JP2007238345A - Forming die, forming method and glass forming formed by using the forming die - Google Patents

Forming die, forming method and glass forming formed by using the forming die Download PDF

Info

Publication number
JP2007238345A
JP2007238345A JP2006059727A JP2006059727A JP2007238345A JP 2007238345 A JP2007238345 A JP 2007238345A JP 2006059727 A JP2006059727 A JP 2006059727A JP 2006059727 A JP2006059727 A JP 2006059727A JP 2007238345 A JP2007238345 A JP 2007238345A
Authority
JP
Japan
Prior art keywords
mold
die
cylinder
molding die
heat insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006059727A
Other languages
Japanese (ja)
Inventor
Susumu Tanakadate
奨 田中舘
Shigeru Umeki
茂 梅木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Optical Industries Co Ltd
Original Assignee
Ricoh Optical Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Optical Industries Co Ltd filed Critical Ricoh Optical Industries Co Ltd
Priority to JP2006059727A priority Critical patent/JP2007238345A/en
Publication of JP2007238345A publication Critical patent/JP2007238345A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/60Aligning press die axes

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact and inexpensive forming die which can be used without modifying the conventional forming apparatus by improving the center alignment precision by the forming die itself since it becomes a problem particularly to align the centers of upper and lower dies with each other when a glass lens is formed by using a pair of upper and lower dies and when the conventional forming die using a drum die and upper and lower dies is used, the higher the requested precision of center alignment becomes, the smaller a clearance between the drum die and any of the upper and lower dies must be made. <P>SOLUTION: When the forming die is cooled quickly, a formed article is apt to strain thermally. Therefore, the forming die is surrounded by a heat insulating cylinder having low thermal conductivity, namely, is formed to have such a structure that the temperature changes slowly. The heat insulating cylinder is divided into three portions by two inclined planes inclined toward opposite directions to each other. Each of two inclined planes is formed into a low-friction sliding plane. When the heat insulating cylinder is engaged outside the drum die, each of the divided ones of the heat insulating cylinder moves to the lower side by its own weight along the sliding plane to align the upper and lower dies automatically with each other. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、加熱軟化されたガラス素材をプレスして電気光学装置に用いられるレンズ等を成形する成形型に関するものである。特に一対の成形型の芯合わせを容易にする保温筒の構成に関する。   The present invention relates to a mold for molding a lens or the like used in an electro-optical device by pressing a heat-softened glass material. In particular, the present invention relates to a configuration of a heat insulating cylinder that facilitates centering of a pair of molds.

上下一対の型を用いてガラスレンズを成形する場合、両型の芯合わせが特に問題になる。芯合わせが正しく行われないと、成型されたレンズに偏心が生じ、レンズ性能が劣化する。胴型と上下の型を用いる従来の成形型では、偏芯に対する要求精度が高くなるほど、胴型と上下型とのクリアランスを非常に小さくする必要があった(例えば、特許文献1 参照。)。
ところが、クリアランスが小さいほど、かじりやそれに起因する変形が発生した。
クリアランスに余裕を持たせ、なおかつ偏芯精度を満足するために、位置決めを持たせた型構造が紹介されている(例えば、特許文献2 参照。)。ところがこれらの成形型では、成形型のみならず、成形型の周辺部材、制御装置などの変更を伴い、簡単に変更することが難しい。
このために、成形型単独で偏芯精度を向上させ、従来の成形装置を変えることなく使用できる、コンパクトで安価な成形型が望まれている。
また、胴型と上下型のみの構造では、上下型の熱伝導率が高いため熱が逃げやすく、冷却時に急激に熱が奪われてしまう。これを防ぐため、熱伝導率の低い保温用筒で囲うことにより、温度変化が緩やかになるような構造にしている。
When a glass lens is molded using a pair of upper and lower molds, the alignment of both molds is particularly problematic. If the centering is not performed correctly, the molded lens is decentered and the lens performance is deteriorated. In a conventional mold using a barrel mold and upper and lower molds, the clearance between the trunk mold and the upper and lower molds has to be made extremely small as the accuracy required for eccentricity increases (see, for example, Patent Document 1).
However, the smaller the clearance, the more the galling and the deformation due to it occurred.
In order to provide a clearance and satisfy the eccentricity accuracy, a mold structure having a positioning has been introduced (for example, see Patent Document 2). However, in these molds, it is difficult to easily change not only the molds but also the peripheral members of the molds and the control device.
Therefore, there is a demand for a compact and inexpensive molding die that can improve the eccentric accuracy with the molding die alone and can be used without changing the conventional molding apparatus.
Moreover, in the structure of only the trunk mold and the upper and lower molds, the heat conductivity of the upper and lower molds is high, so that heat can easily escape, and the heat is rapidly deprived during cooling. In order to prevent this, the temperature change is moderated by surrounding it with a heat insulating cylinder having low thermal conductivity.

特開2005−231933号公報JP 2005-231933 A 特開2005−238790号公報JP 2005-238790 A

胴型と上下型とのクリアランスを特別に小さくすることなく、また、特別な構造の成形型を用いることなく、精度の良いガラスレンズを作る構成、および方法を提供する。   Provided are a configuration and a method for producing an accurate glass lens without particularly reducing a clearance between a body mold and an upper mold and a mold having a special structure.

請求項1に記載の発明は、大径部と小径部から構成される上および下型と、胴型と、前記各型より熱伝導率の低い材料からなる円筒状保温筒を有する成形型において、前記保温筒は母線に対し互いに逆方向に傾斜した2つの平面により分割された傾斜面を有し、該傾斜面を有するそれぞれの保温筒は傾斜面を摺動面とし、自重により前記傾斜面に沿って移動可能に構成されていることを特徴とする。
請求項2に記載の発明は、請求項1に記載の成形型において、前記分割された保温筒のそれぞれの対向する傾斜面に、円周方向の位置決めをするための嵌合部を設けたことを特徴とする。
請求項3に記載の発明は、請求項2に記載の成形型において、前記嵌合部は、滑落防止用のストッパを兼ねることを特徴とする。
請求項4に記載の発明は、請求項1ないし3のいずれか1つに記載の成形型において、前記分割された保温筒の最上部と最下部の保温筒の少なくとも一方の内周に、前記型の大径部と接触する平面部を2箇所形成したことを特徴とする。
請求項5に記載の発明は、請求項1ないし3のいずれか1つに記載の成形型において、前記上型、下型および胴型の少なくとも一つと、それと接触部を有する前記分割された保温筒との間に、円周方向の位置決めをするための形状を設けたことを特徴とする。
The invention according to claim 1 is a mold having upper and lower molds composed of a large-diameter part and a small-diameter part, a body mold, and a cylindrical heat insulating cylinder made of a material having lower thermal conductivity than each of the molds. The heat insulating cylinder has an inclined surface divided by two planes inclined in opposite directions with respect to the bus, and each of the heat insulating cylinders having the inclined surface has an inclined surface as a sliding surface, and the inclined surface is caused by its own weight. It is comprised so that it can move along.
According to a second aspect of the present invention, in the molding die according to the first aspect, a fitting portion for positioning in the circumferential direction is provided on each opposed inclined surface of the divided heat insulating cylinder. It is characterized by.
According to a third aspect of the present invention, in the molding die according to the second aspect, the fitting portion also serves as a stopper for preventing slipping.
According to a fourth aspect of the present invention, in the molding die according to any one of the first to third aspects, the inner periphery of at least one of the uppermost part and the lowermost thermal insulation cylinder of the divided thermal insulation cylinder is the Two flat portions that contact the large diameter portion of the mold are formed.
According to a fifth aspect of the present invention, there is provided the mold according to any one of the first to third aspects, wherein the divided heat retaining member has at least one of the upper mold, the lower mold, and the body mold, and a contact portion therewith. A shape for positioning in the circumferential direction is provided between the cylinder and the cylinder.

請求項6に記載の発明は、請求項5に記載の成形型において、前記位置決めをするための形状は、前記上型もしくは下型の大径部に設けた1つの平面部と、前記保温筒の最小長さの母線近傍の内周部に設けた平面部であることを特徴とする。
請求項7に記載の発明は、請求項5に記載の成形型において、前記位置決めをするための形状は、前記上型、下型の大径部もしくは胴型の外周と、前記保温筒の内周のそれぞれ母線方向に形成された、突条と凹溝からなる嵌合部であることを特徴とする。
請求項8に記載の発明は、請求項1ないし7のいずれか1つに記載の成形型において、前記上型および下型の少なくとも一方の外周と、それと前記胴型の内周との間に、円周方向の位置決めをするための形状を設けたことを特徴とする。
請求項9に記載の発明は、請求項8に記載の成形型において、前記位置決めをするための形状は、前記上型、下型の小径部と前記胴型の内周のそれぞれ母線方向に形成された、突条と凹溝からなる嵌合部であることを特徴とする。
According to a sixth aspect of the present invention, in the molding die according to the fifth aspect, the shape for positioning is one flat portion provided in the large-diameter portion of the upper die or the lower die, and the heat retaining cylinder. It is a plane part provided in the inner peripheral part of the bus-line vicinity of minimum length of this.
According to a seventh aspect of the present invention, in the molding die according to the fifth aspect of the present invention, the shape for positioning includes the outer diameter of the upper mold, the large diameter portion of the lower mold or the body mold, and the inside of the heat retaining cylinder. It is the fitting part which consists of a protrusion and a ditch | groove formed in the bus-line direction of each circumference.
According to an eighth aspect of the present invention, in the molding die according to any one of the first to seventh aspects, between the outer periphery of at least one of the upper mold and the lower mold and the inner periphery of the barrel mold. A shape for positioning in the circumferential direction is provided.
According to a ninth aspect of the present invention, in the molding die according to the eighth aspect, the shape for positioning is formed in the direction of the generatrix of the small diameter portion of the upper die, the lower die and the inner periphery of the barrel die, respectively. It is the fitting part which consists of a protruding protrusion and a ditch | groove.

請求項10に記載の発明は、大径部と小径部から構成される上下型と、胴型と、円筒状保温筒を有する成形型において、前記保温筒の底面は母線に対し所定の角度傾斜した平面により切り取られた形を成し、前記胴型の上面は前記保温筒下面の傾斜角度と一致する角度の傾斜面に形成され、該胴型の下面は前記傾斜下平面とは逆方向に傾斜した他の平面によって切り取られた形を成し、前記下型の大径部上面は、前記胴型下面の傾斜角度と一致する角度の傾斜面に形成され、保温筒、および胴型は傾斜面を摺動面とし、自重により傾斜面に沿って移動可能に構成されていることを特徴とする。
請求項11に記載の発明は、請求項10に記載の成形型において、前記保温筒と前記胴型の対向する傾斜面、および前記胴型と前記下型の対向する傾斜面の少なくとも一方に、円周方向の位置決めをするための嵌合部を設けたことを特徴とする。
請求項12に記載の発明は、請求項11に記載の成形型において、前記嵌合部は、滑落防止用のストッパを兼ねることを特徴とする。
請求項13に記載の発明は、請求項10ないし12のいずれか1つに記載の成形型において、前記保温筒の内周に、前記上型の大径部と接触する平面部を2箇所形成したことを特徴とする。
請求項14に記載の発明は、請求項10ないし12のいずれか1つに記載の成形型において、前記上型と、前記保温筒との間に、円周方向の位置決めをするための形状を設けたことを特徴とする。
The invention according to claim 10 is a molding die having an upper and lower mold composed of a large-diameter portion and a small-diameter portion, a body mold, and a cylindrical heat insulation cylinder, and the bottom surface of the heat insulation cylinder is inclined at a predetermined angle with respect to the bus bar. The upper surface of the barrel mold is formed into an inclined surface having an angle coincident with the tilt angle of the lower surface of the heat insulating cylinder, and the lower surface of the barrel mold is opposite to the inclined lower plane. The upper surface of the large-diameter portion of the lower mold is formed as an inclined surface that matches the inclination angle of the lower surface of the body mold, and the heat insulation cylinder and the body mold are inclined. The surface is a sliding surface, and is configured to be movable along an inclined surface by its own weight.
The invention according to claim 11 is the molding die according to claim 10, wherein at least one of the inclined surfaces of the heat retaining cylinder and the barrel mold facing each other and the inclined surfaces of the barrel mold and the lower mold facing each other, A fitting portion for positioning in the circumferential direction is provided.
According to a twelfth aspect of the present invention, in the molding die according to the eleventh aspect, the fitting portion also serves as a stopper for preventing slipping.
According to a thirteenth aspect of the present invention, in the molding die according to any one of the tenth to twelfth aspects, two flat portions that are in contact with the large diameter portion of the upper die are formed on the inner periphery of the heat retaining cylinder. It is characterized by that.
According to a fourteenth aspect of the present invention, in the molding die according to any one of the tenth to twelfth aspects, a shape for positioning in a circumferential direction is provided between the upper die and the heat retaining cylinder. It is provided.

請求項15に記載の発明は、請求項10ないし12のいずれか1つに記載の成形型において、前記胴型と、前記上型および下型の少なくとも一方との間に、円周方向の位置決めをするための形状を設けたことを特徴とする。
請求項16に記載の発明は、請求項15に記載の成形型において、前記位置決めをするための形状は、前記型の外周と、前記保温筒の内周のそれぞれ母線方向に形成された、突条と凹溝からなる嵌合部であることを特徴とする。
請求項17に記載の発明は、請求項10ないし16のいずれか1つに記載の成形型において、前記上下型および胴型は同程度の熱伝導率を有する成形型材料で形成し、前記胴型および、下型大径部の少なくとも一方の外周に、熱伝導率が成形型材料よりも低い材料の層を設けたことを特徴とする。
請求項18に記載の発明は、請求項17に記載の成形型において、前記熱伝導率が低い材料はセラミック、クロム、ニッケルクロムないしコバールを成分とする材料であることを特徴とする。
請求項19に記載の発明は、請求項1ないし18のいずれか1つに記載の成形型において、前記胴型の内周部の内、少なくとも成形品と接触する部位に突条または凹溝等からなる位置マーク形状を形成したことを特徴とする。
According to a fifteenth aspect of the present invention, in the molding die according to any one of the tenth to twelfth aspects, the circumferential positioning is performed between the barrel die and at least one of the upper die and the lower die. It is characterized in that it has a shape for performing.
According to a sixteenth aspect of the present invention, in the molding die according to the fifteenth aspect, the shape for positioning is a protrusion formed on the outer circumference of the die and the inner circumference of the heat retaining cylinder, respectively. It is a fitting part consisting of a strip and a groove.
According to a seventeenth aspect of the present invention, in the molding die according to any one of the tenth to sixteenth aspects, the upper and lower dies and the barrel die are formed of a molding material having a similar thermal conductivity, and the barrel is formed. A layer of a material having a thermal conductivity lower than that of the molding die material is provided on the outer periphery of at least one of the mold and the lower mold large-diameter portion.
The invention according to claim 18 is the molding die according to claim 17, characterized in that the material having low thermal conductivity is a material containing ceramic, chromium, nickel chromium or kovar as a component.
According to a nineteenth aspect of the present invention, in the molding die according to any one of the first to eighteenth aspects, at least a portion of the inner periphery of the barrel mold that contacts the molded product, a ridge or a groove, or the like. A position mark shape made of is formed.

請求項20に記載の発明は、請求項1ないし19のいずれか1つに記載の成形型において、前記保温筒などに用いられる熱伝導率の低い材料として、多孔質材料を用いることを特徴とする。
請求項21に記載の発明は、請求項1ないし20のいずれか1つに記載の成形型において、前記摺動面は二硫化モリブデン、酸化アルミニウム、グラファイト、二硫化タングステンのいずれかを含む材料で形成されるか、もしくはその材料による層を形成されていることを特徴とする。
請求項22に記載の発明は、請求項1ないし20のいずれか1つに記載の成形型において、前記摺動面の一方は微細な凹凸が形成され、他方は平面に形成されていることを特徴とする。
請求項23に記載の発明は、請求項1ないし20のいずれか1つに記載の成形型において、前記摺動面に多孔質皮膜を形成したことを特徴とする。
請求項24に記載の発明は、請求項20または23に記載の成形型において、前記摺動面の多孔質皮膜の孔に潤滑材を埋め込んだことを特徴とする。
請求項25に記載の発明は、請求項24に記載の成形型において、前記潤滑材は二硫化モリブデンまたは二硫化タングステン、またはグラファイトであることを特徴とする。
The invention described in claim 20 is characterized in that, in the mold according to any one of claims 1 to 19, a porous material is used as a material having low thermal conductivity used for the heat insulating cylinder or the like. To do.
The invention according to claim 21 is the mold according to any one of claims 1 to 20, wherein the sliding surface is made of a material containing any of molybdenum disulfide, aluminum oxide, graphite, and tungsten disulfide. It is formed or a layer made of the material is formed.
According to a twenty-second aspect of the present invention, in the molding die according to any one of the first to twentieth aspects, one of the sliding surfaces is formed with fine irregularities, and the other is formed on a flat surface. Features.
A twenty-third aspect of the invention is characterized in that in the molding die according to any one of the first to twentieth aspects, a porous film is formed on the sliding surface.
A twenty-fourth aspect of the invention is characterized in that, in the mold according to the twentieth or twenty-third aspect, a lubricant is embedded in the hole of the porous film on the sliding surface.
According to a twenty-fifth aspect of the present invention, in the molding die according to the twenty-fourth aspect, the lubricant is molybdenum disulfide, tungsten disulfide, or graphite.

請求項26に記載の発明は、請求項1ないし20のいずれか1つに記載の成形型において、前記摺動面に摺動用部材が配設されたことを特徴とする。
請求項27に記載の発明は、請求項26に記載の成形型において、前記摺動部材はリニア玉軸受け、またはリニアコロ軸受けであることを特徴とする。
請求項28に記載の発明は、請求項1ないし27のいずれか1つに記載の成形型において、前記2つの傾斜面の内、下側の傾斜面が水平面となす角度をθ1、上側の傾斜面が水平面となす角度をθ2とし、下側の傾斜面に載っている部材の質量をm1、上側の傾斜面に載っている部材の質量をm2、下側の傾斜面に接している部材間の静止摩擦係数をμ1、上側の傾斜面に接している部材間の静止摩擦係数をμ2とするとき、θ1、θ2は、
−m1sinθ1+μ1m1cosθ1+μ2m2cosθ2・cos(θ1+θ2)
<0
−m2sinθ2+μ2m2cosθ2<0
を満足することを特徴とする。
According to a twenty-sixth aspect of the present invention, in the molding die according to any one of the first to twentieth aspects, a sliding member is disposed on the sliding surface.
The invention according to claim 27 is the molding die according to claim 26, wherein the sliding member is a linear ball bearing or a linear roller bearing.
The invention according to claim 28 is the mold according to any one of claims 1 to 27, wherein the angle formed by the lower inclined surface of the two inclined surfaces with the horizontal plane is θ1, and the upper inclined The angle between the surface and the horizontal plane is θ2, the mass of the member mounted on the lower inclined surface is m1, the mass of the member mounted on the upper inclined surface is m2, and between the members in contact with the lower inclined surface When the coefficient of static friction is μ1 and the coefficient of static friction between members in contact with the upper inclined surface is μ2, θ1 and θ2 are
−m1sin θ1 + μ1 m1 cos θ1 + μ2 m2 cos θ2 · cos (θ1 + θ2)
<0
-M2sinθ2 + μ2m2cosθ2 <0
It is characterized by satisfying.

請求項29に記載の発明は、請求項1ないし28のいずれか1つに記載の成形型を用い、上下型と胴型が自動的に整列する成形方法を特徴とする。
請求項30に記載の発明は、請求項1ないし28のいずれか1つに記載の成形型を用い、前記型および保温筒のうち最大径の部材より大きい内径を有する補助筒を下型に被せて後、上型および保温筒を前記補助筒内に挿入する成形方法を特徴とする。
請求項31に記載の発明は、請求項30に記載の成形方法において、前記補助筒は母線方向に2分割された半円筒状の部材を組み合わせて形成することを特徴とする。
請求項32に記載の発明は、請求項1ないし28のいずれか1つに記載の成形型を用いて製造されたガラス成形体を特徴とする。
請求項33に記載の発明は、請求項32に記載のガラス成形体を用いて製造された電気光学装置を特徴とする。
A twenty-ninth aspect of the invention is characterized in that the molding die according to any one of the first to twenty-eighth aspects is used and the upper and lower dies and the barrel die are automatically aligned.
In a thirty-third aspect of the present invention, the molding die according to any one of the first to twenty-eighth aspects is used, and an auxiliary cylinder having an inner diameter larger than the largest-diameter member of the mold and the heat retaining cylinder is covered with the lower mold. Then, the molding method is characterized in that the upper mold and the heat retaining cylinder are inserted into the auxiliary cylinder.
A thirty-first aspect of the invention is characterized in that, in the molding method according to the thirty-third aspect, the auxiliary cylinder is formed by combining semi-cylindrical members divided into two in the generatrix direction.
A thirty-second aspect of the invention is characterized by a glass molded body manufactured using the mold according to any one of the first to twenty-eighth aspects.
According to a thirty-third aspect of the present invention, there is provided an electro-optical device manufactured using the glass molded body according to the thirty-second aspect.

本発明によれば、上下型の寄せ方向が一定になることにより、成形体の偏芯方向が一定になる。これにより、偏芯ばらつきが少なくなるために芯取り精度を確保することが容易になる。
また、従来の胴型を使用している成形機で容易に偏芯位置を安定化できる。
According to the present invention, the direction in which the upper and lower molds are made constant makes the eccentric direction of the molded body constant. This makes it easy to ensure the centering accuracy because the variation in eccentricity is reduced.
Further, the eccentric position can be easily stabilized by a molding machine using a conventional body mold.

図1は本発明の基本原理を説明するための図である。同図(a)は保温筒の挿入過程を示す図、同図(b)は組み上げ完了状態を示す図である。
同図において符号1は上型、2は下型、3は胴型、4は下保温筒、5は中保温筒、6は上保温筒、7はゴブ材、A、B、Cは保温筒の移動方向をそれぞれ示す。
本発明の構成は、上下型、胴型、保温筒の構成からなる成形型において、保温筒を3分割して、上下の筒と、中央の筒が、上下型の移動方向に直交する面において、自重で互いに反対方向に移動することにより、上下型を一方向に整列させることを実現する。なお、上下型1、2に関しては、上あるいは下を区別しない場合、以下単に型と呼ぶことがある。
FIG. 1 is a diagram for explaining the basic principle of the present invention. The figure (a) is a figure which shows the insertion process of a thermal insulation cylinder, and the figure (b) is a figure which shows the assembly completion state.
In the figure, reference numeral 1 is an upper mold, 2 is a lower mold, 3 is a barrel mold, 4 is a lower thermal insulation cylinder, 5 is an intermediate thermal insulation cylinder, 6 is an upper thermal insulation cylinder, 7 is a gob material, and A, B and C are thermal insulation cylinders. The moving direction of each is shown.
The configuration of the present invention is a molding die composed of an upper die, a barrel die, and a heat insulation cylinder. The upper and lower molds are aligned in one direction by moving in opposite directions with their own weight. Note that the upper and lower molds 1 and 2 may be simply referred to as molds below unless they are distinguished from each other.

以下、型の組み付け工程と各部材の動作を説明する。
同図(a)において、図示しない基板に固定された下型2の大径の基底部よりやや大きい内径を有する下保温筒4が、上記基底部を内に含むように置かれる。下保温筒4は円筒を基本形としているが、上面は円筒の母線に対し、所定の角度をもって傾斜した平面で切られた形になっている。
下型2の小径部は基底部と同芯に形成されており、その上面は小径部と同芯の型押し面になっており、軟化したガラス素材であるゴブ材7が型面のほぼ中心に置かれる。
上記小径部の外径よりやや大きい内径を有する胴型3が、上記小径部を含むようにして、その底面が前記大径部上面に接するように置かれる。
大径部、および小径部の径が下保温筒4と同径で同芯に形成された上型1の小径部を、胴型3に挿入し、小径部の下面に、小径部と同芯に形成された型面をゴブ材7に当接させる。
Hereinafter, the assembly | attachment process of a type | mold and operation | movement of each member are demonstrated.
In FIG. 2A, a lower heat insulating cylinder 4 having an inner diameter slightly larger than the large-diameter base portion of the lower mold 2 fixed to a substrate (not shown) is placed so as to include the base portion. The lower heat insulating cylinder 4 has a cylindrical shape as its basic shape, but its upper surface is cut by a plane inclined at a predetermined angle with respect to the generatrix of the cylinder.
The small diameter portion of the lower mold 2 is formed concentrically with the base portion, and the upper surface thereof is an embossing surface concentric with the small diameter portion, and the gob material 7 which is a softened glass material is substantially at the center of the mold surface. Placed in.
A body mold 3 having an inner diameter slightly larger than the outer diameter of the small diameter portion is placed so that the bottom surface thereof is in contact with the upper surface of the large diameter portion so as to include the small diameter portion.
The small-diameter portion of the upper mold 1 having the large-diameter portion and the small-diameter portion having the same diameter and the same diameter as that of the lower heat insulating cylinder 4 is inserted into the body die 3 and concentric with the small-diameter portion on the lower surface of the small-diameter portion The mold surface formed on the gob material 7 is brought into contact with the gob material 7.

中保温筒5は、底面が下保温筒4の上面と一致する角度で同様の傾斜平面で切られた形をしている。中保温筒5の上記傾斜面を下型4の傾斜面と一致させて下保温筒4の上から置く(矢印B方向)と、中保温筒5は下保温筒4の傾斜面に沿って自重落下(矢印B’方向)を生じ、その内面が胴型3の外周に当接し、胴型3が移動して(矢印B”方向)その内周が下型2の小径部外周に当接するまで斜面の低い側に移動する。
このとき、下保温筒4も反力によって逆方向(矢印A方向)に力を受け、その内径部が下型2の基底部外周に当接するところまで移動する。
これらの移動に関しては、それぞれの他部材との接触部が十分低摩擦状態に保たれているものとする。低摩擦を確保する方法としては、摺動面に潤滑材を塗布しておくか、潤滑性の材料、例えばDLCなどのコーティングをしておくとよい。あるいは、保温筒の材料に潤滑性が向上する成分、例えば2硫化モリブデンを含有させたり、素材自身に潤滑性の材料、を用いることもできる。
The middle heat insulating cylinder 5 has a shape in which the bottom surface is cut by a similar inclined plane at an angle that coincides with the upper surface of the lower heat insulating cylinder 4. When the inclined surface of the middle heat insulating cylinder 5 is made to coincide with the inclined surface of the lower mold 4 and is placed from above the lower heat insulating cylinder 4 (in the direction of arrow B), the intermediate heat insulating cylinder 5 has its own weight along the inclined surface of the lower heat insulating cylinder 4. Falling (in the direction of arrow B ′) occurs until the inner surface abuts on the outer periphery of the barrel die 3 and the barrel die 3 moves (in the direction of arrow B ″) until the inner circumference abuts on the outer periphery of the small-diameter portion of the lower die 2. Move to the lower side of the slope.
At this time, the lower heat retaining cylinder 4 also receives a force in the reverse direction (arrow A direction) due to the reaction force, and moves to a position where the inner diameter portion contacts the outer periphery of the base portion of the lower mold 2.
With respect to these movements, it is assumed that the contact portion with each other member is kept in a sufficiently low friction state. As a method for ensuring low friction, it is preferable to apply a lubricant to the sliding surface or to coat a lubricious material such as DLC. Alternatively, a component that improves lubricity, for example, molybdenum disulfide, may be included in the material of the heat insulating cylinder, or a lubricious material may be used for the material itself.

同図(b)において、下保温筒4と上下対称的に構成された上保温筒6を、中保温筒5の上から置く(矢印C方向)。中保温筒5は上下方向が対称的に形成されており、その上面は下保温筒4の上面とは逆方向に傾斜した平面によって切り取られた形をしている。したがって、中保温筒5の上下面に現れる傾斜した楕円の長軸両端は、それぞれ中保温筒5の同一の母線上に一致する。それらの母線の一方は最大長さの母線であり、他方は最小長さの母線である。
上下面の傾斜角の絶対値は一致させなくてもよいが、中保温筒5の上面の傾斜角度と上保温筒6底面の傾斜角度とは一致させておく必要がある
上保温筒6は、中保温筒5の傾斜面に沿って移動し(矢印C’方向)、その内周面が上型1の大径部に当接して上型1が移動を生じ(矢印C”方向)、上型1の小径部外周が胴型3の内周部に当接する。
In FIG. 2B, an upper heat insulating tube 6 configured symmetrically with the lower heat insulating tube 4 is placed from above the middle heat insulating tube 5 (in the direction of arrow C). The middle heat insulating cylinder 5 is formed symmetrically in the vertical direction, and its upper surface is cut by a plane inclined in the direction opposite to the upper surface of the lower heat insulating cylinder 4. Therefore, the long-axis both ends of the inclined ellipse appearing on the upper and lower surfaces of the middle heat insulating cylinder 5 coincide with the same bus bar of the middle heat insulating cylinder 5, respectively. One of those buses is the maximum length bus and the other is the minimum length bus.
Although the absolute values of the inclination angles of the upper and lower surfaces do not have to coincide with each other, the inclination angle of the upper surface of the middle heat insulation cylinder 5 and the inclination angle of the bottom surface of the upper heat insulation cylinder 6 need to coincide with each other. It moves along the inclined surface of the middle heat insulating cylinder 5 (in the direction of arrow C ′), its inner peripheral surface comes into contact with the large diameter portion of the upper mold 1 and the upper mold 1 is moved (in the direction of arrow C ″). The outer periphery of the small diameter portion of the mold 1 abuts on the inner peripheral portion of the body mold 3.

成形型が組み上がった状態では、中央部近傍を中保温筒5で支えられた胴型3の内周面に対し、下型2の小径部外周と上型1の小径部外周とが、ともに同一線上で当接するので上下の型面は原理的に同芯になる。ただし、本方式によれば、上下型と胴型は原理的に偏心を有するので、型押しによって成形されたレンズは外径との関係ではほぼ一定の偏心が発生する。しかし、その偏心量は原理的に一定なので、後工程の作業も定型的な作業となるため、特別なコストアップは生じない。
なお、上記の組み付け手順は、理解の容易のために工程を分解して説明したが、実際の作業としては下保温筒4、中保温筒5、上保温筒6は予め重ねて保持し、一度に胴型3の周囲に落とし込むようにしている。その結果、図示の各矢印方向の移動はすべて一瞬の内に完了する。矢印方向への移動が十分に行われていない懸念があるときは、例えば矢印A方向への微振動を与えるなどしてもよい。それによりすべての矢印方向への移動が完了する。与える振動数は保温筒の共振周波数を選ぶとなおよい。
成形完了後の型取り外し順は、まず各保温筒4、5、6を上方に抜く。次いで、上型1を吸着手段により上方に外す。次に成型物を吸着手段により取り出す。残る胴型3と下型2は清掃時以外は取り外さない。
In the assembled state of the molding die, the outer periphery of the small-diameter portion of the lower die 2 and the outer periphery of the small-diameter portion of the upper die 1 are both relative to the inner peripheral surface of the barrel die 3 supported in the vicinity of the center by the intermediate heat insulating cylinder 5. Since they abut on the same line, the upper and lower mold surfaces are in principle concentric. However, according to the present system, the upper and lower molds and the body mold are decentered in principle, so that a lens formed by embossing has a substantially constant decentering with respect to the outer diameter. However, since the amount of eccentricity is theoretically constant, the work in the subsequent process is also a typical work, and no special cost increase occurs.
The above assembly procedure has been described by disassembling the process for ease of understanding. However, as an actual work, the lower heat insulating cylinder 4, the middle heat insulating cylinder 5, and the upper heat insulating cylinder 6 are preliminarily stacked and held once. It is designed to be dropped around the body mold 3. As a result, all the movements in the directions indicated by the arrows are all completed in an instant. When there is a concern that the movement in the direction of the arrow is not sufficiently performed, for example, a slight vibration in the direction of the arrow A may be given. Thereby, the movement in all the arrow directions is completed. It is even better to select the resonance frequency of the heat insulating cylinder as the frequency to be applied.
In order to remove the mold after completion of molding, first, the heat insulating cylinders 4, 5, and 6 are pulled upward. Next, the upper mold 1 is removed upward by the suction means. Next, the molded product is taken out by an adsorbing means. The remaining body mold 3 and lower mold 2 are not removed except during cleaning.

図2は上下型と上下保温筒の位置関係を特定するための構成を説明するための図である。同図(a)は上型と上保温筒の組み合わせ、同図(b)は下型と下保温筒の組み合わせのそれぞれ端面を示す図である。
同図(a)において、上保温筒6の内側を完全な円形ではなく、一部がV字型の一部を組み合わせた形状となるようにする。すなわち、上保温筒6の内側の一部が2つの平面部6a、6bを有するようにする。上保温筒6と当接する上型1の大径部の接触面およびその近傍は低摩擦化しておくことは言うまでもない。したがって、上保温筒6が上型1に横方向から当接した場合、平面部6aおよび6bと上型1の大径部が接触し、自動的に両者の中心位置が調節される。このように構成すると、上記接触により、上型1が一方向に寄せられたにも拘わらず、両者の中心位置がほぼ一致した状態に保持することが可能である。
同図(b)において、下保温筒4と下型2との関係も全く同様に構成されている。
FIG. 2 is a diagram for explaining a configuration for specifying the positional relationship between the upper and lower molds and the upper and lower heat insulation cylinders. The figure (a) is a figure which shows each end surface of the combination of an upper mold | type and an upper heat insulation cylinder, and the figure (b) each of the combination of a lower mold | type and a lower heat insulation cylinder.
In FIG. 5A, the inner side of the upper heat insulating cylinder 6 is not completely circular, but a part thereof is formed by combining a part of a V shape. That is, a part of the inner side of the upper heat insulating cylinder 6 has two flat portions 6a and 6b. Needless to say, the contact surface of the large-diameter portion of the upper mold 1 that is in contact with the upper heat insulating cylinder 6 and the vicinity thereof are reduced in friction. Therefore, when the upper heat insulating cylinder 6 contacts the upper mold 1 from the lateral direction, the flat portions 6a and 6b and the large diameter portion of the upper mold 1 come into contact with each other, and the center positions of both are automatically adjusted. If comprised in this way, even if the upper mold | type 1 was brought close to one direction by the said contact, it can be hold | maintained in the state in which both center positions substantially corresponded.
In FIG. 2B, the relationship between the lower heat insulating cylinder 4 and the lower mold 2 is configured in exactly the same manner.

図3は上下型と上下保温筒の位置関係を特定するための他の構成を説明するための図である。同図(a)は上下型、同図(b)は上下保温筒、同図(c)は上型と上保温筒の組み合わせ方をそれぞれ示す図である。
本構成は、保温筒の内周面、および型の外周面の平面部をそれぞれ1つずつ形成した例である。ただし、保温筒の内面の平面部は、母線の長さが最小である位置に最も近く、傾斜端面に現れる楕円の長軸に直交する面とする。
この構成でも、予め型と保温筒のおよその位置関係が合わせてあれば、型と保温筒の当接によって、6cと1c、あるいは4cと2cが自動的に面接触を生じ、円周方向の相対的な位置関係が一義的に決まる。
この構成により、上型1と上保温筒6の相対的な位置関係は常に一定に保たれ、同様に下型2と下保温筒4の円周方向の相対的な位置関係も常に一定に保たれる。また、平面部の取り方によって、図2に示した構成と同様に、型と保温筒の中心をほぼ一致させることもできる。これにより、中保温筒5は摺動方向が上下の保温筒により規制されて特定の位置(一番低くなる位置)に落ち着くので、中保温筒5の内周は単純な円形でかまわない。したがって、型押しの回数を重ねても、成形品は常に同じ偏心量をもって成形される。
FIG. 3 is a diagram for explaining another configuration for specifying the positional relationship between the upper and lower molds and the upper and lower heat insulating cylinders. The figure (a) is an up-and-down type, the figure (b) is an up-and-down heat insulation cylinder, and the figure (c) is a figure showing how to combine an upper mold and an upper insulation pipe.
This configuration is an example in which one inner peripheral surface of the heat insulating cylinder and one flat portion of the outer peripheral surface of the mold are formed. However, the flat surface portion of the inner surface of the heat insulating cylinder is the surface closest to the position where the length of the bus bar is minimum and orthogonal to the major axis of the ellipse appearing on the inclined end surface.
Even in this configuration, if the approximate positional relationship between the mold and the heat insulating cylinder is matched in advance, the contact between the mold and the heat insulating cylinder automatically causes surface contact between 6c and 1c or 4c and 2c, and in the circumferential direction. The relative positional relationship is uniquely determined.
With this configuration, the relative positional relationship between the upper mold 1 and the upper thermal insulation cylinder 6 is always kept constant. Similarly, the relative positional relation between the lower mold 2 and the lower thermal insulation cylinder 4 in the circumferential direction is always kept constant. Be drunk. Moreover, the center of a type | mold and a heat insulation cylinder can also be substantially corresponded like the structure shown in FIG. 2 by the way of taking a plane part. As a result, the sliding direction of the middle heat retaining cylinder 5 is regulated by the upper and lower heat retaining cylinders and settles to a specific position (the lowest position), so the inner circumference of the middle heat retaining cylinder 5 may be a simple circle. Therefore, the molded product is always molded with the same amount of eccentricity even if the number of presses is repeated.

図4は保温筒同士の相対的位置関係を規定する係合部を説明するための図である。
図5は下、および中保温筒の係合部の詳細を示す部分図である。同図(a)、(c)は中保温筒下面、同図(b)、(d)は下保温筒上面の一部拡大図である。
中保温筒5の下面には傾斜断面によって形成された楕円形の端面の最大径に対応する位置に、その径方向に延びる2個の突条5dが形成されている。これに対応して、下保温筒4の上面には突条5dがはまって摺動し得る2個の凹形状の長溝4eが形成されている。
下保温筒4の上に中保温筒5が置かれたとき、突条5dと長溝4eがかみ合って周方向の移動を規制すると同時に、上記最大径方向に摺動する。
同図に示した突状5dの断面形状は3角状であるが、凹凸の組み合わせと摺動が保証できる形状であれば、円弧等、他の形状でもかまわない。突条5dは中保温筒5の厚さ方向全部に形成せず、同図(c)に突条5d’として示すように、摺動完了状態で凹凸の噛み合わせが外れない範囲で短くすることもできる。また、同図(d)に示す長溝4e’のように、使用状態に支障を来たさない範囲で溝長さを短くすることもできる。この構成の場合は、突条5d’に対して長溝4e’端部がストッパの役割をするので、保温筒の保管時においても、中保温筒5が下保温筒4に対して滑落することがなく、組み合わせ形状を保つことができて便利である。
両図では中保温筒5に突条、下保温筒4に長溝を設けているが、突条と長溝を逆に形成してもかまわない。
中保温筒5と上保温筒6との間にも同様な摺動部を形成することによって、3分割された保温筒のすべてが互いに正確な円周方向の位置関係を保つことができる。
FIG. 4 is a diagram for explaining an engaging portion that defines the relative positional relationship between the heat insulating cylinders.
FIG. 5 is a partial view showing details of the engaging portions of the lower and middle heat insulating cylinders. FIGS. 4A and 4C are partially enlarged views of the lower surface of the middle heat insulation cylinder, and FIGS. 2B and 2D are partially enlarged views of the upper surface of the lower heat insulation cylinder.
Two protrusions 5d extending in the radial direction are formed on the lower surface of the middle heat insulating cylinder 5 at a position corresponding to the maximum diameter of the elliptical end face formed by the inclined cross section. Corresponding to this, two concave long grooves 4e are formed on the upper surface of the lower heat retaining cylinder 4 in which the ridges 5d can be fitted and slid.
When the middle heat insulating cylinder 5 is placed on the lower heat insulating cylinder 4, the protrusion 5d and the long groove 4e engage with each other to restrict the movement in the circumferential direction and simultaneously slide in the maximum radial direction.
The cross-sectional shape of the protrusion 5d shown in the figure is a triangular shape, but other shapes such as an arc may be used as long as the combination of unevenness and sliding can be guaranteed. The ridges 5d are not formed in the entire thickness direction of the intermediate heat insulating cylinder 5, but are shortened within a range in which the engagement of the concave and convex portions is not disengaged as shown by the ridge 5d 'in FIG. You can also. Further, like the long groove 4e ′ shown in FIG. 4D, the groove length can be shortened within a range that does not hinder the use state. In the case of this configuration, the end of the long groove 4e ′ serves as a stopper with respect to the protrusion 5d ′, so that the middle heat retaining cylinder 5 may slide down with respect to the lower heat retaining cylinder 4 even when the heat retaining cylinder is stored. It is convenient that the combined shape can be maintained.
In both figures, a protrusion is provided in the middle heat insulating cylinder 5 and a long groove is provided in the lower heat insulating cylinder 4, but the protrusion and the long groove may be formed in reverse.
By forming a similar sliding portion between the middle heat insulating cylinder 5 and the upper heat insulating cylinder 6, all of the three heat insulating cylinders can maintain an accurate circumferential positional relationship with each other.

図6は下保温筒と胴型を省略した構成を説明するための図である。
同図において符号8は上型、9は下型、10は胴型、11は上保温筒、ATは補助筒をそれぞれ示す。
この構成では、下保温筒が省略されていて、下型の大径部の外径が保温筒外径とほぼ同程度に形成され、その上面が、図1における下保温筒4の上面と同等の傾斜面になっている。また、図1における胴型3も省略されていて、中保温筒5と同形の胴型10の内周面が胴型の役割をしている。
胴型は上下型と線膨張係数が同じでなければならないため、同じ材質で作られている。このために高価であるので、保温筒に胴型の機能を付加することにより、型代の低減が可能である。
この構成の組み立て順序は、まず、下型9にゴブ材7を載せ、下型9の上に胴型10、上保温筒11を順次重ね、最後に上型8を挿入する。補助用具として、下型9の最大径よりやや大きい内径を有する長い補助筒ATを用意し、下型9にかぶせるように通した後、胴型10と上保温筒11を挿入すると組み付けが楽である。なお、図1において説明は省略したが、図1の場合においても補助用具を用いると便利である。
FIG. 6 is a view for explaining a configuration in which the lower heat insulating cylinder and the trunk mold are omitted.
In the figure, reference numeral 8 is an upper mold, 9 is a lower mold, 10 is a trunk mold, 11 is an upper heat insulating cylinder, and AT is an auxiliary cylinder.
In this configuration, the lower heat insulating cylinder is omitted, the outer diameter of the large-diameter portion of the lower mold is formed to be approximately the same as the outer diameter of the heat insulating cylinder, and the upper surface thereof is equivalent to the upper surface of the lower heat insulating cylinder 4 in FIG. It is an inclined surface. Further, the body mold 3 in FIG. 1 is also omitted, and the inner peripheral surface of the body mold 10 having the same shape as the middle heat insulating cylinder 5 serves as a body mold.
The body mold is made of the same material because the linear expansion coefficient must be the same as the upper and lower molds. For this reason, since it is expensive, it is possible to reduce the mold cost by adding the function of the body mold to the heat insulating cylinder.
The assembly order of this configuration is as follows. First, the gob material 7 is placed on the lower mold 9, the trunk mold 10 and the upper heat insulating cylinder 11 are sequentially stacked on the lower mold 9, and finally the upper mold 8 is inserted. As an auxiliary tool, a long auxiliary cylinder AT having an inner diameter slightly larger than the maximum diameter of the lower mold 9 is prepared, and after passing through the lower mold 9, the body mold 10 and the upper heat insulating cylinder 11 are inserted to facilitate assembly. is there. In addition, although description was abbreviate | omitted in FIG. 1, it is convenient to use an auxiliary tool also in the case of FIG.

ただし、この方法では補助筒ATの長さが長くなるため、取り外しのときの移動量が大きくなる。これを防ぐ方法として、補助筒ATは高い精度を必要としないことに着目し、補助筒ATの円筒を縦に2分割し、断面が半円状の2個の部材AT1、AT2を組み合わせることで円筒状態の補助筒ATにする方法が使える。部材AT1、AT2を磁性体で構成し、双方の分割面に互いに逆極性の着磁をしておいて、両者を近づけるだけで簡単に円筒の補助筒ATが形成されるようにすることができ、しかも磁力を小さくしておけば、取り外しが非常に容易になる。
また、補助筒ATは分割保温筒の保管の際も役立つ。
However, in this method, since the length of the auxiliary cylinder AT becomes long, the movement amount at the time of removal becomes large. As a method for preventing this, focusing on the fact that the auxiliary cylinder AT does not require high accuracy, the cylinder of the auxiliary cylinder AT is vertically divided into two parts, and two members AT1 and AT2 having a semicircular cross section are combined. A method of using a cylindrical auxiliary cylinder AT can be used. The members AT1 and AT2 are made of a magnetic material, and both the split surfaces are magnetized with opposite polarities, so that the cylindrical auxiliary cylinder AT can be easily formed simply by bringing them close to each other. Moreover, if the magnetic force is small, the removal becomes very easy.
The auxiliary cylinder AT is also useful when storing the divided heat insulating cylinder.

図7は型の加熱時の構成を説明するための図である。
同図において符号12はプレート、13はヒータ、14は基板、Pはプレートの移動方向を示す矢印をそれぞれ示す。
基板14上で、プレート12の穴部12aに下型9を設置して、その上に型をすべて組み上げたら、プレート12を矢印P方向にスライドさせ、基板14の上面に下型9の底面を滑らせて、下型9がヒータ13のほぼ中心に合うように位置を定める。この状態でヒータ13に通電して下型を加熱する。
上下型8、9と胴型10の構造では、これらの部材の熱伝導率が高く設定されているので、そのままでは、冷却時の急激な温度変化がゴブ材に加わり好ましくない。
解決手段として、保温性の良い(熱伝導率の低い)部材で、周りを囲う方法が知られている。
このため、胴型10に保温筒の機能を持たせるためには、上下型の冷却時に急激に熱を奪わないようにする必要がある。
簡単に行うためには、基材が型材料で、外周に、熱伝導率の低い層を形成することにより実現可能である。
具体的には、従来方式の保温用筒がステンレス材で作られているのに対応させる場合は、型材料の外周部分に、ステンレス材と同程度の熱伝導率を有するクロム、ニッケルクロムなどの材料をコーティングする方法が適する。そのほかの熱伝導率が低い材料としてセラミック、コバールなどが挙げられる。このように構成すれば、胴型10は中保温筒5と類似の役割を果たすことができる。
また、この構造では、下型の側面の保温効果が不十分になるため、下型の側面にも、上記の熱伝導率の低い層を形成すると良い。
FIG. 7 is a diagram for explaining a configuration during heating of the mold.
In the figure, reference numeral 12 denotes a plate, 13 denotes a heater, 14 denotes a substrate, and P denotes an arrow indicating the moving direction of the plate.
On the substrate 14, the lower mold 9 is installed in the hole 12 a of the plate 12 and all the molds are assembled thereon. Then, the plate 12 is slid in the direction of arrow P, and the bottom surface of the lower mold 9 is placed on the upper surface of the substrate 14. By sliding, the position is determined so that the lower die 9 is substantially aligned with the center of the heater 13. In this state, the heater 13 is energized to heat the lower mold.
In the structure of the upper and lower molds 8 and 9 and the body mold 10, the thermal conductivity of these members is set high, and as such, a sudden temperature change during cooling is added to the gob material, which is not preferable.
As a solution, there is known a method of enclosing the periphery with a member having good heat retention (low thermal conductivity).
For this reason, in order to give the body mold 10 the function of a heat insulating cylinder, it is necessary to prevent heat from being rapidly taken away when the upper and lower molds are cooled.
In order to carry out easily, it is realizable by forming a layer with a low heat conductivity in the outer periphery in a base material with a mold material.
Specifically, when the conventional heat insulation cylinder is made of stainless steel, the outer peripheral portion of the mold material is made of chromium, nickel chrome, etc. having the same thermal conductivity as the stainless steel. A method of coating the material is suitable. Other materials with low thermal conductivity include ceramic and kovar. If comprised in this way, the trunk | drum 10 can play the role similar to the middle heat insulation cylinder 5. FIG.
Further, in this structure, since the heat retaining effect on the side surface of the lower mold becomes insufficient, it is preferable to form the layer having the low thermal conductivity on the side surface of the lower mold.

ここで、保温筒が自重で斜面を滑り下りるための条件を考えてみる。そのためには、2物体が斜面に置かれている場合の運動方程式を考える必要がある。
図8は斜面に中保温筒と上保温筒が重なっている状態を示す図である。
同図において符号gは重力加速度、m1は物体Kの質量、m2は物体Lの質量、α1は物体Kの加速度、α2は物体Lの加速度、μ1は物体Kに働く摩擦力の静止摩擦係数、μ2は物体Lに働く物体Kとの摩擦力の静止摩擦係数、θ1は斜面Mが水平方向となす角度、θ2は物体Kと物体Lの接触面が水平方向となす角度をそれぞれ示す。
ここで、水平方向とは、型や保温筒の中心軸が鉛直線に沿って配置されているものとしたときの、中心軸に直交する平面のことを言う。水平方向とのなす角度がθ1である斜面Mに、質量m1、m2の物体K、Lが重なっておかれている場合の運動を考える。
物体Lに働く摩擦力は、重力m2gの垂直抗力に比例するため、
μ2m2gcosθ2となる。
重力の物体K、L間の斜面方向の成分はm2gsinθ2である。
これより、図で右方向を正方向とすると、物体Lに加わる力
Fb=m2α2=−m2gsinθ2+μ2m2gcosθ2
物体Kに加わる力のうち、重力の斜面M方向の成分は、m1gsinθ1、
摩擦力は、μ1m1gcosθ1となる。
Here, let us consider the conditions for the thermal insulation cylinder to slide down the slope with its own weight. For that purpose, it is necessary to consider the equation of motion when two objects are placed on a slope.
FIG. 8 is a view showing a state in which the middle heat insulation cylinder and the upper heat insulation cylinder overlap with the slope.
In the figure, g is the gravitational acceleration, m1 is the mass of the object K, m2 is the mass of the object L, α1 is the acceleration of the object K, α2 is the acceleration of the object L, μ1 is the static friction coefficient of the friction force acting on the object K, μ2 represents the static friction coefficient of the friction force with the object K acting on the object L, θ1 represents the angle formed by the inclined surface M with the horizontal direction, and θ2 represents the angle formed by the contact surface between the object K and the object L formed with the horizontal direction.
Here, the horizontal direction means a plane orthogonal to the central axis when the central axis of the mold or the heat insulating cylinder is arranged along the vertical line. Consider a motion in the case where the objects K and L having masses m1 and m2 are superimposed on the slope M whose angle with the horizontal direction is θ1.
Since the frictional force acting on the object L is proportional to the vertical drag of gravity m2g,
μ2m2g cos θ2.
The component in the slope direction between the gravitational bodies K and L is m2gsinθ2.
Accordingly, when the right direction in the figure is the positive direction, the force applied to the object L Fb = m2α2 = −m2gsinθ2 + μ2m2gcosθ2
Of the force applied to the object K, the component of the gravitational slope M direction is m1 g sin θ1,
The frictional force is μ1 m1 g cos θ1.

図9は斜面に関する力の関係を示す図である。
ここで、物体Lに加わる摩擦力のうち、斜面M方向の成分は、同図から、
μ2m2gcosθ2・cos(θ1+θ2)となり、この成分が反作用として物体Kに加わるため、物体Kに加わる力は、
Fa=m1α2=−m1gsinθ1+μ1m1gcosθ1+μ2m2gcosθ2・cos(θ1+θ2)
となる。
ここで、μ1=μ2=μの場合を考える。
物体KはFa<0であれば、斜面をすべるので、これを解くと、表1のような角度以上であればよいことが分かる。角度の単位は[°](degree)である。
FIG. 9 is a diagram showing the relationship of forces related to the slope.
Here, of the frictional force applied to the object L, the component in the slope M direction is shown in FIG.
μ2m2g cos θ2 · cos (θ1 + θ2), and since this component is applied to the object K as a reaction, the force applied to the object K is
Fa = m1α2 = −m1gsinθ1 + μ1m1gcosθ1 + μ2m2gcosθ2 · cos (θ1 + θ2)
It becomes.
Here, consider the case of μ1 = μ2 = μ.
If Fa <0, the object K slides on the slope, and when this is solved, it can be seen that the angle should be equal to or greater than that shown in Table 1. The unit of angle is [°] (degree).

Figure 2007238345
Figure 2007238345

次に物体Lが斜面をすべる時を考える。
物体Lに加わる力
Fb=m2α2=−m2gsinθ2+μ2m2gcosθ2<0
であれば良い。
これを計算すると、表2のようになる。
Next, consider the time when the object L slides on the slope.
Force applied to the object L Fb = m 2 α 2 = −m 2 g sin θ 2 + μ 2 m 2 g cos θ 2 <0
If it is good.
This is calculated as shown in Table 2.

Figure 2007238345
Figure 2007238345

図10は条件別のθ1とθ2の下限値の関係を示す図である。
同図において実線は摩擦係数が0.5の場合、破線は摩擦係数が0.44の場合を示す。
このように、物体Kの斜面Cとのなす角度θ1は、物体Lの物体Kとのなす角度θ2を考慮して、設定しなければならない。
FIG. 10 is a diagram illustrating the relationship between the lower limit values of θ1 and θ2 for each condition.
In the figure, a solid line indicates a case where the friction coefficient is 0.5, and a broken line indicates a case where the friction coefficient is 0.44.
As described above, the angle θ1 formed between the object K and the slope C must be set in consideration of the angle θ2 formed between the object L and the object K.

次に、斜面の摺動面について説明する。
クーロンの摩擦法則によると、摺動する面の面積に摩擦力が無関係なのは、マクロレベルの仕上げでは表面の凹凸があり、原子レベルの相互作用の生じるぐらいの距離に近づく部分(真実接触面積)が極めて限られていて、みかけの接触面積が意味をもたないからであると考えられている。
ところが、ミクロレベルで見ると、表面の1つ1つの粒子によるマイクロベアリング効果(ミクロなくさび膜効果)により、摩擦抵抗が低減される。
これは表面の粒子一つ一つを小さな軸受と考えると、そこでの微少なくさび膜効果により動圧が発生するというものである。このため、摺動面に積極的に微小な凹凸を施すことにより、静止摩擦係数を下げることが可能である。これを実現するために、多孔質材料または被膜の塗布が有効である。また、微細な孔に潤滑材、例えば二硫化モリブデンなどを充填することにより、摩擦抵抗をさらに低減し、あわせて潤滑材の耐摩耗性、密着性を向上することが出来る。そのほかの潤滑材としては、酸化アルミニウム、グラファイト、二硫化タングステンなどが挙げられる。
Next, the sliding surface of the slope will be described.
According to Coulomb's law of friction, the frictional force is irrelevant to the area of the sliding surface. The macro level finish has surface irregularities, and there is a part (true contact area) that is close to the distance that causes atomic level interaction. It is considered to be very limited because the apparent contact area has no meaning.
However, when viewed at the micro level, the frictional resistance is reduced by the micro bearing effect (micro wedge film effect) due to each particle on the surface.
If each surface particle is considered as a small bearing, dynamic pressure is generated due to the rust film effect. For this reason, it is possible to lower the coefficient of static friction by positively applying minute irregularities to the sliding surface. In order to realize this, application of a porous material or a film is effective. Further, by filling a fine hole with a lubricant such as molybdenum disulfide, the frictional resistance can be further reduced, and the wear resistance and adhesion of the lubricant can be improved. Other lubricants include aluminum oxide, graphite, tungsten disulfide and the like.

図11は斜面にベアリングを装着する例を示す図である。同図(a)は下保温筒の斜視図、同図(b)はベアリングの正面図である。
同図において符号15はベアリングを示す。
分割された保温型の摺動面を改質する方法ではなく、リニアボール軸受け、またはリニアコロ軸受けなどのいわゆるベアリング15を摺動面の片面側に配設する方法でも良い。同図では下保温筒4にベアリング15を埋め込む例を示したが、逆に中保温筒5にベアリング15を埋めこんでもかまわない。同様に中保温筒5と、上保温筒6の間にもベアリングを介在させることができる。
この関係は図6における下型9と中保温筒10との間にも適用できる。
FIG. 11 is a diagram showing an example in which a bearing is mounted on a slope. The figure (a) is a perspective view of a lower thermal insulation cylinder, and the figure (b) is a front view of a bearing.
In the figure, reference numeral 15 denotes a bearing.
Instead of modifying the divided heat retaining sliding surface, a so-called bearing 15 such as a linear ball bearing or linear roller bearing may be disposed on one side of the sliding surface. In the figure, an example in which the bearing 15 is embedded in the lower heat insulating cylinder 4 is shown, but conversely, the bearing 15 may be embedded in the middle heat insulating cylinder 5. Similarly, a bearing can be interposed between the middle heat retaining cylinder 5 and the upper heat retaining cylinder 6.
This relationship can also be applied between the lower mold 9 and the middle heat insulating cylinder 10 in FIG.

図12、13は中保温筒と胴型の位置合わせを行う方法を示す図である。図12(a)は中保温筒の斜視図、図12(b)はF部拡大図である。図13(a)は中保温筒の斜視図、図13(b)はG部拡大図である
中保温筒5の、胴型3と接する部分の母線方向に凹溝を形成する。図12の場合は断面形状が半円形の凹溝5f、図13の場合は断面3角形の凹溝5gを形成している。図示を省略したが、これら凹溝に嵌合させるため、対応する胴型3の外周の、同じく母線方向に断面同形状の突条を嵌合部として設ける。胴型3の嵌合部の突条は上から下まで通しで設けてもよいし、仲保温筒5と接する部分にだけ設けてもよい。こうすることで、胴型の円周方向の位置が常に一定の位置(向き)になるため、成形品の形状バラツキが一層少なくなる。
この関係は図6の構成に対しても適用できる。すなわち、中保温筒11に対して嵌合部として同様な凹溝11f、11gを形成する。この場合は中保温筒11が接するのは上型8、および下型9なので、この両方に対応する嵌合部として突条を設けておくとよい。しかも、この構成の場合は、成形品にも凹溝11f、11gに対応する突条が形成され、位置マークとして利用できるため、成形品の位置が特定でき、芯取り作業が非常に容易になる。
12 and 13 are views showing a method for aligning the middle heat insulating cylinder and the barrel mold. FIG. 12A is a perspective view of the middle heat insulating cylinder, and FIG. 12B is an enlarged view of the F portion. FIG. 13A is a perspective view of the middle thermal insulation cylinder, and FIG. 13B is an enlarged view of the G section. A concave groove is formed in the generatrix direction of the portion of the middle thermal insulation cylinder 5 in contact with the body mold 3. In the case of FIG. 12, a concave groove 5f having a semicircular cross section is formed, and in the case of FIG. 13, a concave groove 5g having a triangular cross section is formed. Although not shown in the drawings, in order to fit into these concave grooves, protrusions having the same cross-sectional shape in the same busbar direction on the outer periphery of the corresponding barrel mold 3 are provided as fitting portions. The protrusions of the fitting part of the body mold 3 may be provided through from the top to the bottom, or may be provided only at the part in contact with the intermediate heat insulating cylinder 5. By doing so, the circumferential position of the body mold is always a constant position (orientation), so that the shape variation of the molded product is further reduced.
This relationship can also be applied to the configuration of FIG. That is, the same ditch | groove 11f, 11g is formed as a fitting part with respect to the middle heat insulation cylinder 11. FIG. In this case, since the middle heat insulating cylinder 11 is in contact with the upper mold 8 and the lower mold 9, it is preferable to provide a protrusion as a fitting portion corresponding to both of them. In addition, in the case of this configuration, the protrusions corresponding to the concave grooves 11f and 11g are also formed on the molded product and can be used as position marks. Therefore, the position of the molded product can be specified, and the centering operation becomes very easy. .

図14は胴型を用いて成形品に位置マークを付与する方法を説明するための図である。同図(a)は胴型の斜視図、同図(b)は位置マーク近傍の部分拡大図である。
胴型3の外周には図12、13に示した中保温筒5の凹溝5f、5gに対応する突条3hが形成されている。さらに、胴型3の内周には上型1、下型2に接する位置の母線方向に突条3h’が形成されている。ただし、突条3h’の母線方向の長さは、成形後の成形品にのみ接する範囲の長さとし、上型1、下型2の側面に接する部分には突条3h’を形成しない。これにより、成形品には凹溝からなる位置マークが形成される。突条3h’を上から下まで通して形成する代わり、上型1、下型2に対応する嵌合溝を形成することもできる。この場合は上型1、下型2と胴型3がすべて所定の位置関係に固定されるので、成形品の形状バラツキは一層小さくなる。
なお、胴型3の内周に設ける位置マークの断面形状は、突条3h’の三角形に限らず、半円形でもよいし、突条ではなく凹溝とすることもできる。この場合は成形品に形成される位置マークは逆に突条となる。凹溝にする場合は、上型1、下型2と関係なく、溝の長さを上から下まで通して形成することができる。また、突条や溝のように長くすることなく、単に、円錐状、円柱状などの凸または凹形状にしてもかまわない。
同様に中保温筒11と上型8、下型9に形成する嵌合部分も凸と凹を入れ替えてかまわない。さらに、中保温筒5と胴型3の嵌合部分に関しても同様に、凸と凹を入れ替えてかまわない。
FIG. 14 is a view for explaining a method of applying a position mark to a molded product using a body mold. FIG. 4A is a perspective view of a body mold, and FIG. 4B is a partially enlarged view in the vicinity of a position mark.
On the outer periphery of the body mold 3, ridges 3h corresponding to the concave grooves 5f and 5g of the intermediate heat insulating cylinder 5 shown in FIGS. Further, a protrusion 3 h ′ is formed on the inner periphery of the body mold 3 in the generatrix direction at a position in contact with the upper mold 1 and the lower mold 2. However, the length in the generatrix direction of the ridge 3h ′ is a length that is in contact with only the molded product after molding, and the ridge 3h ′ is not formed on the portions that are in contact with the side surfaces of the upper mold 1 and the lower mold 2. Thereby, the position mark which consists of a ditch | groove is formed in a molded article. Instead of forming the protrusion 3h ′ from above to below, fitting grooves corresponding to the upper mold 1 and the lower mold 2 can be formed. In this case, since the upper mold 1, the lower mold 2 and the body mold 3 are all fixed in a predetermined positional relationship, the shape variation of the molded product is further reduced.
In addition, the cross-sectional shape of the position mark provided on the inner periphery of the body mold 3 is not limited to the triangular shape of the protrusion 3h ′, but may be a semicircular shape, or may be a concave groove instead of the protrusion. In this case, the position mark formed on the molded product is a ridge. In the case of the concave groove, the groove can be formed from the top to the bottom regardless of the upper mold 1 and the lower mold 2. Moreover, it does not need to be long like a ridge or a groove, but may be a convex or concave shape such as a conical shape or a cylindrical shape.
Similarly, the convex portions and the concave portions of the intermediate heat insulating cylinder 11 and the upper die 8 and the lower die 9 may be interchanged. Furthermore, the convex portion and the concave portion may be interchanged in the same manner with respect to the fitting portion between the middle heat insulating cylinder 5 and the body mold 3.

図15は本発明を非球面レンズの作製に用いた場合の効果を説明するための図である。同図(a)は従来方式による型を用いた非球面の型押し、同図(b)はその成形品の芯取り、同図(c)は本発明による型を用いた非球面レンズの型押し、同図(c)はその成形品の芯取り、をそれぞれ説明するための図である。
本発明の成形型は非球面レンズの作製において特にその効果を発揮する。
同図(a)、(b)を用いて従来方式の問題点を説明する。非球面レンズの場合には非球面軸があり、このずれが光学性能に大きな影響を与える。従来方式では、上型1と下型2の芯合わせが難しいため、それぞれの非球面軸が同一直線状に並ばないことがある。そのため、成形品7’の芯取りを行って、外周を破線で示す位置に整えるにに当って、両非球面の合成によって生ずる総合的な光学軸を探し、その光学軸に合わせて外周を整形する。そのため、総合的な光学軸が、本来の非球面軸とずれたものが出来上がり、光学的な性能も劣化するし、芯取り作業も時間がかかる。
FIG. 15 is a diagram for explaining the effect when the present invention is used for manufacturing an aspherical lens. FIG. 4A is an aspherical die pressing using a conventional mold, FIG. 4B is the centering of the molded product, and FIG. 4C is an aspherical lens mold using the mold according to the present invention. FIG. 4C is a diagram for explaining the centering of the molded product.
The mold of the present invention is particularly effective in the production of aspherical lenses.
Problems of the conventional method will be described with reference to FIGS. In the case of an aspheric lens, there is an aspheric axis, and this deviation has a great influence on the optical performance. In the conventional method, since alignment of the upper mold 1 and the lower mold 2 is difficult, the respective aspherical axes may not be aligned on the same straight line. Therefore, when centering the molded product 7 ′ and adjusting the outer periphery to the position indicated by the broken line, a comprehensive optical axis generated by the synthesis of both aspheric surfaces is searched, and the outer periphery is shaped according to the optical axis. To do. As a result, the overall optical axis is shifted from the original aspherical axis, the optical performance is deteriorated, and the centering operation takes time.

同図(c)、(d)を用いて本発明の効果を説明する。本発明によれば、上型1と下型2は胴型3に対して同一方向に片寄せされるので、上下型の非球面軸は原理的に同一直線上に一致する。しかもその非球面軸は外周面と平行であるため、成形品7”の芯取り作業を行って外周を破線の位置に合わせるに当って、成形品7”の取り付けが非常に簡単である。
また、成形品にバラツキが少ないことを利用して、レンズ枠自体を成形品の形状に合わせることによって、成形品の芯取り作業を割愛することも可能である。この場合に、成形品に位置マークが付与されていれば、レンズ枠をそれと対応する形状に形成しておくことで、レンズ枠の位置マークを目印に、芯取りをしていない成形品の位置マークを合わせながら落としこむだけで自動的にレンズ枠に対する芯出しが完了する。
The effects of the present invention will be described with reference to FIGS. According to the present invention, the upper mold 1 and the lower mold 2 are offset in the same direction with respect to the body mold 3, so that the upper and lower aspherical axes coincide in principle on the same straight line. Moreover, since the aspherical axis is parallel to the outer peripheral surface, it is very easy to mount the molded product 7 ″ when the centering operation of the molded product 7 ″ is performed to align the outer periphery with the position of the broken line.
Further, it is possible to omit the centering work of the molded product by matching the lens frame itself with the shape of the molded product by utilizing the fact that the molded product has less variation. In this case, if a position mark is given to the molded product, the lens frame is formed in a shape corresponding to it, and the position of the molded product that is not centered with the position mark of the lens frame as a mark. The lens frame is automatically centered by simply dropping it while aligning the marks.

本発明の基本原理を説明するための図である。It is a figure for demonstrating the basic principle of this invention. 上下型と上下保温筒の位置関係を特定するための構成を説明するための図である。It is a figure for demonstrating the structure for pinpointing the positional relationship of an up-and-down type | mold and an up-and-down heat insulation cylinder. 上下型と上下保温筒の位置関係を特定するための他の構成を説明するための図である。It is a figure for demonstrating the other structure for pinpointing the positional relationship of an up-and-down type | mold and an up-and-down heat insulation cylinder. 図4は保温筒同士の相対的位置関係を規定する係合部を説明するためのの図である。FIG. 4 is a diagram for explaining an engaging portion that defines the relative positional relationship between the heat insulating cylinders. 下、および中保温筒の係合部の詳細を示す部分図である。It is a fragmentary figure which shows the detail of the engaging part of a lower and middle heat insulation cylinder. 下保温筒と胴型を省略した構成を説明するための図である。It is a figure for demonstrating the structure which abbreviate | omitted the lower heat insulation cylinder and the trunk | drum. 型の加熱時の構成を説明するための図である。It is a figure for demonstrating the structure at the time of the heating of a type | mold. 斜面に中保温筒と上保温筒が重なっている状態を示す図である。It is a figure which shows the state in which the middle heat insulation cylinder and the upper heat insulation cylinder have overlapped on the slope. 斜面に関する力の関係を示す図である。It is a figure which shows the relationship of the force regarding a slope. 条件別のθ1とθ2の下限値の関係を示す図である。It is a figure which shows the relationship between the lower limit of (theta) 1 and (theta) 2 according to conditions. 斜面にベアリングを装着する例を示す図である。It is a figure which shows the example which mounts a bearing on a slope. 中保温筒と胴型の位置合わせを行う方法を示すの図である。It is a figure which shows the method of aligning a middle heat insulation cylinder and a trunk | drum. 中保温筒と胴型の位置合わせを行う方法を示す図である。It is a figure which shows the method of aligning a middle heat insulation cylinder and a trunk | drum. 胴型を用いて成形品に位置マークを付与する方法を説明するための図である。It is a figure for demonstrating the method of providing a position mark to a molded article using a trunk die. 本発明を非球面レンズの作製に用いた場合の効果を説明するための図である。It is a figure for demonstrating the effect at the time of using this invention for manufacture of an aspherical lens.

符号の説明Explanation of symbols

1、8 上型
2、9 下型
3、10 胴型
4 下保温筒
5 中保温筒
6、11 上保温筒
7 ゴブ材
15 ベアリング
DESCRIPTION OF SYMBOLS 1, 8 Upper mold | type 2,9 Lower mold | type 3,10 Body type | mold 4 Lower insulation cylinder 5 Middle insulation cylinder 6,11 Upper insulation cylinder 7 Gob material 15 Bearing

Claims (33)

大径部と小径部から構成される上および下型と、胴型と、前記各型より熱伝導率の低い材料からなる円筒状保温筒を有する成形型において、前記保温筒は母線に対し互いに逆方向に傾斜した2つの平面により分割された傾斜面を有し、該傾斜面を有するそれぞれの保温筒は傾斜面を摺動面とし、自重により前記傾斜面に沿って移動可能に構成されていることを特徴とする成形型。   In a mold having an upper and lower mold composed of a large diameter part and a small diameter part, a body mold, and a cylindrical heat insulation cylinder made of a material having a lower thermal conductivity than each of the molds, Each of the heat insulation cylinders having an inclined surface divided by two planes inclined in the opposite direction is configured to be movable along the inclined surface by its own weight with the inclined surface as a sliding surface. A mold characterized by having 請求項1に記載の成形型において、前記分割された保温筒のそれぞれの対向する傾斜面に、円周方向の位置決めをするための嵌合部を設けたことを特徴とする成形型。   2. The mold according to claim 1, wherein a fitting portion for positioning in a circumferential direction is provided on each of the opposed inclined surfaces of the divided heat insulating cylinders. 請求項2に記載の成形型において、前記嵌合部は、滑落防止用のストッパを兼ねることを特徴とする成形型。   The molding die according to claim 2, wherein the fitting portion also serves as a stopper for preventing slipping. 請求項1ないし3のいずれか1つに記載の成形型において、前記分割された保温筒の最上部と最下部の保温筒の少なくとも一方の内周に、前記型の大径部と接触する平面部を2箇所形成したことを特徴とする成形型。   4. The molding die according to claim 1, wherein at least one inner circumference of the uppermost part and the lowermost thermal insulation cylinder of the divided thermal insulation cylinder is in contact with a large diameter part of the mold. A mold having two portions formed. 請求項1ないし3のいずれか1つに記載の成形型において、前記上型、下型および胴型の少なくとも一つと、それと接触部を有する前記分割された保温筒との間に、円周方向の位置決めをするための形状を設けたことを特徴とする成形型。   The molding die according to any one of claims 1 to 3, wherein at least one of the upper die, the lower die, and the barrel die and the divided heat insulating cylinder having a contact portion therewith are arranged in a circumferential direction. A forming die provided with a shape for positioning. 請求項5に記載の成形型において、前記位置決めをするための形状は、前記上型もしくは下型の大径部に設けた1つの平面部と、前記保温筒の最小長さの母線近傍の内周部に設けた平面部であることを特徴とする成形型。   6. The molding die according to claim 5, wherein the shape for positioning includes an inner portion in the vicinity of a single flat surface portion provided on a large diameter portion of the upper die or the lower die and a minimum length bus bar of the heat insulating cylinder. A molding die characterized in that it is a flat portion provided on a peripheral portion. 請求項5に記載の成形型において、前記位置決めをするための形状は、前記上型、下型の大径部もしくは胴型の外周と、前記保温筒の内周のそれぞれ母線方向に形成された、突条と凹溝からなる嵌合部であることを特徴とする成形型。   6. The molding die according to claim 5, wherein the shape for positioning is formed in the generatrix direction of the outer diameter of the large-diameter portion or the barrel die of the upper mold, the lower mold, and the inner circumference of the heat retaining cylinder. A molding die characterized by being a fitting part composed of a ridge and a groove. 請求項1ないし7のいずれか1つに記載の成形型において、前記上型および下型の少なくとも一方の外周と、それと前記胴型の内周との間に、円周方向の位置決めをするための形状を設けたことを特徴とする成形型。   The molding die according to any one of claims 1 to 7, wherein positioning is performed in a circumferential direction between an outer circumference of at least one of the upper mold and the lower mold and an inner circumference of the barrel mold. A mold characterized by having a shape of 請求項8に記載の成形型において、前記位置決めをするための形状は、前記上型、下型の小径部と前記胴型の内周のそれぞれ母線方向に形成された、突条と凹溝からなる嵌合部であることを特徴とする成形型。   9. The molding die according to claim 8, wherein the shape for positioning is from a ridge and a groove formed in the direction of the generatrix of the small diameter portion of the upper die and the lower die and the inner circumference of the barrel die, respectively. A mold characterized by being a fitting part. 大径部と小径部から構成される上下型と、胴型と、円筒状保温筒を有する成形型において、前記保温筒の底面は母線に対し所定の角度傾斜した平面により切り取られた形を成し、前記胴型の上面は前記保温筒下面の傾斜角度と一致する角度の傾斜面に形成され、該胴型の下面は前記傾斜下平面とは逆方向に傾斜した他の平面によって切り取られた形を成し、前記下型の大径部上面は、前記胴型下面の傾斜角度と一致する角度の傾斜面に形成され、保温筒、および胴型は傾斜面を摺動面とし、自重により傾斜面に沿って移動可能に構成されていることを特徴とする成形型。   In a mold having an upper and lower mold, a body mold, and a cylindrical heat insulation cylinder composed of a large diameter part and a small diameter part, the bottom surface of the heat insulation cylinder has a shape cut by a plane inclined at a predetermined angle with respect to the bus bar. The upper surface of the body mold is formed as an inclined surface having an angle coincident with the inclination angle of the lower surface of the heat insulating cylinder, and the lower surface of the body mold is cut off by another plane inclined in a direction opposite to the inclined lower plane. The upper surface of the large-diameter portion of the lower mold is formed into an inclined surface having an angle coincident with the inclined angle of the lower surface of the body mold, and the heat insulating cylinder and the body mold have the inclined surface as a sliding surface, A molding die configured to be movable along an inclined surface. 請求項10に記載の成形型において、前記保温筒と前記胴型の対向する傾斜面、および前記胴型と前記下型の対向する傾斜面の少なくとも一方に、円周方向の位置決めをするための嵌合部を設けたことを特徴とする成形型。   11. The molding die according to claim 10, wherein positioning is performed in a circumferential direction on at least one of the inclined surfaces of the heat retaining cylinder and the barrel mold facing each other and the inclined surfaces of the barrel mold and the lower mold facing each other. A mold having a fitting portion. 請求項11に記載の成形型において、前記嵌合部は、滑落防止用のストッパを兼ねることを特徴とする成形型。   12. The mold according to claim 11, wherein the fitting portion also serves as a stopper for preventing slipping. 請求項10ないし12のいずれか1つに記載の成形型において、前記保温筒の内周に、前記上型の大径部と接触する平面部を2箇所形成したことを特徴とする成形型。   The mold according to any one of claims 10 to 12, wherein two flat portions in contact with the large-diameter portion of the upper mold are formed on the inner periphery of the heat retaining cylinder. 請求項10ないし12のいずれか1つに記載の成形型において、前記上型と、前記保温筒との間に、円周方向の位置決めをするための形状を設けたことを特徴とする成形型。   13. The mold according to claim 10, wherein a shape for positioning in a circumferential direction is provided between the upper mold and the heat retaining cylinder. . 請求項10ないし12のいずれか1つに記載の成形型において、前記胴型と、前記上型および下型の少なくとも一方との間に、円周方向の位置決めをするための形状を設けたことを特徴とする成形型。   13. The molding die according to claim 10, wherein a shape for positioning in a circumferential direction is provided between the barrel die and at least one of the upper die and the lower die. A mold characterized by. 請求項15に記載の成形型において、前記位置決めをするための形状は、前記型の外周と、前記保温筒の内周のそれぞれ母線方向に形成された、突条と凹溝からなる嵌合部であることを特徴とする成形型。   The molding die according to claim 15, wherein the shape for positioning is a fitting portion formed of a protrusion and a groove formed in the direction of the generatrix of the outer periphery of the die and the inner periphery of the heat retaining cylinder, respectively. A mold characterized by being. 請求項10ないし16のいずれか1つに記載の成形型において、前記上下型および胴型は同程度の熱伝導率を有する成形型材料で形成し、前記胴型および、下型大径部の少なくとも一方の外周に、熱伝導率が成形型材料よりも低い材料の層を設けたことを特徴とする成形型。   The mold according to any one of claims 10 to 16, wherein the upper and lower molds and the body mold are formed of a mold material having similar thermal conductivity, and the body mold and the lower mold large-diameter portion are formed. A molding die characterized in that a layer of a material having a thermal conductivity lower than that of the molding die material is provided on at least one outer periphery. 請求項17に記載の成形型において、前記熱伝導率が低い材料はセラミック、クロム、ニッケルクロムないしコバールを成分とする材料であることを特徴とする成形型。   18. The mold according to claim 17, wherein the material having low thermal conductivity is a material containing ceramic, chromium, nickel chromium or kovar as a component. 請求項1ないし18のいずれか1つに記載の成形型において、前記胴型の内周部の内、少なくとも成形品と接触する部位に突条または凹溝等からなる位置マーク形状を形成したことを特徴とする成形型。   19. The molding die according to claim 1, wherein a position mark shape including a ridge or a groove is formed at least in a portion in contact with the molded product in an inner peripheral portion of the barrel die. A mold characterized by. 請求項1ないし19のいずれか1つに記載の成形型において、前記保温筒などに用いられる熱伝導率の低い材料として、多孔質材料を用いることを特徴とする成形型。   The mold according to any one of claims 1 to 19, wherein a porous material is used as a material having a low thermal conductivity used for the heat insulating cylinder or the like. 請求項1ないし20のいずれか1つに記載の成形型において、前記摺動面は二硫化モリブデン、酸化アルミニウム、グラファイト、二硫化タングステンのいずれかを含む材料で形成されるか、もしくはその材料による層を形成されていることを特徴とする成形型。   The mold according to any one of claims 1 to 20, wherein the sliding surface is formed of a material containing any of molybdenum disulfide, aluminum oxide, graphite, and tungsten disulfide, or depends on the material. A mold having a layer formed thereon. 請求項1ないし20のいずれか1つに記載の成形型において、前記摺動面の一方は微細な凹凸が形成され、他方は平面に形成されていることを特徴とする成形型。   21. The mold according to claim 1, wherein one of the sliding surfaces is formed with fine irregularities and the other is formed on a flat surface. 請求項1ないし20のいずれか1つに記載の成形型において、前記摺動面に多孔質皮膜を形成したことを特徴とする成形型。   21. The mold according to claim 1, wherein a porous film is formed on the sliding surface. 請求項20または23に記載の成形型において、前記摺動面の多孔質皮膜の孔に潤滑材を埋め込んだことを特徴とする成形型。   The mold according to claim 20 or 23, wherein a lubricant is embedded in a hole of the porous film on the sliding surface. 請求項24に記載の成形型において、前記潤滑材は二硫化モリブデンまたは二硫化タングステン、またはグラファイトであることを特徴とする成形型。   25. The mold according to claim 24, wherein the lubricant is molybdenum disulfide, tungsten disulfide, or graphite. 請求項1ないし20のいずれか1つに記載の成形型において、前記摺動面に摺動用部材が配設されたことを特徴とする成形型。   21. The mold according to claim 1, wherein a sliding member is disposed on the sliding surface. 請求項26に記載の成形型において、前記摺動部材はリニア玉軸受け、またはリニアコロ軸受けであることを特徴とする成形型。   27. The mold according to claim 26, wherein the sliding member is a linear ball bearing or a linear roller bearing. 請求項1ないし27のいずれか1つに記載の成形型において、前記2つの傾斜面の内、下側の傾斜面が水平面となす角度をθ1、上側の傾斜面が水平面となす角度をθ2とし、下側の傾斜面に載っている部材の質量をm1、上側の傾斜面に載っている部材の質量をm2、下側の傾斜面に接している部材間の静止摩擦係数をμ1、上側の傾斜面に接している部材間の静止摩擦係数をμ2とするとき、θ1、θ2は、
−m1sinθ1+μ1m1cosθ1+μ2m2cosθ2・cos(θ1+θ2)
<0
−m2sinθ2+μ2m2cosθ2<0
を満足することを特徴とする成形型。
The molding die according to any one of claims 1 to 27, wherein, of the two inclined surfaces, an angle formed by a lower inclined surface with a horizontal plane is θ1, and an angle formed by an upper inclined surface with a horizontal plane is θ2. , The mass of the member mounted on the lower inclined surface is m1, the mass of the member mounted on the upper inclined surface is m2, the coefficient of static friction between the members in contact with the lower inclined surface is μ1, the upper When the coefficient of static friction between members in contact with the inclined surface is μ2, θ1 and θ2 are
−m1sin θ1 + μ1 m1 cos θ1 + μ2 m2 cos θ2 · cos (θ1 + θ2)
<0
-M2sinθ2 + μ2m2cosθ2 <0
A mold characterized by satisfying
請求項1ないし28のいずれか1つに記載の成形型を用い、上下型と胴型が自動的に整列することを特徴とする成形方法。   A molding method using the molding die according to any one of claims 1 to 28, wherein the upper and lower dies and the barrel die are automatically aligned. 請求項1ないし28のいずれか1つに記載の成形型を用い、前記型および保温筒のうち最大径の部材より大きい内径を有する補助筒を下型に被せて後、上型および保温筒を前記補助筒内に挿入することを特徴とする成形方法。   The molding die according to any one of claims 1 to 28 is used, and an auxiliary cylinder having an inner diameter larger than that of the largest diameter member is placed on the lower mold among the mold and the thermal insulation cylinder, and then the upper mold and the thermal insulation cylinder are attached. A molding method comprising inserting into the auxiliary cylinder. 請求項30に記載の成形方法において、前記補助筒は母線方向に2分割された半円筒状の部材を組み合わせて形成することを特徴とする成形方法。   31. The molding method according to claim 30, wherein the auxiliary cylinder is formed by combining semi-cylindrical members divided into two in the generatrix direction. 請求項1ないし28のいずれか1つに記載の成形型を用いて製造されたことを特徴とするガラス成形体。   A glass molded body produced using the mold according to any one of claims 1 to 28. 請求項32に記載のガラス成形体を用いて製造されたことを特徴とする電気光学装置。   An electro-optical device manufactured using the glass molded body according to claim 32.
JP2006059727A 2006-03-06 2006-03-06 Forming die, forming method and glass forming formed by using the forming die Pending JP2007238345A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006059727A JP2007238345A (en) 2006-03-06 2006-03-06 Forming die, forming method and glass forming formed by using the forming die

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006059727A JP2007238345A (en) 2006-03-06 2006-03-06 Forming die, forming method and glass forming formed by using the forming die

Publications (1)

Publication Number Publication Date
JP2007238345A true JP2007238345A (en) 2007-09-20

Family

ID=38584243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006059727A Pending JP2007238345A (en) 2006-03-06 2006-03-06 Forming die, forming method and glass forming formed by using the forming die

Country Status (1)

Country Link
JP (1) JP2007238345A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012037060A (en) * 2011-11-21 2012-02-23 Oiles Corp Rotary friction damper
US10077201B2 (en) * 2014-05-27 2018-09-18 Olympus Corporation Optical element manufacturing device and optical element shaping mold set

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012037060A (en) * 2011-11-21 2012-02-23 Oiles Corp Rotary friction damper
US10077201B2 (en) * 2014-05-27 2018-09-18 Olympus Corporation Optical element manufacturing device and optical element shaping mold set

Similar Documents

Publication Publication Date Title
JP5582232B1 (en) Method for producing glass plate having curved shape, glass plate having curved shape, and apparatus for producing glass plate having curved shape
CN101528616A (en) Mold press forming die and molded article manufacturing method
JP5196338B2 (en) Optical component molding die and molding method thereof
JP2006248869A (en) Mold press-forming apparatus, its press head, and method for production of optical device
JP2007238345A (en) Forming die, forming method and glass forming formed by using the forming die
JP2009233727A (en) Press device
Li et al. Micro-optical fabrication by ultraprecision diamond machining and precision molding
CN113557127A (en) Mold pair with alignment surfaces
US7561355B2 (en) Optical lens unit including lens barrel containing lens and method for producing optical lens unit
JP4559784B2 (en) Optical element manufacturing method
JP4773789B2 (en) Mold for molding and manufacturing method thereof
JP2007302484A (en) Molding method and molding die
JP2007099529A (en) Preform for precision press forming, its producing method and method for producing optical element
Rojacher et al. Replicative manufacturing of glass optics with functional microstructures
JP4668657B2 (en) Mold press molding apparatus and method for manufacturing molded body
JP2011002576A (en) Lens barrel and method for assembling the same
JP2010195653A (en) Mold for forming element and method for forming molded product of element
JP2006176393A (en) Molding die for molding press and method for manufacturing optical element
JP4613543B2 (en) SLIDE CORE GUIDE DEVICE AND INJECTION MOLD MECHANISM HAVING THE SAME
JP2006001803A (en) Mold press forming mold, method of manufacturing optical element and mold pressed lens
JP2002098877A (en) Lens aligning method and bonding device
JP4373278B2 (en) Optical element molding method
JP2010195683A (en) Method for producing optical element
JPS6353522B2 (en)
JP2010018476A (en) Molding method of optical element and optical element molding material