JP2007240437A - Gas sensor - Google Patents

Gas sensor Download PDF

Info

Publication number
JP2007240437A
JP2007240437A JP2006066138A JP2006066138A JP2007240437A JP 2007240437 A JP2007240437 A JP 2007240437A JP 2006066138 A JP2006066138 A JP 2006066138A JP 2006066138 A JP2006066138 A JP 2006066138A JP 2007240437 A JP2007240437 A JP 2007240437A
Authority
JP
Japan
Prior art keywords
electrode
gas sensor
exchange membrane
electrolytic solution
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006066138A
Other languages
Japanese (ja)
Other versions
JP4205725B2 (en
Inventor
Hitoshi Nakamura
仁 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komyo Rikagaku Kogyo KK
Original Assignee
Komyo Rikagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komyo Rikagaku Kogyo KK filed Critical Komyo Rikagaku Kogyo KK
Priority to JP2006066138A priority Critical patent/JP4205725B2/en
Publication of JP2007240437A publication Critical patent/JP2007240437A/en
Application granted granted Critical
Publication of JP4205725B2 publication Critical patent/JP4205725B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas sensor which is high in reliability of the measurement results and little affected by the density change of electrolyte or the vibration. <P>SOLUTION: The gas sensor 1 comprises the opposite pole 5, the comparison pole 6, and the operation pole 7, and at least between the comparison electrode 6 and the electrolyte, the anion-exchange membrane 15 is arranged. In the electrolyte, OH<SP>-</SP>passes through the anion-exchange membrane and arrives at the comparison electrode 6. The comparison electrode 6 is not directly contact with the electrolyte, and hardly affected even the density of the electrolyte is changed or the electrolyte flows. Consequently, this gas sensor 1 is reliable because it does't largely fluctuates even in the case elapsed long days after production or exposed under the vibration. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は各種ガスを検知するためのガスセンサに関するものである。   The present invention relates to a gas sensor for detecting various gases.

定電位電解式ガスセンサは、作用電極、対極、比較電極の3電極と電解液および容器とを有している。
作用電極、対極、比較電極の3電極はガス透過性の多孔質膜の内側に結合されており、いずれも電解液に接している。
The constant potential electrolytic gas sensor has three electrodes, a working electrode, a counter electrode, and a reference electrode, an electrolytic solution, and a container.
The three electrodes, the working electrode, the counter electrode, and the reference electrode, are bonded to the inside of the gas permeable porous membrane, and all are in contact with the electrolytic solution.

作用電極はガス透過性の多孔質膜に密着しており、試料ガスは多孔質膜を透過して作用電極に達して作用電極表面で酸化あるいは還元される。
この際に対極との間にガス濃度に応じた電流が流れ、ガス濃度測定が行われることになるが、あらかじめ基準となる比較電極に対して作用電極の電位を一定に保つことにより、特定のガスを選択的に、かつ安定に測定できるという特徴を持つ。
The working electrode is in close contact with the gas permeable porous membrane, and the sample gas passes through the porous membrane to reach the working electrode and is oxidized or reduced on the surface of the working electrode.
At this time, a current corresponding to the gas concentration flows between the counter electrode and the gas concentration measurement is performed. By keeping the potential of the working electrode constant with respect to the reference electrode serving as a reference in advance, a specific voltage is measured. It has the feature that gas can be measured selectively and stably.

定電位電解式ガスセンサは小型・軽量で、常温で作動し消費電力が小さいこと、および感度が高くppmレベルの識別が可能なため、各種毒性ガス(例えば一酸化炭素(CO)、硫化水素(H2S)、アンモニア(NH3)等)を対象とした許容濃度管理用の携帯用検知器、測定器用センサとして広く使用されている。
特開2001−208723号公報
The potentiostatic gas sensor is small and light, operates at room temperature, consumes little power, and has high sensitivity and can be distinguished at the ppm level, so various toxic gases (for example, carbon monoxide (CO), hydrogen sulfide (H 2 S), ammonia (NH 3 ), etc.) are widely used as portable detectors and sensor devices for allowable concentration management.
JP 2001-208723 A

定電位電解式ガスセンサの電解液としては、一般的に硫酸水溶液(対象ガスがCO、H2S等の場合)あるいは塩化カルシウム(CaCl2)や塩化リチウム(LiCl)等の中性塩水溶液(対象ガスがNH3の場合)が使用されており、これらの水溶液は吸湿性を有するため、測定使用雰囲気中の湿度との平衡関係より液量・濃度が変化する。
電解液の液量・濃度が変化すると、センサのゼロ出力が変化し、また、センサに振動が加わって内部で電解液が流動すると、センサ出力が過渡的に大きく変動するという問題があった。
The electrolyte of a potentiostatic gas sensor is generally a sulfuric acid aqueous solution (when the target gas is CO, H 2 S, etc.) or a neutral salt aqueous solution such as calcium chloride (CaCl 2 ) or lithium chloride (LiCl) (target) When the gas is NH 3 ), and these aqueous solutions are hygroscopic, the liquid amount and concentration change depending on the equilibrium relationship with the humidity in the measurement use atmosphere.
When the amount / concentration of the electrolytic solution changes, the zero output of the sensor changes, and when the vibration is applied to the sensor and the electrolytic solution flows inside, there is a problem that the sensor output varies greatly in a transient manner.

上記課題を解決するため、本発明は、筒状の容器本体と、前記容器本体の一端にそれぞれ配置された対極と比較電極と、前記容器本体の他端に配置された作用電極と、前記容器本体の内部に収容された電解液とを有し、前記対極と前記比較電極と前記作用電極とは、前記電解液中のイオンにより電気的に接続されたガスセンサであって、表面が前記比較電極と接触し、裏面が前記電解液と接触するイオン交換膜を有するガスセンサである。
本発明はガスセンサであって、前記イオン交換膜は、表面が前記対極と前記比較電極の両方に接触するガスセンサである。
本発明はガスセンサであって、容器本体内に含浸体が配置され、前記電解液は前記含浸体に含浸され、前記イオン交換膜は前記含浸体に含浸された前記電解液に接触するガスセンサである。
本発明はガスセンサであって、前記イオン交換膜は陰イオン交換膜であり、前記電解液は中性塩の水溶液であるガスセンサである。
本発明はガスセンサであって、前記中性塩は、塩化カルシウムと塩化リチウムのいずれか一方又は両方を含有するガスセンサである。
本発明はガスセンサであって、前記含浸体はSiO2繊維で構成されたガスセンサである。
In order to solve the above-described problems, the present invention provides a cylindrical container body, a counter electrode and a reference electrode respectively disposed at one end of the container body, a working electrode disposed at the other end of the container body, and the container The counter electrode, the comparison electrode, and the working electrode are electrically connected by ions in the electrolyte solution, the surface of which is the comparison electrode And a gas sensor having an ion exchange membrane whose back surface is in contact with the electrolytic solution.
The present invention is a gas sensor, wherein the ion exchange membrane is a gas sensor whose surface is in contact with both the counter electrode and the comparison electrode.
The present invention is a gas sensor, wherein an impregnated body is disposed in a container body, the electrolytic solution is impregnated in the impregnated body, and the ion exchange membrane is in contact with the electrolytic solution impregnated in the impregnated body. .
The present invention is a gas sensor, wherein the ion exchange membrane is an anion exchange membrane, and the electrolyte is an aqueous solution of a neutral salt.
This invention is a gas sensor, Comprising: The said neutral salt is a gas sensor containing either one or both of calcium chloride and lithium chloride.
The present invention provides a gas sensor, the absorbing member is a gas sensor composed of SiO 2 fibers.

本発明のガスセンサは電解液の濃度変化や、振動による影響が小さく、測定結果の信頼性が高い。   The gas sensor of the present invention is less affected by changes in the concentration of the electrolyte and vibrations, and the measurement results are highly reliable.

図1は、ガスセンサ1の内部構造を説明するための断面図である。
このガスセンサ1は全体形状が円柱状であり、円筒形状の容器本体3を有している。容器本体3の両端には、第一、第二の多孔質膜9a、9bがそれぞれ配置されており、第一、第二の蓋部10a、10bによって、パッキン4a、4b、8a、8dを介して、容器本体3にそれぞれ固定されている。
FIG. 1 is a cross-sectional view for explaining the internal structure of the gas sensor 1.
The gas sensor 1 has a cylindrical shape as a whole and has a cylindrical container body 3. First and second porous membranes 9a and 9b are respectively arranged at both ends of the container body 3, and the first and second lid portions 10a and 10b respectively pass the packings 4a, 4b, 8a and 8d. Are respectively fixed to the container body 3.

第一、第二の多孔質膜9a、9bの片面は、容器本体3の内部にそれぞれ向けられており、第一の多孔質膜9aの容器本体3内部側表面には、比較電極6と対極5が配置され、その間には隙間が形成されている。第二の多孔質膜9bの容器本体3内部側の面には、作用電極7が配置されている。   One side of each of the first and second porous membranes 9a and 9b is directed to the inside of the container main body 3, and the reference electrode 6 and the counter electrode are provided on the inside surface of the container main body 3 of the first porous membrane 9a. 5 are arranged, and a gap is formed between them. A working electrode 7 is disposed on the inner surface of the second porous membrane 9b on the container body 3 side.

第一の多孔質膜9a上には比較電極6の表面と対極5の表面を覆うようにフィルム状の陰イオン交換膜15が取り付けられており、対極5と比較電極6との間の隙間は陰イオン交換膜15と第一の多孔質膜9aとで挟まれている。   A film-like anion exchange membrane 15 is attached on the first porous membrane 9a so as to cover the surface of the comparison electrode 6 and the surface of the counter electrode 5, and the gap between the counter electrode 5 and the comparison electrode 6 is It is sandwiched between the anion exchange membrane 15 and the first porous membrane 9a.

容器本体3の内部には、作用電極7の表面と、陰イオン交換膜15の比較電極6上の部分の表面と対極5上の部分の表面とに接触した含浸体16が配置されている。   An impregnated body 16 that contacts the surface of the working electrode 7, the surface of the portion of the anion exchange membrane 15 on the comparison electrode 6, and the surface of the portion of the counter electrode 5 is disposed inside the container body 3.

含浸体16には電解液が含浸されている。陰イオン交換膜15は陰イオンが通過可能なので、含浸体16中の陰イオンにより、比較電極6と対極5と作用電極7は電気的に接続されている。   The impregnated body 16 is impregnated with an electrolytic solution. Since the anion exchange membrane 15 allows anion to pass therethrough, the reference electrode 6, the counter electrode 5, and the working electrode 7 are electrically connected by the anion in the impregnated body 16.

第一の蓋部10aには、空気孔19が形成されている。空気孔19の一端は大気に開放されており、他端は第一の多孔質膜9aと接触し、第一の多孔質膜9a表面が空気孔19内部に露出するようにされ、空気孔19を通過した空気は第一の多孔質膜9a、更には対極5及び比較電極6を通過して、対極5及び比較電極6と、陰イオン交換膜15の界面に到達する。   An air hole 19 is formed in the first lid portion 10a. One end of the air hole 19 is open to the atmosphere, and the other end is in contact with the first porous film 9a so that the surface of the first porous film 9a is exposed inside the air hole 19. The air that has passed through the first porous membrane 9 a passes through the counter electrode 5 and the comparison electrode 6, and reaches the interface between the counter electrode 5 and the comparison electrode 6 and the anion exchange membrane 15.

上述したように、陰イオンは陰イオン交換膜15を通過可能だから、陰イオンは対極5及び比較電極6と、陰イオン交換膜15との界面に到達する。
第二の蓋部10bと第二の多孔質膜9bの間には通気室13が形成されている。第二の蓋部10bには、複数個のガス導入孔18が形成されている。ガス導入孔18の一端は、外部雰囲気に曝されており、他端は通気室13に接続され、外部雰囲気に充満する気体がガス導入孔18を通って通気室13に導入され、第二の多孔質膜9bと接触するように構成されている。
As described above, since the anion can pass through the anion exchange membrane 15, the anion reaches the interface between the counter electrode 5 and the reference electrode 6 and the anion exchange membrane 15.
A ventilation chamber 13 is formed between the second lid portion 10b and the second porous film 9b. A plurality of gas introduction holes 18 are formed in the second lid portion 10b. One end of the gas introduction hole 18 is exposed to the external atmosphere, the other end is connected to the ventilation chamber 13, and a gas filling the external atmosphere is introduced into the ventilation chamber 13 through the gas introduction hole 18, and the second It is comprised so that it may contact with the porous membrane 9b.

ここでは、陰イオン交換膜15の外周と、対極5及び比較電極6からなる電極部材の外周は、容器本体3の開口よりも大きくされており、蓋部10aと、パッキン4aと、第一の多孔質膜9aと、比較電極6と、対極5と、陰イオン交換膜15は、ねじ17によって容器本体3の開口に押圧して固定され、開口は陰イオン交換膜15で閉塞されている。   Here, the outer periphery of the anion exchange membrane 15 and the outer periphery of the electrode member composed of the counter electrode 5 and the comparison electrode 6 are made larger than the opening of the container body 3, and the lid portion 10a, the packing 4a, the first electrode The porous membrane 9 a, the comparison electrode 6, the counter electrode 5, and the anion exchange membrane 15 are pressed and fixed to the opening of the container main body 3 with screws 17, and the opening is closed with the anion exchange membrane 15.

陰イオン交換膜15の周囲と、比較電極6と対極5からなる電極部材の周囲はパッキン8aによって気密に囲まれている。
対極5と比較電極6間の隙間の周囲は、対極5と、比較電極6と、パッキン8aとで囲まれており、上述したように、この隙間の上下は陰イオン交換膜15と第一の多孔質膜9aとで挟まれている。
The periphery of the anion exchange membrane 15 and the periphery of the electrode member composed of the comparison electrode 6 and the counter electrode 5 are hermetically surrounded by the packing 8a.
The periphery of the gap between the counter electrode 5 and the comparison electrode 6 is surrounded by the counter electrode 5, the comparison electrode 6, and the packing 8a. As described above, the upper and lower sides of the gap are formed between the anion exchange membrane 15 and the first electrode. It is sandwiched between the porous membrane 9a.

後述するように、陰イオン交換膜15は電解液を通さないから、この隙間にも電解液が浸入せず、上述したように比較電極6と対極5からなる電極部材の周囲は、パッキン8aで囲まれているから、対極5と比較電極6の隙間に露出する側面と、電極部材周囲の側面には電解液が接触しない。従って、対極5と比較電極6には、電解液が直接接触しないようになっている。   As will be described later, since the anion exchange membrane 15 does not allow the electrolytic solution to pass therethrough, the electrolytic solution does not enter the gap. As described above, the periphery of the electrode member composed of the comparison electrode 6 and the counter electrode 5 is covered with the packing 8a. Since it is surrounded, the electrolytic solution does not contact the side surface exposed in the gap between the counter electrode 5 and the comparison electrode 6 and the side surface around the electrode member. Accordingly, the counter electrode 5 and the reference electrode 6 are not in direct contact with the electrolytic solution.

対極5と比較電極6の間の隙間の真裏位置には、第一の多孔質膜9aを挟んで空気孔19の一端が配置されており、空気孔19を通過した空気は、直接その隙間に侵入せず、第一の多孔質膜9aを通過してから隙間に導入される。   One end of an air hole 19 is disposed directly behind the gap between the counter electrode 5 and the reference electrode 6 with the first porous film 9a interposed therebetween, and the air that has passed through the air hole 19 directly enters the gap. It does not enter and is introduced into the gap after passing through the first porous membrane 9a.

ここでは、含浸体16の作用電極7の表面に接触する部分と、陰イオン交換膜15に接触する部分は、それぞれ外周が容器本体3の開口と略等しく、開口はそれぞれ含浸体16で塞がれ、作用電極7表面の容器本体3の内部空間に位置する部分と、陰イオン交換膜15表面の容器本体3の内部空間に位置する部分は含浸体16で覆われている。   Here, the outer periphery of the part of the impregnated body 16 that contacts the surface of the working electrode 7 and the part of the impregnated body 16 that contacts the anion exchange membrane 15 are substantially equal to the opening of the container body 3, and the opening is closed by the impregnated body 16 In addition, a portion located in the inner space of the container body 3 on the surface of the working electrode 7 and a portion located in the inner space of the container body 3 on the surface of the anion exchange membrane 15 are covered with the impregnated body 16.

従って、容器本体3の内部空間には、各電極5〜7の表面も、電極5、6上の陰イオン交換膜15の表面も露出せず、作用電極7表面と、電極5、6上の陰イオン交換膜15表面のうち、作用電極7と陰イオン交換膜15との間の空間内の電解液と接触可能な部分は、全て含浸体16に含浸された電解液と接触した状態になっているから、後述するように電解液の量が増えて含浸体16に含浸されきれなくなり、電解液が含浸体16で囲まれた空間や、含浸体16と容器本体3内壁で囲まれた空間に存在するようになっても(図2)、電極7や電極5、6上の陰イオン交換膜15は、電解液との接触面積が変わらない。   Therefore, neither the surface of the electrodes 5 to 7 nor the surface of the anion exchange membrane 15 on the electrodes 5 and 6 is exposed in the internal space of the container body 3, and the surface of the working electrode 7 and the electrodes 5 and 6 are exposed. Of the surface of the anion exchange membrane 15, all the parts that can come into contact with the electrolytic solution in the space between the working electrode 7 and the anion exchange membrane 15 are in contact with the electrolytic solution impregnated in the impregnated body 16. Therefore, as will be described later, the amount of the electrolytic solution increases so that the impregnated body 16 cannot be completely impregnated, and the space surrounded by the impregnated body 16 or the space surrounded by the impregnated body 16 and the inner wall of the container body 3. (FIG. 2), the anion exchange membrane 15 on the electrode 7 and the electrodes 5 and 6 does not change the contact area with the electrolytic solution.

次に、アンモニアガス(NH3)を測定対象とするガスセンサ1について説明すると、含浸体16には、予め塩化カルシウム(CaCl2)や塩化リチウム(LiCl)等の中性塩水溶液からなる電解液が含浸されている。 Next, the gas sensor 1 for measuring ammonia gas (NH 3 ) will be described. The impregnated body 16 has an electrolytic solution made of a neutral salt aqueous solution such as calcium chloride (CaCl 2 ) or lithium chloride (LiCl) in advance. Impregnated.

試料ガスが充満した雰囲気にガスセンサ1を配置し、拡散により試料ガスを各ガス導入孔18から通気室13内に導入させるか、試料ガスを少なくとも1個のガス導入孔18から通気室13内に導入し、通気室13内を通し、他のガス導入孔18から排出する。   The gas sensor 1 is disposed in an atmosphere filled with the sample gas, and the sample gas is introduced into the vent chamber 13 from each gas introduction hole 18 by diffusion, or the sample gas is introduced into the vent chamber 13 from at least one gas introduction hole 18. The gas is introduced, passes through the ventilation chamber 13, and is discharged from another gas introduction hole 18.

第一、第二の多孔質膜9a、9bは通気性を有しており、通気室13に導入された試料ガスは第二の多孔質膜9bを透過し、作用電極7に到達する。作用電極7はガスを透過可能に構成され、試料ガスは作用電極7と電解液との界面に到達する。   The first and second porous membranes 9 a and 9 b have air permeability, and the sample gas introduced into the vent chamber 13 passes through the second porous membrane 9 b and reaches the working electrode 7. The working electrode 7 is configured to be permeable to gas, and the sample gas reaches the interface between the working electrode 7 and the electrolytic solution.

作用電極7と対極5と比較電極6にはそれぞれリードが接続されており、リードにより作用電極7を接地電位に接続し、ここでは、比較電極6と作用電極7との間の電圧が一定になるように、対極5の電位を制御する。   A lead is connected to each of the working electrode 7, the counter electrode 5, and the comparison electrode 6, and the working electrode 7 is connected to the ground potential by the lead. Here, the voltage between the comparison electrode 6 and the working electrode 7 is constant. Thus, the potential of the counter electrode 5 is controlled.

作用電極7と電解液との界面で、下記式(1)に示すアンモニアの酸化反応が進行し、電解液中のOH-が消費される。 At the interface between the working electrode 7 and the electrolytic solution, the oxidation reaction of ammonia shown in the following formula (1) proceeds, and OH in the electrolytic solution is consumed.

NH3 + 3OH- →1/2N2+3H2O+3e- ……(1)
上述したように、電解液中の陰イオンと空気中の酸素は、対極5と陰イオン交換膜15の界面に到達するから、酸素と陰イオンは対極5と陰イオン交換膜15との界面で反応し、下記式(2)に示す還元反応が進行され、電解液中にOH-が供給される。
NH 3 + 3OH → 1 / 2N 2 + 3H 2 O + 3e (1)
As described above, since the anion in the electrolytic solution and the oxygen in the air reach the interface between the counter electrode 5 and the anion exchange membrane 15, the oxygen and the anion are at the interface between the counter electrode 5 and the anion exchange membrane 15. The reaction causes a reduction reaction represented by the following formula (2) to proceed, and OH is supplied into the electrolytic solution.

3/4O2+3/2H2O+3e- →3OH-……(2)
対極5を流れる電流は試料ガス中のアンモニアガス濃度に依存するので、対極5を流れる電流を測定すると、試料ガス中のアンモニアガス濃度が分かる。
3 / 4O 2 + 3 / 2H 2 O + 3e → 3OH (2)
Since the current flowing through the counter electrode 5 depends on the ammonia gas concentration in the sample gas, the ammonia gas concentration in the sample gas can be determined by measuring the current flowing through the counter electrode 5.

含浸体16に含浸された電解液は、ガスセンサ1が試料ガスが充満した雰囲気に置かれた時には、ガス導入孔18を介して試料ガスと接触し、ガスセンサ1が大気中で放置された時には、ガス導入孔18を介して空気と接触する。   The electrolyte solution impregnated in the impregnated body 16 comes into contact with the sample gas through the gas introduction hole 18 when the gas sensor 1 is placed in an atmosphere filled with the sample gas, and when the gas sensor 1 is left in the atmosphere, It contacts with air through the gas introduction hole 18.

上述した、塩化カルシウムや塩化リチウム等の中性塩の水溶液は吸湿性が高いので、試料ガスの水分含有量が高い場合や、ガスセンサ1を高湿度の環境に置いた場合には、電解液が試料ガス又は空気中の水分を吸収し、図2に示したように、電解液22の量が増えて、電解液中の溶質の濃度が低下する。   Since the aqueous solution of neutral salt such as calcium chloride and lithium chloride described above has high hygroscopicity, when the moisture content of the sample gas is high or when the gas sensor 1 is placed in a high humidity environment, the electrolyte solution is Moisture in the sample gas or air is absorbed, and as shown in FIG. 2, the amount of the electrolytic solution 22 increases and the concentration of the solute in the electrolytic solution decreases.

逆に、試料ガスの水分含有量が低い場合や、ガスセンサ1を低湿度の環境に放置すると、電解液から水が蒸発して電解液の濃度が上昇する。このように、ガスセンサ1中の電解液の濃度及び量は、使用環境によって変動しやすい。   On the contrary, when the moisture content of the sample gas is low, or when the gas sensor 1 is left in a low humidity environment, water evaporates from the electrolytic solution and the concentration of the electrolytic solution increases. Thus, the concentration and amount of the electrolyte in the gas sensor 1 are likely to vary depending on the usage environment.

従来のガスセンサは、比較電極6が電解液と直接接触していたため、電解液の濃度が変動したり、振動によって電解液が含浸体16中で流動すると、作用電極7と対極5との間に流れる電流値が大きく変動し、ガス濃度を示す出力信号が大きく変動した。
これに対し、本願のガスセンサ1は、陰イオン交換膜15が設けられ、比較電極6が電解液に直接接触しないようになっている。
In the conventional gas sensor, since the comparison electrode 6 is in direct contact with the electrolytic solution, when the concentration of the electrolytic solution fluctuates or the electrolytic solution flows in the impregnated body 16 due to vibration, the working electrode 7 and the counter electrode 5 are interposed. The flowing current value fluctuated greatly, and the output signal indicating the gas concentration fluctuated greatly.
On the other hand, the gas sensor 1 of the present application is provided with the anion exchange membrane 15 so that the comparison electrode 6 is not in direct contact with the electrolytic solution.

陰イオン交換膜15は外部のpHが変動しても、内部のpHが変動し難い性質(緩衝作用)を有しており、含浸体16に含浸された電解液の濃度が変化してそのpHが大きく変動しても、陰イオン交換膜15内部のpHの変動量は小さいから、比較電極6と陰イオン交換膜15との界面ではpHは大きく変動しない。従って、電解液のpH変動が上記式(2)の反応に与える影響が小さく、電解液の濃度が変化しても、ガス濃度を示す出力信号に影響が出難い。   The anion exchange membrane 15 has a property (buffer action) in which the internal pH does not easily change even if the external pH changes, and the concentration of the electrolyte solution impregnated in the impregnated body 16 changes to change the pH. However, the pH does not fluctuate greatly at the interface between the reference electrode 6 and the anion exchange membrane 15 because the amount of fluctuation of the pH inside the anion exchange membrane 15 is small. Therefore, the influence of the pH variation of the electrolytic solution on the reaction of the above formula (2) is small, and even if the concentration of the electrolytic solution changes, the output signal indicating the gas concentration is hardly affected.

しかも、比較電極6は含浸体16中の電解液と直接接触しないから、電解液の液量が変化したり、ガスセンサ1に振動が加わることで、含浸体16中で電解液が流動しても、その影響を受けない。   In addition, since the comparison electrode 6 does not directly contact the electrolyte solution in the impregnated body 16, even if the electrolyte solution flows in the impregnated body 16 by changing the amount of the electrolyte solution or applying vibration to the gas sensor 1. Not affected by it.

尚、含浸体16は繊維や多孔質体等、内部に細孔を多数有するものが使用可能であり、一般に含浸体16には通常ガラス繊維ろ紙が用いられるが、ここでは含浸体16はSiO2繊維ろ紙(純粋なSiO2で構成されたろ紙)で構成されている。 The impregnated body 16 may be a fiber, a porous body, or the like having a large number of pores inside. Generally, a glass fiber filter paper is generally used as the impregnated body 16, but here the impregnated body 16 is made of SiO 2. It is made of fiber filter paper (filter paper made of pure SiO 2 ).

ガラス繊維ろ紙はNaやK等のアルカリ金属を含有しており、ガラス繊維ろ紙を用いた場合には電解液にアルカリ金属のイオンが溶出して電解液のpHがアルカリ側に変化するが、SiO2繊維ろ紙はNaやK等のアルカリ金属を含有しておらず、SiO2繊維ろ紙を用いた場合には電解液のpHが変化しない。 Glass fiber filter paper contains alkali metals such as Na and K. When glass fiber filter paper is used, alkali metal ions are eluted into the electrolyte solution, and the pH of the electrolyte solution changes to the alkali side. 2 fiber filter paper did not contain an alkali metal such as Na or K, pH of the electrolyte solution does not change in the case of using the SiO 2 fiber filter paper.

従って、SiO2繊維ろ紙を含浸体に用いると電解液のpHが変化せず、ガスセンサ1の出力信号に影響を与えない。SiO2繊維ろ紙は、アルカリ金属の影響を受けやすい塩化カルシウムや塩化リチウム等の中性塩水溶液を電解液に用いた場合に特に有効である。 Therefore, when SiO 2 fiber filter paper is used for the impregnated body, the pH of the electrolyte does not change, and the output signal of the gas sensor 1 is not affected. The SiO 2 fiber filter paper is particularly effective when an aqueous neutral salt solution such as calcium chloride or lithium chloride, which is easily affected by alkali metals, is used as the electrolyte.

上記図1に示したガスセンサ1を実施例のガスセンサとし、下記に示す測定条件で「ゼロ出力変位」と「出力変動ピーク値」を測定した。尚、ここでは対極5と、比較電極6と、作用電極7はPt電極であり、電解液は塩化リチウム(LiCl)水溶液であった。また、含浸体16はSiO2繊紙ろ紙(アルカリ分を含まない純粋なSiO2の繊紙からなるろ紙)であった。 The gas sensor 1 shown in FIG. 1 was used as the gas sensor of the example, and “zero output displacement” and “output fluctuation peak value” were measured under the following measurement conditions. Here, the counter electrode 5, the reference electrode 6, and the working electrode 7 were Pt electrodes, and the electrolyte was a lithium chloride (LiCl) aqueous solution. Further, the impregnation member 16 was SiO 2繊紙filter paper (filter paper made of pure SiO 2繊紙free alkalinity).

〔ゼロ出力変位試験〕
4個のガスセンサ1について、試験前に予めゼロ出力(アンモニアを含有しない試料に対する出力)と、50ppmのアンモニアに対する出力を測定し、出力信号とアンモニア濃度(ppm)との関係を予め求めた。各ガスセンサ1を室温、相対湿度(RH)92%の雰囲気下に39日間放置した後、再度ゼロ出力を測定し、試験前のゼロ出力との差をアンモニア濃度に換算し、その値をゼロ出力変位とした。
[Zero output displacement test]
For the four gas sensors 1, the zero output (output for the sample not containing ammonia) and the output for 50 ppm of ammonia were measured in advance before the test, and the relationship between the output signal and the ammonia concentration (ppm) was determined in advance. After each gas sensor 1 is left in an atmosphere of room temperature and relative humidity (RH) 92% for 39 days, the zero output is measured again, the difference from the zero output before the test is converted into the ammonia concentration, and the value is output as zero. Displacement.

〔出力変動ピーク値試験〕
ガスセンサ1を振幅10cm、2往復/秒で10秒間振動させ、振動を加える前の出力に対する振動後の出力値の変化を調べたところ、振動直後に一旦出力信号の値が上がった後、徐徐にその値が低下した。このときのセンサ出力変化幅の最大値をアンモニア濃度に換算し、出力変動ピーク値とした。
出力変動ピークと、上記ゼロ出力変位とを下記表1に記載する。
[Output fluctuation peak value test]
The gas sensor 1 was vibrated for 10 seconds with an amplitude of 10 cm, 2 reciprocations / second, and the change in the output value after vibration was examined with respect to the output before the vibration was applied. Its value decreased. The maximum value of the sensor output change width at this time was converted into the ammonia concentration to obtain an output fluctuation peak value.
The output fluctuation peak and the zero output displacement are shown in Table 1 below.

Figure 2007240437
Figure 2007240437

陰イオン交換膜15を設けず、対極5と比較電極6を直接電解液に接触させた以外は上記実施例のガスセンサと同じ構造のものを比較例1のガスセンサとした。   The gas sensor of Comparative Example 1 was the same as the gas sensor of the above example except that the anion exchange membrane 15 was not provided and the counter electrode 5 and the comparative electrode 6 were directly in contact with the electrolyte.

放置日数を39日間から18日間に変えた以外は、上記実施例と同じ条件で4個の比較例1のガスセンサについてゼロ出力変位を求めた。また、4個の比較例1のガスセンサについて、上記実施例と同じ条件で出力変動ピーク値を求めた。その結果を下記表2に記載する。   The zero output displacement was determined for the four gas sensors of Comparative Example 1 under the same conditions as in the above example except that the number of days left was changed from 39 days to 18 days. Further, for the four gas sensors of Comparative Example 1, output fluctuation peak values were obtained under the same conditions as in the above example. The results are listed in Table 2 below.

Figure 2007240437
Figure 2007240437

上記表1、2を比較すると明らかなように、陰イオン交換膜を設けた実施例のガスセンサ1は、比較例1のガスセンサに比べてゼロ出力変位の値が低く、出力変動ピーク値の値も低かった。このことから、陰イオン交換膜を比較電極6に設けることで、電解液の濃度変化による出力変位、及びガスセンサ1に振動が加えられた際の出力変動を抑制できることがわかる。   As is clear from the comparison of Tables 1 and 2 above, the gas sensor 1 of the example provided with the anion exchange membrane has a lower value of zero output displacement and a value of the output fluctuation peak value than the gas sensor of Comparative Example 1. It was low. From this, it can be seen that by providing the reference electrode 6 with the anion exchange membrane, it is possible to suppress the output displacement due to the concentration change of the electrolytic solution and the output fluctuation when the gas sensor 1 is vibrated.

次に、上記実施例のガスセンサ1を用いて下記に示す経時的出力変化試験を行った。
〔経時的出力変化試験〕
実施例のガスセンサ1を室温で放置した際の、アンモニアガス濃度が50ppmの試料ガスに対するセンサ出力(μA)の経過時間に伴なう変化を測定した。
Next, using the gas sensor 1 of the above example, the temporal output change test shown below was performed.
[Time-dependent output change test]
When the gas sensor 1 of the example was allowed to stand at room temperature, the change with the elapsed time of the sensor output (μA) with respect to the sample gas having an ammonia gas concentration of 50 ppm was measured.

SiO2繊紙ろ紙に変え、含浸体16として通常のガラス繊維ろ紙を使用した以外は、上記実施例と同じ構造のガスセンサを比較例2のガスセンサとした。尚、比較例2に用いたガラス繊維ろ紙は、酸化ホウ素を含むホウケイ酸ガラスであり、酸化ホウ素以外にもNaやKを含有する。
比較例2のガスセンサを用いて、上記「経時的出力変化試験」を行った。実施例と比較例2の「経時的出力変化試験」の結果を図3のグラフに示す。
A gas sensor having the same structure as that of the above example was used as the gas sensor of Comparative Example 2 except that a normal glass fiber filter paper was used as the impregnated body 16 instead of the SiO 2 fiber filter paper. The glass fiber filter used in Comparative Example 2 is a borosilicate glass containing boron oxide, and contains Na and K in addition to boron oxide.
Using the gas sensor of Comparative Example 2, the “time-dependent output change test” was performed. The results of the “temporal output change test” of the example and the comparative example 2 are shown in the graph of FIG.

図3のグラフから明らかなように、実施例のガスセンサ1は製作後、日数が経過してもセンサ出力の値の変化が小さいが、比較例2のガスセンサは日数が経過かする程、センサ出力の値が大きく減少した。   As apparent from the graph of FIG. 3, the change in the sensor output value is small even after the number of days has elapsed after the manufacture of the gas sensor 1 of the example, but the gas output of the comparative example 2 has a sensor output as the number of days elapses. The value of decreased significantly.

また、実施例と比較例2のガスセンサで、オーバーシュート現象(出力が一旦上昇して最大値を示した後、その出力が徐徐に低下する現象)の有無を調べたところ、比較例2のガスセンサは製作後35日を経過するとオーバーシュート現象が見られたが、実施例のガスセンサは製作後35日を経過してもオーバーシュート現象が確認されなかった。
以上のことから、含浸体16にSiO2繊紙ろ紙を使用すれば、長期にわたって安定してガス濃度の測定が可能なことがわかる。
In addition, when the gas sensor of the example and the comparative example 2 was examined for the presence of an overshoot phenomenon (a phenomenon in which the output once increased and showed a maximum value and then the output gradually decreased), the gas sensor of the comparative example 2 In the gas sensor of Example, overshoot phenomenon was not confirmed even after 35 days after manufacture.
From the above, it can be seen that if SiO 2 fiber filter paper is used for the impregnated body 16, the gas concentration can be measured stably over a long period of time.

以上は、容器本体3内部に含浸体16が配置された場合について説明したが、本発明はこれに限定されるものではなく、図4に示したように、含浸体を設けず、容器本体3内部に電解液を配置してもよい。   The case where the impregnated body 16 is disposed inside the container main body 3 has been described above. However, the present invention is not limited to this, and as shown in FIG. An electrolytic solution may be disposed inside.

しかし、このガスセンサ50は、振動が加わったり、電解液の液量が変動すると、対極5や比較電極6や作用電極7が電解液と接触する面積が変動し、測定が不安定になるので、ガスセンサ50を持ち運んで使用したり、傾けて使用する必要がある場合には、含浸体を設けることが好ましい。
本願のガスセンサ1に用いる陰イオン交換膜15は、電解液を通過させないが、陰イオン(ここではOH-)を通過させる膜である。
However, in this gas sensor 50, when vibration is applied or the amount of the electrolytic solution varies, the area where the counter electrode 5, the comparative electrode 6 and the working electrode 7 are in contact with the electrolytic solution varies, and the measurement becomes unstable. When it is necessary to carry and use the gas sensor 50, it is preferable to provide an impregnated body.
The anion exchange membrane 15 used in the gas sensor 1 of the present application is a membrane that does not allow electrolyte solution to pass but allows anion (here, OH ) to pass therethrough.

イオン交換膜の種類は電解液の種類に応じて変更すべきものであり、上述したように、電解液が中性塩溶液の場合は陰イオン交換膜15を使用するが、電解液が硫酸水溶液(測定対象がCO、H2S等)やりん酸水溶液等の酸性水溶液の場合には陽イオン交換膜を使用する。 The type of ion exchange membrane should be changed according to the type of electrolytic solution. As described above, when the electrolytic solution is a neutral salt solution, the anion exchange membrane 15 is used, but the electrolytic solution is an aqueous sulfuric acid solution ( A cation exchange membrane is used when the measurement target is an acidic aqueous solution such as CO or H 2 S) or a phosphoric acid aqueous solution.

電解液として、硫酸水溶液よりも吸湿性の高い酸性水溶液を用いる場合には、電解液の濃度が変わりやすく、上述した不都合が起こりやすいので、陽イオン交換膜を用いることが特に有効である。
電解液22は、上述した酸性水溶液や、中性塩水溶液が使用可能であるが、塩基性の電解液は空気中の二酸化炭素と反応してしまうため、望ましくない。
When an acidic aqueous solution having higher hygroscopicity than sulfuric acid aqueous solution is used as the electrolytic solution, the concentration of the electrolytic solution is likely to change and the above-mentioned disadvantages are likely to occur. Therefore, it is particularly effective to use a cation exchange membrane.
As the electrolytic solution 22, the above-described acidic aqueous solution or neutral salt aqueous solution can be used, but the basic electrolytic solution is not desirable because it reacts with carbon dioxide in the air.

以上は、表面が比較電極6と対極5に接触し、裏面が電解液と接触する陰イオン交換膜15を設け、比較電極6と対極5に電解液を直接接触させない場合について説明したが、本発明はこれに限定されるものではない。   The above has described the case where the anion exchange membrane 15 having the front surface in contact with the reference electrode 6 and the counter electrode 5 and the back surface in contact with the electrolytic solution is provided and the electrolytic solution is not in direct contact with the comparative electrode 6 and the counter electrode 5. The invention is not limited to this.

表面が比較電極6と接触し、裏面が電解液に接触する陰イオン交換膜15を設けて、比較電極6だけが電解液に直接接触しないようにしてもよいし、表面が比較電極6と作用電極7に接触し、裏面が電解液に接触する陰イオン交換膜15を設けて、比較電極6と作用電極7の両方が電解液に直接接触しないようにしてもよい。   An anion exchange membrane 15 whose front surface is in contact with the reference electrode 6 and whose rear surface is in contact with the electrolytic solution may be provided so that only the comparative electrode 6 is not in direct contact with the electrolytic solution. An anion exchange membrane 15 that is in contact with the electrode 7 and whose back surface is in contact with the electrolytic solution may be provided so that both the comparison electrode 6 and the working electrode 7 are not in direct contact with the electrolytic solution.

更に、図4の符号50に示すガスセンサのように、表面が比較電極6と対極5に接触し、裏面が電解液22に接触する陰イオン交換膜15aと、表面が作用電極7に接触し、裏面が電解液22に接触する陰イオン交換膜15bとを設け、比較電極6と対極5と作用電極7とが電解液に直接接触しないようにしてもよい。   Furthermore, like the gas sensor shown by the code | symbol 50 of FIG. 4, the surface contacts the comparison electrode 6 and the counter electrode 5, the back surface contacts the electrolyte solution 22, and the surface contacts the working electrode 7, An anion exchange membrane 15b whose back surface is in contact with the electrolytic solution 22 may be provided so that the comparison electrode 6, the counter electrode 5, and the working electrode 7 do not directly contact the electrolytic solution.

第一、第二の多孔質膜9a、9bはガス透過性を有するものであって、試料ガスと反応性が低いものであれば特に限定されるものではないが、例えば4フッ化エチレン樹脂(PTFE)製の多孔質樹脂膜を用いることができる。   The first and second porous membranes 9a and 9b are not particularly limited as long as they have gas permeability and are low in reactivity with the sample gas. For example, tetrafluoroethylene resin ( A porous resin film made of PTFE) can be used.

対極(C.E.)5、比較電極(R.E.)6、作用電極(W.E.)7の電極材料も特に限定されないが、耐腐食性の金属、具体的には白金(白金黒)や
金等の貴金属であり、ガス透過性の多孔質膜9a、9bに結合される。
The electrode materials of the counter electrode (C.E.) 5, the reference electrode (R.E.) 6, and the working electrode (W.E.) 7 are not particularly limited, but are corrosion-resistant metals, specifically platinum (platinum). Black) or a noble metal such as gold and bonded to the gas permeable porous membranes 9a and 9b.

電極材料は粉末を単独で、又は、4フッ化エチレン樹脂粉末等のバインダーと混合し、適当な溶剤に分散させ、多孔質膜9a、9bをろ紙として用い、減圧濾過によって直接多孔質膜9a、9bに付着させ(又は減圧濾過によって得たフィルムを多孔質膜9a、9b上に転写し)、圧着して電極を形成することができる。   The electrode material is powder alone or mixed with a binder such as tetrafluoroethylene resin powder and dispersed in an appropriate solvent, and the porous membranes 9a and 9b are used as filter paper, and the porous membrane 9a directly by vacuum filtration. The electrode can be formed by adhering to 9b (or transferring the film obtained by filtration under reduced pressure onto the porous membranes 9a and 9b) and pressing.

また、これらの電極は、真空蒸着、スパッタリング、イオンプレーティング等の方法、または無電解めっきの方法で多孔質膜に密着形成してもよい。容器本体3の形状も円形筒状に限定されず、四角筒状であってもよい。   Further, these electrodes may be formed in close contact with the porous film by a method such as vacuum deposition, sputtering, ion plating, or electroless plating. The shape of the container body 3 is not limited to a circular cylinder, and may be a square cylinder.

本願のガスセンサの一例を説明する断面図Sectional drawing explaining an example of the gas sensor of this application 電解液の量が増えた状態を示す断面図Sectional view showing the state of increased amount of electrolyte センサ出力と経過日数との関係を示すグラフGraph showing the relationship between sensor output and elapsed days 本願のガスセンサの他の例を説明する断面図Sectional drawing explaining the other example of the gas sensor of this application

符号の説明Explanation of symbols

1、50……ガスセンサ 3……容器本体 5……対極 6……比較電極 7……作用電極 15、15a、15b……イオン交換膜(陰イオン交換膜) 16……含浸体 22……電解液   DESCRIPTION OF SYMBOLS 1,50 ... Gas sensor 3 ... Container body 5 ... Counter electrode 6 ... Comparative electrode 7 ... Working electrode 15, 15a, 15b ... Ion exchange membrane (anion exchange membrane) 16 ... Impregnation body 22 ... Electrolysis liquid

Claims (6)

筒状の容器本体と、
前記容器本体の一端にそれぞれ配置された対極と比較電極と、
前記容器本体の他端に配置された作用電極と、
前記容器本体の内部に収容された電解液とを有し、
前記対極と前記比較電極と前記作用電極とは、前記電解液中のイオンにより電気的に接続されたガスセンサであって、
表面が前記比較電極と接触し、裏面が前記電解液と接触するイオン交換膜を有するガスセンサ。
A cylindrical container body;
A counter electrode and a reference electrode respectively disposed at one end of the container body;
A working electrode disposed at the other end of the container body;
An electrolyte contained in the container body,
The counter electrode, the comparison electrode, and the working electrode are gas sensors electrically connected by ions in the electrolyte solution,
A gas sensor having an ion exchange membrane having a surface in contact with the reference electrode and a back surface in contact with the electrolyte.
前記イオン交換膜は、表面が前記対極と前記比較電極の両方に接触する請求項1記載のガスセンサ。   The gas sensor according to claim 1, wherein a surface of the ion exchange membrane is in contact with both the counter electrode and the reference electrode. 容器本体内に含浸体が配置され、
前記電解液は前記含浸体に含浸され、
前記イオン交換膜は前記含浸体に含浸された前記電解液に接触する請求項1又は請求項2のいずれか1項記載のガスセンサ。
An impregnated body is disposed in the container body,
The electrolytic solution is impregnated in the impregnated body,
The gas sensor according to claim 1, wherein the ion exchange membrane is in contact with the electrolytic solution impregnated in the impregnated body.
前記イオン交換膜は陰イオン交換膜であり、
前記電解液は中性塩の水溶液である請求項1乃至請求項3のいずれか1項記載のガスセンサ。
The ion exchange membrane is an anion exchange membrane;
The gas sensor according to any one of claims 1 to 3, wherein the electrolytic solution is an aqueous solution of a neutral salt.
前記中性塩は、塩化カルシウムと塩化リチウムのいずれか一方又は両方を含有する請求項4記載のガスセンサ。   The gas sensor according to claim 4, wherein the neutral salt contains one or both of calcium chloride and lithium chloride. 前記含浸体はSiO2繊維で構成された請求項4又は請求項5のいずれか1項記載のガスセンサ。 The gas sensor according to claim 4 or 5, wherein the impregnated body is composed of SiO 2 fiber.
JP2006066138A 2006-03-10 2006-03-10 Gas sensor Active JP4205725B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006066138A JP4205725B2 (en) 2006-03-10 2006-03-10 Gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006066138A JP4205725B2 (en) 2006-03-10 2006-03-10 Gas sensor

Publications (2)

Publication Number Publication Date
JP2007240437A true JP2007240437A (en) 2007-09-20
JP4205725B2 JP4205725B2 (en) 2009-01-07

Family

ID=38586110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006066138A Active JP4205725B2 (en) 2006-03-10 2006-03-10 Gas sensor

Country Status (1)

Country Link
JP (1) JP4205725B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014203939A1 (en) * 2013-06-18 2014-12-24 新コスモス電機株式会社 Controlled potential electrolysis gas sensor
JP2016148559A (en) * 2015-02-10 2016-08-18 光明理化学工業株式会社 Alcohol sensor
JP2016164511A (en) * 2015-03-06 2016-09-08 新コスモス電機株式会社 Controlled-potential electrolysis gas sensor
JP2016530537A (en) * 2013-09-09 2016-09-29 ドレーガー セイフティー アクチエンゲゼルシャフト ウント コンパニー コマンディートゲゼルシャフト アウフ アクチエン Liquid electrolytes for electrochemical gas sensors

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014203939A1 (en) * 2013-06-18 2014-12-24 新コスモス電機株式会社 Controlled potential electrolysis gas sensor
JP5918910B2 (en) * 2013-06-18 2016-05-18 新コスモス電機株式会社 Constant potential electrolytic gas sensor
US9551683B2 (en) 2013-06-18 2017-01-24 New Cosmos Electric Co., Ltd. Controlled potential electrolysis gas sensor
TWI631332B (en) * 2013-06-18 2018-08-01 新宇宙電機股份有限公司 Controlled potential electrolysis gas sensor
TWI660172B (en) * 2013-06-18 2019-05-21 日商新宇宙電機股份有限公司 Controlled potential electrolysis gas sensor
JP2016530537A (en) * 2013-09-09 2016-09-29 ドレーガー セイフティー アクチエンゲゼルシャフト ウント コンパニー コマンディートゲゼルシャフト アウフ アクチエン Liquid electrolytes for electrochemical gas sensors
KR101799060B1 (en) 2013-09-09 2017-11-17 드래거 세이프티 아게 운트 코. 카게아아 Liquid electrolyte for an electrochemical gas sensor
US10883958B2 (en) 2013-09-09 2021-01-05 Dräger Safety AG & Co. KGaA Liquid electrolyte for an electrochemical gas sensor
JP2016148559A (en) * 2015-02-10 2016-08-18 光明理化学工業株式会社 Alcohol sensor
JP2016164511A (en) * 2015-03-06 2016-09-08 新コスモス電機株式会社 Controlled-potential electrolysis gas sensor

Also Published As

Publication number Publication date
JP4205725B2 (en) 2009-01-07

Similar Documents

Publication Publication Date Title
TWI283942B (en) Electrochemical cells, and gas sensor and fuel cell devices comprising same
US20170160228A1 (en) Potentiometric sensor
JPH05196597A (en) Gas detector
JP4205725B2 (en) Gas sensor
US3897315A (en) Method of determining hydrogen sulfide
WO2002031485A1 (en) Acid gas measuring sensors and method of making same
US3859191A (en) Hydrogen cyanide sensing cell
JP5189934B2 (en) Dissolved oxygen sensor
US20070227908A1 (en) Electrochemical cell sensor
JP2001289816A (en) Controlled potential electrolysis type gas sensor
CN102200525B (en) Chlorine dioxide measurement component and method, and gas sensor with component
US3950231A (en) Method of determining hydrogen cyanide
JP2003075394A (en) Detector for oxidizing-gas
JP2954174B1 (en) Constant potential electrolytic gas sensor
JP4308223B2 (en) Gas sensor for ammonia, ammonia detection method
JP2000146899A (en) Ammonium ion measuring device
US5393392A (en) Polarographic PPB oxygen gas sensor
US10352896B2 (en) Coulometric titration cell
JP4824489B2 (en) Reference electrode, ion concentration measuring device using the reference electrode, reference electrode internal solution, method for adjusting pH of reference electrode internal solution, and salt bridge
JP2001281204A (en) Diaphragm-type sensor
CN212622377U (en) Online carbon dioxide gas-sensitive electrode
RU2665792C1 (en) Sensitive element for determining concentration of gas medium component
JPH0334824B2 (en)
Kudoh et al. Construction of a liquid-membrane type periodate ion-selective electrode and its application to the potentiometric titration of α-diols and α-amino-alcohols
JP2607614B2 (en) Cell for measuring components in gas

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081016

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4205725

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250