JP2007239880A - Power transmission shaft and its manufacturing method - Google Patents

Power transmission shaft and its manufacturing method Download PDF

Info

Publication number
JP2007239880A
JP2007239880A JP2006062894A JP2006062894A JP2007239880A JP 2007239880 A JP2007239880 A JP 2007239880A JP 2006062894 A JP2006062894 A JP 2006062894A JP 2006062894 A JP2006062894 A JP 2006062894A JP 2007239880 A JP2007239880 A JP 2007239880A
Authority
JP
Japan
Prior art keywords
power transmission
transmission shaft
particles
manufacturing
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006062894A
Other languages
Japanese (ja)
Inventor
Hiroo Morimoto
洋生 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2006062894A priority Critical patent/JP2007239880A/en
Publication of JP2007239880A publication Critical patent/JP2007239880A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Heat Treatment Of Articles (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power transmission shaft capable of obtaining high compression residual stress upon quenching and improving fatigue strength, and its manufacturing method. <P>SOLUTION: The power transmission shaft includes a surface-hardened layer 4. Particles are mixed in a coolant for high frequency hardening, and this admixture is sprayed onto carbon steel containing 0.30 to 0.48 wt.% of carbon. The surface-hardened layer 4 is thereby produced. The residual stress of the surface-hardened layer 4 is set to -800 MPa or less. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、自動車や各種産業機械における動力の伝達に用いられる動力伝達軸に関し、特に等速自在継手に使用される動力伝達軸及びその製造方法に関するものである。 The present invention relates to a power transmission shaft used for power transmission in automobiles and various industrial machines, and more particularly to a power transmission shaft used for a constant velocity universal joint and a manufacturing method thereof.

例えば自動車の動力伝達系に組み込まれるドライブシャフトやプロペラシャフトなどに使用される動力伝達軸では、通常、素材として炭素鋼が用いられ、さらに熱処理により表面を硬化させて所定の強度が確保されている。さらに、動力伝達軸には、中実の一体シャフトと溶接や圧接を用いた接合シャフトが存在する。   For example, in a power transmission shaft used for a drive shaft or a propeller shaft incorporated in a power transmission system of an automobile, carbon steel is usually used as a material, and the surface is hardened by heat treatment to ensure a predetermined strength. . Further, the power transmission shaft includes a solid integrated shaft and a joint shaft using welding or pressure welding.

近年では、自動車の高出力化、あるいは安全性指向による車両重量の増加などに対応して動力伝達軸の更なる高強度化が望まれている。また、燃費向上の観点から動力伝達軸の軽量化要求が顕在化しており、これを達成する上でも動力伝達軸の高強度化が急務である。そのため、この動力伝達軸の高強度化を図ることを目的として、種々の提案がなされている(例えば、特許文献1〜特許文献3参照)。   In recent years, it has been desired to further increase the strength of the power transmission shaft in response to an increase in the output of an automobile or an increase in vehicle weight due to safety. In addition, from the viewpoint of improving fuel efficiency, demands for reducing the weight of the power transmission shaft have become apparent, and in order to achieve this, it is urgent to increase the strength of the power transmission shaft. Therefore, various proposals have been made for the purpose of increasing the strength of the power transmission shaft (see, for example, Patent Documents 1 to 3).

特許文献1に開示された動力伝達軸では、素材である炭素鋼にBを添加することにより、焼入れ性向上、粒界強化、焼割れ感受性の低下を図っており、また、Nb,V,Zrを添加することにより、結晶粒の微細化による靭性の向上を図っている。   In the power transmission shaft disclosed in Patent Document 1, by adding B to the carbon steel material, the hardenability is improved, the grain boundary is strengthened, and the cracking susceptibility is reduced. Nb, V, Zr Is added to improve toughness by refining crystal grains.

特許文献2に開示された動力伝達軸では、鋼材にMoやBを添加することにより、母材組織をベイナイト化し、焼入れ性を極端に向上させることで、結晶粒の微細化により耐焼割れ性および疲労強度の向上を図っている。   In the power transmission shaft disclosed in Patent Document 2, by adding Mo or B to the steel material, the base metal structure is bainite, and the hardenability is extremely improved. The fatigue strength is improved.

このように、特許文献1及び特許文献2に記載の動力伝達軸では、焼入れ性向上や結晶粒の微細化効果がある特殊な合金元素を添加することにより、動力伝達軸の高強度化を図っている。   As described above, in the power transmission shafts described in Patent Document 1 and Patent Document 2, the strength of the power transmission shaft is increased by adding a special alloy element that has an effect of improving hardenability and refinement of crystal grains. ing.

ところで、このような動力伝達軸の熱処理は、高周波焼入れや浸炭焼入れ後に、焼戻し処理を行うのが一般的である。そこで、特許文献3に開示された動力伝達軸では、焼入れ焼戻し後に、さらにショットピーニング処理を追加することで高強度化を図っている。
特開2000−234141号公報 特開2005−060718号公報 特開2003−307211号公報
By the way, such heat treatment of the power transmission shaft is generally performed by tempering after induction hardening or carburizing and quenching. Therefore, in the power transmission shaft disclosed in Patent Document 3, after the quenching and tempering, a shot peening process is further added to increase the strength.
JP 2000-234141 A JP-A-2005-060718 JP 2003-307111 A

しかしながら、従来のように特殊な合金元素を多量に添加することは、製品のコストアップを招くという問題があった。また、動力伝達軸の高強度化のために素材組織をベイナイト化することは、素材硬さの上昇により加工性が低下して製品のコストアップを招くという問題もあった。さらに、熱処理において、通常の焼入れ焼戻し工程が実施された上で、さらにショットピーニング処理を追加することは、コスト上昇につながる。   However, adding a large amount of special alloy elements as in the prior art has a problem of increasing the cost of the product. In addition, the bainite of the material structure for increasing the strength of the power transmission shaft has a problem in that the workability is lowered due to the increase in material hardness and the cost of the product is increased. Furthermore, in the heat treatment, adding a shot peening treatment after performing a normal quenching and tempering step leads to an increase in cost.

また、前記特許文献1に記載のように、Bを添加した場合、このBの添加の効果を十分に引き出すため、Tiを合わせて添加する必要がある。Tiを添加した場合に生成されるTiNの硬く大きい介在物が、旋削のチップ欠けなどを誘発し、工具寿命が低下するという問題もあった。さらに、前記特許文献2に記載のように、Moなどを添加することで焼入れ性を向上させることは、一般的に溶接性が悪化するという問題もあった。また、Sが増加すると接合性(溶接・摩擦圧接性)が低下する問題があった。   Further, as described in Patent Document 1, when B is added, it is necessary to add Ti together in order to sufficiently bring out the effect of addition of B. There was also a problem that the hard and large inclusions of TiN produced when Ti was added induced chipping in turning and the tool life was reduced. Further, as described in Patent Document 2, improving the hardenability by adding Mo or the like generally has a problem that the weldability is deteriorated. Further, when S increases, there is a problem that jointability (welding / friction pressure weldability) decreases.

そこで、本発明は前述の問題点に鑑みて提案されたもので、その目的とするところは、焼入れと同時に高い圧縮残留応力を得ることができて、疲労強度の向上を図ることができる動力伝達軸及びその製造方法を提供することにある。   Therefore, the present invention has been proposed in view of the above-described problems, and the object of the present invention is to provide a power transmission capable of obtaining high compressive residual stress simultaneously with quenching and improving fatigue strength. It is to provide a shaft and a manufacturing method thereof.

本発明の動力伝達軸は、冷却剤に粒子を混入した混合剤を吹き付ける高周波焼入れにて形成した表面硬化層を有するものである。   The power transmission shaft of the present invention has a hardened surface layer formed by induction hardening in which a mixture in which particles are mixed in a coolant is blown.

本発明の動力伝達軸では、高周波焼入れにおいて、冷却剤とともに粒子を吹き付けているので、焼入れ中にショットピーニングを行ったことになる。   In the power transmission shaft of the present invention, since particles are sprayed together with the coolant in the induction hardening, shot peening is performed during the quenching.

炭素量が0.30〜0.48wt%の炭素鋼を使用する。炭素量が0.30wt%未満であれば、焼入れ焼戻し後に十分な硬さと深さが得られず、強度低下の問題がある。また、炭素量が0.48wt%を越えると、著しく溶接性を阻害し、さらには機械加工性の阻害と焼割れが発生し易くなる。   Carbon steel having a carbon content of 0.30 to 0.48 wt% is used. If the amount of carbon is less than 0.30 wt%, sufficient hardness and depth cannot be obtained after quenching and tempering, and there is a problem of strength reduction. On the other hand, if the carbon content exceeds 0.48 wt%, weldability is remarkably impaired, and further, machinability is inhibited and fire cracking is likely to occur.

残留応力を−800MPa以下とする。これにより、強度向上が得られる。残留応力が−800MPaを越えると、十分な強度(例えば、捩り疲労試験による強度)を得ることができない。また、吹き付ける粒子としてセラミック粒子を使用することができる。   The residual stress is set to -800 MPa or less. Thereby, an improvement in strength is obtained. If the residual stress exceeds -800 MPa, sufficient strength (for example, strength by a torsional fatigue test) cannot be obtained. Moreover, ceramic particles can be used as the particles to be sprayed.

本発明の動力伝達軸の製造方法は、表面硬化層を有する動力伝達軸の製造方法において、炭素量が0.30〜0.48wt%である炭素鋼に対して、高周波焼入れの冷却剤に粒子を混入して、この混合剤を吹き付けて前記表面硬化層を生成するものである。   The method for manufacturing a power transmission shaft according to the present invention is a method for manufacturing a power transmission shaft having a surface hardened layer, in which carbon particles having a carbon content of 0.30 to 0.48 wt% are used as coolant in induction hardening. And the mixture is sprayed to produce the surface hardened layer.

本発明の動力伝達軸の製造方法では、高周波焼入れにおいて、冷却剤とともに粒子を吹き付けるので、焼入れと同時にショットピーニングを行うことになる。   In the method for manufacturing a power transmission shaft of the present invention, particles are sprayed together with a coolant in induction hardening, so shot peening is performed simultaneously with quenching.

本発明の動力伝達軸は、高周波焼入れの冷却剤の中に、粒子(高硬さの粒子)を混入することで、冷却と同時にピーニング効果を得ることができる。このため、焼入れと同時に高い圧縮残留応力が得られ、これにより疲労強度の向上を図ることができる。また、焼戻し工程後にショットピーニング工程をさらに行う必要がなく、製造時間の短縮及びコスト低減を図ることができる。   The power transmission shaft of the present invention can obtain a peening effect simultaneously with cooling by mixing particles (high hardness particles) in the coolant of induction hardening. For this reason, a high compressive residual stress is obtained simultaneously with quenching, thereby improving the fatigue strength. In addition, it is not necessary to further perform a shot peening process after the tempering process, and the manufacturing time and cost can be reduced.

本発明に係る動力伝達軸およびその製造方法の実施形態を以下に詳述する。   Embodiments of a power transmission shaft and a manufacturing method thereof according to the present invention will be described in detail below.

図1は動力伝達軸の実施形態として、例えば、自動車のドライブシャフトに使用される場合を例示する。ドライブシャフトは、動力伝達軸である中間シャフト1の一方の軸端部2に摺動式等速自在継手(図示せず)がスプライン嵌合などにより連結され、他方の軸端部3に固定式等速自在継手(図示せず)がスプライン嵌合などにより連結される。   FIG. 1 illustrates a power transmission shaft as an embodiment, for example, when used for a drive shaft of an automobile. The drive shaft has a sliding type constant velocity universal joint (not shown) connected to one shaft end 2 of the intermediate shaft 1 serving as a power transmission shaft by spline fitting and the like, and is fixed to the other shaft end 3. A constant velocity universal joint (not shown) is connected by spline fitting or the like.

また、シャフト1の端部2、3には夫々スプライン部5、6が形成されている。なお、この中間シャフト1は、中実の棒材から加工された中実シャフト、あるいは鋼管などから加工された中空シャフト、あるいは溶接や摩擦圧接を用いた接合シャフトのいずれであってもよい。   Spline portions 5 and 6 are formed at the end portions 2 and 3 of the shaft 1, respectively. The intermediate shaft 1 may be either a solid shaft machined from a solid bar, a hollow shaft machined from a steel pipe, or a joint shaft using welding or friction welding.

この中間シャフト1は、炭素量が0.3〜0.48wt%の炭素鋼を用いている。すなわち、C:0.3〜0.48wt%を含む炭素鋼からなる素材を高周波加熱し、その高周波加熱により表面に硬化層4を形成する。この高周波加熱処理では、焼入れ温度を例えば、1000℃とする。   The intermediate shaft 1 uses carbon steel having a carbon content of 0.3 to 0.48 wt%. That is, a material made of carbon steel containing C: 0.3 to 0.48 wt% is heated at high frequency, and the hardened layer 4 is formed on the surface by the high frequency heating. In this high-frequency heat treatment, the quenching temperature is set to 1000 ° C., for example.

素材の成分を前述の範囲に規定したのは以下の理由による。つまり、C量が0.3wt%未満であると、焼入れ焼戻し後に十分な硬さと硬化深さが得られず、強度低下の問題がある。またC量が0.48wt%を超えると、著しく溶接性を阻害し、さらに機械加工性の阻害と焼き割れが発生し易くなるという問題がある。   The reason why the components of the material are defined in the above-mentioned range is as follows. That is, if the amount of C is less than 0.3 wt%, sufficient hardness and hardening depth cannot be obtained after quenching and tempering, and there is a problem of strength reduction. On the other hand, if the amount of C exceeds 0.48 wt%, there is a problem that weldability is remarkably impaired, and further, machinability is inhibited and burn cracking is likely to occur.

ところで、高周波焼入れは、円筒状に巻いた高周波コイルに通電して、鋼の表面温度を変態点以上にまで急速に加熱し、内部温度が上昇する前に、急冷する熱処理方法である。このため、冷却剤を噴射装置にて吹き付けて冷却することになる。この際、本発明では、この冷却剤に、粒子(ショットピーニングに使用されるショット材であって、硬質な小球)を混入し、この混合剤を吹き付けるものである。なお、冷却剤としては、水、油等を使用することができる。   By the way, induction hardening is a heat treatment method in which a high-frequency coil wound in a cylindrical shape is energized to rapidly heat the steel surface temperature to the transformation point or higher and rapidly cool before the internal temperature rises. For this reason, it cools by spraying a coolant with an injection device. In this case, in the present invention, particles (a shot material used for shot peening, which is a hard small sphere) are mixed in this coolant, and this mixture is sprayed. In addition, water, oil, etc. can be used as a coolant.

すなわち、高周波焼入れの冷却剤の中に、高硬さの粒子を混入することで、冷却と同時にピーニング効果を得ることができる。このため、焼入れと同時に高い圧縮残留応力が得られ、これにより疲労強度の向上を図ることができる。この際、圧縮残留応力として、−800MPa以下とする。この圧縮残留応力は、粒子の吹き付け圧力や粒子径等によって変更できる。圧縮残留応力が−800MPaを越えると、十分な強度(例えば、捩り疲労試験による強度)を得ることができない。   That is, a peening effect can be obtained simultaneously with cooling by mixing high-hardness particles in the induction hardening coolant. For this reason, a high compressive residual stress is obtained simultaneously with quenching, thereby improving the fatigue strength. At this time, the compressive residual stress is set to −800 MPa or less. This compressive residual stress can be changed by the spraying pressure of the particles, the particle diameter, and the like. When the compressive residual stress exceeds -800 MPa, sufficient strength (for example, strength by a torsional fatigue test) cannot be obtained.

また、前記粒子の材質としては、金属、セラミックス等の種々のものを採用することができる。粒子の硬さとしてはロックウェル硬さ(HRC)58以上が好ましい。HRCが58未満であれば、被処理物に対して硬さが低くなるため、十分なピーニング効果を得ることができない。さらに、硬化層深さは半径rに対する有効硬化深さtの比(t/r)を0.40以上とする。半径に対する有効硬化深さの比が0.40未満であると、内部起点による破壊が発生し、著しく強度が低下するという問題がある。   Further, various materials such as metals and ceramics can be adopted as the material of the particles. The hardness of the particles is preferably Rockwell hardness (HRC) of 58 or more. If the HRC is less than 58, the hardness of the workpiece is low, so that a sufficient peening effect cannot be obtained. Furthermore, the ratio of the effective hardening depth t to the radius r (t / r) is 0.40 or more. When the ratio of the effective hardening depth to the radius is less than 0.40, there is a problem that the breakage due to the internal origin occurs and the strength is remarkably lowered.

本発明によれば、焼入れと同時に高い圧縮残留応力が得られ、これにより疲労強度の向上を図ることができる。また、焼戻し工程後にショットピーニング工程をさらに行う必要がなく、製造時間の短縮及びコスト低減を図ることができる。   According to the present invention, a high compressive residual stress can be obtained simultaneously with quenching, whereby the fatigue strength can be improved. In addition, it is not necessary to further perform a shot peening process after the tempering process, and the manufacturing time and cost can be reduced.

炭素量が0.30〜0.48wt%の炭素鋼を使用しているので、硬化層4は十分な硬さと深さを得ることができ、安定した強度を発揮することができる。また、溶接性に優れ、さらには機械加工性の向上と焼割れを防止することができる。   Since carbon steel having a carbon amount of 0.30 to 0.48 wt% is used, the hardened layer 4 can obtain sufficient hardness and depth, and can exhibit stable strength. Moreover, it is excellent in weldability, and also can improve machinability and prevent cracking.

残留応力として、−800MPa以下とすることにより、強度向上(特に捩り疲労試験に対する強度)が得られる。冷却剤に混入する粒子に金属、セラミックス等の種々のもの使用することができ、コスト低減を図ることができる。   By setting the residual stress to −800 MPa or less, strength improvement (particularly strength against torsional fatigue test) can be obtained. Various particles such as metals and ceramics can be used for the particles mixed in the coolant, and the cost can be reduced.

表1に示すように、図1に示す形状を有する中間シャフト1となる発明品と、この中間シャフト1と同一形状をなす従来品とを形成して、各発明品と従来品とについて捩り試験を行った。発明品及び従来品の各シャフト素材にSAE1041を使用した。また、各素材に対して、焼入れ温度が1000℃となる高周波焼入れを行い、従来品においては、炉焼戻しによって180℃で1時間の焼戻しを行った。また、発明品については、冷却剤に粒子を混入して、高周波焼入れにおいてショットピーニングを行なった。   As shown in Table 1, a torsion test is performed on each invention product and the conventional product by forming an invention product that is the intermediate shaft 1 having the shape shown in FIG. 1 and a conventional product having the same shape as the intermediate shaft 1. Went. SAE1041 was used for each shaft material of the invention and the conventional product. Each material was subjected to induction quenching at a quenching temperature of 1000 ° C., and the conventional product was tempered at 180 ° C. for 1 hour by furnace tempering. Moreover, about the invention goods, particle | grains were mixed in the coolant and shot peening was performed in induction hardening.

Figure 2007239880
図1に示すように、発明品及び従来品ではスプライン部の硬化比(t/r)を0.4とし、平滑部の硬化比(t/r)を0.6としている。ここで、「平滑部」とは、中間シャフト1の中央部分である。また、残留応力は、発明品では−800MPaとなり、従来品では−500MPaとなった。
Figure 2007239880
As shown in FIG. 1, the invention product and the conventional product have a spline portion curing ratio (t / r) of 0.4 and a smooth portion curing ratio (t / r) of 0.6. Here, the “smoothing part” is a central part of the intermediate shaft 1. Further, the residual stress was -800 MPa for the inventive product and -500 MPa for the conventional product.

これら本発明品と従来品について捩り疲労強度試験を実施した結果を次の表2に示す。   The results of conducting a torsional fatigue strength test on these products of the present invention and conventional products are shown in Table 2 below.

Figure 2007239880
Figure 2007239880

表2に示すように従来品を基準とした場合、本発明品は、破断寿命が10倍延びた。なお、τは試験片の基準径を用いて算出した応力である。   As shown in Table 2, when the conventional product was used as a reference, the product of the present invention had a 10-fold increase in fracture life. Note that τ is a stress calculated using the reference diameter of the test piece.

本発明の動力伝達軸の実施形態を示す正面図である。It is a front view which shows embodiment of the power transmission shaft of this invention.

符号の説明Explanation of symbols

1 動力伝達軸
4 表面硬化層
1 Power transmission shaft 4 Surface hardened layer

Claims (5)

冷却剤に粒子を混入した混合剤を吹き付ける高周波焼入れにて形成した表面硬化層を有することを特徴とする動力伝達軸。   A power transmission shaft comprising a hardened surface layer formed by induction hardening in which a mixture in which particles are mixed in a coolant is sprayed. 炭素量が0.30〜0.48wt%の炭素鋼であることを特徴とする請求項1の動力伝達軸。   The power transmission shaft according to claim 1, wherein the power transmission shaft is carbon steel having a carbon content of 0.30 to 0.48 wt%. 前記粒子がセラミック粒子であることを特徴とする請求項1又は請求項2の動力伝達軸。   The power transmission shaft according to claim 1, wherein the particles are ceramic particles. 前記表面硬化層の残留応力を−800MPa以下としたことを特徴とする請求項1〜請求項3のいずれかの動力伝達軸。   The power transmission shaft according to any one of claims 1 to 3, wherein a residual stress of the surface hardened layer is set to -800 MPa or less. 表面硬化層を有する動力伝達軸の製造方法において、炭素量が0.30〜0.48wt%である炭素鋼に対して、高周波焼入れの冷却剤に粒子を混入して、この混合剤を吹き付けて前記表面硬化層を生成することを特徴とする動力伝達軸の製造方法。   In the method of manufacturing a power transmission shaft having a hardened surface layer, carbon steel having a carbon content of 0.30 to 0.48 wt% is mixed with particles in an induction hardening coolant and sprayed with this mixture. A method of manufacturing a power transmission shaft, wherein the surface hardened layer is generated.
JP2006062894A 2006-03-08 2006-03-08 Power transmission shaft and its manufacturing method Withdrawn JP2007239880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006062894A JP2007239880A (en) 2006-03-08 2006-03-08 Power transmission shaft and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006062894A JP2007239880A (en) 2006-03-08 2006-03-08 Power transmission shaft and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007239880A true JP2007239880A (en) 2007-09-20

Family

ID=38585620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006062894A Withdrawn JP2007239880A (en) 2006-03-08 2006-03-08 Power transmission shaft and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007239880A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010125548A (en) * 2008-11-26 2010-06-10 Toyota Motor Corp Method for manufacturing projection member for shot-peening

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010125548A (en) * 2008-11-26 2010-06-10 Toyota Motor Corp Method for manufacturing projection member for shot-peening

Similar Documents

Publication Publication Date Title
JP3995904B2 (en) Method for producing inner ring for constant velocity joint excellent in workability and strength
JP4632931B2 (en) Induction hardening steel excellent in cold workability and its manufacturing method
JP2000154828A (en) Outer ring for constant velocity universal joint excellent in anti-flaking characteristic and shaft strength and manufacture thereof
JP4771745B2 (en) Steel material for high strength constant velocity joint intermediate shaft and high strength constant velocity joint intermediate shaft
JPH10195589A (en) Induction hardened steel material with high torsional fatigue strength
JP4219023B2 (en) High-strength drive shaft and manufacturing method thereof
WO2014027463A1 (en) Steel material for high frequency induction hardening
JP2002069566A (en) Steel for induction hardening excellent in torsional fatigue characteristic and induction hardened parts
JP4501578B2 (en) Manufacturing method of hollow drive shaft with excellent fatigue resistance
WO2013015085A1 (en) Induction hardening steel and crank shaft manufactured by using same
JP2008208940A (en) Constant velocity universal joint component and its manufacturing method
JP4320589B2 (en) Mechanical structure shaft parts and manufacturing method thereof
US20090110589A1 (en) Steel Material and Process for Producing the Same
JP5405325B2 (en) Differential gear and manufacturing method thereof
JP2007239872A (en) Power transmission shaft and its manufacturing method
JP2007239880A (en) Power transmission shaft and its manufacturing method
JP2000204432A (en) Power transmission shaft
JPH10310823A (en) Manufacture of shaft-shaped parts for machine structural use, excellent in fatigue characteristic
JP2007056296A (en) Method for producing carburized parts for constant velocity joint
JP3687275B2 (en) Non-tempered steel for induction hardening
JP2005002366A (en) High hardness steel for induction hardening having excellent cold work properties
JP2012207257A (en) Medium carbon steel excellent in rolling contact fatigue property and induction hardenability
JP2007107027A (en) Steel material and its production method
JP2002294396A (en) Case hardening steel having little heat treatment strain
JP2006328513A (en) Induction-hardened steel component with axial part having excellent static strength and fatigue property

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090512