JP2007239892A - Base isolation device - Google Patents

Base isolation device Download PDF

Info

Publication number
JP2007239892A
JP2007239892A JP2006063420A JP2006063420A JP2007239892A JP 2007239892 A JP2007239892 A JP 2007239892A JP 2006063420 A JP2006063420 A JP 2006063420A JP 2006063420 A JP2006063420 A JP 2006063420A JP 2007239892 A JP2007239892 A JP 2007239892A
Authority
JP
Japan
Prior art keywords
sphere
guide rail
seismic isolation
base isolation
isolation device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006063420A
Other languages
Japanese (ja)
Other versions
JP4587483B2 (en
Inventor
Kenichi Kawaguchi
健一 川口
Keiichi Abe
啓一 阿部
Junichiro Abe
純一郎 阿部
Shinichi Yokoyama
眞一 横山
Tomoyasu Taguchi
朝康 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Okabe Co Ltd
Original Assignee
University of Tokyo NUC
Okabe Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC, Okabe Co Ltd filed Critical University of Tokyo NUC
Priority to JP2006063420A priority Critical patent/JP4587483B2/en
Publication of JP2007239892A publication Critical patent/JP2007239892A/en
Application granted granted Critical
Publication of JP4587483B2 publication Critical patent/JP4587483B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stable base isolation device for providing substantially constant base isolation performance regardless of the relative positional relationship between the support object side and the support side, by improving fluctuation in contact pressure with the guide rail side and fluctuation in a rotational ratio on the basis of a position of a sphere, in a base isolation layer using a guide rail and the sphere. <P>SOLUTION: This base isolation device has the guide rail 1 having mutually separately arranged opposed inclined faces 5 and 6 each composed of a specific inclination and constituted so that an interval between the mutual these inclined faces 5 and 6 becomes gradually small toward both outside ends from a central part, and the sphere 2 rolling by abutting from the inside on the respective inclined faces 5 and 6 of this guide rail. The return function is imparted by displacement in the height direction of the sphere 2 itself generated when its sphere 2 rolls to the outside end side from the central part while abutting on the inclined faces 5 and 6. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、被支持体側と支持体側との間に設置する免震装置に関する。より詳しくは、被支持体側と支持体側との相対的な位置関係を元の位置関係に復帰させる原点復帰機能を備えた免震装置に関する。   The present invention relates to a seismic isolation device installed between a supported body side and a support body side. More specifically, the present invention relates to a seismic isolation device having an origin return function for returning the relative positional relationship between the supported body side and the support body side to the original positional relationship.

従来から、球体や、ローラ、車輪などの転動体を使用する転がり系の支承方式を採用した免震装置は広く知られている。これらの転がり系の支承方式を採用した免震装置は、被支持体側と支持体側との間の絶縁性に優れているものの、正確な軌道を維持したり円滑な原点復帰機構を確保するための構造が複雑になり、延いてはコスト高の要因になるといった基本的な問題があった。そこで、これらの問題を解決するため、平板状の案内レールを用い、その案内レールに離間させて形成した両側の案内支持縁部によって転動体を支持案内するように構成するとともに、その両側の案内支持縁部相互間の間隔が中央部より両外端部へ向けて徐々に小さくなるように形成することにより、直線的な軌道と原点復帰機能を実現した免震装置が提案されている(特許文献1参照)。
特開2005−48837号公報
2. Description of the Related Art Conventionally, seismic isolation devices that employ a rolling support system that uses rolling elements such as a sphere, rollers, and wheels have been widely known. These seismic isolation devices that use a rolling bearing system are excellent in insulation between the support side and the support side, but maintain an accurate trajectory and ensure a smooth origin return mechanism. There was a basic problem that the structure became complicated and eventually increased the cost. Therefore, in order to solve these problems, a flat guide rail is used, and the rolling elements are supported and guided by guide support edges on both sides formed apart from the guide rail. There has been proposed a seismic isolation device that realizes a linear trajectory and an origin return function by forming so that the distance between the support edges gradually decreases from the center toward both outer ends (Patent) Reference 1).
JP 2005-48837 A

ところで、上記従来技術は、案内レールに形成した両側の案内支持縁部相互間の間隔が中央部より両外端部へ向けて徐々に小さくなるように形成するという簡素な構成により、正確な軌道と円滑な原点復帰機構を確保し得る点で優れたものであるが、転動体の位置によって案内支持縁部との当接位置が転動軸方向に変位するため、例えば転動体が球体の場合には、図13の(A)及び(B)に示したように、球体と案内レールとの当接部における接触角が、案内レールの中央部と両外端部ではθaからθbに変動し、それに伴って接触圧も変動するという技術的問題があった。また、転動体の回転半径も転動体の位置によって変動し、案内レールの中央部の方が両外端部より回転半径が小さくなり、同じ距離を移動する間の回転率が高くなるという技術的問題もあった。そして、それらの転動体の位置に基づく接触圧や回転率の変動は、被支持体側と支持体側との相対的な位置関係、すなわち免震装置による相対的な移動量によって免震性能が変動する要因にもなっていた。   By the way, the above-mentioned prior art has an accurate track with a simple configuration in which the distance between the guide support edges on both sides formed in the guide rail is gradually reduced from the center toward both outer ends. It is excellent in that it can secure a smooth origin return mechanism, but the contact position with the guide support edge is displaced in the rolling axis direction depending on the position of the rolling element, so for example when the rolling element is a sphere As shown in FIGS. 13A and 13B, the contact angle at the contact portion between the sphere and the guide rail varies from θa to θb at the center and both outer ends of the guide rail. As a result, there was a technical problem that the contact pressure also fluctuated. Further, the rotation radius of the rolling element also varies depending on the position of the rolling element, and the rotation radius is smaller at the center of the guide rail than at both outer ends, and the rotation rate is increased while moving the same distance. There was also a problem. And the fluctuation of the contact pressure and the rotation rate based on the position of those rolling elements changes the seismic isolation performance depending on the relative positional relationship between the supported body side and the support body side, that is, the relative movement amount by the seismic isolation device. It was also a factor.

本発明は、以上のような従来の技術的状況に鑑み、転動体として球体を採用した場合に生じる球体の位置に基づく案内レール側との接触圧の変動や回転率の変動を改善し、被支持体側と支持体側との相対的な位置関係に関わらずほぼ一定の免震性能が得られ、動作的にも強度的にもより安定した免震装置を提供することを目的とする。   In view of the above-described conventional technical situation, the present invention improves fluctuations in contact pressure and rotation rate with the guide rail based on the position of a sphere that occurs when a sphere is adopted as a rolling element. An object of the present invention is to provide a seismic isolation device that can obtain a substantially constant seismic isolation performance regardless of the relative positional relationship between the support side and the support side, and is more stable in terms of operation and strength.

本発明では、前記課題を解決するため、互いに離間して配設した一定の傾斜角からなる対向した傾斜面を備え、それらの傾斜面相互間の間隔が中央部より両外端部へ向けて徐々に小さくなるように構成した案内レールと、該案内レールのそれぞれの傾斜面に対して内側から当接して転動する球体とを備えるとの技術手段を採用した。この球体が前記傾斜面に当接しながら中央部から外端部側へ転動する際に生じる該球体自体の高さ方向の変位により復帰機能が付与される。   In the present invention, in order to solve the above-mentioned problem, the inclined surfaces having a certain inclination angle that are spaced apart from each other are provided, and the interval between these inclined surfaces is directed from the central portion toward both outer end portions. The technical means is provided that includes a guide rail configured to gradually become smaller and a sphere that rolls in contact with each inclined surface of the guide rail from the inside. A return function is provided by the displacement of the sphere itself in the height direction that occurs when the sphere rolls from the central portion to the outer end side while abutting the inclined surface.

本発明によれば、次の効果を得ることができる。
(1)両側の傾斜面の傾斜角を一定に構成したので、軌道上における球体と傾斜面との接触角や接触圧がほぼ一定に保持される。これにより、球体の位置に関わらずほぼ一定の免震性能が得られ、球体のより円滑で安定した転動動作が可能になる。また、球体の位置に関わらず接触圧がほぼ一定に保持されることから、案内レールや球体の設計及び製造を含めて強度管理が容易であり、より簡便かつ的確に所期の免震性能を実現及び維持することができる。
(2)両側の傾斜面の傾斜角を一定に構成したので、軌道上における球体と傾斜面との接触角や球体の転動軸周りの回転半径がほぼ一定に保持される。これにより、従来技術に伴った回転率の変動が改善されることから、この点からも、球体の位置に関わらず安定した円滑な転動動作が得られ、より安定した免震動作を得ることができる。
According to the present invention, the following effects can be obtained.
(1) Since the inclination angles of the inclined surfaces on both sides are configured to be constant, the contact angle and the contact pressure between the sphere and the inclined surface on the track are maintained substantially constant. Thereby, almost constant seismic isolation performance is obtained regardless of the position of the sphere, and a smoother and more stable rolling operation of the sphere is possible. In addition, since the contact pressure is maintained almost constant regardless of the position of the sphere, strength management is easy, including the design and manufacture of guide rails and spheres, and the desired seismic isolation performance can be achieved more simply and accurately. Can be realized and maintained.
(2) Since the inclination angles of the inclined surfaces on both sides are made constant, the contact angle between the sphere and the inclined surface on the track and the rotational radius around the rolling axis of the sphere are kept substantially constant. As a result, fluctuations in the rotation rate associated with the prior art are improved. From this point as well, a stable and smooth rolling operation can be obtained regardless of the position of the sphere, and a more stable seismic isolation operation can be obtained. Can do.

本発明に係る免震装置は、支持体側である地盤等の下部構造物側と被支持体側である躯体等の上部構造物側との間に設置して各種の建造物用の免震装置として広く適用することが可能である。場合に応じ、躯体の中間に設置することも可能である。さらに、例えばコンピュータ室のように既存あるいは新設の建造物の一室の床部の下方に設置して、当該室内のハードウェア機器等を保護する場合や、既存あるいは新設の建造物の内部に設置する展示物支持用の上部構造物と床部との間に設置して、美術品等の当該展示物を保護する場合などにも広く適用することが可能である。前記転動体としては球体を採用するが、その大きさに関しては場合に応じて適宜の選定が可能である。また、案内レールに互いに離間させて対向設置される球体の支持案内面としての傾斜面に関しては、共に一定の傾斜角から形成され、その一定の傾斜角を維持しながら、それらの傾斜面相互間の間隔が中央部より両外端部へ向けて徐々に小さくなるように構成されたものであれば足りる。その傾斜面相互間の間隔を変化させるために採用する転動方向に沿った傾斜面の具体的な形状に関しては、直線的に変化させることにより前記間隔を変化させるものが、軌道上における球体と傾斜面との接触角を常に一定に保持させることから望ましいが、特段、これに限定されるわけではなく、緩やかな曲線により変化させたものであってもよい。なお、案内レールの傾斜面の具体的な角度に関しては、上部構造物の質量や球体の軌道上の高低差すなわち原点復帰機能の強弱、球体の径と傾斜面相互間の間隔との比率などを勘案して適宜選定することができる。また、案内レールと球体との上下関係に関する制約はなく、どちらが上でも下でも適用が可能である。   The seismic isolation device according to the present invention is installed between the lower structure side such as the ground which is the support side and the upper structure side such as the case which is the supported body side as a seismic isolation device for various buildings. It can be widely applied. Depending on the case, it can be installed in the middle of the housing. In addition, for example, when installed under the floor of a room in an existing or new building such as a computer room to protect hardware equipment in the room, or installed in an existing or new building The present invention can be widely applied to the case where it is installed between a superstructure for supporting an exhibit to be displayed and a floor portion to protect the exhibit such as a work of art. A spherical body is adopted as the rolling element, but the size can be appropriately selected depending on the case. In addition, the inclined surfaces as the supporting guide surfaces of the spheres that are placed opposite to each other on the guide rail are formed at a constant inclination angle, and while maintaining the constant inclination angle, the inclination surfaces can be connected to each other. It suffices if the interval is configured so that the distance from the center gradually decreases toward the both outer ends. Regarding the specific shape of the inclined surface along the rolling direction adopted to change the interval between the inclined surfaces, the one that changes the interval by changing linearly is the sphere on the orbit. Although it is desirable that the contact angle with the inclined surface is always kept constant, it is not particularly limited to this, and the contact angle may be changed by a gentle curve. Regarding the specific angle of the inclined surface of the guide rail, the mass of the superstructure, the height difference on the orbit of the sphere, that is, the strength of the origin return function, the ratio between the diameter of the sphere and the interval between the inclined surfaces, etc. It can be selected as appropriate. Moreover, there is no restriction | limiting regarding the up-and-down relationship between a guide rail and a spherical body, and it can be applied regardless of which is above or below.

図1は本発明に係る免震装置の要部を示した概略斜視図である。図中1は案内レールであり、2はその案内レール1により支持案内される転動体としての球体である。本形態の案内レール1では、2つに分割されたレール部3,4から構成した場合を示したが、レール部3,4が互いに底面部側で連続的につながっている一体的な形態のものでもよい。案内レール1を構成するレール部3,4には、球体2の案内支持面としての傾斜面5,6が、それぞれ一定の傾斜角θを維持しながら球体2の転動方向に沿ってそれらの傾斜面5,6相互間の間隔が中央部より両外端部へ向けて徐々に小さくなるように直線的に変化するように形成されている。なお、ここでいう傾斜角θとは、球体2が転動する案内レール1の軸線方向に対して垂直な断面においてそれぞれ傾斜面5,6により形成される角度である。   FIG. 1 is a schematic perspective view showing a main part of a seismic isolation device according to the present invention. In the figure, 1 is a guide rail, and 2 is a sphere as a rolling element supported and guided by the guide rail 1. In the guide rail 1 of the present embodiment, the case where the rail portion 3 is composed of two divided rail portions 3 and 4 is shown. However, the rail portion 3 and 4 are continuously connected to each other on the bottom surface side. It may be a thing. In the rail portions 3 and 4 constituting the guide rail 1, inclined surfaces 5 and 6 as guide support surfaces of the sphere 2 are arranged along the rolling direction of the sphere 2 while maintaining a constant inclination angle θ. It is formed so that the interval between the inclined surfaces 5 and 6 linearly changes so as to gradually decrease from the central portion toward both outer end portions. Here, the inclination angle θ is an angle formed by the inclined surfaces 5 and 6 in a cross section perpendicular to the axial direction of the guide rail 1 on which the sphere 2 rolls.

図2及び図3は本発明に係る免震装置の基本的な動作原理を説明するための説明図であり、図2は案内レール1の中央付近における球体2とレール部3,4に形成された傾斜面5,6との当接状態を示したものであり、図3は案内レール1の両外端部における球体2とレール部3,4に形成された傾斜面5,6との当接状態を示したものである。ここで、図2に示すように、案内レール1の中央付近における球体2との当接状態において、球体2の転動方向に対して垂直な断面で見ると、図4や図5で示すように球体2の中心Cからレールの設置方向の角度φ(球体2の転動方向と案内レール1の転動面に沿う方向とがなす角度φ)分だけずれた見かけ上の中心C′(断面上の中心C′)と傾斜面5,6の当接点を含む断面で表される。そして、この断面上の中心C′から重力(鉛直)方向に下ろした垂線と、その中心C′から傾斜面5,6の当接点を結ぶ線とがなす角度はレール部3,4の傾斜角θと同じになる。以上のことから、上部構造物からの荷重Wによって傾斜面5,6に生じる接触圧Paは、球体2の中心Cからその球体2の当接部に向けて働くことから次の式により算出することができる。

Figure 2007239892
2 and 3 are explanatory views for explaining the basic operation principle of the seismic isolation device according to the present invention. FIG. 2 is formed on the sphere 2 and the rail portions 3 and 4 near the center of the guide rail 1. FIG. 3 shows a contact state between the spherical body 2 at both outer ends of the guide rail 1 and the inclined surfaces 5 and 6 formed on the rail portions 3 and 4. It shows the contact state. Here, as shown in FIG. 2, when viewed in a cross section perpendicular to the rolling direction of the sphere 2 in the contact state with the sphere 2 near the center of the guide rail 1, as shown in FIGS. 4 and 5. The apparent center C ′ (cross section) deviated from the center C of the sphere 2 by an angle φ in the rail installation direction (angle φ formed by the rolling direction of the sphere 2 and the direction along the rolling surface of the guide rail 1). It is represented by a cross section including the contact point between the upper center C ′) and the inclined surfaces 5 and 6. The angle formed between the perpendicular line extending from the center C ′ on the cross section in the direction of gravity (vertical) and the line connecting the contact point of the inclined surfaces 5 and 6 from the center C ′ is the inclination angle of the rail portions 3 and 4. It becomes the same as θ. From the above, the contact pressure Pa generated on the inclined surfaces 5 and 6 by the load W from the upper structure works from the center C of the sphere 2 toward the contact portion of the sphere 2 and is calculated by the following equation. be able to.
Figure 2007239892

さらに、球体2と傾斜面5との当接部及び球体2と傾斜面6との当接部相互間の間隔Laは、上記内容から次の式により算出することができる(rは球体2の半径)。

Figure 2007239892
Furthermore, the interval La between the contact portion between the sphere 2 and the inclined surface 5 and the contact portion between the sphere 2 and the inclined surface 6 can be calculated from the above contents by the following equation (r is the sphere 2 radius).
Figure 2007239892

同様に、図3に示すように、案内レール1の両外端部における当接状態において、球体2の転動方向に対して垂直な断面で見ると、球体2の中心Cからレールの設置方向の角度φ(球体2の転動方向と案内レール1の転動面に沿う方向とがなす角度φ)分だけずれた見かけ上の中心C″(断面上の中心C″)と傾斜面5,6の当接点を含む断面で表される。そして、この断面上の中心C″から重力(鉛直)方向に下ろした垂線と、その中心C″から傾斜面5,6の当接点を結ぶ線とがなす角度はレール部3,4の傾斜角θと同じであることからして、上部構造物からの荷重Wによって球体2の中心Cから傾斜面5,6の当接部に生じる接触圧Pbと、球体2と傾斜面5との当接部及び球体2と傾斜部6との当接部相互間の間隔Lbは次の式により算出することができる(rは球体2の半径)。

Figure 2007239892
Similarly, as shown in FIG. 3, the rail installation direction from the center C of the sphere 2 when viewed in a cross section perpendicular to the rolling direction of the sphere 2 in the contact state at both outer ends of the guide rail 1. The apparent center C ″ (center C ″ on the cross section) and the inclined surface 5, which are shifted by an angle φ (the angle φ formed by the rolling direction of the sphere 2 and the direction along the rolling surface of the guide rail 1). It is represented by a cross section including 6 contact points. The angle formed by the perpendicular line extending from the center C ″ on the cross section in the gravity (vertical) direction and the line connecting the contact point of the inclined surfaces 5 and 6 with the center C ″ is the inclination angle of the rail portions 3 and 4. Since it is the same as θ, the contact pressure Pb generated at the contact portion of the inclined surfaces 5 and 6 from the center C of the sphere 2 by the load W from the upper structure, and the contact between the sphere 2 and the inclined surface 5 The distance Lb between the contact portions of the sphere 2 and the inclined portion 6 can be calculated by the following equation (r is the radius of the sphere 2).
Figure 2007239892

しかして、上述の図2に示した案内レール1の中央付近における球体2とレール部3,4に形成された傾斜面5,6との当接状態と、図3に示した案内レール1の両外端部における球体2とレール部3,4に形成された傾斜面5,6との当接状態とを比較すれば、接触角θ及びレール部3,4の設置方向の角度φが一定であることから、接触圧PaとPb及び当接部相互間の間隔LaとLbは変化しないことが明らかである。すなわち、本発明に係る免震装置における案内レール1の傾斜面5,6は、その案内レール1の全長において適宜設定された一定の接触角θに形成されているので、球体2の位置に関わらず、傾斜面5,6と球体2との当接部における接触圧P及び当接部相互間の間隔Lは、常に一定であり変化はしない。また、当接部相互間の間隔La,Lbが常に一定していることから、球体2の転動軸を中心とする回転半径も常に一定で変化しないので、球体2の位置に関わらず、球体2の回転率は常に一定になる。なお、案内レール1の中央における傾斜面5,6と球体2との当接状態においては、その当接部が4点になるため、上部構造物からの荷重Wに基づく接触圧Pはこの一瞬だけ半分になるが、球体2の全体の動きから見ると非常に僅かな時間に過ぎず、免震性能上の問題はない。因みに、案内レール1の中央付近における球体2と傾斜面5,6との当接状態を示した図2中の球体2の中心C′の高さと、案内レール1の両外端部における球体2と傾斜面5,6との当接状態を示した図3中の球体2の中心C″の高さとの差分が、中央部から両外端部まで転動した場合に生じる球体2自体の高さ方向の変位に相当し、これにより復帰機能が付与されることになる。   Thus, the contact state between the sphere 2 near the center of the guide rail 1 shown in FIG. 2 and the inclined surfaces 5 and 6 formed on the rail portions 3 and 4, and the guide rail 1 shown in FIG. Comparing the contact state between the spherical body 2 and the inclined surfaces 5 and 6 formed on the rail portions 3 and 4 at both outer ends, the contact angle θ and the angle φ in the installation direction of the rail portions 3 and 4 are constant. Therefore, it is clear that the contact pressures Pa and Pb and the distances La and Lb between the contact portions do not change. That is, the inclined surfaces 5 and 6 of the guide rail 1 in the seismic isolation device according to the present invention are formed at a constant contact angle θ appropriately set over the entire length of the guide rail 1. The contact pressure P and the distance L between the contact portions at the contact portions between the inclined surfaces 5 and 6 and the sphere 2 are always constant and do not change. Further, since the distances La and Lb between the contact portions are always constant, the rotation radius around the rolling axis of the sphere 2 is always constant and does not change. Therefore, regardless of the position of the sphere 2, the sphere The rotation rate of 2 is always constant. In the contact state between the inclined surfaces 5 and 6 and the sphere 2 at the center of the guide rail 1, the contact portion becomes four points, and therefore the contact pressure P based on the load W from the upper structure is instantaneous. However, in terms of the overall movement of the sphere 2, it is only a very short time, and there is no problem with the seismic isolation performance. Incidentally, the height of the center C ′ of the sphere 2 in FIG. 2 showing the contact state between the sphere 2 and the inclined surfaces 5 and 6 in the vicinity of the center of the guide rail 1 and the sphere 2 at both outer ends of the guide rail 1. 3 and the height of the center C ″ of the sphere 2 in FIG. 3 showing the contact state between the inclined surfaces 5 and 6, the height of the sphere 2 itself generated when rolling from the center to both outer ends. This corresponds to the displacement in the vertical direction, and this gives a return function.

以下に、上述の本発明の基本的構成を適用して具体化した実施例に関して説明する。図6〜図8は本発明の第1実施例を示したものであり、図6はその正面図、図7は平面図、図8はA−A断面図である。図示のように、本実施例に係る免震装置13は、中間に平板状の中間部材14を挟んで、下方に前記案内レール1と同様の基本的構成からなる下部案内レール15〜18を配設し、上方に同様の構成からなり上下を逆転した上部案内レール19〜22を前記下部案内レール15〜18と直交する方向に配設したものである。そして、それらの案内レール15〜22の傾斜面間にそれぞれ1個ずつの球体23を係合させた状態で中間部材14との間に介在させることにより、上部構造物24と下部構造物25との間のいかなる方向の相対的移動に対しても免震動作が得られるように構成している。すなわち、上部構造物24と下部構造物25との間の紙面左右方向の相対的移動に対しては下部案内レール15〜18と球体23と中間部材14との組合わせにより、また紙面前後方向の相対的移動に対しては上部案内レール19〜22と球体23と中間部材14との組合わせによりそれぞれ対応し、それらの案内レール15〜22と各球体23と中間部材14との組合わせによっていかなる方向の相対的移動に対しても免震動作が得られるように構成されている。   In the following, an embodiment embodied by applying the basic configuration of the present invention will be described. 6 to 8 show a first embodiment of the present invention. FIG. 6 is a front view thereof, FIG. 7 is a plan view, and FIG. As shown in the figure, the seismic isolation device 13 according to the present embodiment has lower guide rails 15 to 18 having a basic configuration similar to that of the guide rail 1 disposed below with a flat intermediate member 14 interposed therebetween. The upper guide rails 19 to 22 having the same configuration and the upside down are arranged in the upper direction in the direction perpendicular to the lower guide rails 15 to 18. And by interposing between the intermediate member 14 in the state which engaged each one spherical body 23 between the inclined surfaces of those guide rails 15-22, the upper structure 24, the lower structure 25, and The seismic isolation operation can be obtained with respect to relative movement in any direction. That is, with respect to the relative movement in the horizontal direction between the upper structure 24 and the lower structure 25, the combination of the lower guide rails 15 to 18, the sphere 23, and the intermediate member 14 can be used. Relative movement corresponds to the combination of the upper guide rails 19 to 22, the sphere 23 and the intermediate member 14, and any combination of the guide rails 15 to 22, the sphere 23 and the intermediate member 14 can be used. It is configured so that seismic isolation operation can be obtained even with relative movement in direction.

図9及び図10は本発明の第2実施例を示したものであり、図9はその正面図、図10は平面図である。図示のように、本実施例に係る免震装置26は、中間に平板状の中間部材27を挟んで、下方に前記案内レール1や案内レール7と同様の基本的構成からなる下部案内レール28と同様の構成からなり上下を逆転した上部案内レール29とそれらの傾斜面間に係合された球体30との組合わせからなり、それぞれ免震装置として機能し得る免震ユニット31〜34を配設するとともに、上方に同様の構成からなる免震ユニット35〜38を前記免震ユニット31〜34と直交する方向に配設することにより、前記第1実施例と同様に上部構造物24と下部構造物25との間のいかなる方向の相対的移動に対しても免震動作が得られるように構成している。   9 and 10 show a second embodiment of the present invention. FIG. 9 is a front view thereof, and FIG. 10 is a plan view thereof. As shown in the figure, a seismic isolation device 26 according to the present embodiment has a lower guide rail 28 having a basic configuration similar to that of the guide rail 1 and the guide rail 7 below with a flat intermediate member 27 interposed therebetween. The seismic isolation units 31 to 34 each having a configuration similar to that of the upper guide rail 29 and the spherical body 30 engaged between the inclined surfaces are arranged. In addition, the upper structure 24 and the lower part are disposed in the same manner as in the first embodiment by disposing the base isolation units 35 to 38 having the same configuration above in the direction orthogonal to the base isolation units 31 to 34. A seismic isolation operation is obtained with respect to relative movement in any direction with the structure 25.

図11及び図12は本発明の第3実施例を示したものであり、図11はその正面図、図12は平面図である。本実施例は、前記第2実施例の変形例である。図示のように、本実施例に係る免震装置39では、中間部材として十字状の平板からなる中間部材40を採用し、その中間部材40を挟んで、上下に前記免震ユニットと同様の下部案内レール28と上部案内レール29とそれらの傾斜面間に係合された球体30との組合わせからなる免震ユニット41,42と、免震ユニット43,44とを前記中間部材40の形状に合わせて十字状に配設することにより、上部構造物24と下部構造物25との間のいかなる方向の相対的移動に対しても免震動作が得られるように構成している。   11 and 12 show a third embodiment of the present invention. FIG. 11 is a front view thereof, and FIG. 12 is a plan view thereof. This embodiment is a modification of the second embodiment. As illustrated, in the seismic isolation device 39 according to the present embodiment, an intermediate member 40 made of a cross-shaped flat plate is adopted as an intermediate member, and the lower part similar to the above-described base isolation unit is sandwiched between the intermediate members 40. The seismic isolation units 41 and 42, which are a combination of the guide rail 28, the upper guide rail 29, and the sphere 30 engaged between the inclined surfaces, and the seismic isolation units 43 and 44 are formed in the shape of the intermediate member 40. By arranging them together in a cross shape, a seismic isolation operation can be obtained for relative movement in any direction between the upper structure 24 and the lower structure 25.

本発明に係る免震装置の要部を示した概略斜視図である。It is the schematic perspective view which showed the principal part of the seismic isolation apparatus which concerns on this invention. 本発明に係る免震装置の基本的な動作原理を説明するための説明図である。It is explanatory drawing for demonstrating the fundamental operating principle of the seismic isolation apparatus which concerns on this invention. 同免震装置の基本的な動作原理を説明するための説明図である。It is explanatory drawing for demonstrating the fundamental operation | movement principle of the seismic isolation apparatus. 本発明に係る免震装置の案内レールと球体との当接状態を説明するための概略斜視図である。It is a schematic perspective view for demonstrating the contact state of the guide rail and spherical body of the seismic isolation apparatus which concerns on this invention. 同免震装置の案内レールと球体との当接状態を説明するための説明図である。It is explanatory drawing for demonstrating the contact state of the guide rail and spherical body of the seismic isolation apparatus. 本発明の第1実施例を示した正面図である。It is the front view which showed 1st Example of this invention. 同実施例を示した平面図である。It is the top view which showed the same Example. 図6のA−A断面図である。It is AA sectional drawing of FIG. 本発明の第2実施例を示した正面図である。It is the front view which showed 2nd Example of this invention. 同実施例を示した平面図である。It is the top view which showed the same Example. 本発明の第3実施例を示した正面図である。It is the front view which showed 3rd Example of this invention. 同実施例を示した平面図である。It is the top view which showed the same Example. 従来技術における球体と案内レールとの当接状態を示した説明図である。It is explanatory drawing which showed the contact state of the spherical body and guide rail in a prior art.

符号の説明Explanation of symbols

1…案内レール、2…球体、3,4…レール部、5,6…傾斜面、13…免震装置、14…中間部材、15〜18…下部案内レール、19〜22…上部案内レール、23…球体、24…上部構造物、25…下部構造物、26…免震装置、27…中間部材、28…下部案内レール、29…上部案内レール、30…球体、31〜38…免震ユニット、39…免震装置、40…中間部材、41〜44…免震ユニット


DESCRIPTION OF SYMBOLS 1 ... Guide rail, 2 ... Sphere, 3, 4 ... Rail part, 5, 6 ... Inclined surface, 13 ... Seismic isolation device, 14 ... Intermediate member, 15-18 ... Lower guide rail, 19-22 ... Upper guide rail, 23 ... Sphere, 24 ... Upper structure, 25 ... Lower structure, 26 ... Seismic isolation device, 27 ... Intermediate member, 28 ... Lower guide rail, 29 ... Upper guide rail, 30 ... Sphere, 31-38 ... Seismic isolation unit 39 ... Seismic isolation device, 40 ... Intermediate member, 41-44 ... Seismic isolation unit


Claims (1)

互いに離間して配設した一定の傾斜角からなる対向した傾斜面を備え、それらの傾斜面相互間の間隔が中央部より両外端部へ向けて徐々に小さくなるように構成した案内レールと、該案内レールのそれぞれの傾斜面に対して内側から当接して転動する球体とを備えたことを特徴とする免震装置。




A guide rail configured to have opposed inclined surfaces having a certain inclination angle arranged apart from each other, and the interval between the inclined surfaces is gradually reduced from the central portion toward both outer end portions; A seismic isolation device comprising: a spherical body that rolls in contact with each inclined surface of the guide rail from the inside.




JP2006063420A 2006-03-08 2006-03-08 Seismic isolation device Active JP4587483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006063420A JP4587483B2 (en) 2006-03-08 2006-03-08 Seismic isolation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006063420A JP4587483B2 (en) 2006-03-08 2006-03-08 Seismic isolation device

Publications (2)

Publication Number Publication Date
JP2007239892A true JP2007239892A (en) 2007-09-20
JP4587483B2 JP4587483B2 (en) 2010-11-24

Family

ID=38585631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006063420A Active JP4587483B2 (en) 2006-03-08 2006-03-08 Seismic isolation device

Country Status (1)

Country Link
JP (1) JP4587483B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0735137A (en) * 1993-07-21 1995-02-03 Nippon Thompson Co Ltd Ball spline
JP2001050339A (en) * 1999-08-04 2001-02-23 Takashi Funaki Base isolation device for loading article
JP2005048837A (en) * 2003-07-31 2005-02-24 Okabe Co Ltd Base-isolating device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0735137A (en) * 1993-07-21 1995-02-03 Nippon Thompson Co Ltd Ball spline
JP2001050339A (en) * 1999-08-04 2001-02-23 Takashi Funaki Base isolation device for loading article
JP2005048837A (en) * 2003-07-31 2005-02-24 Okabe Co Ltd Base-isolating device

Also Published As

Publication number Publication date
JP4587483B2 (en) 2010-11-24

Similar Documents

Publication Publication Date Title
JP3833779B2 (en) Seismic isolation device
JP2014129829A (en) Vibration isolation member
JP2008169857A (en) Base isolation supporting device and base isolation constructing method
KR101670177B1 (en) Apparatus of complex damper for construction
JP4587483B2 (en) Seismic isolation device
JP3976423B2 (en) Vibration suppression device
JP6087605B2 (en) Seismic isolation structure
TWI712727B (en) Isolation mechanism
JP5317904B2 (en) Shear panel type damper, bridge support structure using this shear panel type damper, and bridge using this support structure
JP2011047456A (en) Damper and building
JP4711055B2 (en) Horizontal movement device or seismic isolation device and assembly method thereof
JP4637037B2 (en) Seismic isolation device
JP3320364B2 (en) Rolling pendulum seismic isolation structure
JPH10184077A (en) Vibration-isolation support structure of structure
JP4958032B2 (en) Expansion joint passage for base-isolated buildings
JP2006226517A (en) Seismic isolation pipe holding construction
JPWO2007072777A1 (en) Negative rigid device and seismic isolation structure provided with the negative rigid device
JP2007239179A (en) Base isolated structure, and base isolation device for use in the base isolated structure
JP6875220B2 (en) Seismic isolation support device
JP2019070432A (en) Sliding seismic isolation mechanism
JP2002242475A (en) Base-isolated building
JP3293099B2 (en) Rail-supported seismic isolation structure
JP4971760B2 (en) Sliding seismic isolation structure
JP2004238950A (en) Base isolating device
JPH0972333A (en) Curve guiding device and three dimensions guiding device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100611

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100906

R150 Certificate of patent or registration of utility model

Ref document number: 4587483

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250