JP2004238950A - Base isolating device - Google Patents

Base isolating device Download PDF

Info

Publication number
JP2004238950A
JP2004238950A JP2003030158A JP2003030158A JP2004238950A JP 2004238950 A JP2004238950 A JP 2004238950A JP 2003030158 A JP2003030158 A JP 2003030158A JP 2003030158 A JP2003030158 A JP 2003030158A JP 2004238950 A JP2004238950 A JP 2004238950A
Authority
JP
Japan
Prior art keywords
support member
upper support
isolation device
seismic isolation
lower support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003030158A
Other languages
Japanese (ja)
Other versions
JP4116894B2 (en
Inventor
Kenichi Kawaguchi
健一 川口
Kensho Matsumoto
憲昭 松本
Yoshiyuki Era
嘉之 江良
Keiichi Abe
啓一 阿部
Junichiro Abe
純一郎 阿部
Toru Furukawa
徹 古川
Tomoyasu Taguchi
朝康 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okabe Co Ltd
Original Assignee
Okabe Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okabe Co Ltd filed Critical Okabe Co Ltd
Priority to JP2003030158A priority Critical patent/JP4116894B2/en
Publication of JP2004238950A publication Critical patent/JP2004238950A/en
Application granted granted Critical
Publication of JP4116894B2 publication Critical patent/JP4116894B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a base isolating device which works in a wide range for the size of the device, is improved in the isolating function to cope with a larger amplitude, and has a reset function for returning to the original setting condition. <P>SOLUTION: This base isolating device is provided with an upper support member 4 formed freely to rotate through an upper rotary support mechanism 3 arranged between a building frame 2 and a lower support member 7 formed freely to rotate through a lower rotary support mechanism 6 arranged between the ground 5. An upper and a lower parts of a steel ball 10 are engaged with guide grooves 8 and 9 respectively formed in the upper support member 4 and the lower support member 7 to isolate the building frame 2 and the ground 5, while interlocking the upper support member 4 and the lower support member 7 through the steel ball 10 freely to move in the horizontal direction in relation to each other. A reset function is provided by forming bottom parts of the guide grooves 8 and 9 so that a central part is deeper than both ends thereof. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、建物の躯体側と基礎コンクリート等の地盤側との間を絶縁して、地震等の外力から建物を保護する免震装置に関する。
【0002】
【従来の技術】
この種の建物の免震装置に関して、建物の躯体側と地盤側との間に回転支持機構と直線移動機構を介在させることにより、両者の間を絶縁する免震装置が開示されている(特許文献1参照)。この従来技術において対応し得る水平方向の相対移動の範囲は、前記直線移動機構の動作範囲により決定される。したがって、この水平方向の相対移動に関して対応可能な範囲を大きくとるには、前記直線移動機構の動作範囲を大きく設定する必要があり、装置の大型化を招き、設置コストが割高になったり設置スペースが大きくとられるといった問題があった。
【0003】
【特許文献1】
特開2000−304087号公報
【0004】
【発明が解決しようとする課題】
本発明は、以上のような従来技術の状況に鑑みて開発したものであり、装置の大きさの割に動作範囲を大きくとることができ、より大きな振幅に対応し得るように絶縁機能を改良するとともに、その絶縁機能に加えて、元の設置状態に戻る復帰機能の付与も可能な免震装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
前記課題を解決するため、請求項1の発明では、建物の躯体側との間に配設された上部回転支持機構を介して回転可能に構成された上部支承部材と、地盤側との間に配設された下部回転支持機構を介して回転可能に構成された下部支承部材とを備えるとともに、それらの上部支承部材と下部支承部材との対向面の双方に案内溝を形成して、それぞれの案内溝に鋼球の上下部を係合させることにより、該鋼球を介して前記上部支承部材と下部支承部材とを水平方向に相対移動可能に連係するという技術手段を採用した。本発明によれば、上部支承部材と下部支承部材の双方に形成した案内溝を活用することにより、対応可能な水平方向の相対移動距離をほぼ倍加することが可能である。これにより、装置の大きさの割に動作範囲を大きくとることができ、より大きな振幅に対応し得るように絶縁機能を改良することが可能である。なお、前記上部支承部材と下部支承部材の対向面に形成した案内溝の、鋼球の上端部又は下端部が当接する少なくとも一方の底部を、その両端部より中央部側を深く形成することにより、復帰機能を付与することも可能である(請求項2)。
【0006】
また、請求項3の発明では、請求項1の発明と同様に、建物の躯体側との間に配設された上部回転支持機構を介して回転可能に構成された上部支承部材と、地盤側との間に配設された下部回転支持機構を介して回転可能に構成された下部支承部材とを備えるとともに、それらの上部支承部材及び下部支承部材の適所に形成した双方の係合溝に係合しながら移動可能に構成された係合移動部材を備え、該係合移動部材を介して前記上部支承部材と下部支承部材とを水平方向に相対移動可能に連係するという技術手段を採用した。本発明の場合にも、以上の技術手段の採用により、上部支承部材と下部支承部材との間の対応可能な水平方向の相対移動距離をほぼ倍加して絶縁機能を改良することが可能である。なお、少なくとも下部支承部材に形成した係合溝の中央部側を両端部より低く形成するか、上部支承部材に形成した係合溝の中央部側を両端部より高く形成することにより復帰機能を付与することも可能である(請求項4)。
【0007】
【発明の実施の形態】
本発明に係る免震装置は、戸建ての住宅用に好適であるが、これに限らず各種の建物の免震装置として広く適用することが可能である。前記上部支承部材と下部支承部材との具体的形状に関しては、機能上特段の制約はないが、材料コスト上の観点から、以下の実施例のように細長のレール状のものが適している。それらの上部支承部材と下部支承部材に形成する案内溝に関しても、鋼球の上下部が係合し得る凹状のものであればよく、その具体的な断面形状としては、コ字状のものや、V字状のもの、あるいは円弧状のものなどの採用が可能である。また、復帰機能に関しては、以下の第1実施例のように上部支承部材及び下部支承部材に形成する案内溝の少なくとも一方の底部の中央部側を両端部より深く形成したり、第2実施例のように下部支承部材に形成した係合溝の中央部側を両端部より低く形成したり、あるいは上部支承部材に形成した係合溝の中央部側を両端部より高く形成することにより、本発明に係る免震装置自体に付与するように構成してもよいし、復帰機能は別途設ける復帰機構に委ねて、前記案内溝の底部や係合溝を平坦に形成するようにしてもよい。上部支承部材を回転可能に支持する上部回転支持機構や、下部支承部材を回転可能に支持する下部回転支持機構に関しては、スラスト型ベアリング等の適宜の回転支持機構の採用が可能である。因みに、請求項3の発明における上部支承部材あるいは下部支承部材と係合移動部材との接触部の支承形態に関しては、それらの接触部に例えば以下の実施例のように小さな鋼球を介在させて転がり支承させるようにしてもよいし、直接面と面とを接合させて滑り支承させるようにしてもよい。また、上部支承部材及び下部支承部材に形成する係合溝に関しては、以下の実施例のようにそれらの上部支承部材及び下部支承部材の外側面に形成してもよいし、上部支承部材と下部支承部材との対向面に適宜形状の凹部を形成して、その凹部の内側面に係合溝を形成するようにしてもよい。要は、係合移動部材を介して前記上部支承部材と下部支承部材とを水平方向に相対移動可能に連係し得るものであればよい。
【0008】
【実施例】
図1は本発明の第1実施例に係る免震装置の要部を一部断面して示した設置状態図であり、図2はその免震装置の動作状態を一部断面して示した動作状態図である。図示のように、本実施例に係る免震装置1は、建物の躯体2側との間に配設されたスラスト型ベアリング等からなる上部回転支持機構3を介して回転可能に構成された上部支承部材4と、地盤5側との間に配設された同じくスラスト型ベアリング等からなる下部回転支持機構6を介して回転可能に構成された下部支承部材7とを備え、それらの上部支承部材4と下部支承部材7との間で建物の躯体2側と基礎コンクリート等の地盤5側との間を絶縁することにより、建物を地震等の外力から保護するものである。上部支承部材4と下部支承部材7は、それらが互いに向い合う対向面、すなわち上部支承部材4の下面と下部支承部材7の上面の双方に、本実施例では断面略コ字状の案内溝8,9を形成し、それぞれの案内溝8,9に鋼球10の上下部を挿入して係合することにより、その鋼球10を介して水平方向に相対移動可能に連係した。この場合、上部支承部材4と下部支承部材7とは、前記鋼球10を介して、案内溝8,9に沿った方向に相対移動し得るとともに、水平状態で相対的に回転することも可能である。因みに、鋼球10の大きさを選ぶことにより、上部支承部材4の下面と下部支承部材7の上面との間の間隙調整が可能である。なお、本実施例では、上部支承部材4と下部支承部材7は、細長のレール状の部材から構成した。また、上部支承部材4と下部支承部材7に形成した断面略コ字状の案内溝8、9は、その案内溝の長手方向中央部の底部が両端部の底部より深くなるように形成することにより復帰機能を付与した。その具体的な復帰特性は、それらの案内溝8,9の底部の具体的な形状によって設定することができる。なお、案内溝8,9の底部の形状に関しては、いずれか一方の案内溝の底部を以上のように中央部を両端部より深く形成するだけでも復帰機能を付与することができる。
【0009】
次に、前記免震装置1の動作の仕方に関して説明する。先ず、前記免震装置1の通常の設置状態においては、上部支承部材4と下部支承部材7は、躯体2の自重により鋼球10が案内溝8、9の底部の最も深く形成された中央部に位置する図1に示した復帰状態にある。そして、地震力等の外力が加わった場合には、図2に示したように上部支承部材4と下部支承部材7が外力の方向へ向いた後、その外力の方向へ相対移動することにより、地盤5側の動きを躯体2側へ伝達しないように両者間を絶縁することになる。なお、図2は上部支承部材4と下部支承部材7との相対移動が本実施例で許容される最大限に達した状態を例示したものであるが、外力の大きさに応じて案内溝8、9の途中から復帰することはいうまでもない。なお、図3は免震装置1の動作の過程を示した要部の斜視図である。
図中、状態(A)は、図1にも示した通常の設置状態を示したものである。この状態(A)において、矢印で示した方向に地震力等の外力Fが加わった場合には、先ず上部回転支持機構3及び下部回転支持機構6が回転して、状態(B)で示したように上部支承部材4と下部支承部材7が外力Fの方向に向くように回転する。この上部支承部材4と下部支承部材7の回転動作は、躯体2側に作用する現状を維持しようとする慣性力と地盤5側に作用する外力Fとに基づいて、それらの上部支承部材4と下部支承部材7が前記鋼球10を介して外力Fに沿って相対移動し得る状態に移行するように付勢されることによって生じる。そして、状態(B)に移行した後には、状態(C)で示したように、躯体2側の前記慣性力と地盤5側に作用する外力Fに基づいて、上部支承部材4と下部支承部材7が鋼球10を介して前記案内溝8、9に沿って外力Fの方向に相対移動し、地震作用等を躯体2側へ伝達しないように絶縁することになる。
【0010】
なお、図4は地震力Fによる上部支承部材4と下部支承部材7との相対移動を例示した動作説明図である。ここで示した動作例は、上部支承部材4の案内溝8と下部支承部材7の案内溝9とが直交した状態において、下部支承部材7の案内溝9の方向と平行に地震力等の外力Fが作用した場合を想定したものである。この場合には、上部支承部材4の左右に対称的に外力が作用することから回転力は生じないため、図示の状態(A)から状態(B)のように、上部支承部材4の回転動作を伴わずに相対移動が行われることになり、相対移動量が半減してしまうという問題があった。この問題を解消すべく改良した変形例1を図5に示す。この変形例1では、下部支承部材7の案内溝9の両端部分に曲り部11,12を設けた。これにより、状態(B)に示したように、上部支承部材4の相対位置が下部支承部材7の一方の端部に差掛かった場合には、鋼球10の移動方向が曲り部11に沿って曲り、鋼球10が上部支承部材4の案内溝8内を移動して上部支承部材4の中央位置から外れるため、上部支承部材4は、左右のバランスが崩れて状態(C)のように回転することになる。したがって、状態(D)に示したように、上部支承部材4と下部支承部材7との相対移動距離を有効に使用することが可能になる。
【0011】
図6は変形例2を示した平面図であり、図7はそのA−A拡大断面図である。
この変形例2では、上部支承部材4と下部支承部材7の案内溝8,9の両側の縁部に図示のように鋼球10のせり上がり部13,14を形成することにより、前記問題の解決を図った。また、図8は変形例3を示した平面図であり、図9はそのB−B断面図である。この変形例3では、上部支承部材4と下部支承部材7の案内溝8,9の最も深い底部の位置を図示のように中央位置からずらして、通常の設置状態において、鋼球10が中心から偏心した部位に位置するように構成することにより、前記問題の解決を図った。
【0012】
図10は本発明の第2実施例に係る免震装置の要部を示した概略構成図であり、図11はそのC−C断面図、図12は動作状態を示した動作状態図である。図示のように、本実施例に係る免震装置15では、上部支承部材16と下部支承部材17のそれぞれの両外側面に係合溝18〜21を形成し、それらの係合溝18〜21に対して、上部係合部材22に形成した係合部23,24あるいは下部係合部材25に形成した係合部26,27を係合させた状態で移動可能に構成することにより、それらの上部係合部材22と下部係合部材25から構成される係合移動部材28を介して、上部支承部材16と下部支承部材17とを水平方向に相対移動可能に連係している。因みに、上部支承部材16と下部支承部材17とは、前記第1実施例と同様に、図示を省略したスラスト型ベアリング等からなる上部回転支持機構3あるいは下部回転支持機構6を介して建物の躯体2側及び地盤5側に対して回転可能に支持されている。そして、本実施例では、図11に示したように、上部係合部材22と下部係合部材25とを、上部係合部材22の凸状部29に形成された凸状球面部30と下部係合部材25の凹状部31に形成された凹状球面部32とを摺動可能に接合して相対的に回転可能に結合することにより、前記係合移動部材28を構成している。すなわち、それらの上部係合部材22と下部係合部材25とからなる係合移動部材28を介して、上部支承部材16と下部支承部材17とがそれぞれ前記係合溝18〜21に沿って相対移動可能に連係されている。
【0013】
しかして、本実施例において地震力等の外力が作用すると、図12に示したように、上部支承部材16と下部支承部材17とが、上部係合部材22と下部係合部材25とからなる係合部材28を介して水平方向に相対移動する。この場合、図示のように、上部支承部材16側に形成された係合溝18,19の全長と下部係合部材25側に形成された係合溝20,21の全長とが、相対移動可能な範囲として有効に機能することになる。したがって、本実施例においても上部支承部材16と下部支承部材17との間の対応可能な水平方向の相対移動距離は、従来に比べてほぼ倍加されることになる。
【0014】
【発明の効果】
本発明によれば、建物の躯体側あるいは地盤との間に配設した回転支持機構を介して回転可能に構成された上部支承部材と下部支承部材とを使用し、それらの上部支承部材と下部支承部材とを前記鋼球ないし係合移動部材を介して水平方向に相対移動可能に連係するという技術手段を採用したので、前記上部支承部材と下部支承部材との間の対応可能な水平方向の相対移動距離をほぼ倍加することが可能であり、装置の大きさの割に動作範囲を大きくとることができ、より大きな振幅に対応し得るように絶縁機能を改良することが可能である。
【図面の簡単な説明】
【図1】本発明の第1実施例に係る免震装置の要部を一部断面して示した設置状態図である。
【図2】同免震装置の動作状態を一部断面して示した動作状態図である。
【図3】同免震装置の動作の過程を示した要部の斜視図である。
【図4】地震力Fによる上部支承部材と下部支承部材との相対移動を例示した動作説明図である。
【図5】第1実施例を改良した変形例1を示した動作説明図である。
【図6】第1実施例を改良した変形例2を示した平面図である。
【図7】図6のA−A拡大断面図である。
【図8】第1実施例を改良した変形例3を示した平面図である。
【図9】図8のB−B断面図である。
【図10】本発明の第2実施例に係る免震装置の要部を示した概略構成図である。
【図11】図10のC−C断面図である。
【図12】第2実施例の動作状態を示した動作状態図である。
【符号の説明】
1…免震装置、2…建物の躯体、3…上部回転支持機構、4…上部支承部材、5…地盤、6…下部回転支持機構、7…下部支承部材、8,9…案内溝、10…鋼球、11,12…曲り部、13,14…鋼球のせり上がり部、15…免震装置、16…上部支承部材、17…下部支承部材、18〜21…係合溝、22…上部係合部材、23,24…係合部、25…下部係合部材、26,27…係合部、28…係合移動部材、29…凸状部、30…凸状球面部、31…凹状部、32…凹状球面部
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a seismic isolation device that insulates between a building body side and a ground side such as a foundation concrete to protect the building from external force such as an earthquake.
[0002]
[Prior art]
Regarding this type of building seismic isolation device, there is disclosed a seismic isolation device that insulates the building by interposing a rotation support mechanism and a linear movement mechanism between the building body side and the ground side (Patent) Reference 1). The range of the relative movement in the horizontal direction that can be dealt with in this prior art is determined by the operation range of the linear movement mechanism. Accordingly, in order to increase the range that can be handled with respect to the relative movement in the horizontal direction, it is necessary to set the operation range of the linear movement mechanism to be large. There was a problem that was taken large.
[0003]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2000-304087
[Problems to be solved by the invention]
The present invention has been developed in view of the state of the prior art as described above, and has a large operating range for the size of the device, and an improved insulating function so that it can cope with a larger amplitude. It is another object of the present invention to provide a seismic isolation device capable of providing a return function of returning to an original installation state in addition to the insulation function.
[0005]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, in the invention of claim 1, between an upper support member rotatably configured via an upper rotation support mechanism disposed between the ground side and a ground side of a building. A lower support member rotatably configured via a lower rotation support mechanism provided, and a guide groove formed on both of the upper support member and the lower support member in opposition to each other. A technical means is adopted in which the upper and lower bearing members are engaged with the guide grooves so that the upper bearing member and the lower bearing member are relatively movable in the horizontal direction via the steel balls. According to the present invention, by utilizing the guide grooves formed in both the upper support member and the lower support member, it is possible to substantially double the relative movement distance in the horizontal direction that can be handled. As a result, the operating range can be made large for the size of the device, and the insulation function can be improved so that it can cope with a larger amplitude. In addition, by forming at least one bottom portion of the guide groove formed on the opposing surface of the upper support member and the lower support member with which the upper end portion or the lower end portion of the steel ball abuts, the center portion side is formed deeper than both end portions. It is also possible to provide a return function (claim 2).
[0006]
According to the third aspect of the present invention, similarly to the first aspect of the present invention, the upper support member rotatably configured via an upper rotation support mechanism disposed between the upper support member and the ground side of the building; And a lower support member rotatably arranged via a lower rotation support mechanism disposed between the upper support member and the lower support member. A technical means is provided that includes an engagement moving member configured to be movable while being engaged with each other, and that the upper support member and the lower support member are relatively movably linked in the horizontal direction via the engagement movement member. In the case of the present invention as well, by employing the above technical means, it is possible to improve the insulation function by substantially doubling the relative horizontal movement distance that can be supported between the upper support member and the lower support member. . Note that the return function is achieved by forming at least the center of the engagement groove formed in the lower support member lower than both ends, or forming the center of the engagement groove formed in the upper support member higher than both ends. It can also be provided (claim 4).
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
The seismic isolation device according to the present invention is suitable for a detached house, but is not limited to this, and can be widely applied as a seismic isolation device for various buildings. The specific shapes of the upper support member and the lower support member are not particularly limited in terms of function, but from the viewpoint of material cost, an elongated rail shape as in the following embodiment is suitable. The guide grooves formed in the upper support member and the lower support member may be concave as long as the upper and lower portions of the steel ball can be engaged. , V-shape, arc-shape, etc. can be adopted. Regarding the return function, the center of at least one of the bottoms of the guide grooves formed in the upper support member and the lower support member may be formed deeper than both ends as in the first embodiment described below. By forming the central portion of the engaging groove formed in the lower bearing member lower than both ends as described above, or forming the central portion of the engaging groove formed in the upper bearing member higher than both ends, as shown in FIG. The seismic isolation device according to the present invention may be provided to itself, or the return function may be left to a separately provided return mechanism, and the bottom of the guide groove and the engagement groove may be formed flat. As for the upper rotation support mechanism rotatably supporting the upper support member and the lower rotation support mechanism rotatably supporting the lower support member, an appropriate rotation support mechanism such as a thrust type bearing can be adopted. By the way, with regard to the support form of the contact portion between the upper support member or the lower support member and the engagement moving member in the invention of claim 3, for example, a small steel ball is interposed in the contact portion as in the following embodiment. Rolling support may be used, or sliding support may be performed by directly joining surfaces. Further, the engagement grooves formed in the upper support member and the lower support member may be formed on the outer surfaces of the upper support member and the lower support member as in the following embodiments, or may be formed on the upper support member and the lower support member. An appropriately shaped recess may be formed on the surface facing the support member, and an engagement groove may be formed on the inner surface of the recess. The point is that the upper support member and the lower support member can be linked to each other via the engagement moving member so as to be relatively movable in the horizontal direction.
[0008]
【Example】
FIG. 1 is an installation state diagram showing a main part of a seismic isolation device according to a first embodiment of the present invention in partial cross section, and FIG. 2 is a partial cross section showing an operation state of the seismic isolation device. It is an operation | movement state diagram. As shown in the figure, the seismic isolation device 1 according to the present embodiment has an upper part rotatably configured via an upper rotation support mechanism 3 including a thrust type bearing and the like disposed between the building and a frame 2 of the building. A support member 4 and a lower support member 7 rotatably provided via a lower rotation support mechanism 6 also composed of a thrust bearing and the like disposed between the support member 4 and the ground 5. By insulating between the building body 2 side and the ground 5 side such as foundation concrete between the building 4 and the lower bearing member 7, the building is protected from external force such as an earthquake. In the present embodiment, the upper supporting member 4 and the lower supporting member 7 are provided with a guide groove 8 having a substantially U-shaped cross section on the opposing surfaces thereof, that is, both the lower surface of the upper supporting member 4 and the upper surface of the lower supporting member 7. , 9 are formed, and the upper and lower portions of the steel ball 10 are inserted into and engaged with the respective guide grooves 8, 9, so as to be linked via the steel ball 10 so as to be relatively movable in the horizontal direction. In this case, the upper support member 4 and the lower support member 7 can relatively move in the direction along the guide grooves 8 and 9 via the steel balls 10 and can relatively rotate in a horizontal state. It is. Incidentally, by selecting the size of the steel ball 10, the gap between the lower surface of the upper support member 4 and the upper surface of the lower support member 7 can be adjusted. In this embodiment, the upper support member 4 and the lower support member 7 are formed of elongated rail-shaped members. The guide grooves 8, 9 formed in the upper support member 4 and the lower support member 7 and having a substantially U-shaped cross section are formed such that the bottom of the guide groove at the center in the longitudinal direction is deeper than the bottom of both ends. A return function is provided. The specific return characteristics can be set by the specific shape of the bottom of the guide grooves 8 and 9. Regarding the shape of the bottom of the guide grooves 8 and 9, the return function can be provided only by forming the bottom of one of the guide grooves deeper at the center than at both ends as described above.
[0009]
Next, a method of operating the seismic isolation device 1 will be described. First, in the normal installation state of the seismic isolation device 1, the upper support member 4 and the lower support member 7 are formed in the central portion where the steel ball 10 is formed deepest at the bottom of the guide grooves 8 and 9 by the weight of the frame 2. In the return state shown in FIG. Then, when an external force such as an earthquake force is applied, the upper support member 4 and the lower support member 7 are turned in the direction of the external force as shown in FIG. The two are insulated from each other so that the movement on the ground 5 side is not transmitted to the skeleton 2 side. FIG. 2 illustrates a state in which the relative movement between the upper support member 4 and the lower support member 7 has reached the maximum allowable in the present embodiment, but the guide groove 8 according to the magnitude of the external force. , 9 return from the middle of course. FIG. 3 is a perspective view of a main part showing a process of the operation of the seismic isolation device 1.
In the figure, the state (A) shows the normal installation state also shown in FIG. In this state (A), when an external force F such as seismic force is applied in the direction indicated by the arrow, first, the upper rotation support mechanism 3 and the lower rotation support mechanism 6 rotate, and as shown in the state (B). Thus, the upper support member 4 and the lower support member 7 rotate so as to face the direction of the external force F. The rotation of the upper bearing member 4 and the lower bearing member 7 is performed based on the inertial force acting on the frame 2 and the external force F acting on the ground 5. This occurs when the lower bearing member 7 is urged through the steel ball 10 so as to shift to a state where it can relatively move along the external force F. After shifting to the state (B), as shown in the state (C), based on the inertia force on the skeleton 2 side and the external force F acting on the ground 5, the upper support member 4 and the lower support member 7 relatively moves along the guide grooves 8 and 9 in the direction of the external force F via the steel balls 10 to insulate so that seismic action and the like are not transmitted to the frame 2 side.
[0010]
FIG. 4 is an operation explanatory view illustrating the relative movement between the upper support member 4 and the lower support member 7 due to the seismic force F. In the operation example shown here, when the guide groove 8 of the upper support member 4 and the guide groove 9 of the lower support member 7 are orthogonal to each other, an external force such as an earthquake force is applied in parallel to the direction of the guide groove 9 of the lower support member 7. It is assumed that F acts. In this case, since an external force acts symmetrically on the left and right of the upper support member 4, no rotational force is generated, so that the rotational operation of the upper support member 4 is changed from the illustrated state (A) to the state (B). However, there is a problem that the relative movement is performed without accompanying the movement, and the relative movement amount is reduced by half. FIG. 5 shows a first modification which is improved to solve this problem. In the first modification, the bent portions 11 and 12 are provided at both ends of the guide groove 9 of the lower support member 7. Thereby, as shown in the state (B), when the relative position of the upper support member 4 is attached to one end of the lower support member 7, the moving direction of the steel ball 10 is along the bent portion 11. Since the steel ball 10 moves in the guide groove 8 of the upper support member 4 and deviates from the central position of the upper support member 4, the left and right balance of the upper support member 4 is lost, as shown in FIG. Will rotate. Accordingly, as shown in the state (D), the relative movement distance between the upper support member 4 and the lower support member 7 can be used effectively.
[0011]
FIG. 6 is a plan view showing Modification Example 2, and FIG. 7 is an AA enlarged sectional view thereof.
In the second modification, the raised portions 13 and 14 of the steel balls 10 are formed at both edges of the guide grooves 8 and 9 of the upper support member 4 and the lower support member 7 as shown in FIG. Worked out a solution. FIG. 8 is a plan view showing Modification Example 3, and FIG. 9 is a sectional view taken along line BB of FIG. In the third modification, the deepest bottom positions of the guide grooves 8 and 9 of the upper support member 4 and the lower support member 7 are shifted from the center position as shown in the drawing, and the steel ball 10 is moved from the center in a normal installation state. The above-mentioned problem was solved by configuring the eccentric position.
[0012]
FIG. 10 is a schematic configuration diagram showing a main part of a seismic isolation device according to a second embodiment of the present invention, FIG. 11 is a cross-sectional view taken along the line CC, and FIG. 12 is an operation state diagram showing an operation state. . As shown in the figure, in the seismic isolation device 15 according to the present embodiment, engagement grooves 18 to 21 are formed on both outer surfaces of the upper support member 16 and the lower support member 17, and the engagement grooves 18 to 21 are formed. By engaging the engaging portions 23 and 24 formed on the upper engaging member 22 or the engaging portions 26 and 27 formed on the lower engaging member 25 so as to be movable with respect to The upper support member 16 and the lower support member 17 are linked so as to be relatively movable in the horizontal direction via an engagement moving member 28 composed of the upper engagement member 22 and the lower engagement member 25. Incidentally, the upper support member 16 and the lower support member 17 are connected to the building frame via the upper rotary support mechanism 3 or the lower rotary support mechanism 6 composed of a thrust type bearing or the like (not shown) as in the first embodiment. It is rotatably supported on the two sides and the ground 5 side. In this embodiment, as shown in FIG. 11, the upper engaging member 22 and the lower engaging member 25 are connected to the convex spherical portion 30 formed on the convex portion 29 of the upper engaging member 22 and the lower engaging member 22. The engagement moving member 28 is constituted by slidably joining the concave spherical portion 32 formed on the concave portion 31 of the engaging member 25 and connecting them relatively rotatably. That is, the upper support member 16 and the lower support member 17 are relatively moved along the engagement grooves 18 to 21 via the engagement moving member 28 including the upper engagement member 22 and the lower engagement member 25. It is movably linked.
[0013]
In this embodiment, when an external force such as a seismic force acts in this embodiment, as shown in FIG. 12, the upper support member 16 and the lower support member 17 are composed of the upper engagement member 22 and the lower engagement member 25. It relatively moves in the horizontal direction via the engaging member 28. In this case, as shown in the figure, the total length of the engagement grooves 18 and 19 formed on the upper support member 16 and the entire length of the engagement grooves 20 and 21 formed on the lower engagement member 25 are relatively movable. Function effectively as a simple range. Accordingly, also in this embodiment, the corresponding relative movement distance in the horizontal direction between the upper support member 16 and the lower support member 17 is almost doubled as compared with the conventional case.
[0014]
【The invention's effect】
According to the present invention, an upper support member and a lower support member that are configured to be rotatable via a rotation support mechanism disposed between the building body side and the ground are used, and the upper support member and the lower support member are used. Since the technical means of linking the bearing member so as to be relatively movable in the horizontal direction via the steel ball or the engagement moving member is adopted, a corresponding horizontal direction between the upper bearing member and the lower bearing member is adopted. The relative movement distance can be almost doubled, the operation range can be made large for the size of the device, and the insulation function can be improved so that it can cope with a larger amplitude.
[Brief description of the drawings]
FIG. 1 is an installation state diagram showing a main part of a seismic isolation device according to a first embodiment of the present invention in a partially sectional view.
FIG. 2 is an operation state diagram showing an operation state of the seismic isolation device in a partial cross section.
FIG. 3 is a perspective view of a main part showing a process of operation of the seismic isolation device.
FIG. 4 is an operation explanatory view exemplifying a relative movement between an upper support member and a lower support member due to a seismic force F;
FIG. 5 is an operation explanatory diagram showing a first modification of the first embodiment.
FIG. 6 is a plan view showing a modified example 2 in which the first embodiment is improved.
FIG. 7 is an enlarged sectional view taken along the line AA of FIG. 6;
FIG. 8 is a plan view showing a third modification in which the first embodiment is improved.
FIG. 9 is a sectional view taken along line BB of FIG. 8;
FIG. 10 is a schematic configuration diagram illustrating a main part of a seismic isolation device according to a second embodiment of the present invention.
FIG. 11 is a sectional view taken along line CC of FIG. 10;
FIG. 12 is an operation state diagram showing an operation state of the second embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Seismic isolation device, 2 ... Building frame, 3 ... Upper rotation support mechanism, 4 ... Upper support member, 5 ... Ground, 6 ... Lower rotation support mechanism, 7 ... Lower support member, 8, 9 ... Guide groove, 10 ... Steel balls, 11 and 12-Bent parts, 13 and 14-Rising parts of steel balls, 15-Seismic isolation device, 16-Upper support member, 17-Lower support member, 18-21-Engagement groove, 22- Upper engaging member, 23, 24 ... engaging portion, 25 ... lower engaging member, 26, 27 ... engaging portion, 28 ... engaging moving member, 29 ... convex portion, 30 ... convex spherical portion, 31 ... Concave part, 32 ... concave spherical part

Claims (4)

建物の躯体側との間に配設された上部回転支持機構を介して回転可能に構成された上部支承部材と、地盤側との間に配設された下部回転支持機構を介して回転可能に構成された下部支承部材とを備えるとともに、それらの上部支承部材と下部支承部材との対向面の双方に案内溝を形成して、それぞれの案内溝に鋼球の上下部を係合させることにより、該鋼球を介して前記上部支承部材と下部支承部材とを水平方向に相対移動可能に連係したことを特徴とする免震装置。An upper support member configured to be rotatable via an upper rotation support mechanism disposed between the building and the skeleton side, and rotatable via a lower rotation support mechanism disposed between the ground side and the ground side. By providing a guide groove on both the upper bearing member and the lower bearing member facing surfaces, the upper and lower steel balls are engaged with the respective guide grooves. A seismic isolation device, wherein the upper bearing member and the lower bearing member are linked so as to be relatively movable in the horizontal direction via the steel balls. 前記上部支承部材と下部支承部材の対向面に形成した案内溝の、鋼球の上端部又は下端部が当接する少なくとも一方の底部を、その両端部より中央部側を深く形成することにより、復帰機能を付与した請求項1に記載の免震装置。By returning at least one of the bottoms of the guide grooves formed on the opposing surfaces of the upper support member and the lower support member with which the upper end or lower end of the steel ball abuts, the center is deeper than both ends, thereby returning the guide. The seismic isolation device according to claim 1, which has a function. 建物の躯体側との間に配設された上部回転支持機構を介して回転可能に構成された上部支承部材と、地盤側との間に配設された下部回転支持機構を介して回転可能に構成された下部支承部材とを備えるとともに、それらの上部支承部材及び下部支承部材の適所に形成した双方の係合溝に係合しながら移動可能に構成された係合移動部材を備え、該係合移動部材を介して前記上部支承部材と下部支承部材とを水平方向に相対移動可能に連係したことを特徴とする免震装置。An upper support member configured to be rotatable via an upper rotation support mechanism disposed between the building and the skeleton side, and rotatable via a lower rotation support mechanism disposed between the ground side and the ground side. And an engagement moving member configured to be movable while engaging with both engagement grooves formed at appropriate positions of the upper support member and the lower support member. A seismic isolation device wherein the upper support member and the lower support member are linked to each other via a joint moving member so as to be relatively movable in the horizontal direction. 少なくとも下部支承部材に形成した係合溝の中央部側を両端部より低く形成するか、上部支承部材に形成した係合溝の中央部側を両端部より高く形成することにより復帰機能を付与した請求項3に記載の免震装置。A return function is provided by forming at least the center part side of the engagement groove formed in the lower support member lower than both ends, or forming the center part side of the engagement groove formed in the upper support member higher than both ends. The seismic isolation device according to claim 3.
JP2003030158A 2003-02-06 2003-02-06 Seismic isolation device Expired - Fee Related JP4116894B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003030158A JP4116894B2 (en) 2003-02-06 2003-02-06 Seismic isolation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003030158A JP4116894B2 (en) 2003-02-06 2003-02-06 Seismic isolation device

Publications (2)

Publication Number Publication Date
JP2004238950A true JP2004238950A (en) 2004-08-26
JP4116894B2 JP4116894B2 (en) 2008-07-09

Family

ID=32957112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003030158A Expired - Fee Related JP4116894B2 (en) 2003-02-06 2003-02-06 Seismic isolation device

Country Status (1)

Country Link
JP (1) JP4116894B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006158476A (en) * 2004-12-03 2006-06-22 Nachi Fujikoshi Corp Base isolation part unit and base isolation device
JP2006307915A (en) * 2005-04-27 2006-11-09 Nachi Fujikoshi Corp Horizontal movement part, horizontal movement device and base isolation device
JP2007046445A (en) * 2005-06-30 2007-02-22 Tatsuji Ishimaru Double layer seismic response control device
JP2017009013A (en) * 2015-06-19 2017-01-12 株式会社フジタ Seismic isolator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006158476A (en) * 2004-12-03 2006-06-22 Nachi Fujikoshi Corp Base isolation part unit and base isolation device
JP2006307915A (en) * 2005-04-27 2006-11-09 Nachi Fujikoshi Corp Horizontal movement part, horizontal movement device and base isolation device
JP4517359B2 (en) * 2005-04-27 2010-08-04 株式会社不二越 Horizontal moving parts and horizontal moving devices or seismic isolation devices
JP2007046445A (en) * 2005-06-30 2007-02-22 Tatsuji Ishimaru Double layer seismic response control device
JP2017009013A (en) * 2015-06-19 2017-01-12 株式会社フジタ Seismic isolator

Also Published As

Publication number Publication date
JP4116894B2 (en) 2008-07-09

Similar Documents

Publication Publication Date Title
JP2004238950A (en) Base isolating device
JPH11166592A (en) Base isolation body
JPH11247925A (en) Base isolation table
JP2001173718A (en) Heavy load plane guiding device for base isolation
JPH10169710A (en) Base isolation device for structure
JP4057441B2 (en) Seismic isolation device
JP3711524B2 (en) Expansion joints for seismic isolation structures
JP3785593B2 (en) Rubber bearing device for bridge
KR200201065Y1 (en) Pot bearing with a device preventing removement of slab
JP2001020223A (en) Modifying method of existing bridge beam support part
JP2003155838A (en) Vibration-isolated structure of building
JPH02150508A (en) Straight rolling guide unit
Girault Analyses of foundation failures
JP4958032B2 (en) Expansion joint passage for base-isolated buildings
JP2002250395A (en) Spherical bearing unit and spherical base isolation device
KR200222439Y1 (en) Bridge Bearing equipped with deck restrainer
JP3404622B2 (en) Linear roller guide and table guide
KR20150047753A (en) a bridge bearing arrangment structure for a vertical offset of bridge
JP3293099B2 (en) Rail-supported seismic isolation structure
JP2007239762A (en) Base isolation device
JP4587483B2 (en) Seismic isolation device
JP2001349092A (en) Base isolation device
JP4628735B2 (en) Building seismic isolation system with a non-torsional seismic isolation base
JP2000291653A (en) Roller guide device and table guide device
JP2008075828A (en) Horizontal movement device or base isolating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060130

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20070418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080418

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees