51Aのハイサイド側維持スイッチ素子に関して、電圧源V1と接続点IC1Bとの間にダイオードを直列に挿入してもよい。すなわち、維持回路51Aのハイサイド側回路を図4(a)あるいは図4(b)のような構成にしてもよい。
<モードIII>
ハイサイド初期化スイッチ素子S11とハイサイド書込みスイッチ素子S15とをオフにし、ローサイド初期化スイッチ素子S12とローサイド書込みスイッチ素子S16をオンにする。この動作により、走査電極SC1〜SCnには負の初期化電圧が印加され、電圧は−Vadまで下降する。この下降する電圧波形は、図3の波形に制限されず、いずれの駆動波形でもよく、書込み期間に移行するまでに電圧が−Vadまで到達すればよい。モードIIIにおいては、それ以外の各スイッチ素子はオフにする。
なお、Vmax−Vad<0となる場合は、維持回路51Aのローサイド側回路に関して、接地電位と接続点IC1Aとの間にダイオードを直列に挿入してもよい。すなわち、維持回路51Aのローサイド側回路を図4(c)あるいは図4(d)のような構成にしてもよい。
<書込み期間>
書込み期間については、各スイッチ素子のオンオフ動作は従来技術と同様のため、簡単に説明する。ローサイド初期化スイッチ素子S12と書込み電圧供給ハイサイドスイッチ素子S13をオンする。線順次走査する時は、該当するスキャンドライバの走査線に接続されたハイサイド書込みスイッチ素子S15をオフし、ローサイド書込みスイッチ素子S16をオンする。走査を終了する時は、ローサイド書込みスイッチ素子S16をオフし、再度、ハイサイド書込みスイッチ素子S15をオンすればよい。このような動作によって、走査電極SC1〜SCnの各走査電極毎に異なる走査パルスを印加することができる。
<維持期間>
維持期間のモードIVに到達する前の期間における各スイッチ素子の動作は、初期化期間におけるモードIと同様のため、説明は省略する。また、維持期間全体にわたって、ハイサイド書込みスイッチ素子S15とローサイド書込みスイッチ素子S16については、オンオフいずれの状態でもよい。ただし、望ましい動作状態については、各モード毎に異なるので、以下の各モードでの詳細な説明の中に記述する。
<モードIV>
モードIVでは、第一のハイサイド回収スイッチ素子S1をオンし、それ以外のスイッチ素子はオフにする。第一のハイサイド回収スイッチ素子S1をオンすることで、PDP10の静電容量と第一のハイサイドインダクタL1AとでLC共振回路を形成し、第一の回収コンデンサC1からPDP10に電力が供給され、PDP10の走査電極SC1〜SCnの電圧は上昇する。なお、ローサイド書込みスイッチ素子S16はオンしている方が望ましい。
<モードV>
モードVでは、第一のハイサイド維持スイッチ素子S5をオンする。第一のハイサイド回収スイッチ素子S1はオンオフいずれでもよい。第一のハイサイド維持スイッチ素子S5をオンすることで維持電圧Vsusが電圧源V1から走査電極SC1〜SCnに供給される。従来技術では、第一のハイサイド維持スイッチ素子S5とPDP10の間には第一の分離スイッチ素子や第二の分離スイッチ素子などの、複数のスイッチ素子が介在していた。これらのスイッチ素子は、電圧源V1から走査電極までの放電経路上のインピーダンスを上昇させ、回路損失を増大させていた。本発明は、第一のハイサイド維持スイッチ素子S5と走査電極との間に介在するスイッチ素子の数を最小にすることができるので、インピーダンスの低い放電経路を形成することが可能となる。したがって、回路損失の小さいプラズマディスプレイパネル駆動回路を提供することができる。また、従来は維持スイッチ素子と書込み回路の間の接続がコネクタあるいはねじであり、この接続形態もインピーダンスを高める原因となっていた。本発明は、維持スイッチ素子と書込み回路を同一の回路基板上に配置するので、コネクタあるいはねじが不要となり、インピーダンスを低減することが可能となる。したがって、回路損失が小さく、しかもインダクタンス成分も低下するので、急峻な放電電流を走査電極に供給することが可能となるため、発光効率の高いプラズマディスプレイ装置を提供することができる。なお、ローサイド書込みスイッチ素子S16はオンしている方が望ましい。
<モードVI>
モードVIでは、第一のハイサイド維持スイッチ素子S5をオフし、第一のローサイド回収スイッチ素子S2をオンする。第一のローサイド回収スイッチ素子S2をオンすることで、PDP10の静電容量と第一のローサイドインダクタL1BとでLC共振回路を形成し、PDP10から第一の回収コンデンサC1へ電力が供給され、PDP10の走査電極の電圧は下降する。なお、ハイサイド書込みスイッチ素子S15はオンしている方が望ましい。
<モードVII>
モードVIIでは、第一のローサイド維持スイッチ素子S6をオンする。第一のローサイド回収スイッチ素子S2はオンオフいずれでもよい。モードVの期間と同様に、モードVIIの期間においては、維持電極側の電圧が上昇して、維持電極側から走査電極側に放電電流が流れる。したがって、モードVIIの期間において放電経路のインピーダンスを低減させることは、発光効率を向上させ、あるいは、回路損失を低減するためには有効である。従来技術では、第一のローサイド維持スイッチ素子S6とPDP10の間に複数のスイッチ素子が介在していた。本発明は、第一のローサイド維持スイッチ素子S6と走査電極との間に介在するスイッチ素子の数を最小にすることができるので、インピーダンスの低い放電経路を形成することが可能となる。したがって、モードVで説明したのと同様の効果を有する。なお、ハイサイド書込みスイッチ素子S15はオンしている方が望ましい。
以上のように各スイッチ素子をオンオフ動作させることで、走査電極に所望の電圧を印加することができ、しかも、維持電圧Vsusの電圧源V1から走査電極までのインピーダンスを最小にする回路にて電圧を供給することができる。その結果、急峻な放電電流を供給できるので、PDP10が本来必要とする放電電流を供給することができ、その結果、発光効率の高いプラズマディスプレイ装置を提供することができる。また、放電経路中のインピーダンスが小さいので、回路損失を低減することができる。
なお、本実施の形態は電圧の大小関係が、−Vad<0<Vsus<Vsetの場合に基づいて説明している。初期化期間における最小電圧−Vad>0の場合は、ローサイド初期化スイッチ素子S12のドレイン端子をIC1BではなくIC1Aに接続してもよい。また、初期化期間における最大電圧Vset<Vsusの場合は、正の初期化電圧を供給する初期化回路を図5(a)あるいは図5(b)のように構成してもよい。
なお、維持電極駆動回路は、従来技術と同様でよいため、説明は省略する。
(実施の形態2)
図6は本発明の実施の形態2である走査電極駆動回路5Bの具体的な回路図である。実施の形態1と異なる点は、維持回路51Aが51Bに変更されている点および、回収回路54Aが54Bに変更されている点である。その他の初期化回路52A、書込み回路53Aおよび書込み電圧供給回路55Aは実施の形態1と同様のため、説明は省略する。維持回路51Bが実施の形態1の維持回路51Aと異なる点は、第一のローサイド維持スイッチ素子S6のソース端子が接地電位ではなく負の維持電圧−Vsusを供給する電圧源V5に接続されている点である。また、回収回路54Bが実施の形態1の回収回路54Aと異なる点は、第一の回収コンデンサC1が削除され、接地電位に直接接続されている点である。すなわち、第一のハイサイド回収スイッチ素子S1のドレイン端子ならびに第一のローサイド回収スイッチ素子S2のソース端子が接地電位に接続されている。上記の点が、実施の形態1の走査電極駆動回路5Aとの違いであり、第一の回路基板56および第二の回路基板57における各回路の配置は、実施の形態1と同様に、(表1)の構成Aから構成Hのいずれであってもよい。このように回路基板に配置することで、実施の形態1と同様の効果を有する。
図7は本発明の実施の形態2である走査電極駆動回路5Bにおいて、初期化期間、書込み期間、維持期間において、走査電極SC1〜SCnおよび維持電極SU1〜SUnに印加する電圧の代表的な波形と、各スイッチ素子のオンオフ状態を示す波形図である。なお、走査電極に印加する電圧波形および維持電極に印加する電圧波形は、従来技術の波形を参考に掲載したものであり、本発明はこの波形に制限されるものではない。走査電極に印加する電圧波形は正の初期化電圧Vsetが維持電圧Vsusよりも大きく、負の初期化電圧−Vadが接地電位よりも小さい場合における初期化動作の一例を示したものであり、本発明はこの波形に制限されない。本実施の形態が実施の形態1と異なる点は、維持期間中の動作である。本実施の形態では、維持期間中、走査電極に印加する電圧は、維持電圧Vsusと負の維持電圧−Vsusであり、維持電極に印加する電圧は常に接地電位である。一方、実施の形態1では、走査電極、維持電極に印加する電圧は、電圧の印加タイミングは異なるものの維持電圧Vsusと接地電位である。このように実施の形態1と本実施の形態とでは維持期間における印加電圧波形が異なる。以下、維持期間中における各スイッチの動作方法を詳細に説明する。なお、初期化期間、書込み期間における動作は、実施の形態1と同様のため、説明は省略する。なお、実施の形態1では、維持期間開始からモードIVに移行するまでの期間、接地電位を出力する期間が存在するが、本実施の形態にも書込み期間とモードVIIIとの間に接地電位を出力する期間を設けてもよい。また、維持期間全体にわたって、ハイサイド書込みスイッチ素子S15とローサイド書込みスイッチ素子S16については、オンオフいずれの状態でもよい。ただし、望ましい動作状態については、各モード毎に異なるので、以下の各モードでの詳細な説明の中で説明する。
<モードVIII>
モードVIIIでは、第一のハイサイド回収スイッチ素子S1をオンし、それ以外の各スイッチ素子はオフにする。第一のハイサイド回収スイッチ素子S1をオンすることで、PDP10の静電容量と第一のハイサイドインダクタL1AとでLC共振回路を形成し、接地電位からPDP10に電力が供給され、PDP10の走査電極SC1〜SCnの電圧は上昇する。なお、ローサイド書込みスイッチ素子S16はオンしている方が望ましい。
<モードIX>
モードIXでは、第一のハイサイド維持スイッチ素子S5をオンする。第一のハイサイド回収スイッチ素子S1はオンオフいずれでもよい。第一のハイサイド維持スイッチ素子S5をオンすることで維持電圧Vsusが電圧源V1から走査電極SC1〜SCnに供給される。従来技術では、第一のハイサイド維持スイッチ素子S5とPDP10の間に複数のスイッチ素子が介在していた。これらのスイッチ素子は、電圧源V1から走査電極までの放電経路上のインピーダンスを上昇させ、回路損失を増大させていた。本発明は、第一のハイサイド維持スイッチ素子S5と走査電極との間に介在するスイッチ素子の数を最小にすることができるので、インピーダンスの低い放電経路を形成することが可能となる。したがって、回路損失の小さいプラズマディスプレイパネル駆動回路を提供することができる。また、従来は維持スイッチ素子S5と書込み回路の間の接続がコネクタあるいはねじであり、この接続方法もインピーダンスを高める原因となっていた。本発明は、維持スイッチ素子S5と書込み回路を同一の回路基板上に配置するので、コネクタあるいはねじが不要となり、インピーダンスを低減することが可能となる。したがって、回路損失が小さく、しかもインダクタンス成分も低下するので、急峻な放電電流を走査電極に供給することが可能となるため、発光効率の高いプラズマディスプレイ装置を提供することができる。なお、ローサイド書込みスイッチ素子S16はオンしている方が望ましい。
<モードX>
モードXでは、第一のハイサイド維持スイッチ素子S5をオフし、第一のローサイド回収スイッチ素子S2をオンする。第一のローサイド回収スイッチ素子S2をオンすることで、PDP10の静電容量と第一のローサイドインダクタL1BとでLC共振回路を形成し、PDP10から接地電位へ電力が供給され、PDP10の走査電極の電圧は下降する。なお、ハイサイド書込みスイッチ素子S15はオンしている方が望ましい。
<モードXI>
モードXIでは、第一のローサイド維持スイッチ素子S6をオンする。第一のローサイド回収スイッチ素子S2はオンオフいずれでもよい。モードXIの期間においては、走査電極側の電圧が−Vsusとなり、接地電位よりも低くなる。したがって、維持電極側から走査電極側に放電電流が流れる。モードXIの期間において放電経路のインピーダンスを低減させることは、発光効率を向上させ、あるいは、回路損失を低減するためには有効である。従来技術では、第一のローサイド維持スイッチ素子S6とPDP10の間に複数のスイッチ素子が介在していた。本発明は、第一のローサイド維持スイッチ素子S6と走査電極との間に介在するスイッチ素子の数を最小にすることができるので、インピーダンスの低い放電経路を形成することが可能となる。したがって、モードIXで説明したのと同様の効果を有する。なお、ハイサイド書込みスイッチ素子S15はオンしている方が望ましい。
以上のように各スイッチ素子をオンオフ動作させることで、走査電極に所望の電圧を印加することができ、しかも、維持電圧Vsusの電圧源V1から走査電極までのインピーダンスを最小にする回路にて電圧を供給することができる。その結果、急峻な放電電流を供給できるので、発光効率の高いプラズマディスプレイ装置を提供することができる。また、放電経路中のインピーダンスが小さいので、回路損失を低減することができる。
また、実施の形態1の場合は、維持電極駆動回路は図17に示す従来技術でよいものの、モードVの場合、放電経路内に第二のローサイド維持スイッチ素子S8が介在する。また、モードVIIの場合、放電経路内に第二のハイサイド維持スイッチ素子S7が介在する。一方、本実施の形態は、維持電極駆動回路を接地電位に固定するものであるため、維持電極駆動回路そのものが削除可能であり、維持電極から接地電位の間にスイッチ素子を含まない。したがって、本実施の形態は、実施の形態1よりもさらに放電経路のインピーダンスを低減することができるので、実施の形態1よりもさらに発光効率を高めることが可能である。また、さらに回路損失を低減することも可能である点で、より有効なプラズマディスプレイパネル駆動回路を提供することができる。
なお、本実施の形態は電圧の大小関係が、−Vad<−Vsus<0<Vsus<Vsetの場合に基づいて説明している。初期化期間における最小電圧−Vad>0の場合は、ローサイド初期化スイッチ素子S12のドレイン端子をIC1BではなくIC1Aに接続してもよい。また、初期化期間における最大電圧Vset<Vsusの場合は、正の初期化電圧を供給する初期化回路を図5(a)あるいは図5(b)のように構成してもよい。
(実施の形態3)
図8は本発明の実施の形態3である走査電極駆動回路5Cの具体的な回路図である。実施の形態1と異なる点は、書込み電圧供給回路55Aが55Bに変更している点であり、その他の初期化回路52A、維持回路51A、回収回路54Aおよび書込み回路53Aは実施の形態1と同様のため、説明は省略する。書込み電圧供給回路55Bが55Aと異なる点は、ダイオードD5が削除され、書込み電圧供給ハイサイドスイッチ素子S13が逆阻止IGBTであるスイッチ素子S13Aに変更されている点である。実施の形態1では、接続点IC1Aの電圧が書込み電圧Vscnを超えることがあるため、ダイオードD5を接続して、書込み電圧Vscnの電圧源V4に向かって電流が流れるのを防いでいる。本発明は、逆阻止IGBTを使用するように構成したことで、逆阻止IGBTのエミッタ端子の電圧がコレクタ端子より上昇しても、エミッタ端子からコレクタ端子に電流が流れることはない。したがって、ダイオードD5を削除することができるので、実施の形態1と比べてダイオードD5で発生する回路損失を低減することが可能となる。
同様に、逆阻止IGBTをその他の回路に使用することで、回路損失を低減するという同様の効果を奏する。例えば、図9は実施の形態1の回路において、逆阻止IGBTを第一のローサイド回収スイッチ素子に使用した場合の好適な回路図である。回収回路54Cにおける第一のローサイド回収スイッチ素子S2Aを逆阻止IGBTとすることで、第一のローサイドダイオードD2が削除できる。したがって、回路損失を低減することができる。むろん、第一のハイサイド回収スイッチ素子S1と第一のハイサイド回収ダイオードD1とを逆阻止IGBTに置き換えても同様の効果を有する。また、実施の形態1のその他の好適な維持回路である、図4(a)、図4(b)、図4(c)、図4(d)の回路を逆阻止IGBTに置き換えてもよい。実施の形態1のその他の好適な初期化回路である図5(a)、図5(b)を逆阻止IGBTに置き換えてもよい。
このように、スイッチ素子とダイオードの直列接続で構成されている回路は、すべて逆阻止IGBTで置き換えることが可能である。したがって、ダイオードが削除できるため、ダイオードにおける損失が低減し、結果としていずれの回路においても逆阻止IGBTを用いることで回路損失を低減することができる。
なお、本実施の形態は、実施の形態1の回路図を基本として逆阻止IGBTを各素子に使用する場合を説明したが、本発明はこれに制限されるものではない。次に、従来技術である回路図を基本として逆阻止IGBTを各素子に使用する場合の実施の形態について説明する。
(実施の形態4)
図10は本発明の実施の形態4である走査電極駆動回路5Eの具体的な回路図である。従来技術である図18に示す走査電極駆動回路5の一部の回路に逆阻止IGBTを使用した場合の好適な実施例である。図10は維持回路51Cにおける第一のハイサイド維持スイッチ素子S5に逆阻止IGBTを使用した場合の好適な実施の形態である。第一のハイサイド維持スイッチ素子S5を逆阻止IGBTであるスイッチ素子S5Aに変更することで、第二の分離スイッチ素子S10を削除することができる。したがって、従来技術における走査電極駆動回路5に比べ、維持スイッチ素子から走査電極までの放電経路におけるスイッチ素子が1個削除できるので、放電経路のインピーダンスを低減することができる。その結果、発光効率の高いプラズマディスプレイ装置を提供することができる。また、回路損失の少ないプラズマディスプレイパネル駆動回路を提供することができる。
同様に、その他の回路に逆阻止IGBTを使用する場合にも有効である。例えば図11は回収回路54Dにおける第一のハイサイド回収スイッチ素子と第一のハイサイド回収ダイオードを削除し、代わりに逆阻止IGBTを使用する場合の好適な回路図である。このように構成することで、回収ダイオードを削除することができるので、回路損失の少ないプラズマディスプレイパネル駆動回路を提供することができる。むろん、第一のローサイド回収スイッチ素子と第一のローサイド維持スイッチ素子を逆阻止IGBTに置き換えても同様の効果を有する。
また、図12の維持回路51Dに示すように、第一のローサイド維持スイッチ素子を逆阻止IGBTに置き換えてもよい。この場合は、第一の分離スイッチ素子S9を削除することができるので、上記の効果を有する。この場合、第一のローサイド維持スイッチ素子S6Aのエミッタ端子は維持電圧−Vsusを供給する電圧源V5に接続され、PDP10の維持電極側は接地電位としてもよい。
以上のように、従来技術である走査電極駆動回路に逆阻止IGBTを使用する場合においても、放電経路のインピーダンスを低減することが可能であるため、逆阻止IGBTを使用することはすべての走査電極駆動回路において有効である。むろん、維持電極駆動回路に逆阻止IGBTを使用してもよい。
(実施の形態5)
図13は本発明の実施の形態5である維持回路基板59、59A、59B、…を複数設置してプラズマディスプレイ装置を構成した場合の具体的な構成図である。これらの回路基板に搭載する走査電極駆動回路の具体的な回路は、それぞれの維持回路基板に少なくとも1つの維持回路が搭載されていればよい。本実施の形態は、第一の維持回路基板59上の維持回路の出力端子IC1Aがその他の維持回路基板59Aの維持回路の出力端子IC1Aと結線58にて電気的に接続している。また、1つの維持回路基板59上の維持回路の出力端子IC1Bがその他の維持回路基板59Aの維持回路の出力端子IC1Bと結線58にて電気的に接続している。従来技術である図18が第一の維持回路基板59に搭載されている場合は、異なる回路基板におけるスキャンドライバIC1の下端である、それぞれの接続点IC1Bが結線58にて電気的に結線される(図示しない)。
本実施の形態によれば、各維持回路の出力端子が他の維持回路基板に配置されている維持回路の出力端子と電気的に接続されるので、走査電極の負荷の違いによって、電極に印加される維持電圧に電位差が生じることを防ぐことができる。その結果、負荷の大きさが大きい電極で発光輝度が低減するという負荷依存性による輝度の変化を防ぐことができるので、表示品質の高いプラズマディスプレイ装置を提供することができる。これは、特に60インチを超える画面サイズの大きなプラズマディスプレイ装置を提供する場合に表示品質を大幅に改善できるので、特に大きな画面サイズの場合に顕著な効果を有する。
なお、本実施の形態における図13では実施の形態1の維持回路と書込み回路が配置された回路基板を基本として説明したが、維持回路基板59、59A、59B、…に搭載する回路は、少なくとも維持回路が搭載してあればよい。したがって、本発明は実施の形態1から4のいずれかの回路に制限されない。また、維持回路の出力端子は、1つの場合もあれば、2つの場合もあるが、本発明は出力端子の個数に制限はない。さらに、維持回路基板上に走査電極駆動回路のその他の回路を搭載しない場合は、その他の回路を別の回路基板に搭載し、各維持回路基板と接続する構成としてもよい(図示しない)。
なお、実施の形態1から5にて説明した電圧源V1からV5はコンデンサなどの容量素子であってもよい。または、高い周波数の電流を低インピーダンスで供給することが可能なその他の素子であってもよい。また、各スイッチ素子はMOSFETを主眼として説明しているが、特に断らないスイッチ素子については、IGBTと逆並列ダイオードを接続したスイッチ素子でもよい。
以上の実施の形態1から実施の形態5で説明したように、本発明によれば、放電経路におけるインピーダンスを低減する具体的な回路構成を提供することができるため、発光効率が高く、回路損失が低減でき、表示品質の高いプラズマディスプレイ装置を提供することができる。
本発明はプラズマディスプレイパネル駆動回路ならびにプラズマディスプレイ装置に関し、上記の通り、消費電力の削減や、画質の向上などの効果を奏するので、産業上有用である。
本発明の実施の形態1におけるプラズマディスプレイパネル駆動回路の走査電極駆動回路の具体的な回路図 本発明の実施の形態1におけるプラズマディスプレイパネル駆動回路の走査電極駆動回路の回路基板の接続構成を示す図 本発明の実施の形態1におけるプラズマディスプレイパネルの各電極に、1サブフィールド期間中に印加する電圧波形と、走査電極駆動回路の各スイッチ素子のオンオフ状態を示す波形図 本発明の実施の形態1におけるプラズマディスプレイパネル駆動回路の維持回路のその他の好適な回路図 本発明の実施の形態1におけるプラズマディスプレイパネル駆動回路の初期化回路のその他の好適な回路図 本発明の実施の形態2におけるプラズマディスプレイパネル駆動回路の走査電極駆動回路の具体的な回路図 本発明の実施の形態2におけるプラズマディスプレイパネルの各電極に、1サブフィールド期間中に印加する電圧波形と、走査電極駆動回路の各スイッチ素子のオンオフ状態を示す波形図 本発明の実施の形態3におけるプラズマディスプレイパネル駆動回路の走査電極回路の具体的な回路図 本発明の実施の形態3におけるその他の好適なプラズマディスプレイパネル駆動回路の走査電極駆動回路の具体的な回路図 本発明の実施の形態4におけるプラズマディスプレイパネル駆動回路の走査電極駆動回路の具体的な回路図 本発明の実施の形態4におけるその他の好適なプラズマディスプレイパネル駆動回路の走査電極駆動回路の具体的な回路図 本発明の実施の形態4におけるその他の好適なプラズマディスプレイパネル駆動回路の走査電極駆動回路の具体的な回路図 本発明の実施の形態5におけるプラズマディスプレイ装置の複数の走査電極駆動回路を接続する具体的な構成図 従来のプラズマディスプレイパネルの構成を示す斜視図 従来のプラズマディスプレイパネルの電極配列を示す図 従来のプラズマディスプレイパネルの各電極に、1サブフィールド期間中に印加する電圧波形図 従来のプラズマディスプレイ装置を機能ブロック毎に示したブロック構成図 従来のプラズマディスプレイパネル駆動回路における走査電極駆動回路と維持電極駆動回路の具体的な回路図 従来のプラズマディスプレイ装置を背面側から見た配置の一例を示す平面図
符号の説明
1 A/Dコンバータ
2 映像信号処理回路
3 サブフィールド処理回路
4 データ電極駆動回路
5,5A,5B,5C,5D,5E,5F,5G 走査電極駆動回路
6 維持電極駆動回路
10 PDP
20 前面板
21 フレキシブル配線板
22 走査電極
23 維持電極
24 誘電体層
25 保護層
26 シャーシ部材
30 背面板
31 フレキシブル配線板
32 データ電極
33 誘電体層
34 隔壁
35 蛍光体層
51,51A,51B,51C,51D 維持回路
52,52A,52B,52C 初期化回路
53,53A 書込み回路
54,54A,54B,54C,54D,54E 回収回路
55,55A,55B 書込み電圧供給回路
56 第一の回路基板
57 第二の回路基板
58 結線
59,59A,59B 維持回路基板
C1 第一の回収コンデンサ
C2 第二の回収コンデンサ
D1 第一のハイサイド回収ダイオード
D2 第一のローサイド回収ダイオード
D3 第二のハイサイド回収ダイオード
D4 第二のローサイド回収ダイオード
D5,D6,D7,D8,D9 ダイオード
IC1 スキャンドライバ
L1 第一のインダクタ
L1A 第一のハイサイド回収インダクタ
L1B 第一のローサイド回収インダクタ
L2 第二のインダクタ
S1 第一のハイサイド回収スイッチ素子
S2 第一のローサイド回収スイッチ素子
S3 第二のハイサイド回収スイッチ素子
S4 第二のローサイド回収スイッチ素子
S5 第一のハイサイド維持スイッチ素子
S6 第一のローサイド維持スイッチ素子
S7 第二のハイサイド維持スイッチ素子
S8 第二のローサイド維持スイッチ素子
S9 第一の分離スイッチ素子
S10 第二の分離スイッチ素子
S11 ハイサイド初期化スイッチ素子
S12 ローサイド初期化スイッチ素子
S13 書込み電圧供給ハイサイドスイッチ素子
S14 書込み電圧供給ローサイドスイッチ素子
S15 ハイサイド書込みスイッチ素子
S16 ローサイド書込みスイッチ素子

Claims (9)

  1. 初期化回路、書込み回路、維持回路を備えたプラズマディスプレイパネル駆動回路において、前記書込み回路と前記維持回路とを同一基板上に配置してなるプラズマディスプレイパネル駆動回路。
  2. 初期化回路、書込み回路、維持回路を備えたプラズマディスプレイパネル駆動回路において、前記初期化回路、前記書込み回路、前記維持回路を同一基板上に配置してなるプラズマディスプレイパネル駆動回路。
  3. 初期化回路、書込み回路、維持回路を備えたプラズマディスプレイパネル駆動回路において、前記初期化回路あるいは前記書込み回路あるいは前記維持回路のいずれかに含まれるスイッチ素子の少なくとも1つは逆阻止IGBTであるプラズマディスプレイパネル駆動回路。
  4. 初期化回路、書込み回路およびn個(nは自然数)の維持回路を備えたプラズマディスプレイパネル駆動回路において、前記維持回路は、プラズマディスプレイパネルの走査線数の1/nの走査線を駆動するプラズマディスプレイパネル駆動回路。
  5. 前記維持回路は、維持電圧を供給する電圧源と少なくとも1つのスイッチ素子を含み、前記電圧源から前記スイッチ素子を経由してプラズマディスプレイパネルの電極に電圧を供給する請求項1から4のいずれかに記載のプラズマディスプレイパネル駆動回路。
  6. 前記初期化回路は、少なくとも1つの電圧源と、少なくとも1つのスイッチ素子を含み、前記電圧源から前記スイッチ素子を経由してプラズマディスプレイパネルの電極に電圧を供給する請求項1から5のいずれかに記載のプラズマディスプレイパネル駆動回路。
  7. 少なくとも2つの回路基板の維持回路出力端が電気的に接続してなる請求項4から6のいずれかに記載のプラズマディスプレイパネル駆動回路。
  8. 請求項1から7のいずれかに記載のプラズマディスプレイパネル駆動回路を備えたプラズマディスプレイ装置。
  9. プラズマディスプレイパネルの維持電極は接地電位に固定している請求項8記載のプラズマディスプレイ装置。
JP2006062317A 2006-03-08 2006-03-08 プラズマディスプレイパネル駆動回路およびプラズマディスプレイ装置 Pending JP2007240822A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006062317A JP2007240822A (ja) 2006-03-08 2006-03-08 プラズマディスプレイパネル駆動回路およびプラズマディスプレイ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006062317A JP2007240822A (ja) 2006-03-08 2006-03-08 プラズマディスプレイパネル駆動回路およびプラズマディスプレイ装置

Publications (1)

Publication Number Publication Date
JP2007240822A true JP2007240822A (ja) 2007-09-20

Family

ID=38586434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006062317A Pending JP2007240822A (ja) 2006-03-08 2006-03-08 プラズマディスプレイパネル駆動回路およびプラズマディスプレイ装置

Country Status (1)

Country Link
JP (1) JP2007240822A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101763813A (zh) * 2008-12-31 2010-06-30 四川虹欧显示器件有限公司 用于等离子显示器的扫描电极驱动电路和方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101763813A (zh) * 2008-12-31 2010-06-30 四川虹欧显示器件有限公司 用于等离子显示器的扫描电极驱动电路和方法

Similar Documents

Publication Publication Date Title
JP4937635B2 (ja) プラズマディスプレイパネル駆動回路およびプラズマディスプレイ装置
EP1889248B1 (en) Plasma display panel drive circuit and plasma display apparatus
US7583033B2 (en) Plasma display panel driving circuit and plasma display apparatus
JP4338766B2 (ja) プラズマディスプレイパネル駆動回路
US7667696B2 (en) Plasma display apparatus
US8605013B2 (en) Plasma display device, and plasma display panel driving method
JP2007057737A (ja) プラズマディスプレイパネル駆動回路およびプラズマディスプレイ装置
US20090179829A1 (en) Plasma display panel driving circuit and plasma display apparatus
US20050190125A1 (en) Capacitive load driver and plasma display
KR20090104868A (ko) 플라즈마 디스플레이 장치 및 플라즈마 디스플레이 패널의 구동 방법
JP2007240822A (ja) プラズマディスプレイパネル駆動回路およびプラズマディスプレイ装置
EP1760681A1 (en) Plasma display apparatus, method of driving plasma display apparatus and address driving integrated circuit module
KR100647580B1 (ko) 플라즈마 디스플레이 패널의 전력 회수 장치 및 이를구비하는 플라즈마 디스플레이 패널의 구동장치
US20090278821A1 (en) Plasma display device
JP2008008980A (ja) プラズマディスプレイパネル駆動回路およびプラズマディスプレイ装置
JP2007010701A (ja) プラズマディスプレイ装置
JP2008197426A (ja) プラズマディスプレイ装置およびプラズマディスプレイ装置用駆動回路
US20110084957A1 (en) Plasma display panel drive circuit and plasma display device
JP2007057633A (ja) プラズマディスプレイパネル駆動回路およびプラズマディスプレイ装置
US20110090211A1 (en) Circuit for driving plasma display panel and plasma display device
JP2007286155A (ja) プラズマディスプレイ
JP2011247927A (ja) プラズマディスプレイパネル駆動回路及びプラズマディスプレイ装置
JP2009145546A (ja) プラズマディスプレイ装置
JP2012008322A (ja) プラズマディスプレイパネル駆動回路及びプラズマディスプレイ装置
KR20070120081A (ko) 향상된 효율의 서스테인 구동회로를 포함하는 플라즈마디스플레이 패널의 구동 장치