JP2007239771A - Vacuum heat insulation material and heat insulation box body using this material - Google Patents

Vacuum heat insulation material and heat insulation box body using this material Download PDF

Info

Publication number
JP2007239771A
JP2007239771A JP2006059079A JP2006059079A JP2007239771A JP 2007239771 A JP2007239771 A JP 2007239771A JP 2006059079 A JP2006059079 A JP 2006059079A JP 2006059079 A JP2006059079 A JP 2006059079A JP 2007239771 A JP2007239771 A JP 2007239771A
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
vacuum heat
film
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006059079A
Other languages
Japanese (ja)
Inventor
Masahito Hayashi
聖人 林
Hideto Sato
英人 佐藤
Tomoyuki Kondo
智幸 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisshinbo Holdings Inc
Original Assignee
Nisshinbo Industries Inc
Nisshin Spinning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshinbo Industries Inc, Nisshin Spinning Co Ltd filed Critical Nisshinbo Industries Inc
Priority to JP2006059079A priority Critical patent/JP2007239771A/en
Priority to KR1020070017357A priority patent/KR20070091534A/en
Publication of JP2007239771A publication Critical patent/JP2007239771A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Insulation (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vacuum heat insulation material having high heat insulation performance and a heat insulation box body using this material, superior in handling performance in laying, without cracking and tearing an external facing bag body, even if large stress is applied to a wall surface stuck with the vacuum heat insulation material. <P>SOLUTION: In the bag body 2 composed of a gas barrier film having a thermal welding layer, a continuous foam hard plastic foaming body is arranged on both obverse-reverse surfaces of a layer composed of any of organic or inorganic fiber or powder or a combination of these. A core material of at least a three-layer constitution is stored. The whole vacuum heat insulation material (t) of sealing the inside under reduced pressure, is heated to the temperature higher by about 5 to 35 °C than a melting point of the thermal welding layer under atmospheric pressure. A non-welded part of the film along a shape of the core material 1, the thermal welding layer of the film and a surface of the core material are thermally welded. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、真空断熱材が貼付けられている壁面に大きな応力が掛かっても外装袋体に亀裂が入ったり破れたりすることがない真空断熱材とそれを用いた断熱箱体に関する。   The present invention relates to a vacuum heat insulating material that does not crack or break the outer bag body even when a large stress is applied to the wall surface to which the vacuum heat insulating material is applied, and a heat insulating box using the same.

真空断熱材(VIP)は、例えば特許文献1に記載されているように、ガスバリア性に優れた複合プラスチックラミネートフィルムからなる袋体に、芯材として連続気泡硬質プラスチック発泡体や無機繊維,無機粉体などの無機物を収納し、内部を減圧した後、周縁のガスバリア性フィルム同士の積層部分をヒートシールして製造される。   For example, as described in Patent Document 1, a vacuum heat insulating material (VIP) is a bag made of a composite plastic laminate film having excellent gas barrier properties, and an open-cell hard plastic foam, inorganic fiber, or inorganic powder as a core material. An inorganic substance such as a body is housed, the inside is decompressed, and then the laminated portion of the peripheral gas barrier films is heat sealed.

このように製造された真空断熱材は、箱体の内壁材と外壁材の間に配置され、残された空間に硬質ウレタンフォームのような断熱材を注入するなどして複合化して使用されている。その際、真空断熱材は、内壁材又は外壁材に貼付けて使用されることが多い。例えば冷蔵庫の内部壁面に接着剤で貼付けて使用するが、冷蔵庫のように使用中に壁面に大きな応力が掛からない製品では、接着には例えばゴム系のホットメルト接着剤が用いられている。また、保冷トラックの収納庫や陸上輸送用のコンテナなどの壁面に大きな応力が掛かる製品では真空断熱材の壁面への貼付けには2液性の反応硬化型接着剤が用いられている。   The vacuum heat insulating material manufactured in this way is arranged between the inner wall material and the outer wall material of the box, and is used in combination by injecting heat insulating material such as hard urethane foam into the remaining space. Yes. At that time, the vacuum heat insulating material is often used by being attached to the inner wall material or the outer wall material. For example, an adhesive is attached to the inner wall surface of the refrigerator with an adhesive, and a product that does not apply a large stress to the wall surface during use, such as a refrigerator, uses, for example, a rubber-based hot melt adhesive. In addition, a two-component reaction-curing adhesive is used for attaching a vacuum heat insulating material to the wall surface of a product in which a large stress is applied to the wall surface, such as a cold storage truck storage or a container for land transportation.

しかしながら、更に大きな応力が掛かる海上輸送用のコンテナの場合は、壁面に真空断熱材が強固に貼付けられていても、壁面に接着された外装袋体と芯材の間は固着しているのではなく、大気圧で押さえられているだけである。そのため、壁面に大きな応力が掛かり、真空断熱材に大きな歪む応力が掛かった場合、芯材と外装袋体の間に大きなズレが生じ外装袋体が引張られて亀裂が入ったり、破れたりするなどのダメージを受け、内部の真空が破壊されるおそれがあった。なお、真空断熱材の外装袋体に亀裂が生じたり、破れたりするのは、使用時のほか、真空断熱材の壁面への貼付け作業時にも起こり易く、特に大きな面積の1枚の真空断熱材を貼付ける場合、その取り扱いには細心の注意が要求される。   However, in the case of a container for maritime transportation that is subject to even greater stress, even if the vacuum heat insulating material is firmly attached to the wall surface, the outer bag body adhered to the wall surface and the core material are not fixed. It is only held at atmospheric pressure. Therefore, when a large stress is applied to the wall surface and a large distorting stress is applied to the vacuum heat insulating material, a large displacement occurs between the core material and the exterior bag body, and the exterior bag body is pulled and cracked or torn. There was a risk that the internal vacuum was destroyed. Note that cracks or tears in the outer bag of vacuum heat insulating material are likely to occur not only during use but also when the vacuum heat insulating material is applied to the wall surface, and a single vacuum heat insulating material having a particularly large area. When sticking, careful handling is required for handling.

例えば、マンション等の集合住宅において、床の厚さを大きく上げることなく熱効率を向上させるため、断熱材として高断熱性能の真空断熱材を適用した床暖房パネルが提案されている。しかし、真空断熱材を敷設するとき、敷設場所に異物や微細な凸状物があると、プラスチックラミネートフィルムからなる真空断熱材の外装袋体が簡単に破れ、真空断熱材の断熱性能が低下してしまうことがあった。そこで、特許文献2では、真空断熱材の裏面に予め保護材を貼付けておいて現場施工時における取り扱い性を向上させる一方、真空断熱材の芯材を複数にし、芯材と芯材の間の外装袋体同士を熱溶着して各芯材をそれぞれ独立した空間に配置する構造にし、外装袋体の一部が破れても、真空断熱材全体の断熱性能の低下を防止できるようにした高効率放熱パネルが提案されている。   For example, in an apartment house such as a condominium, a floor heating panel using a vacuum heat insulating material with high heat insulating performance as a heat insulating material has been proposed in order to improve thermal efficiency without greatly increasing the thickness of the floor. However, when laying vacuum insulation material, if there are foreign objects or fine convex objects at the laying location, the outer bag body of the vacuum insulation material made of plastic laminate film can be easily broken and the insulation performance of the vacuum insulation material will be reduced. There was a case. Therefore, in Patent Document 2, a protective material is pasted on the back surface of the vacuum heat insulating material in advance to improve handling at the time of on-site construction, while a plurality of vacuum heat insulating material cores are provided, and between the core material and the core material. A structure in which the outer bag bodies are heat-welded to each other and each core material is arranged in an independent space so that even if a part of the outer bag body is torn, the heat insulation performance of the entire vacuum heat insulating material can be prevented from being lowered. An efficient heat dissipation panel has been proposed.

しかしながら、特許文献2に提案されている発明では、芯材が小さく分割されているため芯材と芯材の間からの熱の伝導が大きく、高い断熱性能は期待できない。   However, in the invention proposed in Patent Document 2, since the core material is divided into small parts, heat conduction between the core material and the core material is large, and high heat insulation performance cannot be expected.

また、特許文献3には、熱溶着層を有するガスバリア性の外被材と板状の芯材とを有し、熱溶着層同士が対向する外被材の間に芯材が減圧密封されて成り、外被材の間に芯材がある部分を含めて加熱加圧することにより、対向する熱溶着層同士が芯材形状に沿うように熱溶着された真空断熱材の発明が提案されている。   Further, Patent Document 3 includes a gas barrier outer covering material having a heat welding layer and a plate-like core material, and the core material is sealed under reduced pressure between the outer covering materials facing each other. The invention of a vacuum heat insulating material has been proposed in which the heat-welding layers facing each other are heat-welded so as to follow the shape of the core material by heating and pressurizing the portion including the core material between the jacket materials. .

特許文献3において提案されている発明は、真空断熱材を製造するときの熱溶着において、弾性体で構成された熱板を使用し、外被材の間の芯材の有無を熱板の変形によって吸収することにより、対向する熱溶着層同士を芯材形状に沿うように熱溶着している。しかしながら、このような加熱加圧による溶着方法では、弾性体で構成された熱板の変形は、芯材の厚みを考慮すると限度があるため、芯材の四辺に沿ったガスバリア性フィルム(外装材)の積層部分における芯材に近い側に未溶着部分が残り易いという問題があった。また、真空断熱材の大きさに見合う弾性体で構成された熱板を別途用意する必要があるため、製造コストが掛かりすぎるという問題もあった。   The invention proposed in Patent Document 3 uses a hot plate made of an elastic body in heat welding when manufacturing a vacuum heat insulating material, and the presence or absence of a core material between outer jacket materials is used to deform the hot plate. As a result of the absorption, the opposing heat-welded layers are heat-welded so as to follow the core shape. However, in such a welding method by heating and pressing, there is a limit to the deformation of the hot plate made of an elastic body, considering the thickness of the core material. Therefore, a gas barrier film (exterior material) along the four sides of the core material is used. ) Has a problem in that an unwelded portion tends to remain on the side close to the core material. Moreover, since it is necessary to prepare the hot plate comprised with the elastic body corresponding to the magnitude | size of a vacuum heat insulating material separately, there also existed a problem that manufacturing cost started too much.

更に、特許文献4には、熱溶着層を有するガスバリア性の外被材と、板状の芯材とを有し、熱溶着層同士が対向する外被材の間に芯材が減圧密封された真空断熱材であって、外被材の間に芯材がある部分の熱溶着層が溶融して芯材の表面部分と結着しており、芯材の存在しない外被材部分の全てが熱溶着されている真空断熱材の発明が提案されている。   Further, Patent Document 4 includes a gas barrier outer covering material having a heat welding layer and a plate-like core material, and the core material is sealed under reduced pressure between the outer covering materials facing each other. The heat insulation layer where the core material is between the jacket materials melts and binds to the surface portion of the core material. An invention of a vacuum heat insulating material in which is thermally welded has been proposed.

特許文献4において提案されている発明によれば、外被材の熱溶着層が芯材の表面部分に結着しているため、従来の真空断熱材よりは外被材が破れ難いという利点はある。しかし、特許文献4に提案されている発明では真空断熱材を製造するとき、芯材を外被材により挟持した状態で真空包装機内に入れ、内部を減圧した後、コンベアにより真空包装機内を所定距離移動させた後停止して、熱板により加熱加圧することにより熱溶着させているが、このようなコンベアや熱板が不可欠の大掛かりな設備での製造はコストが掛かりすぎるという問題があった。
特開2004−162914号公報 特許第3690420号公報 特許第3559035号公報 特開2005−201458号公報
According to the invention proposed in Patent Document 4, since the heat-welded layer of the outer cover material is bound to the surface portion of the core material, the advantage that the outer cover material is less likely to break than the conventional vacuum heat insulating material is is there. However, in the invention proposed in Patent Document 4, when manufacturing a vacuum heat insulating material, the core material is put in a vacuum packaging machine in a state of being sandwiched by an outer jacket material, the inside is decompressed, and the inside of the vacuum packaging machine is predetermined by a conveyor. Although it is stopped after being moved a distance and heat-welded by heating and pressurizing with a hot plate, there is a problem that it is too expensive to manufacture in such a large facility where a conveyor or hot plate is indispensable .
JP 2004-162914 A Japanese Patent No. 3690420 Japanese Patent No. 3559035 JP-A-2005-201458

本発明は、真空断熱材が貼付けられている壁面に大きな応力が掛かっても外装袋体に亀裂が入ったり、破れたりすることがなく、また、敷設時の取扱い性に優れた高断熱性能を有する真空断熱材とそれを用いた断熱箱体を提供することを、その課題とするものである。   The present invention does not crack or tear the outer bag body even when a large stress is applied to the wall surface to which the vacuum heat insulating material is applied, and has high heat insulating performance with excellent handling properties when laying. It is an object of the present invention to provide a vacuum heat insulating material and a heat insulating box using the same.

上記課題を解決することを目的としてなされた本発明真空断熱材の構成は、熱溶着層を有するガスバリア性フィルムよりなる袋体に、有機又は無機の繊維若しくは粉体のいずれか又はこれらを組合わせたものからなる層の表,裏両面に連続気泡硬質プラスチック発泡体を設けた少なくとも3層構成の芯材を収納し、内部を減圧密封した真空断熱材の全体を、常圧下において前記熱溶着層の融点より5〜35℃程度高い温度に加熱して前記芯材の形状に沿った前記フィルムの未溶着部分、及び、前記フィルムの熱溶着層と前記芯材の表面を熱溶着したことを特徴とするものである。   The structure of the vacuum heat insulating material of the present invention made for the purpose of solving the above problems is that a bag made of a gas barrier film having a heat-welded layer is made of either organic or inorganic fibers or powders or a combination thereof. The whole of the vacuum heat insulating material containing at least three layers of core material provided with open-celled hard plastic foam on the front and back surfaces of the layer and sealed inside under reduced pressure is the heat-welded layer under normal pressure. The film is heated to a temperature about 5 to 35 ° C. higher than the melting point of the film, and the unwelded portion of the film along the shape of the core material, and the heat-welded layer of the film and the surface of the core material are heat-welded. It is what.

本発明は、上記構成において、連続気泡硬質プラスチック発泡体には、連続気泡硬質ポリウレタンフォーム、連続気泡硬質ポリスチレンフォームのいずれかを使用することができる。また、ガスバリア性フィルムは、ガスバリア性フィルムは、金属箔とプラスチックフィルムとの積層フィルム、又は、金属又は無機酸化物の蒸着フィルムとプラスチックフィルムとの積層フィルムを使用するのが好ましい。更に、ガスバリア性フィルムの熱溶着層は、高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE)、リニア低密度ポリエチレン(LLDPE)、未延伸ポリプロピレン(CPP)、延伸ポリプロピレン(OPP)、ポリ塩化ビニリデン(PVDC)、ポリ塩化ビニル(PVC)、エチレン−酢酸ビニル共重合体(EVA)、エチレン−ビニルアルコール共重合体(EVOH)のいずれかのプラスチックフィルム、若しくはポリアミド系、ポリウレタン系、ポリエステル系、エチレン−酢酸ビニル共重合体系、オレフィン系のホットメルト接着剤にすることができる。   In the above-mentioned configuration, the present invention can use either an open-celled rigid polyurethane foam or an open-celled rigid polystyrene foam as the open-celled rigid plastic foam. The gas barrier film is preferably a laminated film of a metal foil and a plastic film, or a laminated film of a metal or inorganic oxide vapor-deposited film and a plastic film. In addition, the thermal barrier layer of the gas barrier film is made of high density polyethylene (HDPE), low density polyethylene (LDPE), linear low density polyethylene (LLDPE), unstretched polypropylene (CPP), stretched polypropylene (OPP), polyvinylidene chloride ( PVDC), polyvinyl chloride (PVC), ethylene-vinyl acetate copolymer (EVA), ethylene-vinyl alcohol copolymer (EVOH) plastic film, or polyamide-based, polyurethane-based, polyester-based, ethylene- A vinyl acetate copolymer system or an olefin type hot melt adhesive can be obtained.

また、上記課題を解決することを目的としてなされた本発明断熱箱体の構成は、物品を収容する箱体の内壁材と外壁材の間の空間に、請求項1〜4のいずれかの真空断熱材を配置し、残った空間に独立気泡硬質ポリウレタンフォームを充填したことを特徴とするものである。   Moreover, the structure of this invention heat insulation box made | formed for the purpose of solving the said subject is the vacuum in any one of Claims 1-4 in the space between the inner wall material and outer wall material of the box which accommodates articles | goods. A heat insulating material is arranged, and the remaining space is filled with closed cell rigid polyurethane foam.

更に、上記課題を解決することを目的としてなされた本発明断熱箱体の他の構成は、物品を収容する箱体の内壁材と外壁材の間の空間に、真空断熱材を当該断熱材の少なくとも片面と周側辺を囲む独立気泡硬質ポリウレタンフォームと一体成形した複合断熱材を配置し、残った空間に独立気泡硬質ポリウレタンフォームを充填したことを特徴とするものである。   Furthermore, another configuration of the heat insulation box of the present invention made for the purpose of solving the above problems is that a vacuum heat insulation material is placed in a space between an inner wall material and an outer wall material of a box body for storing articles. The composite heat insulating material integrally formed with the closed cell rigid polyurethane foam surrounding at least one side and the peripheral side is disposed, and the remaining space is filled with the closed cell rigid polyurethane foam.

本発明真空断熱材は、ガスバリア性フィルムの熱溶着層と芯材の連続気泡硬質プラスチック発泡体が強固に固着しているため、大きな歪み応力が掛かる壁面等に貼付けて使用しても、壁面の大きな歪みにより袋体のガスバリア性フィルムが芯材から剥がれたり、亀裂が入って破れてしまうということがなく、真空破壊を大幅に低減することができるという効果が得られる。   In the vacuum heat insulating material of the present invention, the heat-welded layer of the gas barrier film and the open-cell hard plastic foam of the core material are firmly fixed. The gas barrier film of the bag body is not peeled off from the core material due to a large strain, or is cracked and broken, and the effect of greatly reducing vacuum breakage can be obtained.

また、本発明真空断熱材は、袋体のガスバリア性フィルムが芯材表面に強固に固着しているため、引張り強度,せん断強度などが従来の真空断熱材と比較して大きくなる。その結果、箱体の壁内に配置して使用したときは箱体の剛性が上がり、大きな歪み応力が掛かる海上輸送用コンテナ等に好適に使用することができるという効果が得られる。   Moreover, since the gas barrier film of the bag body is firmly fixed to the core material surface of the vacuum heat insulating material of the present invention, the tensile strength, shear strength and the like are larger than those of conventional vacuum heat insulating materials. As a result, when placed in the wall of the box and used, the rigidity of the box is increased, and an effect that it can be suitably used for a marine transportation container or the like on which a large strain stress is applied is obtained.

更に、本発明真空断熱材の芯材は、有機又は無機の繊維若しくは粉体のいずれか又はこれらを組合わせたものからなる層の表,裏両面に連続気泡硬質プラスチック発泡体を設けた少なくとも3層構成のものであるため、真空断熱材の表面が平滑になり、壁面等への装着性がよくなる。また、少なくとも有機又は無機の繊維若しくは粉体のいずれか又はこれらを組合わせたものからなる層を有しているので、芯材が連続気泡硬質プラスチック発泡体のみの場合と比較して断熱性能がよい。更には、有機又は無機の繊維若しくは粉体のいずれか又はこれらを組合わせたものからなる層と表,裏両面に配置された連続気泡硬質プラスチック発泡体との厚さの比率を変えることにより、強度,断熱性能を使用目的に応じて調節できる。加えて、芯材の表,裏両面に設ける連続気泡硬質プラスチック発泡体の厚みを調整することで、真空断熱材の厚みを大きくするなどの調整を容易に行うことができるという効果もある。   Further, the core material of the vacuum heat insulating material of the present invention is provided with at least 3 open-cell hard plastic foams on the front and back surfaces of a layer made of either organic or inorganic fibers or powders or a combination thereof. Since it has a layer structure, the surface of the vacuum heat insulating material becomes smooth and the mounting property to the wall surface or the like is improved. In addition, since it has a layer made of at least one of organic or inorganic fibers or powders, or a combination thereof, the heat insulating performance is higher than the case where the core material is only an open-celled hard plastic foam. Good. Furthermore, by changing the ratio of the thickness of the layer made of either organic or inorganic fibers or powders or a combination thereof and the open celled hard plastic foam disposed on both the front and back surfaces, Strength and heat insulation performance can be adjusted according to the purpose of use. In addition, by adjusting the thickness of the open-cell hard plastic foam provided on both the front and back surfaces of the core material, there is an effect that adjustment such as increasing the thickness of the vacuum heat insulating material can be easily performed.

次に、本発明の実施の形態例を図に拠り説明する。   Next, an embodiment of the present invention will be described with reference to the drawings.

図1は全体加熱する前の真空断熱材の断面図、図2は図1の真空断熱材を加熱炉内で全体加熱する状態を示す一部切開斜視図、図3は本発明真空断熱材を箱体の壁内に配置した状態を示す要部拡大断面図、図4は真空断熱材と独立気泡硬質ポリウレタンフォームを一体成形する方法の一例を示す概念図で、図4(a)は型枠Wに真空断熱材(VIP)を入れる状態を示す図、図4(b)は型枠W内にウレタン原料液を注入する状態を示す図、図4(c)は、複合断熱材Fの断面図、図5は図4に示した複合断熱材Fを箱体等の壁内に配置した状態を示す要部拡大断面図、図6は真空断熱材のせん断強度試験の方法を示す斜視図、図7は真空断熱材の海上輸送用コンテナへの貼付け態様を示す図で、図7(a)はコンテナの天井面と床面、及び、長手方向の側面に40枚の真空断熱材を並べて貼付けた状態を示す図、図7(b)は短手方向の側面に8枚並べて貼付けた状態を示す図である。   1 is a cross-sectional view of the vacuum heat insulating material before the entire heating, FIG. 2 is a partially cut perspective view showing a state in which the vacuum heat insulating material of FIG. 1 is heated in a heating furnace, and FIG. 3 shows the vacuum heat insulating material of the present invention. FIG. 4 is a conceptual diagram showing an example of a method for integrally forming a vacuum heat insulating material and a closed cell rigid polyurethane foam, and FIG. 4 (a) is a formwork. FIG. 4 (b) is a view showing a state in which a urethane raw material liquid is injected into the mold W, and FIG. 4 (c) is a cross section of the composite heat insulating material F. FIG. 5 is an enlarged cross-sectional view of a main part showing a state in which the composite heat insulating material F shown in FIG. 4 is arranged in a wall such as a box, and FIG. 6 is a perspective view showing a method of a shear strength test of the vacuum heat insulating material. FIG. 7 is a view showing a manner of attaching the vacuum heat insulating material to the container for marine transportation. FIG. 7 (a) shows the container on the ceiling surface, the floor surface, and the side surface in the longitudinal direction. FIG. 7B is a diagram showing a state in which 40 vacuum heat insulating materials are aligned and pasted, and FIG.

図において、tは、従来の方法で製造した真空断熱材で、本発明においては、図1に示したように、芯材1に、有機又は無機の繊維若しくは粉体のいずれか又はこれらを組合わせたものからなる層1aの表,裏両面に連続気泡硬質プラスチック発泡体1b,1bを設けた少なくとも3層構成のものが使用される。少なくとも3層とは、表,裏の最外層が連続気泡硬質プラスチック発泡体1b,1bで、それらに挟まれる中層に少なくとも1層の有機又は無機の繊維若しくは粉体のいずれか又はこれらを組合わせたものからなる層を有すれば、4層以上であってもよいということである。従って、中層は、有機又は無機の繊維若しくは粉体のいずれか又はこれらを組合わせたものからなる層と連続気泡硬質プラスチック発泡体を積層した層構成にすることができる。有機又は無機の繊維若しくは粉体のいずれか又はこれらを組合わせたものからなる層1aと表,裏両面に設けた連続気泡硬質プラスチック発泡体1b,1bの厚さの比率は、(1b+1b):1a=1:1とするのが強度,断熱性能のバランスの観点から最も好ましい。   In the figure, t is a vacuum heat insulating material manufactured by a conventional method. In the present invention, as shown in FIG. 1, the core material 1 is made of either organic or inorganic fibers or powders or a combination thereof. A layer having at least three layers in which open-celled hard plastic foams 1b and 1b are provided on both the front and back surfaces of the combined layer 1a is used. At least 3 layers are the open-celled hard plastic foams 1b and 1b on the front and back outermost layers, and at least one organic or inorganic fiber or powder in the middle layer sandwiched between them, or a combination of these If there is a layer made of the same, it may be four or more layers. Therefore, the middle layer can have a layer structure in which an organic or inorganic fiber or powder, or a layer made of a combination of these, and an open-celled hard plastic foam are laminated. The ratio of the thickness of the layer 1a made of either organic or inorganic fibers or powders, or a combination thereof, and the open-celled hard plastic foams 1b, 1b provided on the front and back surfaces is (1b + 1b): 1a = 1: 1 is most preferable from the viewpoint of balance between strength and heat insulation performance.

2は、熱溶着層を有するガスバリア性フィルムよりなる袋体で、芯材1を収納した状態で内部を減圧状態にして密封することにより真空断熱材tが製造される。なお、2aは、袋体2の内部を真空に近い状態まで吸引した後、ヒートシールした密封部である。また、3は、芯材1の任意の場所に配置したガス吸着剤で、経時的に芯材1から発生するアウトガス及びヒートシール部、及びフィルム表面から経時的に進入するガスを吸収するためのものである。   Reference numeral 2 denotes a bag made of a gas barrier film having a heat-welded layer. The vacuum heat insulating material t is manufactured by sealing the interior of the core member 1 in a reduced pressure state while the core material 1 is housed. In addition, 2a is the sealing part which sucked the inside of the bag body 2 to the state close | similar to a vacuum, and was heat-sealed. Reference numeral 3 denotes a gas adsorbent disposed at an arbitrary position of the core material 1 for absorbing the outgas generated from the core material 1 over time and the heat seal portion, and the gas entering over time from the film surface. Is.

真空断熱材tの芯材1を構成する連続気泡硬質プラスチック発泡体1bとしては、連続気泡硬質ポリウレタンフォーム、連続気泡硬質ポリスチレンフォームなどを使用することができる。なお、これら発泡体は、多段圧縮成形した積層構造の成形体にしたものを使用してもよい。   As the open-cell hard plastic foam 1b constituting the core material 1 of the vacuum heat insulating material t, open-cell hard polyurethane foam, open-cell hard polystyrene foam, or the like can be used. In addition, you may use what made the molded object of the laminated structure which carried out the multistage compression molding for these foams.

また、芯材1を構成する有機又は無機の繊維若しくは粉体のいずれか又はこれらを組合わせたものからなる層としては、有機繊維のみからなる層、無機繊維のみからなる層、有機繊維と無機繊維を混合したものを用いた層、或は、これらの繊維層に有機又は無機の粉体のいずれか若しくは両方を混合したものからなる層が挙げられる。更に、有機粉体又は無機粉体のみからなる層、若しくは、有機と無機の粉体を混合したものからなる層が挙げられる。   Moreover, as a layer which consists of organic or inorganic fiber or powder which comprises the core material 1, or those which combined these, the layer which consists only of organic fiber, the layer which consists only of inorganic fiber, organic fiber and inorganic Examples thereof include a layer using a mixture of fibers, or a layer formed by mixing one or both of organic or inorganic powders with these fiber layers. Furthermore, the layer which consists only of organic powder or inorganic powder, or the layer which consists of what mixed organic and inorganic powder is mentioned.

繊維体としては無機繊維には、ガラス繊維,セラミックファイバー,ロックウール,シリカアルミナウールなどを使用することができる。また、有機繊維には、PET繊維等のポリエステル系、PP繊維等のポリオレフィン系、ナイロン繊維等のポリアミド系等のプラスチック繊維、若しくはケナフ繊維、バナナ繊維等の植物由来の繊維を使用することができる。粉体としては、無機粉体には、乾式シリカ、湿式シリカ、パーライト等を主成分とする公知の材料を使用することができる。また、有機粉体には、ケナフ等の粉体を使用することができる。例えば、ガラス繊維に有機バインダーを0.5〜1.5wt%塗布して積層、圧縮成形したガラス繊維マットやケナフ繊維マット、或は、バインダー等の結合剤を塗布せずにニードルパンチにより圧縮成形したガラス繊維マットやガラス繊維とPET繊維の混合物、若しくは、ガラス繊維等を水を用いて集綿し、加熱圧縮成形したガラス繊維マット等などを使用することができる。   As the fiber body, glass fiber, ceramic fiber, rock wool, silica alumina wool or the like can be used as the inorganic fiber. In addition, as the organic fibers, polyester fibers such as PET fibers, polyolefin fibers such as PP fibers, polyamide fibers such as nylon fibers, or plant-derived fibers such as kenaf fibers and banana fibers can be used. . As the powder, a known material mainly composed of dry silica, wet silica, pearlite or the like can be used as the inorganic powder. Moreover, powder, such as kenaf, can be used for the organic powder. For example, glass fiber mats or kenaf fiber mats formed by applying 0.5 to 1.5 wt% organic binder to glass fiber, laminated, and compression molded, or glass fiber compressed by needle punch without applying a binder or other binder A mat, a mixture of glass fiber and PET fiber, a glass fiber mat or the like obtained by collecting cotton fibers using water and then compression-molding them can be used.

次に、真空断熱材tの袋体2に使用するガスバリア性フィルムは、複合プラスチックラミネートフィルムにより形成されている。具体的には、熱溶着層と金属箔と他のプラスチックフィルムを積層した構成のもので、熱溶着層は袋体2の最内層に位置している。   Next, the gas barrier film used for the bag 2 of the vacuum heat insulating material t is formed of a composite plastic laminate film. Specifically, the heat-welding layer, the metal foil, and another plastic film are laminated, and the heat-welding layer is located in the innermost layer of the bag body 2.

金属箔としては、アルミニウム箔やスチール箔,ステンレス箔,銅箔等を使用することができる。金属箔の代わりに金属や無機酸化物の蒸着フィルムを使用しプラスチックフィルムと積層したフィルムを使用することもできる。   As the metal foil, aluminum foil, steel foil, stainless steel foil, copper foil or the like can be used. Instead of the metal foil, a metal or inorganic oxide vapor-deposited film can be used and a film laminated with a plastic film can also be used.

また、熱溶着層としては、高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE)、リニア低密度ポリエチレン(LLDPE)、未延伸ポリプロピレン(CPP)、延伸ポリプロピレン(OPP)、ポリ塩化ビニリデン(PVDC)、ポリ塩化ビニル(PVC)、エチレン−酢酸ビニル共重合体(EVA)、エチレン−ビニルアルコール共重合体(EVOH)などのプラスチックフィルム、若しくはポリアミド系、ポリウレタン系、ポリエステル系、エチレン−酢酸ビニル共重合体系、オレフィン系のホットメルト接着剤を使用することができる。   In addition, as the heat welding layer, high density polyethylene (HDPE), low density polyethylene (LDPE), linear low density polyethylene (LLDPE), unstretched polypropylene (CPP), stretched polypropylene (OPP), polyvinylidene chloride (PVDC), Plastic film such as polyvinyl chloride (PVC), ethylene-vinyl acetate copolymer (EVA), ethylene-vinyl alcohol copolymer (EVOH), or polyamide, polyurethane, polyester, ethylene-vinyl acetate copolymer An olefin-based hot melt adhesive can be used.

上記の複合プラスチックラミネートフィルムの一例として、ポリエチレンテレフタレートフィルム/ナイロンフィルム/アルミ箔/ポリエチレンフィルムの4層構造のラミネートフィルムが挙げられるが、これ以外に、ポリエチレンテレフタレートフィルム/アルミ箔/高密度ポリエチレンフィルムの3層構造のラミネートフィルムもあり、これらのフィルムを袋体2に形成するときは、ポリエチレンフィルムが袋体2の内側になるように構成される。上記のラミネートフィルムのアルミ箔をアルミ蒸着フィルム、アルミナ蒸着フィルム、シリカ蒸着フィルム、一つの基盤に二種類の無機酸化物を積層した二元蒸着フィルム等の無機酸化物を蒸着したフィルムに代えたものも勿論、使用することができる。   As an example of the above composite plastic laminate film, there is a laminate film having a four-layer structure of polyethylene terephthalate film / nylon film / aluminum foil / polyethylene film. In addition, polyethylene terephthalate film / aluminum foil / high density polyethylene film There is also a laminate film having a three-layer structure, and when these films are formed on the bag body 2, the polyethylene film is configured to be inside the bag body 2. The above laminated film aluminum foil is replaced with a film in which an inorganic oxide is deposited, such as an aluminum deposited film, an alumina deposited film, a silica deposited film, or a binary deposited film in which two kinds of inorganic oxides are laminated on one substrate. Of course, it can also be used.

本発明真空断熱材Tは、上記構成の真空断熱材tの全体を、常圧下においてガスバリア性フィルムの熱溶着層の融点より5〜35℃程度高い温度に加熱して芯材1の外周形状に沿ったガスバリア性フィルムの未溶着部分、及び、ガスバリア性フィルムの熱溶着層と芯材の表面を熱溶着してなるものである。真空断熱材tの全体を常圧下において加熱する方法としては、例えば、図2に示したように、加熱炉R内に真空断熱材tを入れて加熱する方法がある。図2では真空断熱材tを1枚ずつ加熱しているが、より大きな加熱炉に複数枚の真空断熱材tを入れてそれらを同時に加熱するようにしてもよく、また、コンベアなどで搬送し加熱炉内に順次送りながら加熱するようにしてもよい。なお、Dは、加熱炉Rの開閉扉、hは、この開閉扉Dの取手である。   The vacuum heat insulating material T of the present invention heats the entire vacuum heat insulating material t having the above structure to a temperature of about 5 to 35 ° C. higher than the melting point of the heat-welded layer of the gas barrier film under normal pressure to form the outer peripheral shape of the core material 1. The non-welded portion of the gas barrier film along and the heat-welded layer of the gas barrier film and the surface of the core material are heat-welded. As a method of heating the entire vacuum heat insulating material t under normal pressure, for example, there is a method of heating the vacuum heat insulating material t in the heating furnace R as shown in FIG. In FIG. 2, the vacuum heat insulating material t is heated one by one. However, a plurality of vacuum heat insulating materials t may be placed in a larger heating furnace and heated at the same time, or conveyed by a conveyor or the like. You may make it heat, feeding in a heating furnace sequentially. Note that D is an opening / closing door of the heating furnace R, and h is a handle of the opening / closing door D.

加熱温度は、ガスバリア性フィルムの熱溶着層の融点より5〜35℃程度高い温度に設定する。例えば、熱溶着層が高密度ポリエチレン(HDPE)のフィルムの場合、このHDPEの密度は0.93〜0.95,融点は120〜130℃であり、リニア低密度ポリエチレン(LLDPE)のフィルムの場合、LLDPEの密度は0.91〜0.93,融点は100〜110℃、同じく、未延伸ポリプロピレン(CPP)の場合、CPPの密度は0.90前後,融点は130〜170℃であるので、これらHDPE,LLDPE,CPPの融点より5〜35℃程度高い温度に設定する。   The heating temperature is set to a temperature about 5 to 35 ° C. higher than the melting point of the heat-welded layer of the gas barrier film. For example, if the heat-welded layer is a high-density polyethylene (HDPE) film, the HDPE has a density of 0.93 to 0.95, and the melting point is 120 to 130 ° C. If the film is a linear low-density polyethylene (LLDPE), the density of the LLDPE Is 0.91-0.93, melting point is 100-110 ° C. Similarly, in the case of unstretched polypropylene (CPP), the density of CPP is around 0.90 and the melting point is 130-170 ° C, so it is 5 from the melting point of HDPE, LLDPE, CPP. Set the temperature to about 35 ℃ higher.

上記のように真空断熱材tの全体を常圧下において加熱することにより、袋体2のガスバリア性フィルムの対向した熱溶着層で、芯材1に近い側にある未溶着部分を確実に熱溶着させることができる。また、真空断熱材tでは、芯材1の表,裏両面の連続気泡硬質プラスチック発泡体1b,1bとガスバリア性フィルム2の熱溶着層は、減圧により密着しているだけで、溶着はしていない。この状態で真空断熱材tの全体を常圧下で加熱すると、ガスバリア性フィルムの熱溶着層が連続気泡硬質プラスチック発泡体1bに確実に熱溶着される。このようにして製造されて本発明真空断熱材Tにおいて、芯材1の連続気泡硬質プラスチック発泡体1bとガスバリア性フィルムの熱溶着層は、1.1kgf/cm2以上の力で固着している。 By heating the entire vacuum heat insulating material t under normal pressure as described above, the unwelded portion on the side close to the core material 1 is reliably heat-welded with the opposing heat-welding layer of the gas barrier film of the bag 2. Can be made. Further, in the vacuum heat insulating material t, the heat-welded layers of the open-cell hard plastic foams 1b and 1b on both the front and back surfaces of the core material 1 and the gas barrier film 2 are adhered only by pressure reduction, and are welded. Absent. When the entire vacuum heat insulating material t is heated under normal pressure in this state, the heat-welded layer of the gas barrier film is reliably heat-welded to the open-cell hard plastic foam 1b. In the vacuum heat insulating material T of the present invention manufactured as described above, the open cell hard plastic foam 1b of the core material 1 and the heat-welded layer of the gas barrier film are fixed with a force of 1.1 kgf / cm 2 or more.

本発明真空断熱材Tにおいて、芯材1の最外層に、連続気泡硬質プラスチック発泡体1b,1bを設けたのは、上記のようにガスバリア性フィルムの熱溶着層が溶着し易くするためである。また、芯材の表,裏に連続気泡硬質プラスチック発泡体1b,1bがあるので、真空断熱材Tの表面が平滑になり、貼付ける壁面との接着性が良くなる。特に、真空断熱材Tを箱体の壁内に配置したときは、注入硬質ウレタンフォームとの接着性も良くなる。更に、芯材1の連続気泡硬質プラスチック発泡体1b,1bに挟まれる中層に少なくとも1層の有機又は無機の繊維若しくは粉体のいずれか又はこれらを組合わせたものからなる層を設けたのは、芯材が連続気泡硬質プラスチック発泡体のみの場合と比較し、断熱性能を向上させることができるからである。なお、連続気泡硬質プラスチック発泡体1b,1bの厚さを調整することで、高い断熱性を保持したまま真空断熱材Tの強度,断熱性能を使用目的に応じて調整することができる。   In the vacuum heat insulating material T of the present invention, the open-cell hard plastic foams 1b and 1b are provided in the outermost layer of the core material 1 so that the heat-welded layer of the gas barrier film is easily welded as described above. . Moreover, since the open-cell hard plastic foams 1b and 1b are on the front and back of the core material, the surface of the vacuum heat insulating material T becomes smooth, and the adhesiveness with the wall surface to be attached is improved. In particular, when the vacuum heat insulating material T is disposed in the wall of the box, the adhesion with the injected rigid urethane foam is improved. Furthermore, at least one layer of organic or inorganic fibers or powders or a combination of them is provided in the middle layer sandwiched between the open-cell hard plastic foams 1b and 1b of the core material 1. This is because the heat insulating performance can be improved as compared with the case where the core material is only an open-cell hard plastic foam. In addition, by adjusting the thickness of the open-cell hard plastic foams 1b and 1b, the strength and heat insulating performance of the vacuum heat insulating material T can be adjusted according to the intended use while maintaining high heat insulating properties.

本発明真空断熱材Tは、上述したように、ガスバリア性フィルムの熱溶着層と芯材1の連続気泡硬質プラスチック発泡体1bが強固に固着しているため、壁面に貼付けて使用する際、壁面が大きく歪んだとしても袋体2のガスバリア性フィルムが芯材1から剥がれることなく、真空破壊を大幅に低減することができる。また、後に詳述するように真空断熱材Tの強度(引張り強度,せん断強度,曲げ強度)が上がるため、例えば、箱体の壁内に配置したときは、箱体の剛性が上がり、大きな歪み応力が掛かる海上輸送用コンテナ等への適用が可能となる。即ち、海上輸送用コンテナでは、その壁面に複数枚の真空断熱材Tを並べて貼着するが、コンテナの輸送中やクレーンによる積み降ろしのときなどにコンテナの壁面に大きな応力が掛かり、真空断熱材T全体が歪んだりする。しかし、そのようなときでも本発明真空断熱材Tは、袋体2のガスバリア性フィルムが芯材1から剥がれたりズレたりすることがないので、ガスバリア性フィルムに亀裂が入ったり、破れたりすることはなく、高い断熱性能を長期間に亘り維持することができる。   As described above, the vacuum heat insulating material T of the present invention is firmly attached to the heat-bonded layer of the gas barrier film and the open-celled hard plastic foam 1b of the core material 1. Even if it is greatly distorted, the gas barrier film of the bag body 2 is not peeled off from the core material 1, and the vacuum break can be greatly reduced. Further, as will be described in detail later, since the strength (tensile strength, shear strength, bending strength) of the vacuum heat insulating material T is increased, for example, when placed in the wall of the box, the rigidity of the box is increased and large distortion occurs. It can be applied to marine transport containers that are under stress. That is, in a marine shipping container, a plurality of vacuum heat insulating materials T are arranged and adhered to the wall surface, but a large stress is applied to the wall surface of the container during transportation of the container or loading / unloading with a crane, and the vacuum heat insulating material. The entire T is distorted. However, even in such a case, the vacuum heat insulating material T of the present invention is such that the gas barrier film of the bag body 2 is not peeled off or displaced from the core material 1, so that the gas barrier film is cracked or torn. No, high thermal insulation performance can be maintained over a long period of time.

なお、本発明真空断熱材Tは、壁面に大きな応力が掛からない冷蔵庫とか冷凍庫は勿論、マンション等の住宅における床暖房パネルや壁の断熱材、空調設備や各種機械設備における断熱材、工場や倉庫における壁や間仕切りパネルの断熱材、或は、陸上輸送車輌の荷物室や陸上輸送用コンテナの断熱材などにも使用することができる。   The vacuum heat insulating material T of the present invention is not only a refrigerator or freezer that does not apply great stress to the wall surface, but also floor heating panels and wall heat insulating materials in houses such as apartments, heat insulating materials in air conditioning equipment and various mechanical equipment, factories and warehouses. It can also be used as a heat insulating material for walls and partition panels, or as a heat insulating material for luggage compartments for land transportation vehicles and containers for land transportation.

次に、本発明真空断熱材Tを上述した海上輸送用コンテナを含め箱状のもの、例えば、クーラーボックスや陸上輸送用コンテナなどに使用した断熱箱体の構成について説明する。図3は、このような断熱箱体4の内壁材4aと外壁材4bの間の空間に、真空断熱材Tを配置した構成を示している。この図3に示した断熱箱体4では、真空断熱材Tを外壁材4bに直接貼付け、残余の空間に独立気泡硬質ポリウレタンフォーム5を充填して真空断熱材Tが壁内で位置ズレしないようにすると共に、ポリウレタンフォーム5により断熱性能を補足的に高めている。なお、真空断熱材Tは内壁材4aに貼付けてもよく、外壁材4bに貼り付けてもよく、内壁材4aと外壁材4bの中間部に配置してもよい。   Next, the structure of the heat insulation box used for the vacuum heat insulating material T of the present invention in a box shape including the above-described container for sea transportation, for example, a cooler box or a container for land transportation will be described. FIG. 3 shows a configuration in which the vacuum heat insulating material T is arranged in the space between the inner wall material 4a and the outer wall material 4b of the heat insulating box 4 as described above. In the heat insulating box 4 shown in FIG. 3, the vacuum heat insulating material T is directly attached to the outer wall material 4b, and the remaining space is filled with the closed cell rigid polyurethane foam 5 so that the vacuum heat insulating material T is not displaced in the wall. In addition, the polyurethane foam 5 supplementarily improves the heat insulation performance. The vacuum heat insulating material T may be affixed to the inner wall material 4a, may be affixed to the outer wall material 4b, or may be disposed at an intermediate portion between the inner wall material 4a and the outer wall material 4b.

真空断熱材を断熱箱体4の内壁材4aと外壁材4bの間の空間に配置するとき、真空断熱材が曲がったり、捩れたりして壁面に密に接着できない場合がある。また、その作業において真空断熱材を突部にぶつけたり、特に真空断熱材の角部をぶつけてしまうことで真空断熱材の袋体を傷付けてしまうことがある。このような場合を考慮し、真空断熱材を型に入れ独立気泡硬質ポリウレタンフォームを注入して一体成形することにより、その取扱い性を向上させるようにしている。図4は、真空断熱材と独立気泡硬質ポリウレタンフォームを一体成形する方法の一例を示している。このうち図4(a)は、上面が開口した型枠Wに真空断熱材(VIP)を入れる状態を示し、図4(b)は、真空断熱材の周縁にあるヒートシールした密封部を上方に折り返し、型枠W内に原料注入器Pからウレタン原料液を注入する状態を示している。なお、真空断熱材の周縁の密封部の折り返しは、真空断熱材を型枠Wに入れる前に行うのが望ましい。また折返しは下方でも、折返しなしでもよい。ウレタン原料液を注入した後、型枠Wの上面に蓋をして15分ほど硬化させると、図4(c)に示したような複合断熱材Fになる。   When the vacuum heat insulating material is disposed in the space between the inner wall material 4a and the outer wall material 4b of the heat insulating box 4, the vacuum heat insulating material may be bent or twisted, and may not be adhered to the wall surface. Moreover, the vacuum heat insulating material may be struck by the bumps in the operation, or particularly the corners of the vacuum heat insulating material may be damaged. In consideration of such a case, the vacuum heat insulating material is put in a mold, and closed cell rigid polyurethane foam is injected and integrally molded to improve the handleability. FIG. 4 shows an example of a method for integrally forming the vacuum heat insulating material and the closed cell rigid polyurethane foam. 4 (a) shows a state in which the vacuum heat insulating material (VIP) is put into the formwork W whose upper surface is opened, and FIG. 4 (b) shows the heat-sealed sealing portion at the periphery of the vacuum heat insulating material. 2 shows a state in which the urethane raw material liquid is injected from the raw material injector P into the mold W. Note that it is desirable that the sealing portion at the periphery of the vacuum heat insulating material is folded before the vacuum heat insulating material is put into the mold W. Further, the folding may be downward or no folding. After injecting the urethane raw material liquid, if the upper surface of the mold W is covered and cured for about 15 minutes, a composite heat insulating material F as shown in FIG.

図5は、真空断熱材と独立気泡硬質ポリウレタンフォームを一体成形した複合断熱材Fを、断熱箱体4の内壁材4aと外壁材4bの間の空間に配置し、残余の空間に独立気泡硬質ポリウレタンフォーム5を充填した状態を示している。なお、この独立気泡硬質ポリウレタンフォームと一体成形する真空断熱材は、上記の全体加熱した真空断熱材Tに限定されるものではなく、全体加熱する前の真空断熱材tでもよい。また、芯材が有機又は無機の繊維若しくは粉体のいずれか又はこれらを組合わせたものからなる層のみの真空断熱材、又は、芯材が連続気泡硬質プラスチック発泡体のみの真空断熱材、或は、芯材が、有機又は無機の繊維若しくは粉体のいずれか又はこれらを組合わせたものからなる層と連続気泡硬質プラスチック発泡体がランダムに積層された真空断熱材であってもよい。このように真空断熱材を補強枠体Wに収納したものを使用することによって、壁内の狭い空間に真空断熱材を壊すことなく、かつ迅速に敷設することができる。   FIG. 5 shows that a composite heat insulating material F integrally formed of a vacuum heat insulating material and a closed cell rigid polyurethane foam is arranged in a space between the inner wall material 4a and the outer wall material 4b of the heat insulating box 4, and the closed cell hard material is formed in the remaining space. The state which filled the polyurethane foam 5 is shown. In addition, the vacuum heat insulating material integrally molded with this closed cell rigid polyurethane foam is not limited to the vacuum heat insulating material T heated as described above, and may be the vacuum heat insulating material t before the whole is heated. Further, the vacuum insulating material only of a layer made of any one of organic or inorganic fibers or powders or a combination thereof, or the vacuum insulating material of which the core material is only an open-cell hard plastic foam, or The core material may be a vacuum heat insulating material in which an organic or inorganic fiber or powder or a layer made of a combination of these and an open-celled hard plastic foam are randomly laminated. Thus, by using what accommodated the vacuum heat insulating material in the reinforcement frame W, it can lay rapidly without destroying a vacuum heat insulating material in the narrow space in a wall.

次に、本発明真空断熱材Tについて、大きさ,厚さ,芯材の構成が異なるものを製造し、それらについて、引張り強度,せん断強度,熱伝導率経時変化を測定した。   Next, the vacuum heat insulating material T of the present invention having different sizes, thicknesses, and core materials was manufactured, and the tensile strength, shear strength, and thermal conductivity change with time were measured.

〔実施例1:引張り強度の測定〕
芯材として、ガラス繊維の層の表,裏面に、厚さ5mmの連続気泡硬質ポリウレタンフォームを積層した3層構成のものを使用し、この芯材を、ポリエチレンテレフタレートフィルム/アルミ箔/高密度ポリエチレンフィルムの3層構造のガスバリア性フィルムで形成した袋体に収納し、内部を真空に近い状態まで吸引した後、周縁をヒートシールして図1に示した構造で、全体の大きさが、厚さ40mm,縦100mm,横100mmの真空断熱材を2つ製造した。
その内、1つの真空断熱材を、図2に示した加熱炉R内に入れ、常圧下でガスバリア性フィルムの熱溶着層である高密度ポリエチレンフィルムの融点120〜130℃以上の温度150℃で7分間加熱し、芯材に近いガスバリア性フィルム同士の未溶着部分、及び、ガスバリア性フィルムの熱溶着層と芯材の表面を熱溶着し、本発明真空断熱材を製造した。
これら2つの真空断熱材について、引張り強度試験を行った。引張り強度試験は、真空断熱材と同じ100mm×100mmの大きさの2枚の扁平な板部材を用意し、それらを真空断熱材の表,裏面にウレタン系湿気硬化型接着剤で接着し、接着剤が十分硬化したところで、それら板部材をその面に対し垂直方向に離間する方向に引張ったとき、どこまで耐えられるかを測定することにより行った。その結果は下記の表1に示す通りであった。
[Example 1: Measurement of tensile strength]
As a core material, a three-layer structure in which an open-celled rigid polyurethane foam having a thickness of 5 mm is laminated on the front and back surfaces of a glass fiber layer is used. This core material is made of polyethylene terephthalate film / aluminum foil / high-density polyethylene. It is housed in a bag formed of a gas barrier film having a three-layer structure of film, and after sucking the inside to a state close to vacuum, the periphery is heat-sealed and the structure shown in FIG. Two vacuum insulation materials having a length of 40 mm, a length of 100 mm, and a width of 100 mm were manufactured.
Among them, one vacuum heat insulating material is put in the heating furnace R shown in FIG. 2, and the melting point of the high-density polyethylene film, which is the heat-welded layer of the gas barrier film, is 150 ° C. or higher at 150 ° C. or higher under normal pressure. It heated for 7 minutes, the unwelded part of the gas barrier films close | similar to a core material, the heat welding layer of a gas barrier film, and the surface of a core material were heat-welded, and this invention vacuum heat insulating material was manufactured.
These two vacuum heat insulating materials were subjected to a tensile strength test. For the tensile strength test, two flat plate members with the same size of 100 mm x 100 mm as the vacuum heat insulating material are prepared, and they are bonded to the front and back surfaces of the vacuum heat insulating material with a urethane moisture-curable adhesive. When the agent was sufficiently cured, it was measured by measuring how far the plate member could be tolerated when pulled in a direction away from the surface in a direction perpendicular to the surface. The results were as shown in Table 1 below.

Figure 2007239771
Figure 2007239771

上記表1において、加熱しない真空断熱材については、ガスバリア性フィルムが芯材表面から剥がれたときを最大点荷重とした。全体加熱した真空断熱材については、芯材表面からガスバリア性フィルムが剥がれることはなかったが、ガラス繊維の層と連続気泡硬質ポリウレタンフォームの接合部分、又は、ガラス繊維の層内での分離が起こり、袋体の周縁が芯材側面と剥がれたときを最大点荷重とした。   In Table 1 above, for the vacuum heat insulating material that is not heated, the maximum point load is defined when the gas barrier film is peeled off from the core material surface. As for the vacuum heat insulating material heated as a whole, the gas barrier film was not peeled off from the surface of the core material, but separation occurred in the bonded portion of the glass fiber layer and the open cell rigid polyurethane foam or in the glass fiber layer. The maximum point load was defined when the peripheral edge of the bag body was peeled off from the side surface of the core material.

〔参考例1〕
本発明の真空断熱材ではないが、参考までに、芯材に連続気泡硬質ポリウレタンフォームのみを使用し、ポリエチレンテレフタレートフィルム/アルミ箔/高密度ポリエチレンフィルムの3層構造のガスバリア性フィルムで形成した袋体に収納して、内部を真空に近い状態まで吸引した後、周縁をヒートシールした厚さ15mm,縦50mm,横50mmの大きさの引張り試験用の真空断熱材の2つと、厚さ15mm,縦25mm,横120mmの大きさの曲げ試験用の真空断熱材の2つをそれぞれ製造した。そして、それらのうちそれぞれ1つを図2に示した加熱炉R内に入れ、常圧下において温度150℃で3分間全体加熱した。
このようにして製造した真空断熱材についてそれぞれ引張り試験と曲げ試験を行った。
[Reference Example 1]
Although it is not the vacuum heat insulating material of the present invention, for reference, a bag formed of a gas barrier film having a three-layer structure of polyethylene terephthalate film / aluminum foil / high density polyethylene film using only open-celled rigid polyurethane foam as a core material Two pieces of vacuum insulation material for tensile tests of 15mm in thickness, 50mm in length and 50mm in width, with a thickness of 15mm Two vacuum heat insulating materials for a bending test each having a size of 25 mm in length and 120 mm in width were manufactured. Then, one of them was placed in the heating furnace R shown in FIG. 2, and the whole was heated at a temperature of 150 ° C. for 3 minutes under normal pressure.
A tensile test and a bending test were performed on the vacuum heat insulating materials thus manufactured.

引張り試験は、実施例1の場合と同様、50mm×50mmの大きさの2枚の扁平な板部材を用意し、それらを引張り試験用の真空断熱材の表,裏面にウレタン系湿気硬化型接着剤で接着し、接着剤が十分硬化したところで、それら板部材をその面に対し垂直方向に離間する方向に引張ったとき、どこまで耐えられるかを測定することにより行った。
曲げ試験は、100mmの間隔で立設した2つの支柱上に、曲げ試験用の真空断熱材を載せて支持した状態で、この真空断熱材の中央を棒状のもので押し下げたとき、どこまで耐えられるかを測定することにより行った。その結果は下記の表2に示す通りであった。
For the tensile test, as in Example 1, two flat plate members with a size of 50 mm x 50 mm were prepared, and these were bonded to the front and back surfaces of the vacuum heat insulating material for the tensile test with urethane-based moisture-curing adhesive. When the adhesive was sufficiently cured, the plate member was measured by measuring how far it could be withstood when the plate members were pulled in a direction away from the surface in a direction perpendicular to the surface.
The bending test can withstand how far when the center of the vacuum insulation material is pushed down with a rod-like material while the vacuum insulation material for bending test is placed on and supported on two struts standing at an interval of 100 mm This was done by measuring. The results were as shown in Table 2 below.

Figure 2007239771
Figure 2007239771

上記の表2から、芯材に、連続気泡硬質ポリウレタンフォームのみを使用した場合でも、全体加熱した真空断熱材は、加熱しない真空断熱材と比較し、引張り強度のみならず、曲げ強度も高くなっていることが分かる。なお、本発明、芯材にガラス繊維の層の表,裏面に、厚さ5mmの連続気泡硬質ポリウレタンフォームを積層した3層構成のものを使用した真空断熱材についての曲げ試験は行っていないが、表2から、曲げ強度が全体加熱しない真空断熱材より高くなることは推測できる。   From Table 2 above, even when only open-celled rigid polyurethane foam is used as the core material, the vacuum heat insulating material heated as a whole has higher bending strength as well as tensile strength compared to the vacuum heat insulating material not heated. I understand that In addition, although the bending test about the vacuum heat insulating material which uses the thing of this invention and the three-layer structure which laminated | stacked the open cell rigid polyurethane foam of thickness 5mm on the surface and the back surface of the layer of glass fiber is not performed. From Table 2, it can be inferred that the bending strength is higher than that of the vacuum heat insulating material that is not entirely heated.

〔実施例2:せん断強度と熱伝導率の測定〕
芯材として、ガラス繊維の層の表,裏面に、連続気泡硬質ポリウレタンフォームを積層した3層構成のものを使用し、この芯材を、ポリエチレンテレフタレートフィルム/アルミ箔/高密度ポリエチレンフィルムの3層構造のガスバリア性フィルムで形成した袋体に収納し、内部を真空に近い状態まで吸引した後、周縁をヒートシールして図1に示した構造で、全体の大きさが、厚さ20mm,縦100mm,横100mmの真空断熱材を2つ製造した。
その内、1つの真空断熱材を、図2に示した加熱炉R内に入れ、常圧下でガスバリア性フィルムの熱溶着層である高密度ポリエチレンフィルムの融点120〜130℃以上の温度150℃で5分間加熱し、芯材に近いガスバリア性フィルム同士の未溶着部分、及び、ガスバリア性フィルムの熱溶着層と芯材の表面を熱溶着し、本発明真空断熱材を製造した。
なお、上記の真空断熱材は、表,裏の連続気泡硬質ポリウレタンフォームの厚さを、3mm,5mm,8.5mmに変更して製造しているので、連続気泡硬質ポリウレタンフォームの厚さが3mmのものについて、全体加熱したもの、厚さが5mmのものについて、全体加熱したものと加熱しないものを製造し、厚さが8.5mmのものについては全体加熱したものを製造した。
[Example 2: Measurement of shear strength and thermal conductivity]
As the core material, one having a three-layer structure in which open-celled rigid polyurethane foam is laminated on the front and back surfaces of the glass fiber layer is used, and this core material is composed of three layers of polyethylene terephthalate film / aluminum foil / high-density polyethylene film. It is housed in a bag formed of a gas barrier film having a structure, the inside is sucked to a state close to a vacuum, and the periphery is heat-sealed. The structure shown in FIG. Two vacuum insulation materials of 100 mm and 100 mm width were manufactured.
Among them, one vacuum heat insulating material is put in the heating furnace R shown in FIG. 2, and the melting point of the high-density polyethylene film, which is the heat-welded layer of the gas barrier film, is 150 ° C. or higher at 150 ° C. or higher under normal pressure. It heated for 5 minutes, the unwelded part of the gas barrier films close | similar to a core material, the heat welding layer of a gas barrier film, and the surface of a core material were heat-welded, and this invention vacuum heat insulating material was manufactured.
The above vacuum heat insulating material is manufactured by changing the thickness of the front and back open-celled rigid polyurethane foams to 3 mm, 5 mm, and 8.5 mm. Therefore, the thickness of the open-celled rigid polyurethane foam is 3 mm. About the thing which heated the whole thing and the thing of thickness 5mm, what heated the whole thing and the thing which is not heated were manufactured, and the thing which heated the whole thing about 8.5 mm in thickness was manufactured.

次に、芯材として、連続気泡硬質ポリウレタンフォームのみのものを使用し、この芯材を、ポリエチレンテレフタレートフィルム/アルミ箔/高密度ポリエチレンフィルムの3層構造のガスバリア性フィルムで形成した袋体に収納し、内部を真空に近い状態まで吸引した後、周縁をヒートシールして、全体の大きさが厚さ25mm,縦100mm,横100mmの真空断熱材を2つ製造した。
その内、1つの真空断熱材を、図2に示した加熱炉R内に入れ、常圧下でガスバリア性フィルムの熱溶着層である高密度ポリエチレンフィルムの融点120〜130℃以上の温度150℃で5分間加熱し、芯材に近いガスバリア性フィルム同士の未溶着部分、及び、ガスバリア性フィルムの熱溶着層と芯材の表面を熱溶着し、比較例1となる真空断熱材を製造した。
Next, only the open-celled rigid polyurethane foam is used as the core material, and this core material is stored in a bag formed of a gas barrier film having a three-layer structure of polyethylene terephthalate film / aluminum foil / high density polyethylene film. Then, after the inside was sucked to a state close to vacuum, the periphery was heat-sealed to produce two vacuum heat insulating materials having a total size of 25 mm in thickness, 100 mm in length, and 100 mm in width.
Among them, one vacuum heat insulating material is put in the heating furnace R shown in FIG. 2, and the melting point of the high-density polyethylene film, which is the heat-welded layer of the gas barrier film, is 150 ° C. or higher at 150 ° C. or higher under normal pressure. It heated for 5 minutes, the unwelded part of the gas barrier films close | similar to a core material, the heat welding layer of a gas barrier film, and the surface of a core material were heat-welded, and the vacuum heat insulating material used as the comparative example 1 was manufactured.

次に、芯材として、ガラス繊維のみのものを使用し、この芯材を、ポリエチレンテレフタレートフィルム/アルミ箔/高密度ポリエチレンフィルムの3層構造のガスバリア性フィルムで形成した袋体に収納し、内部を真空に近い状態まで吸引した後、周縁をヒートシールして、全体の大きさが厚さ20mm,縦100mm,横100mmの真空断熱材を1つ製造した。それを、図2に示した加熱炉R内に入れ、常圧下でガスバリア性フィルムの熱溶着層である高密度ポリエチレンフィルムの融点120〜130℃以上の温度150℃で5分間加熱し、芯材に近いガスバリア性フィルム同士の未溶着部分、及び、ガスバリア性フィルムの熱溶着層と芯材の表面を可能な限り熱溶着し、比較例2となる真空断熱材を製造した。
以上の製造方法で得られた真空断熱材についてそれぞれせん断強度試験を行った。せん断強度試験は、図6に示したように、真空断熱材の表,裏面にそれぞれウレタン系湿気硬化型接着剤で接試験片を付着し、十分接着した後、試験片を矢印の方向に引張ったとき、どこまで耐えられるかを測定することにより行った。なお、接着面は50×100mmである。併せて、それら真空断熱材の熱伝導率も測定した。その結果は次の表3に示す通りであった。
Next, only glass fiber is used as the core material, and the core material is stored in a bag formed of a gas barrier film having a three-layer structure of polyethylene terephthalate film / aluminum foil / high density polyethylene film, Was sucked to a state close to vacuum, and the periphery was heat-sealed to produce one vacuum heat insulating material having a total size of 20 mm in thickness, 100 mm in length, and 100 mm in width. It is placed in the heating furnace R shown in FIG. 2 and heated under normal pressure for 5 minutes at a temperature of 150 ° C., a melting point of 120 to 130 ° C. or higher, of a high-density polyethylene film that is a heat-welded layer of the gas barrier film. The heat insulation layer of the gas barrier film and the surface of the core material were welded as much as possible to produce a vacuum heat insulating material as Comparative Example 2.
Each vacuum heat insulating material obtained by the above manufacturing method was subjected to a shear strength test. As shown in FIG. 6, in the shear strength test, a contact test piece was attached to the front and back surfaces of the vacuum heat insulating material with a urethane-based moisture-curing adhesive, and after sufficient adhesion, the test piece was pulled in the direction of the arrow. It was done by measuring how far it could withstand. The adhesive surface is 50 × 100 mm. In addition, the thermal conductivity of these vacuum heat insulating materials was also measured. The results were as shown in Table 3 below.

Figure 2007239771
Figure 2007239771

実施例1,2より、引張り強度、せん断強度ともに、全体加熱しないときには、およそ大気圧の強度(1.0 kgf/cm2)である。しかし、全体加熱すると、芯材が、連続気泡硬質ポリウレタンフォームのみのもの、及び、本発明真空断熱材にように芯材がガラス繊維の層の表,裏面に、連続気泡硬質ポリウレタンフォームを積層した3層構成のものでは、芯材表面と袋体のガスバリア性フィルムの熱溶着層が溶着(固着)されることにより、強度が増すことが分かる。また、実施例2より、せん断強度は、芯材がガラス繊維の層の表,裏面に、連続気泡硬質ポリウレタンフォームを積層した3層構成のものの場合、ウレタンフォームの厚みに応じて増加することが分かる。 From Examples 1 and 2, both the tensile strength and shear strength are approximately atmospheric pressure strength (1.0 kgf / cm 2 ) when not heated as a whole. However, when the whole is heated, the core material is only open-celled rigid polyurethane foam, and the open-celled rigid polyurethane foam is laminated on the front and back surfaces of the glass fiber layer as in the vacuum heat insulating material of the present invention. In the three-layer structure, it can be seen that the strength is increased by welding (adhering) the surface of the core material and the heat-welded layer of the gas barrier film of the bag. Further, from Example 2, the shear strength increases in accordance with the thickness of the urethane foam in the case where the core material has a three-layer structure in which an open-celled rigid polyurethane foam is laminated on the front and back surfaces of the glass fiber layer. I understand.

因みに、海上輸送用コンテナのような大きな応力が掛かる製品へ真空断熱材を使用するには、コンテナ壁面の面材と注入ウレタンフォームとの引張り強度(自己接着強度)1.4kgf/cm2と同じかそれ以上の強度が真空断熱材に必要であり、その評価として実施例1,2において引張り強度、せん断強度を測定した。特に実施例2においては、ガラス繊維の層の厚みと表,裏面の連続気泡硬質ポリウレタンフォームを合計した厚みの比率が1:1の時、コンテナへの使用に必要な強度1.4kgf/cm2を満たし、そのときの熱伝導率は0.0025(W/m・K)となるため最も好ましい比率であることが分かる。 By the way, in order to use vacuum insulation for products that are subject to great stress, such as containers for sea transportation, is the tensile strength (self-adhesive strength) of the container wall face material and injected urethane foam equal to 1.4 kgf / cm 2 ? Further strength is necessary for the vacuum heat insulating material, and as an evaluation, tensile strength and shear strength were measured in Examples 1 and 2. Particularly in Example 2, when the ratio of the thickness of the glass fiber layer and the total thickness of the open-celled rigid polyurethane foam on the front and back surfaces is 1: 1, the strength required for use in a container is 1.4 kgf / cm 2 . It is found that the thermal conductivity at that time is 0.0025 (W / m · K), which is the most preferable ratio.

〔実施例3:真空断熱材を箱体の壁内に配置する状態での強度試験〕
真空断熱材の両面に独立気泡硬質ポリウレタンフォームを積層した状態での引張り強度とせん断強度を測定した。
[Example 3: Strength test in a state in which the vacuum heat insulating material is disposed in the wall of the box]
Tensile strength and shear strength were measured in a state where closed-cell rigid polyurethane foam was laminated on both sides of the vacuum heat insulating material.

〔引張り強度試験〕
芯材として、ガラス繊維の層の表,裏面に、連続気泡硬質ポリウレタンフォームを積層した3層構成のものを使用し、この芯材を、ポリエチレンテレフタレートフィルム/アルミ箔/高密度ポリエチレンフィルムの3層構造のガスバリア性フィルムで形成した袋体に収納し、内部を真空に近い状態まで吸引した後、周縁をヒートシールして図1に示した構造で、全体の大きさが、厚さ20mm,縦100mm,横100mmの真空断熱材を製造した。
この真空断熱材を図2に示した加熱炉R内に入れ、常圧下でガスバリア性フィルムの熱溶着層である高密度ポリエチレンフィルムの融点120〜130℃以上の温度150℃で10分間加熱し、芯材に近いガスバリア性フィルム同士の未溶着部分、及び、ガスバリア性フィルムの熱溶着層と芯材の表面を熱溶着した。
この全体加熱した真空断熱材の両面に、厚さ22.5mmの独立気泡硬質ポリウレタンフォームの層を積層して試験片を得た。積層は、注入型の下面に真空断熱材を配置し、その上側の空間にウレタン原料を注入発泡させて硬化後取り出し、次に真空断熱材が表面に出ている面を注入型の上面にして、その上側の空間にウレタン原料を注入発泡させて行った。試験片は、注入型から複合断熱材を取り出した後、真空断熱材が存在する部分を切り抜いて作成した。
引張り試験は、100mm×100mmの大きさの2枚の扁平な板部材を用意し、それらを上記試験片の表,裏面にウレタン系湿気硬化型接着剤で接着し、接着剤が十分硬化したところで、それら板部材をその面に対し垂直方向に離間する方向に引張ったとき、どこまで耐えられるかを測定することにより行った。試験結果を次の表4に示す。
[Tensile strength test]
As the core material, one having a three-layer structure in which open-celled rigid polyurethane foam is laminated on the front and back surfaces of the glass fiber layer is used, and this core material is composed of three layers of polyethylene terephthalate film / aluminum foil / high-density polyethylene film. It is housed in a bag formed of a gas barrier film having a structure, the inside is sucked to a state close to a vacuum, and the periphery is heat-sealed. The structure shown in FIG. A vacuum heat insulating material of 100 mm and 100 mm in width was manufactured.
This vacuum heat insulating material is placed in the heating furnace R shown in FIG. 2, and heated at 150 ° C. for 10 minutes at a temperature of 120 to 130 ° C. or higher of the high-density polyethylene film that is a heat-welded layer of the gas barrier film under normal pressure. The unwelded portion between the gas barrier films close to the core material, the heat-welded layer of the gas barrier film, and the surface of the core material were thermally welded.
A test piece was obtained by laminating a layer of closed-cell rigid polyurethane foam having a thickness of 22.5 mm on both surfaces of the vacuum heat insulating material heated as a whole. Lamination is done by placing a vacuum heat insulating material on the lower surface of the injection mold, injecting and foaming urethane raw material into the space above it, taking it out after curing, and then setting the surface where the vacuum heat insulating material is exposed on the surface as the upper surface of the injection mold The urethane material was injected and foamed into the upper space. The test piece was prepared by taking out the composite heat insulating material from the injection mold and then cutting out the portion where the vacuum heat insulating material was present.
In the tensile test, two flat plate members with a size of 100 mm × 100 mm are prepared, and they are bonded to the front and back surfaces of the test piece with a urethane-based moisture curable adhesive, and the adhesive is sufficiently cured. The plate members were measured by measuring how far they could be held when pulled in a direction away from the surface in a direction perpendicular to the surface. The test results are shown in Table 4 below.

Figure 2007239771
Figure 2007239771

〔せん断強度試験〕
試験片は、使用する真空断熱材の全体の大きさが厚さ20mm,縦200mm,横200mmである他は、上記の引張り試験における試験片と同様に製造した。
せん断強度試験は、図6に示したように、試験片の表,裏面にそれぞれウレタン系湿気硬化型接着剤で接試験片を付着し、十分接着した後、試験片を矢印の方向に引張ったとき、どこまで耐えられるかを測定することにより行った。なお、接着面は50×200mmである。試験結果を次の表5に示す。
[Shear strength test]
The test piece was manufactured in the same manner as the test piece in the above tensile test except that the overall size of the vacuum heat insulating material used was 20 mm in thickness, 200 mm in length, and 200 mm in width.
In the shear strength test, as shown in FIG. 6, the contact test piece was attached to the front and back surfaces of the test piece with a urethane-based moisture-curing adhesive, and after sufficient adhesion, the test piece was pulled in the direction of the arrow. It was done by measuring how far it could withstand. The adhesive surface is 50 × 200 mm. The test results are shown in Table 5 below.

Figure 2007239771
Figure 2007239771

実施例3より、真空断熱材と独立気泡硬質ポリウレタンフォームを一体成形した複合断熱材を箱体の壁内に配置し、残余の空間に独立気泡硬質ポリウレタンフォームを充填した場合においては、真空断熱材が中間部に配置されるため、引張り強度が1.45kgf/cm2、せん断強度が1.85kgf/cm2となり、真空断熱材単体を面材に貼り付けた時よりもさらに強度が増し、海上輸送用コンテナへの使用においてより好ましいことが分かる。 From Example 3, in the case where the composite heat insulating material in which the vacuum heat insulating material and the closed cell rigid polyurethane foam are integrally formed is arranged in the wall of the box, and the remaining space is filled with the closed cell hard polyurethane foam, the vacuum heat insulating material Is placed in the middle, so the tensile strength is 1.45 kgf / cm 2 and the shear strength is 1.85 kgf / cm 2 , which is even stronger than when the vacuum insulation is attached to the face material. It can be seen that it is more preferable for use in containers.

〔実施例4:断熱性能劣化加速試験〕
次に、芯材として、ガラス繊維の層の表,裏面に、連続気泡硬質ポリウレタンフォームを積層した3層構成のものを使用し、この芯材を、ポリエチレンテレフタレートフィルム/アルミ箔/高密度ポリエチレンフィルムの3層構造のガスバリア性フィルムで形成した袋体に収納し、内部を真空に近い状態まで吸引した後、周縁をヒートシールして図1に示した構造で、全体の大きさが、厚さ20mm,縦480mm,横1000mmの真空断熱材を製造し、図2に示した加熱炉R内に入れ、常圧下でガスバリア性フィルムの熱溶着層である高密度ポリエチレンフィルムの融点120〜130℃以上の温度150℃で10分間加熱し、芯材に近いガスバリア性フィルム同士の未溶着部分、及び、ガスバリア性フィルムの熱溶着層と芯材の表面を熱溶着し、本発明真空断熱材を製造した。
[Example 4: Thermal insulation performance deterioration acceleration test]
Next, as the core material, a three-layer structure in which open-celled rigid polyurethane foam is laminated on the front and back surfaces of the glass fiber layer is used. The core material is made of polyethylene terephthalate film / aluminum foil / high-density polyethylene film. 1 is housed in a bag formed of a gas barrier film having a three-layer structure, and the inside is sucked to a state close to vacuum, and then the periphery is heat-sealed, and the structure shown in FIG. A 20 mm, 480 mm long, 1000 mm wide vacuum heat insulating material is manufactured and placed in the heating furnace R shown in FIG. The vacuum heat insulating material of the present invention is heated for 10 minutes at a temperature of 150 ° C. to thermally weld the unwelded portion between the gas barrier films close to the core material and the heat-welded layer of the gas barrier film and the surface of the core material. It was produced.

また、比較例1として、芯材に連続気泡硬質ポリウレタンフォームのみのものを使用し、この芯材を、ポリエチレンテレフタレートフィルム/アルミ箔/高密度ポリエチレンフィルムの3層構造のガスバリア性フィルムで形成した袋体に収納し、内部を真空に近い状態まで吸引した後、周縁をヒートシールして、全体の大きさが厚さ25mm,縦480mm,横1000mmの真空断熱材を製造した。
更に、比較例2として、芯材にガラス繊維のみのものを使用し、この芯材を、ポリエチレンテレフタレートフィルム/アルミ箔/高密度ポリエチレンフィルムの3層構造のガスバリア性フィルムで形成した袋体に収納し、内部を真空に近い状態まで吸引した後、周縁をヒートシールして、全体の大きさが厚さ15mm,縦480mm,横1000mmの真空断熱材を製造した。
なお、これらの真空断熱材には、すべてガス吸着剤を入れてある。
これらの真空断熱材について、70℃の×dryの条件で断熱性能の劣化を促進させ熱伝導率の経時変化を測定した。なお、測定は、HC-074-600(英弘精機製)により行った。測定結果を次の表6に示す。
Further, as Comparative Example 1, a bag in which only an open-celled rigid polyurethane foam is used as a core, and the core is formed of a gas barrier film having a three-layer structure of polyethylene terephthalate film / aluminum foil / high-density polyethylene film. After being housed in the body and sucking the inside to near vacuum, the periphery was heat-sealed to produce a vacuum heat insulating material having a total size of 25 mm, length 480 mm, width 1000 mm.
Further, as Comparative Example 2, a glass fiber only core material is used, and the core material is stored in a bag formed of a gas barrier film having a three-layer structure of polyethylene terephthalate film / aluminum foil / high density polyethylene film. Then, after the inside was sucked to a state close to vacuum, the periphery was heat-sealed to produce a vacuum heat insulating material having a total size of 15 mm in thickness, 480 mm in length, and 1000 mm in width.
These vacuum heat insulating materials are all filled with a gas adsorbent.
About these vacuum heat insulating materials, deterioration of heat insulation performance was accelerated | stimulated on 70 degreeC * dry conditions, and the time-dependent change of thermal conductivity was measured. The measurement was performed with HC-074-600 (manufactured by Eihiro Seiki). The measurement results are shown in Table 6 below.

Figure 2007239771
Figure 2007239771

実施例4により、芯材にガラス繊維の層の表,裏面に、連続気泡硬質ポリウレタンフォームを積層した3層構成のものを使用した本発明真空断熱材は、熱伝導率の増加の割合が、従来の芯材に、ガラス繊維のみ、或は、連続気泡硬質ウレタンフォームのみを使用した真空断熱材と比較し、同等若しくはそれ以下であり、断熱性能の耐久性は同等といえる。   According to Example 4, the vacuum heat insulating material of the present invention using a three-layer structure in which an open-celled rigid polyurethane foam is laminated on the front and back surfaces of the glass fiber layer on the core material has a rate of increase in thermal conductivity, Compared to a conventional vacuum heat insulating material using only glass fiber or only open-celled rigid urethane foam for the core material, it can be said that the heat insulating performance is equivalent.

〔使用例:海上輸送用コンテナの熱収支計算〕
次に、本発明真空断熱材を、海上輸送用コンテナに使用したときの熱収支を、現行の壁内に独立気泡硬質ポリウレタン(PUF)のみを注入した場合、従来の芯材に連続気泡硬質ポリウレタンフォームのみを使用した真空断熱材を使用した場合と比較する。
・コンテナの寸法は、2500×2500×12000(mm)で、断熱する壁の厚みは65mmである。
・使用する真空断熱材の大きさは、厚さ20mm、縦500mm、横1000mmのものである。
・真空断熱材の貼付けは、図7に示すように、(a)コンテナの天井面と床面、及び、長手方向の側面に、40枚の真空断熱材を並べて貼付け、また、(b)短手方向の側面に、8枚並べて貼付けた。なお、真空断熱材以外の空間には、独立気泡硬質ポリウレタンを注入してある。
・外気温を35℃、コンテナの内部温度をマイナス20℃にして測定した。
それぞれについて、熱収支を測定した後、比較した結果を次の表7に示す。
[Usage example: Calculation of heat balance of container for sea transport]
Next, the heat balance when using the vacuum heat insulating material of the present invention in a container for marine transportation, when only closed-celled rigid polyurethane (PUF) is injected into the current wall, the conventional core material is open-celled rigid polyurethane. Compared to the case of using vacuum insulation using only foam.
-The dimensions of the container are 2500 x 2500 x 12000 (mm), and the thickness of the insulating wall is 65 mm.
-The size of the vacuum heat insulating material used is 20 mm thick, 500 mm long, and 1000 mm wide.
・ As shown in Fig. 7, the vacuum insulation material is affixed by placing (a) 40 vacuum insulation materials side by side on the ceiling, floor and longitudinal sides of the container. Eight sheets were placed side by side on the side in the hand direction. In addition, closed-cell hard polyurethane is injected into a space other than the vacuum heat insulating material.
・ Measured by setting the outside temperature to 35 ℃ and the inside temperature of the container to minus 20 ℃.
Table 7 shows the comparison results after measuring the heat balance.

Figure 2007239771
Figure 2007239771

表5から、海上輸送用コンテナに真空断熱材(VIP)を使用したときは、PUFのみを注入したときと比較し、芯材に、連続気泡硬質ポリウレタンフォームのみを使用した場合は23%、芯材に、ガラス繊維の層の表,裏面に連続気泡硬質ポリウレタンフォームを積層した3層構成のものを使用した本発明真空断熱材の場合は31%の熱の移動を削減できることが分かる。   From Table 5, when using a vacuum insulation material (VIP) in a marine shipping container, compared to when only PUF is injected, the core material is 23% when only open-celled rigid polyurethane foam is used. It can be seen that the heat transfer of 31% can be reduced in the case of the vacuum heat insulating material of the present invention using a three-layer structure in which an open-celled rigid polyurethane foam is laminated on the front and back surfaces of the glass fiber layer.

なお、上記実施例では、芯材における有機又は無機の繊維若しくは粉体のいずれか又はこれらを組合わせたものからなる層としてガラス繊維を使用したが、ガラス繊維以外のものを使用した上述の各層においても略同様の測定結果が得られた。   In the above examples, glass fibers were used as layers composed of either organic or inorganic fibers or powders in the core material or a combination of these, but each of the above layers using materials other than glass fibers In, almost the same measurement results were obtained.

本発明真空断熱材は、無機繊維又は無機粉体による層を連続気泡硬質プラスチック発泡体でサンドイッチ状に挟んだ少なくとも3層構成の芯材をガスバリア性フィルムよりなる袋体に収納し、内部を減圧後密封して得られた真空断熱材に対し、その全体を常圧下、所定の温度範囲内において加熱することで、芯材の形状に沿った対向するガスバリア性フィルムの未溶着部分は勿論、ガスバリア性フィルムの熱溶着層と芯材の表面も熱溶着される。その結果、真空断熱材を壁面に貼付けるときに袋体に亀裂が入ったり、破れたりすることは殆どない。   The vacuum heat insulating material of the present invention stores a core material of at least three layers sandwiched between layers of inorganic fibers or inorganic powders in an open-cell hard plastic foam in a bag body made of a gas barrier film, and the inside is decompressed. The vacuum heat insulating material obtained by post-sealing is heated within a predetermined temperature range under normal pressure, so that the gas barrier film as well as the unwelded portion of the opposing gas barrier film along the shape of the core material can be used. The heat-welded layer of the adhesive film and the surface of the core material are also heat-welded. As a result, the bag body is hardly cracked or torn when the vacuum heat insulating material is applied to the wall surface.

また、本発明真空断熱材を海上輸送用のコンテナの壁面に貼付けて使用しても、大きな応力が掛かったとき、壁面に接着している袋体だけが引張られて芯材から剥がれ、破れてしまうといことがないので、長期間に亘り高い断熱性能を維持することができるという効果が得られる。更に、本発明真空断熱材は、内部を減圧後密封して得られた真空断熱材の全体をそのまま常圧下で加熱するだけでよいので、製造コストがあまり掛からず、しかも複数の芯材ではなく、一枚の大きな芯材を収納した大きな面積の真空断熱材に対し適用できるので、海上輸送用コンテナのような大きな箱体に好適に使用することができる。なお、本発明真空断熱材は、芯材周縁にある袋体のガスバリア性フィルム同士の接合部に未溶着部分がないので、周縁に固定用器具を取り付けることもできる。   In addition, even when the vacuum heat insulating material of the present invention is applied to the wall surface of a container for maritime transportation, when a large stress is applied, only the bag body adhered to the wall surface is pulled and peeled off from the core material and torn. Therefore, there is an effect that high heat insulation performance can be maintained over a long period of time. Furthermore, since the vacuum heat insulating material of the present invention only needs to heat the whole vacuum heat insulating material obtained by sealing the inside after reducing the pressure as it is under normal pressure, the manufacturing cost does not increase much, and not a plurality of core materials. Since it can be applied to a large area vacuum heat insulating material containing a large core material, it can be suitably used for a large box such as a container for sea transportation. In addition, since the vacuum heat insulating material of this invention does not have an unwelded part in the junction part of the gas-barrier films of the bag body in a core material periphery, it can also attach a fixing tool to a periphery.

全体加熱する前の真空断熱材の断面図。Sectional drawing of the vacuum heat insulating material before whole heating. 図1の真空断熱材を加熱炉内で全体加熱する状態を示す一部切開斜視図。FIG. 2 is a partially cut perspective view showing a state where the vacuum heat insulating material of FIG. 1 is entirely heated in a heating furnace. 本発明真空断熱材を箱体の壁内に配置した状態を示す要部拡大断面図。The principal part expanded sectional view which shows the state which has arrange | positioned this invention vacuum heat insulating material in the wall of a box. 真空断熱材と独立気泡硬質ポリウレタンフォームを一体成形する方法の一例を示す概念図で、図4(a)は型枠Wに真空断熱材(VIP)を入れる状態を示す図、図4(b)は型枠W内にウレタン原料液を注入する状態を示す図、図4(c)は、複合断熱材Fの断面図。FIG. 4 (a) is a conceptual diagram showing an example of a method for integrally forming a vacuum heat insulating material and a closed cell rigid polyurethane foam, and FIG. 4 (a) is a view showing a state in which a vacuum heat insulating material (VIP) is put into a mold W. FIG. 4 (b) FIG. 4C is a view showing a state in which the urethane raw material liquid is injected into the mold W, and FIG. 4C is a cross-sectional view of the composite heat insulating material F. 図4に示した複合断熱材Fを箱体等の壁内に配置した状態を示す要部拡大断面図。The principal part expanded sectional view which shows the state which has arrange | positioned the composite heat insulating material F shown in FIG. 4 in walls, such as a box. 真空断熱材のせん断強度試験の方法を示す斜視図。The perspective view which shows the method of the shear strength test of a vacuum heat insulating material. 真空断熱材の海上輸送用コンテナへの貼付け態様を示す図で、図7(a)はコンテナの天井面と床面、及び、長手方向の側面に40枚の真空断熱材を並べて貼付けた状態を示す図、図7(b)は短手方向の側面に8枚並べて貼付けた状態を示す図。Fig. 7 (a) is a diagram showing how the vacuum heat insulating material is attached to a container for marine transportation. FIG. 7B is a diagram showing a state where eight sheets are arranged and pasted on the side surface in the lateral direction.

符号の説明Explanation of symbols

1 芯材
1a 無機繊維又は無機粉体からなる層
1b 連続気泡硬質プラスチック発泡体
2 袋体
2a 密封部
3 ガス吸着剤
4 断熱箱体
5 独立気泡硬質ポリウレタンフォーム
t,T 真空断熱材
F 複合断熱材
R 加熱炉
D 開閉扉
h 取手
W 補強枠体
1 Core material
1a Layer made of inorganic fiber or inorganic powder
1b Open cell rigid plastic foam 2 Bag
2a Sealing part 3 Gas adsorbent 4 Thermal insulation box 5 Closed cell rigid polyurethane foam t, T Vacuum insulation F Composite insulation R Heating furnace D Opening door h Handle W Reinforcement frame

Claims (6)

熱溶着層を有するガスバリア性フィルムよりなる袋体に、有機又は無機の繊維若しくは粉体のいずれか又はこれらを組合わせたものからなる層の表,裏両面に連続気泡硬質プラスチック発泡体を設けた少なくとも3層構成の芯材を収納し、内部を減圧密封した真空断熱材の全体を、常圧下において前記熱溶着層の融点より5〜35℃程度高い温度に加熱して前記芯材の形状に沿った前記フィルムの未溶着部分、及び、前記フィルムの熱溶着層と前記芯材の表面を熱溶着したことを特徴とする真空断熱材。   An open-celled hard plastic foam was provided on both the front and back surfaces of a layer made of organic or inorganic fibers or powders or a combination of these on a bag made of a gas barrier film having a heat-welded layer. The entire vacuum heat insulating material containing at least a three-layer core material and sealed under reduced pressure is heated to a temperature of about 5 to 35 ° C. higher than the melting point of the heat-welded layer under normal pressure to form the core material. The vacuum heat insulating material characterized by heat-welding the unwelded part of the said film which followed, the heat welding layer of the said film, and the surface of the said core material. 連続気泡硬質プラスチック発泡体は、連続気泡硬質ポリウレタンフォーム、連続気泡硬質ポリスチレンフォームのいずれかである請求項1の真空断熱材。   2. The vacuum heat insulating material according to claim 1, wherein the open-cell hard plastic foam is one of open-cell hard polyurethane foam and open-cell hard polystyrene foam. ガスバリア性フィルムは、金属箔とプラスチックフィルムとの積層フィルム、又は、金属又は無機酸化物の蒸着フィルムとプラスチックフィルムとの積層フィルムである請求項1又は2の真空断熱材。   The vacuum heat insulating material according to claim 1 or 2, wherein the gas barrier film is a laminated film of a metal foil and a plastic film, or a laminated film of a deposited film of a metal or an inorganic oxide and a plastic film. 熱溶着層は、高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE)、リニア低密度ポリエチレン(LLDPE)、未延伸ポリプロピレン(CPP)、延伸ポリプロピレン(OPP)、ポリ塩化ビニリデン(PVDC)、ポリ塩化ビニル(PVC)、エチレン−酢酸ビニル共重合体(EVA)、エチレン−ビニルアルコール共重合体(EVOH)のいずれかのプラスチックフィルム、若しくはポリアミド系、ポリウレタン系、ポリエステル系、エチレン−酢酸ビニル共重合体系、オレフィン系のホットメルト接着剤である請求項1〜3のいずれかの真空断熱材。   High-temperature polyethylene (HDPE), low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), unstretched polypropylene (CPP), stretched polypropylene (OPP), polyvinylidene chloride (PVDC), polyvinyl chloride (PVC), any plastic film of ethylene-vinyl acetate copolymer (EVA), ethylene-vinyl alcohol copolymer (EVOH), or polyamide-based, polyurethane-based, polyester-based, ethylene-vinyl acetate copolymer system, The vacuum heat insulating material according to any one of claims 1 to 3, which is an olefin-based hot melt adhesive. 物品を収容する箱体の内壁材と外壁材の間の空間に、請求項1〜4のいずれかの真空断熱材を配置し、残った空間に独立気泡硬質ポリウレタンフォームを充填したことを特徴とする断熱箱体。   The vacuum heat insulating material according to any one of claims 1 to 4 is disposed in a space between an inner wall material and an outer wall material of a box body that accommodates articles, and the remaining space is filled with closed cell rigid polyurethane foam. Heat insulation box. 物品を収容する箱体の内壁材と外壁材の間の空間に、真空断熱材を当該断熱材の少なくとも片面と周側辺を囲む独立気泡硬質ポリウレタンフォームと一体成形した複合断熱材を配置し、残った空間に独立気泡硬質ポリウレタンフォームを充填したことを特徴とする断熱箱体。
In the space between the inner wall material and the outer wall material of the box housing the article, a composite heat insulating material is integrally formed with the closed cell rigid polyurethane foam surrounding the vacuum heat insulating material around at least one side and the peripheral side of the heat insulating material, A heat-insulating box characterized by filling the remaining space with closed-cell rigid polyurethane foam.
JP2006059079A 2006-03-06 2006-03-06 Vacuum heat insulation material and heat insulation box body using this material Pending JP2007239771A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006059079A JP2007239771A (en) 2006-03-06 2006-03-06 Vacuum heat insulation material and heat insulation box body using this material
KR1020070017357A KR20070091534A (en) 2006-03-06 2007-02-21 Vacuum adiabatic material and adiabatic box using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006059079A JP2007239771A (en) 2006-03-06 2006-03-06 Vacuum heat insulation material and heat insulation box body using this material

Publications (1)

Publication Number Publication Date
JP2007239771A true JP2007239771A (en) 2007-09-20

Family

ID=38585519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006059079A Pending JP2007239771A (en) 2006-03-06 2006-03-06 Vacuum heat insulation material and heat insulation box body using this material

Country Status (2)

Country Link
JP (1) JP2007239771A (en)
KR (1) KR20070091534A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102639949A (en) * 2010-03-04 2012-08-15 乐金华奥斯有限公司 Grooved type of vacuum thermal insulation material and a production method for the same
KR101486634B1 (en) * 2012-07-03 2015-01-27 (주)엘지하우시스 Vacuum insulation panel improved explosion defect and the method for manufacturing the same
WO2015186345A1 (en) * 2014-06-03 2015-12-10 パナソニックIpマネジメント株式会社 Vacuum heat insulating body, and heat insulating container and heat insulating wall employing same
WO2015186358A1 (en) * 2014-06-04 2015-12-10 パナソニックIpマネジメント株式会社 Vacuum heat insulating body, and heat insulating container and heat insulating wall employing same
US9336225B2 (en) 2011-02-24 2016-05-10 A9.Com, Inc. Encoding of variable-length data with unary formats
JP2018059534A (en) * 2016-09-30 2018-04-12 大日本印刷株式会社 Outer packing material for vacuum heat insulation material, vacuum heat insulation material, and article with vacuum heat insulation material
JP2019095066A (en) * 2019-01-24 2019-06-20 大日本印刷株式会社 Outer packaging material for vacuum heat insulation material, vacuum heat insulation material, and article with vacuum heat insulation material
JP2019178768A (en) * 2018-03-30 2019-10-17 大日本印刷株式会社 Outer packing material for vacuum heat insulation material, vacuum heat insulation material, and article with vacuum heat insulation material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011152610A1 (en) * 2010-06-04 2011-12-08 Park Kyoo Chul Vacuum insulation panel, and preparation method thereof

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013512404A (en) * 2010-03-04 2013-04-11 エルジー・ハウシス・リミテッド Groove type vacuum heat insulating material and method for manufacturing the same
CN102639949B (en) * 2010-03-04 2014-11-12 乐金华奥斯有限公司 Grooved type of vacuum thermal insulation material and a production method for the same
CN102639949A (en) * 2010-03-04 2012-08-15 乐金华奥斯有限公司 Grooved type of vacuum thermal insulation material and a production method for the same
US9336225B2 (en) 2011-02-24 2016-05-10 A9.Com, Inc. Encoding of variable-length data with unary formats
KR101486634B1 (en) * 2012-07-03 2015-01-27 (주)엘지하우시스 Vacuum insulation panel improved explosion defect and the method for manufacturing the same
US9523459B2 (en) 2012-07-03 2016-12-20 Lg Hausys, Ltd. Vacuum insulation panel with improved rupturing and preparation method thereof
WO2015186345A1 (en) * 2014-06-03 2015-12-10 パナソニックIpマネジメント株式会社 Vacuum heat insulating body, and heat insulating container and heat insulating wall employing same
JPWO2015186345A1 (en) * 2014-06-03 2017-04-20 パナソニックIpマネジメント株式会社 Vacuum insulator, and heat insulating container and heat insulating wall using the same
WO2015186358A1 (en) * 2014-06-04 2015-12-10 パナソニックIpマネジメント株式会社 Vacuum heat insulating body, and heat insulating container and heat insulating wall employing same
JPWO2015186358A1 (en) * 2014-06-04 2017-04-20 パナソニックIpマネジメント株式会社 Vacuum insulator, heat insulating container and heat insulating wall using the same
US10337786B2 (en) 2014-06-04 2019-07-02 Panasonic Intellectual Property Management Co., Ltd. Vacuum heat insulating body, and heat insulating container and heat insulating wall employing same
JP2018059534A (en) * 2016-09-30 2018-04-12 大日本印刷株式会社 Outer packing material for vacuum heat insulation material, vacuum heat insulation material, and article with vacuum heat insulation material
JP2019178768A (en) * 2018-03-30 2019-10-17 大日本印刷株式会社 Outer packing material for vacuum heat insulation material, vacuum heat insulation material, and article with vacuum heat insulation material
JP7305922B2 (en) 2018-03-30 2023-07-11 大日本印刷株式会社 Outer packaging for vacuum insulation, vacuum insulation, and articles with vacuum insulation
JP2019095066A (en) * 2019-01-24 2019-06-20 大日本印刷株式会社 Outer packaging material for vacuum heat insulation material, vacuum heat insulation material, and article with vacuum heat insulation material

Also Published As

Publication number Publication date
KR20070091534A (en) 2007-09-11

Similar Documents

Publication Publication Date Title
JP2007239771A (en) Vacuum heat insulation material and heat insulation box body using this material
US6652933B2 (en) Flexible insulated pouch
US20200407147A1 (en) Compostable insert for shipping container
EP3436368B1 (en) Shipping container with compostable insulation
US20050189404A1 (en) Insulated panels and shipping container incorporating said panels
JP5294822B2 (en) Cold storage container
US11981498B2 (en) Thermally insulated air cargo container
JP2007253974A (en) Heat insulating body, opposing structure, and insulating container
US20190234068A1 (en) Vacuum Insulation Panel
JP2007321925A (en) Vacuum heat insulating material and its manufacturing method
JP2008201438A (en) Folding type thermal insulation container
GB2501863A (en) Packaging including insulating material comprising bubble layers between reflective layers
JP2008106532A (en) Vacuum heat insulation material
JP5907204B2 (en) Manufacturing method of vacuum insulation
JP2015169372A (en) Heat insulation container, and method of manufacturing heat insulation container
JP2012176770A (en) Packaging bag, package using the same, and method of manufacturing the package
JP6831622B2 (en) Cold and warm box
KR101684625B1 (en) Insulator
WO2020066849A1 (en) Cold insulation and heat insulation bag
JP2007138976A (en) Vacuum heat insulating material and its manufacturing method
JPH11141796A (en) Vacuum heat insulating panel
JP6382596B2 (en) refrigerator
JP4443727B2 (en) Manufacturing method of vacuum insulation container
CN107816601B (en) Vacuum heat insulation piece
EP3181980B1 (en) Method for manufacturing vacuum heat insulator and vacuum heat insulator