JP2002098877A - Lens aligning method and bonding device - Google Patents

Lens aligning method and bonding device

Info

Publication number
JP2002098877A
JP2002098877A JP2000290369A JP2000290369A JP2002098877A JP 2002098877 A JP2002098877 A JP 2002098877A JP 2000290369 A JP2000290369 A JP 2000290369A JP 2000290369 A JP2000290369 A JP 2000290369A JP 2002098877 A JP2002098877 A JP 2002098877A
Authority
JP
Japan
Prior art keywords
lens
lens body
cemented
optical axis
sliding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000290369A
Other languages
Japanese (ja)
Inventor
Kenji Yamaguchi
憲司 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2000290369A priority Critical patent/JP2002098877A/en
Publication of JP2002098877A publication Critical patent/JP2002098877A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide the aligning device of a doublet capable of realizing the reduction of the working cost of the lens and easily performing accurate alignment with simple and inexpensive constitution. SOLUTION: By rotating a 1st lens body 1 through a rotating roller 8 and receiving it by a V-shaped regulating plate for fixing 10 from a direction crossing with the outer peripheral direction of the 1st lens surface of the lens body 1, providing a leaf spring member 14 exerting pressing force in the direction of the lens body 1 on a 2nd lens body 2 in a state where the 1st lens surface of the lens body 1 faces to the 2nd lens surface of the lens body 2, and providing an optical axis detection means for detecting the misalignment of an optical axis from light passing through the lens bodies 1 and 2 from a light source 4, the lens body 2 is made to slide by a 2nd XYZ axes stage 18 and the lens surface of the lens body 2 is made to slide along the lens surface of the lens body 1 until the optical axes of the lens bodies 1 and 2 are aligned.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は接合レンズの調芯装
置にかかり、詳しくは、一対の光学レンズを光軸合わせ
しながら接合する際などに使用される接合レンズの調芯
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for aligning a cemented lens, and more particularly, to an apparatus for aligning a cemented lens used for joining a pair of optical lenses while aligning their optical axes.

【0002】[0002]

【従来の技術】従来から一対の光学レンズを光軸合わせ
して接合する際などには、接合レンズの調芯装置が使用
されており、この調芯装置は図9で示すような構成を有
している。
2. Description of the Related Art Conventionally, when a pair of optical lenses are joined together with their optical axes aligned, a centering device for a cemented lens has been used. This centering device has a configuration as shown in FIG. are doing.

【0003】すなわち、図9中の符号51,52は光軸
合わせされるべき第1レンズ体及び第2レンズ体、53
は偏芯顕微鏡、54は自然光を照射する光源、55はコ
リメータレンズ、56はレンズホルダー、57,58は
第1レンズ体51を回転させるための回転ローラ及びO
リング、59,60は第2レンズ体52を摺動させる環
状の保持部材59と弾性部材60であり、61は対物レ
ンズ、62はCCDカメラ、また63は第2レンズ体の
接合面上に接着硬化液を塗布する接着硬化液塗布装置で
ある。
That is, reference numerals 51 and 52 in FIG. 9 denote a first lens body and a second lens body 53 whose optical axes are to be aligned.
Is an eccentric microscope, 54 is a light source for radiating natural light, 55 is a collimator lens, 56 is a lens holder, 57 and 58 are rotating rollers for rotating the first lens body 51 and O
Rings 59 and 60 are an annular holding member 59 and an elastic member 60 for sliding the second lens body 52, 61 is an objective lens, 62 is a CCD camera, and 63 is an adhesive on the joint surface of the second lens body. It is an adhesive curing liquid application device that applies a curing liquid.

【0004】まず、第1レンズ体51と第2レンズ体5
2を接合する前に、第2レンズ体52の接合面上に接着
硬化液塗布装置63から第一のXYZステージ69を動
かし一定の接着液が塗布される。
First, a first lens body 51 and a second lens body 5
Before joining the two, the first XYZ stage 69 is moved from the adhesive curing liquid applying device 63 onto the joint surface of the second lens body 52 to apply a constant adhesive liquid.

【0005】そして、第1レンズ体51を第2レンズ体
52の接合面上に図示しない第1レンズ体供給装置でゆ
っくりと接液した後、光軸調整を行う。
After the first lens body 51 is slowly brought into contact with the joint surface of the second lens body 52 by a first lens body supply device (not shown), the optical axis is adjusted.

【0006】光源54から照射された光は十字チャート
を具備したコリメータレンズ55を通過しながら平行化
された上でレンズ面同士が対面しあった第1レンズ体5
1及び第2レンズ体52を透過し、これらを透過した十
字チャート像は対物レンズ61で捕捉されることになっ
ている。
[0006] The light emitted from the light source 54 is collimated while passing through a collimator lens 55 having a cross chart, and the first lens body 5 whose lens surfaces face each other.
The cross chart image transmitted through the first and second lens bodies 52 and transmitted therethrough is captured by the objective lens 61.

【0007】なお、対物レンズ61で捕捉され、かつC
CDカメラ62で撮影された十字チャート像は制御手段
である画像処理装置、例えばパソコン64へと送信され
ることになり、光軸が一致したか否かを判定する画像処
理装置64はドライバ65を介した上で対物レンズ61
及びCCDカメラ62の駆動機構であるZ軸ステージ6
6、回転手段を構成するステッピングモータ67、摺動
手段を構成する第2のXYZステージ68それぞれの動
作を制御している。
[0007] Note that the light is captured by the objective lens 61 and the C
The cross chart image photographed by the CD camera 62 is transmitted to an image processing device as a control means, for example, a personal computer 64, and the image processing device 64 that determines whether or not the optical axes match is controlled by the driver 65. Through the objective lens 61
And a Z-axis stage 6 as a driving mechanism of the CCD camera 62
6. The operation of the stepping motor 67 constituting the rotating means and the operation of the second XYZ stage 68 constituting the sliding means are controlled.

【0008】また、レンズホルダー56上に載置された
下側の第1レンズ体51は、回転ローラ57に外嵌され
た断面視円形状のOリング58でもってレンズ面の外周
方向に沿いながら回転させられることになっており、回
転している第1レンズ体51は、そのレンズ面の外周方
向とは交差する方向から第1レンズ体51を受け止める
べく設けられた位置規制手段である固定用V型規制板7
0でもって位置規制されている。
Further, the lower first lens body 51 placed on the lens holder 56 has an O-ring 58 having a circular shape in cross-section, which is externally fitted to the rotating roller 57, and extends along the outer peripheral direction of the lens surface. The first lens body 51 which is to be rotated and is rotating is a fixing means which is a position regulating means provided to receive the first lens body 51 from a direction intersecting the outer peripheral direction of the lens surface. V-shaped regulating plate 7
The position is regulated by 0.

【0009】一方、レンズ面同士が対面する状態で第1
レンズ体51上に載置された第2レンズ体52は第1レ
ンズ体51とともに回転することになり、第1レンズ体
51と第2レンズ体52との光軸ずれをなくして光軸を
一致させる際には、画像処理装置62からの指示に基づ
いた上、保持部材59と弾性部材60でもって第2レン
ズ体52のレンズ面を第1レンズ体51のレンズ面に沿
って摺動させることが実行される。
On the other hand, in the state where the lens surfaces face each other, the first
The second lens body 52 mounted on the lens body 51 rotates together with the first lens body 51, so that the optical axes of the first lens body 51 and the second lens body 52 are aligned and the optical axes coincide with each other. At this time, the lens surface of the second lens body 52 is slid along the lens surface of the first lens body 51 by the holding member 59 and the elastic member 60 based on an instruction from the image processing device 62. Is executed.

【0010】[0010]

【発明が解決しようとする課題】ところで、非球面形状
をなすレンズ面の光学素子は、任意の形状の光学素子素
材を加熱、プレス成形を行い、所望の光学素子を得るこ
とが出来る。一般に、ビデオカメラ用の成形レンズは、
プレス成形によって光軸対象に転写、成形されるもの
の、レンズ面以外の外周側面部は、光学素子素材の重量
ばらつき、偏肉形状や成形前に生じる前記光学素子素材
の成形用金型内での位置ずれなどにより、外径形状がば
らついたり偏芯した、いわゆるレンズ面の光軸と光学素
子の重心位置が一致しない光学素子が得られることがあ
る。
By the way, a desired optical element can be obtained by heating and press-forming an optical element material of an arbitrary shape as an optical element having a lens surface having an aspherical shape. Generally, molded lenses for video cameras are
Although transferred to the optical axis object by press molding and molded, the outer peripheral side surface other than the lens surface has a variation in weight of the optical element material, an uneven thickness and a molding die of the optical element material generated before molding. Due to misalignment or the like, an optical element whose outer diameter shape varies or is decentered, that is, an optical element in which the optical axis of the lens surface does not coincide with the center of gravity of the optical element may be obtained.

【0011】この問題を解決する手段として、前記のプ
レス成形された光学素子は、対向するレンズ面から光軸
対称に外周側面を削る、心取り加工を行うのが普通であ
る。
As a means for solving this problem, the above-mentioned press-molded optical element is usually subjected to a centering process in which the outer peripheral side surface is cut symmetrically with respect to the optical axis from the facing lens surface.

【0012】すなわち、従来は第1レンズ体51、第2
レンズ体52共にレンズ外周側面を削る、いわゆる心取
り加工を行った上で接合レンズとして使用していた。心
取り加工を行う目的は、接合レンズの形状の中心である
重心位置と光を透過させたときの中心である光軸を合わ
せることと、接合レンズの外周側面の真円度を確保する
ことである。
That is, conventionally, the first lens body 51 and the second
The lens body 52 has been used as a cemented lens after performing a so-called centering process of shaving the outer peripheral side surface of the lens. The purpose of centering is to align the center of gravity, which is the center of the shape of the cemented lens, with the optical axis, which is the center when light is transmitted, and to ensure the roundness of the outer peripheral side surface of the cemented lens. is there.

【0013】従来の調芯装置の場合、第1レンズ体51
はレンズ面の外周方向に沿いながら回転する方式を採用
しているためレンズ外周面の真円度を保つ心取り加工は
不可欠なものの、第2レンズ体52は方式上外周部を接
触させる必要がないため心取り加工は不要となり、加工
費削減の有効手段として考えることが可能である。
In the case of a conventional alignment device, the first lens body 51
Adopts a method that rotates while following the outer peripheral direction of the lens surface, so that centering processing for maintaining the roundness of the outer peripheral surface of the lens is indispensable, but the outer peripheral portion of the second lens body 52 needs to be brought into contact with the system. Since there is no centering, there is no need for centering, and it can be considered as an effective means of reducing processing costs.

【0014】しかしながら、前記従来方式で心取りレス
レンズの接合を行おうとした場合、図8に示す通り、第
2レンズ体52の重心位置25と光軸26がずれてお
り、第1レンズ体51の接合面上で安定する状態が第2
レンズ体52のレンズ面が斜めな状態のため、偏心量測
定時に第2レンズ体52が第1レンズ体51上で徐々に
斜めに移動してしまい、第1レンズ体51と第2レンズ
体52の光軸を調芯しても高精度な接合が不可能で、こ
の状況下で貼り合せた接合レンズの偏心量を測定すると
ばらつきが発生していることが分かり、あるものではス
ペック値を超えてしまう結果となり、調芯精度に悪影響
を及ぼすことになっていた。
However, when the centering-less lens is to be joined by the conventional method, as shown in FIG. 8, the center of gravity 25 of the second lens body 52 and the optical axis 26 are displaced, and the first lens body 51 is displaced. Is stable on the joint surface of
Since the lens surface of the lens body 52 is oblique, the second lens body 52 gradually moves obliquely on the first lens body 51 when measuring the amount of eccentricity, and the first lens body 51 and the second lens body 52 are moved. Even if the optical axis is aligned, high-precision bonding is not possible, and in this situation, measurement of the eccentricity of the bonded lens bonded shows that variations occur. As a result, the alignment accuracy is adversely affected.

【0015】つまり、加工費削減のために、心取り加工
を行わないレンズを接合する場合、偏心精度が悪い、即
ち、光軸とレンズ外周側面から割り出した重心がずれて
いる上部レンズを下部レンズと接合するに際して、接着
効果液量が適正でないために、上部レンズが安定状態に
なるまで、斜めに曲がった状態で接合されてしまうこと
があった。
That is, when joining a lens that does not perform centering processing in order to reduce the processing cost, the eccentricity accuracy is poor, that is, the upper lens whose center of gravity determined from the optical axis and the outer peripheral surface of the lens is shifted is replaced with the lower lens. When the upper lens is joined, it may be joined in an obliquely bent state until the upper lens becomes stable because the amount of the adhesive effect liquid is not proper.

【0016】さらに、偏芯量測定時に第2レンズ体の重
心位置と光軸のズレ量があり、かつ第2レンズ体52の
傾き角に対して焦点位置が敏感に変わる接合レンズの組
み合わせの場合、設定した倍率の対物レンズを用いて十
字チャート像の焦点軌跡を読み取る場合、読み取り範囲
外になってしまっていた。
Further, in the case of a combination of a cemented lens having a deviation amount between the center of gravity of the second lens body and the optical axis at the time of measuring the amount of eccentricity, and a focal position which changes sensitively with respect to the inclination angle of the second lens body 52 When the focal locus of the cross-shaped chart image is read using the objective lens having the set magnification, it is out of the reading range.

【0017】本発明はこれらの不都合に鑑みて創案され
たものであり、調芯すべき第2レンズ体に心取りレスレ
ンズのような重心が光軸上にないようなレンズ体でも適
用が可能であり、簡単かつ安価な構成で、さらにレンズ
の加工費削減が可能であるにも拘わらず、高精度の調芯
を容易に実行し得る接合レンズの調芯装置を提供しよう
とするものである。
The present invention has been devised in view of these inconveniences, and can be applied to a lens body whose center of gravity is not on the optical axis, such as a centerless lens, in the second lens body to be aligned. It is an object of the present invention to provide an alignment apparatus for a cemented lens that can easily perform high-precision alignment, with a simple and inexpensive configuration and capable of further reducing the lens processing cost. .

【0018】[0018]

【課題を解決するための手段】上記課題を解決するた
め、本発明にかかる接合レンズの調芯装置は、レンズ面
同士が対面させられた第1レンズ体及び第2レンズ体の
光軸合わせを実行するものであって、第1レンズ体をレ
ンズ面の外周方向に沿って回転させる回転発生手段と、
第1レンズ体をレンズ面の外周方向とは交差する方向か
ら受け止めて位置規制する位置規制手段と、レンズ面同
士が対面する状態で第1レンズ体上に載置された第二レ
ンズ体を摺動させる際には第2レンズ体を一定の圧力で
保持する保持部材と、この保持部材を介して第2レンズ
体を第一のレンズ体へと押し付ける弾性部材と、この弾
性部材及び保持部材を介して第2レンズ体を摺動させる
摺動手段と、第1レンズ面上に適量の接着液を滴下する
滴下塗布手段と、滴下塗布手段を退避する手段と、平行
化されて第1レンズ体及び第2レンズ体を透過する光を
照射する光源と、第1レンズ体及び第2レンズ体を透過
した光の焦点像から光軸のズレを検出する光軸検出手段
と、摺動手段を介して第1レンズ体及び第2レンズ体の
光軸が一致するまで第2レンズ体のレンズ面を第1レン
ズ体のレンズ面に沿って摺動させる制御手段とを具備し
ていることを特徴とする。
In order to solve the above-mentioned problems, an alignment apparatus for a cemented lens according to the present invention adjusts the optical axes of a first lens body and a second lens body whose lens surfaces face each other. Rotation generating means for rotating the first lens body along the outer peripheral direction of the lens surface;
Position regulating means for receiving and regulating the position of the first lens body from a direction intersecting the outer peripheral direction of the lens surface, and sliding the second lens body mounted on the first lens body with the lens surfaces facing each other. When moving, a holding member that holds the second lens body at a constant pressure, an elastic member that presses the second lens body against the first lens body via the holding member, and an elastic member and the holding member Sliding means for sliding the second lens body through the first lens body, drop applying means for dropping an appropriate amount of adhesive liquid on the first lens surface, means for retracting the drop applying means, and the first lens body being parallelized. A light source for irradiating light transmitted through the second lens body, an optical axis detecting means for detecting a deviation of an optical axis from a focal image of light transmitted through the first lens body and the second lens body, and a sliding means. Until the optical axes of the first lens body and the second lens body match. Characterized in that it comprises a control means for sliding along the lens surface of the second lens body in the lens surface of the first lens element.

【0019】上記構成によれば、第2レンズ体に重心が
光軸上にないようなレンズ体でも調芯することが可能と
なり、簡単かつ安価な構成で、さらにレンズの加工費削
減が可能であるにも拘わらず、高精度の調芯を容易に実
行し得るという利点が確保される。
According to the above configuration, it is possible to adjust the center even if the center of gravity of the second lens body is not on the optical axis, and it is possible to reduce the processing cost of the lens with a simple and inexpensive configuration. In spite of this, the advantage that high-precision alignment can be easily performed is ensured.

【0020】[0020]

【発明の実施の形態】本発明の請求項1にかかる接合レ
ンズの調芯装置は、第1レンズ体をレンズ面の外周方向
に沿って回転させる回転発生手段と、第1レンズ体をレ
ンズ面の外周方向とは交差する方向から受け止めて位置
規制する位置規制手段と、レンズ面同士が対面する状態
で第1レンズ体上に載置された第二レンズ体を摺動させ
る際には第2レンズ体を一定の圧力で保持する保持部材
と、この保持部材を介して第2レンズ体を第一のレンズ
体へと押し付ける弾性部材と、この弾性部材及び保持部
材を介して第2レンズ体を摺動させる摺動手段と、第1
レンズ面上に適量の接着液を滴下する滴下塗布手段と、
滴下塗布手段を退避する手段と、平行化されて第1レン
ズ体及び第2レンズ体を透過する光を照射する光源と、
第1レンズ体及び第2レンズ体を透過した光の焦点像か
ら光軸のズレを検出する光軸検出手段と、摺動手段を介
して第1レンズ体及び第2レンズ体の光軸が一致するま
で第2レンズ体のレンズ面を第1レンズ体のレンズ面に
沿って摺動させる制御手段とを具備していることを特徴
とする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An alignment apparatus for a cemented lens according to a first aspect of the present invention includes a rotation generating means for rotating a first lens body along an outer peripheral direction of a lens surface, and a rotation generating means for rotating the first lens body on the lens surface. A position regulating unit that receives and regulates the position from a direction intersecting the outer peripheral direction of the first lens body and the second lens body that slides on the first lens body with the lens surfaces facing each other. A holding member for holding the lens body at a constant pressure, an elastic member for pressing the second lens body against the first lens body via the holding member, and a second lens body for holding the second lens body via the elastic member and the holding member. Sliding means for sliding;
Drop coating means for dropping an appropriate amount of adhesive liquid on the lens surface,
Means for retracting the drop applying means, a light source for irradiating light that is collimated and transmits through the first lens body and the second lens body,
The optical axis detecting means for detecting the deviation of the optical axis from the focal images of the light transmitted through the first lens body and the second lens body, and the optical axes of the first lens body and the second lens body via the sliding means coincide with each other. And control means for sliding the lens surface of the second lens body along the lens surface of the first lens body until the operation is completed.

【0021】本発明の請求項2にかかる接合レンズの調
芯装置は請求項1に記載したものであり、第1レンズ体
の接合レンズ面と第2レンズ体の接合レンズ面間に塗布
する接着硬化液において、レンズ面形状に応じて塗布量
を調整し、第1レンズ体上に載置された第2レンズ体の
摺動を一定の力に保つことを特徴とする。
According to a second aspect of the present invention, there is provided an apparatus for aligning a cemented lens according to the first aspect of the present invention, wherein an adhesive is applied between the cemented lens surface of the first lens body and the cemented lens surface of the second lens body. The coating amount of the curing liquid is adjusted according to the lens surface shape, and the sliding of the second lens body placed on the first lens body is maintained at a constant force.

【0022】本発明の請求項3にかかる接合レンズの調
芯装置は請求項1または請求項2に記載したものであっ
て、第1レンズ体の接合レンズ面と第2レンズ体の接合
レンズ面間に塗布する接着硬化液において、接合レンズ
面の形状に応じて前記硬化液の粘度を変更し、第1レン
ズ体上に載置された第2レンズ体の摺動を一定の力に保
つことを特徴としている。
According to a third aspect of the present invention, a cemented lens centering device according to the first or second aspect, wherein the cemented lens surface of the first lens body and the cemented lens surface of the second lens body are provided. In the adhesive curing liquid applied in between, the viscosity of the curing liquid is changed according to the shape of the cemented lens surface, and the sliding of the second lens body mounted on the first lens body is maintained at a constant force. It is characterized by.

【0023】本発明の請求項4にかかる接合レンズの調
芯装置は請求項1、請求項2ないし請求項3のいずれか
に記載したものであって、第1レンズ体の接合レンズ面
と第2レンズ体の接合レンズ面間に塗布する接着硬化液
において、前記接着硬化液の厚みを調整出来るような第
1レンズ体上に載置された第2レンズ体の摺動を一定の
力に保つことを特徴としている。
According to a fourth aspect of the present invention, there is provided a centering device for a cemented lens according to any one of the first, second, and third aspects, wherein the centering device for the cemented lens and the first lens body are arranged in parallel with each other. In the adhesive hardening liquid applied between the cemented lens surfaces of the two lens bodies, the sliding of the second lens body mounted on the first lens body such that the thickness of the adhesive hardening liquid can be adjusted is maintained at a constant force. It is characterized by:

【0024】本発明の請求項5にかかる接合レンズの調
芯装置は請求項1に記載したものであって、光軸検出時
に第2レンズ体を保持する保持部材の規制位置を弾性部
材を介した摺動手段を用いて第2レンズ体より任意の高
さだけ離間することを特徴としている。
According to a fifth aspect of the present invention, there is provided an alignment apparatus for a cemented lens according to the first aspect, wherein a regulating position of a holding member for holding the second lens body at the time of detecting an optical axis is set via an elastic member. It is characterized in that it is separated from the second lens body by an arbitrary height using the sliding means described above.

【0025】本発明の請求項6にかかる接合レンズの調
芯装置は請求項1に記載したものであって、光軸検出手
段の光学倍率を任意に変更可能なことを特徴としてい
る。
According to a sixth aspect of the present invention, there is provided an apparatus for aligning a cemented lens according to the first aspect, wherein the optical magnification of the optical axis detecting means can be arbitrarily changed.

【0026】以下、本発明の実施の形態を図面に基づい
て説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.

【0027】(実施の形態1)図1は実施の形態1にか
かる接合レンズの調芯装置の全体構成を示す断面図であ
り、図2は調芯状態を示す接合レンズの断面と上面図で
あり、図3は接合レンズ完成までの工程を模式的に表し
たフローチャート図である。
(Embodiment 1) FIG. 1 is a cross-sectional view showing the entire configuration of a centering device for a cemented lens according to Embodiment 1, and FIG. 2 is a cross-sectional view and a top view of the cemented lens showing an alignment state. FIG. 3 is a flowchart schematically showing steps up to completion of the cemented lens.

【0028】そして、これらの図における符号1は第1
レンズ体、2は第2レンズ体、3は偏芯顕微鏡、4は自
然光を照射する白熱ランプなどの光源、5は十字チャー
ト像を備えて光源4から照射された光を平行化するコリ
メータレンズ、6はレンズホルダー、7はレンズ面同士
が対面させられた第1レンズ体1及び第2レンズ体2の
焦点距離を変更する補助レンズ、8,9は第一レンズ体
1を回転させるための回転手段を構成する回転ローラ及
びOリング、10は位置規制手段となる固定用V型規制
板、11は固定用V型規制板10上に搭載されて第1レ
ンズ体1の外周端面の離間した位置毎に当接する当接部
材として機能する位置規制手段として構成する一対のベ
アリングであり、これら一対のベアリング11は固定用
V型規制板10とともに位置制御手段を構成している。
Reference numeral 1 in these figures denotes the first
2 is a second lens body, 3 is an eccentric microscope, 4 is a light source such as an incandescent lamp for irradiating natural light, 5 is a collimator lens having a cross-shaped chart image and collimating the light emitted from the light source 4, 6 is a lens holder, 7 is an auxiliary lens for changing the focal length of the first lens body 1 and the second lens body 2 whose lens surfaces face each other, and 8 and 9 are rotations for rotating the first lens body 1. Rotating rollers and O-rings constituting the means, 10 is a fixing V-shaped regulating plate serving as a position regulating means, 11 is a position mounted on the fixing V-shaped regulating plate 10 and spaced apart from the outer peripheral end surface of the first lens body 1. Each of the pair of bearings 11 constitutes a position control unit that functions as a position restricting unit that functions as a contact member that comes into contact with each other.

【0029】また、図中の符号13,14は、第2レン
ズ体を摺動させる摺動手段となる環状の保持部材及び弾
性部材、具体的には板バネ部材であり、15は対物レン
ズ、16はCCDカメラ、17は制御手段として機能す
る画像処理装置、例えばパソコンであり、23は第1レ
ンズ体の接合面上に接着硬化液を塗布する接着硬化液塗
布装置、24は接着硬化液塗布装置23を移動させるた
めの第1のXYZステージであり、これら各種の機器や
部材を用いることによって調芯装置は構成されている。
Reference numerals 13 and 14 in the drawing denote an annular holding member and an elastic member serving as sliding means for sliding the second lens body, specifically, a leaf spring member. Reference numeral 16 denotes a CCD camera, 17 denotes an image processing device functioning as control means, for example, a personal computer, 23 denotes an adhesive curing liquid application device for applying an adhesive curing liquid on the joint surface of the first lens body, and 24 denotes an adhesive curing liquid application. This is a first XYZ stage for moving the device 23, and a centering device is configured by using these various devices and members.

【0030】そして、この際における板バネ部材14
は、水平方向及び垂直方向に沿って動作し得るよう、摺
動手段として機能する第2のXYZステージ18に対し
て固定端部が連結されており、かつ、第2レンズ体2を
保持する保持部材13が自由端部に取り付けられたもの
となっている。なお、ここでの保持部材13は環状を有
しているが、環状である必然性はなく、必要に応じて任
意の形状や材質が採用されればよいものとする。さらに
また、板バネ部材14の形状やバネ定数などが限定され
ることもなく、任意の形状やバネ定数が選択された板バ
ネ部材14であってもよいことは勿論である。
The leaf spring member 14 at this time is
Has a fixed end connected to a second XYZ stage 18 functioning as a sliding means so as to be able to operate in the horizontal and vertical directions, and has a holding mechanism for holding the second lens body 2. The member 13 is attached to the free end. Note that the holding member 13 here has a ring shape, but is not necessarily ring-shaped, and any shape and material may be used as needed. Furthermore, the shape and the spring constant of the leaf spring member 14 are not limited, and it is a matter of course that the leaf spring member 14 may have an arbitrary shape and a selected spring constant.

【0031】すなわち、本実施の形態にかかる調芯装置
は、第1レンズ体1の接合レンズ面に接着硬化液を塗布
し第2レンズ体2を接液させる図示しないレンズ供給装
置と、レンズ面同士が互いに対面させられた第1レンズ
体1及び第2レンズ体2の光軸合せを実行するものであ
り、第1レンズ体1の接合面上に適量の接着硬化液を塗
布する接着硬化液塗布装置23と、接着硬化塗布装置を
任意の位置に移動する第1のXYZステージと、第1レン
ズ体1をレンズ面の外周方向に沿って回転させる回転ロ
ーラ8及びOリング9と、第1レンズ体1をレンズ面の
外周方向とは交差する方向から受け止めて位置規制する
1対のベアリング11と、レンズ面同士が対面する状態
で第1レンズ体1上に載置された第2レンズ体2を摺動
させる際には第2レンズ体2を保持する環状の保持部材
13と、この保持部材13を介して第2レンズ体2を第
1レンズ体1に押し付ける板バネ部材14と、保持部材
13及び板バネ部材14を介して第2レンズ体2を摺動
させるための摺動手段として機能する第2のXYZ軸ステ
ージ18と、コリメータレンズ5によって平行化された
うえで第1レンズ体1及び第2レンズ体2を透過する光
を照射する光源4と、第1レンズ体1及び第2レンズ体
2を透過した光の焦点像から光軸のズレを検出し、第2
のXYZ軸ステージ18を介して第1レンズ体1及び第2
レンズ体2の光軸が一致するまで第2レンズ体2のレン
ズ面を第1レンズ体1のレンズ面に沿って摺動させる制
御手段であるパソコン17とを具備している。
That is, the centering device according to the present embodiment comprises a lens supply device (not shown) for applying an adhesive curing liquid to the cemented lens surface of the first lens body 1 and bringing the second lens body 2 into contact with the lens surface. An adhesive curing liquid for performing an optical axis alignment of the first lens body 1 and the second lens body 2 facing each other, and applying an appropriate amount of an adhesive curing liquid on the joint surface of the first lens body 1. A coating device 23, a first XYZ stage for moving the adhesive curing coating device to an arbitrary position, a rotating roller 8 and an O-ring 9 for rotating the first lens body 1 along the outer peripheral direction of the lens surface; A pair of bearings 11 for receiving and regulating the position of the lens body 1 in a direction intersecting the outer peripheral direction of the lens surface, and a second lens body mounted on the first lens body 1 with the lens surfaces facing each other. 2 slide the second lens An annular holding member 13 for holding the body 2, a leaf spring member 14 for pressing the second lens body 2 against the first lens body 1 via the holding member 13, and a leaf spring member 14 via the holding member 13 and the leaf spring member 14. A second XYZ axis stage 18 functioning as a sliding means for sliding the two-lens body 2, and light that is collimated by the collimator lens 5 and passes through the first and second lens bodies 1 and 2. The optical axis deviation is detected from the light source 4 for irradiating the light and the focal image of the light transmitted through the first lens body 1 and the second lens body 2,
The first lens body 1 and the second lens
A personal computer 17 is provided as control means for sliding the lens surface of the second lens body 2 along the lens surface of the first lens body 1 until the optical axis of the lens body 2 matches.

【0032】なお、ここでの回転ローラ8に外嵌される
Oリング9はゴムなどのような柔軟素材から作製された
ものであり、図1におけるOリング9は断面視矩形状を
有しているが、断面視円形状を有するOリング9であっ
てもよいことは勿論である。ただし、断面視矩形状であ
る際には、断面視円形状である場合よりも良好な摩擦状
態が第1レンズ体1の外周端面との間で確保される結
果、第1レンズ体1の回転がスムーズになると考えられ
る。また、ここでのパソコン17が、第1レンズ体1及
び第2レンズ体を透過した光の焦点像軌跡から光軸が一
致すると予想される仮想位置を割り出し、第2のXYZス
テージ18を介して仮想位置に至るまで第2レンズ体2
を摺動させるものであってもよいことは勿論である。
It should be noted that the outer roller 8 is fitted around the rotating roller 8 here.
The O-ring 9 is made of a flexible material such as rubber, and the O-ring 9 in FIG. 1 has a rectangular shape in cross section. Of course it is good. However, when the first lens body 1 has a rectangular shape in cross section, a better friction state is secured between the outer peripheral end surface of the first lens body 1 than in the case of a circular shape in cross section. Is thought to be smooth. Further, the personal computer 17 here calculates a virtual position where the optical axis is expected to be coincident from the focal image locus of the light transmitted through the first lens body 1 and the second lens body, and via the second XYZ stage 18 The second lens body 2 up to the virtual position
Of course, it may slide.

【0033】次に本実施の形態にかかる接合レンズの調
芯装置の動作を説明する。図3のフローチャートに示し
た通り、まず図示しないレンズ供給装置により接合面を
上面にした状態で第1レンズ体1の外周方向に沿った回
転ローラ8に外嵌されたOリング9と回転する第1レン
ズ体1の外周端面はV型規制板10上の離間した位置毎
に搭載された一対のベアリング11で位置規制し、一定
量の接着硬化液である紫外線硬化型などの接着剤を第1
レンズ体接合面の中央部付近に滴下塗布する。
Next, the operation of the alignment apparatus for a cemented lens according to this embodiment will be described. As shown in the flowchart of FIG. 3, first, the O-ring 9 that is externally fitted to the rotating roller 8 along the outer peripheral direction of the first lens body 1 with the bonding surface facing upward by a lens supply device (not shown). The outer peripheral end surface of the one lens body 1 is restricted in position by a pair of bearings 11 mounted at spaced positions on the V-shaped regulating plate 10, and a certain amount of an adhesive curing liquid such as an ultraviolet curing type adhesive is first applied.
It is applied by dripping near the center of the lens body joining surface.

【0034】ここで、接着硬化液の塗布量は、第1レン
ズ体1と第2レンズ体2の接合面の面積で決定される。
すなわち、接合面の表面積に均等な厚み分が加わったと
して、塗布体積を予め求めておく。求める式は、接合面
の曲率半径をr、円形の接合面を底面とし、曲率半径の
中心を頂点とする円錐の頂角をθとすると、S=2πr
2×(1−cosθ)×tで求めることが出来るそして
接合面を下面にした状態の第2レンズ体2を図示しない
レンズ供給装置でレンズ面同士が対面する状態として第
1レンズ体1上に第2レンズ体2を載置し、気泡が混入
しない速度でゆっくりと接液させる。この時、塗布した
接着硬化液は接合面全体に均一に拡がり、かつはみ出し
のないよう図示しない加圧部材を用いて加圧力を調整す
る。
Here, the application amount of the adhesive curing liquid is determined by the area of the joint surface between the first lens body 1 and the second lens body 2.
That is, assuming that a uniform thickness is added to the surface area of the bonding surface, the application volume is determined in advance. The equation to be obtained is: S = 2πr, where r is the radius of curvature of the joint surface, θ is the apex angle of a cone having the circular joint surface as the bottom and the center of the radius of curvature as the vertex.
2 × (1−cos θ) × t, and the second lens body 2 with the cemented surface facing down is placed on the first lens body 1 with the lens surfaces facing each other by a lens supply device (not shown). The second lens body 2 is placed and slowly comes into contact with the liquid at a speed at which no air bubbles are mixed. At this time, the applied pressure is adjusted by using a pressure member (not shown) so that the applied adhesive curing liquid spreads uniformly over the entire joint surface and does not protrude.

【0035】さらに、載置された第2レンズ体2は第1
レンズ体1とともに回転することになり、光源4から照
射された十字チャート光はコリメータレンズ5及び補助
レンズ7を通過し、平行光となったうえでレンズ面同士
が対面しあった第1レンズ体1及び第2レンズ体2を透
過することになる。
Further, the placed second lens body 2 is
The first lens body, which rotates together with the lens body 1, and the cross chart light emitted from the light source 4 passes through the collimator lens 5 and the auxiliary lens 7, becomes parallel light, and the lens surfaces face each other. The light passes through the first and second lens bodies 2.

【0036】第1レンズ体1及び第2レンズ体2を透過
した光の十字チャート像は接合レンズの偏心量と対応し
た直径を有する円輪状の焦点像軌跡を対物レンズ15上
で描くことになり、対物レンズ15によって捕捉され、
かつ、CCDカメラ16によって撮影された十字チャー
ト像は画像処理装置であるパソコン17へと送信され
る。
The cross chart image of the light transmitted through the first lens body 1 and the second lens body 2 draws on the objective lens 15 a circular focus image locus having a diameter corresponding to the eccentricity of the cemented lens. Captured by the objective lens 15,
Further, the cross chart image photographed by the CCD camera 16 is transmitted to a personal computer 17 which is an image processing device.

【0037】さらに、送信されてきた十字チャート像は
パソコン17の画像メモリへと入力されることになり、
サンプリングタイム毎における焦点像の認識を実行し、
円輪状の軌跡の中心位置と光軸が一致したか否かを判定
しているパソコン17が、光軸が一致していないと判定
している限りは、光軸が一致するまでドライバ19を介
したうえ、回転手段を構成するサーボモータ21と、摺
動手段を構成するXYZ軸ステージ18とのそれぞれを
フィードバック制御によって円輪状の軌跡の中心位置と
光軸が一致するまで動作させる。
Further, the transmitted cross chart image is input to the image memory of the personal computer 17,
Executes the recognition of the focal image at each sampling time,
As long as the personal computer 17 that determines whether or not the optical axis coincides with the center position of the ring-shaped trajectory determines that the optical axis does not coincide, the personal computer 17 passes through the driver 19 until the optical axis coincides. Then, the servomotor 21 constituting the rotating means and the XYZ axis stage 18 constituting the sliding means are operated by feedback control until the center position of the circular locus coincides with the optical axis.

【0038】環状の保持部材13は第2レンズ体の外周
部を抑えた状態のまま、図示しない第1の紫外線光源か
ら接着剤が硬化する紫外線を照射し仮硬化した後、環状
の保持部材13を第2レンズ体から退避させ、再び第2
の紫外線光源から紫外線を照射し完全に硬化させ接合完
成となる。
The ring-shaped holding member 13 is temporarily cured by irradiating ultraviolet rays for curing the adhesive from a first ultraviolet light source (not shown) while keeping the outer peripheral portion of the second lens body suppressed. Is retracted from the second lens body, and the second
UV light is irradiated from the UV light source to completely cure and complete the bonding.

【0039】なお、パソコン17でもって光軸を一致し
たと判定されるのは、第1レンズ体1及び第2レンズ体
2を回転させているにも拘わらず、対物レンズ15上で
十字チャート像が移動しなくなったときである。
It is determined that the optical axes coincide with each other by the personal computer 17 because the cross chart image is formed on the objective lens 15 even though the first lens body 1 and the second lens body 2 are rotated. Is no longer moving.

【0040】ところで、レンズ面が対向しあった一対の
レンズ体からなるビデオカメラ用の接合レンズを作製を
行い、本実施の形態にかかる調芯装置を従来の調芯装置
と性能比較試験を実行した。性能比較試験に先立って
は、図4に示した外直径が約9mm、コバ厚みが4mm
であり、単品としての偏芯量が第1レンズ体1(51)
は1分以内に収まる心取り加工済みの両凹レンズを、ま
た、外直径が9mm、レンズ加工面の直径が7mm、コ
バ厚みが0.7mmであり、接合されるレンズ面の曲率
半径が5.5mmであって単品としての偏芯量が3分ほ
どある心取り加工レスの正メニスカスレンズを第2レン
ズ体2(52)として用意したうえ、粘度が1000C
PSの紫外線硬化樹脂を接着剤として用意した。
By the way, a cemented lens for a video camera composed of a pair of lens bodies whose lens surfaces face each other is manufactured, and a performance comparison test of the alignment apparatus according to the present embodiment with a conventional alignment apparatus is performed. did. Prior to the performance comparison test, the outer diameter shown in FIG.
And the amount of eccentricity as a single item is the first lens body 1 (51).
Is a centered biconcave lens that fits within one minute. The outer diameter is 9 mm, the diameter of the lens processing surface is 7 mm, the edge thickness is 0.7 mm, and the radius of curvature of the lens surface to be joined is 5. A centering-free positive meniscus lens having a eccentricity of about 5 minutes and having a decentering amount of about 3 minutes was prepared as the second lens body 2 (52), and had a viscosity of 1000C.
PS ultraviolet curable resin was prepared as an adhesive.

【0041】心取り加工のない第2レンズ体2は、図2
の通り、光軸26に対して同レンズ体2の外周側面28
が軸非対称なため、重心位置25は光軸26と一致して
いない。また、保持部材13の外直径を約11mm、内
直径を6.5mm、厚みを0.5mmとし、かつ板バネ
部材14のバネ定数を1.5g/mmとした。従来構成
とされた調芯装置で紫外線硬化液を適量塗布し、数十個
の接合レンズを作製したところ、紫外線硬化液の塗布体
積は、接合面全面に十分広がる約10mm3としてい
る。この条件下で接合した場合、偏芯量測定時に第2レ
ンズ体2が重心を中心として安定な状態、即ち斜めな状
態にずれてしまうため、偏芯量が3〜5分以上のものが
あり、偏芯量のばらつきがある調芯精度の悪いものが発
生し、また、フィーバック制御しているにもかかわら
ず、算出した座標に調芯が不可能となるものも発生し
た。
The second lens body 2 without centering is shown in FIG.
, The outer peripheral side surface 28 of the lens body 2 with respect to the optical axis 26
Are not axially asymmetric, the center of gravity position 25 does not coincide with the optical axis 26. The outer diameter of the holding member 13 was about 11 mm, the inner diameter was 6.5 mm, the thickness was 0.5 mm, and the spring constant of the leaf spring member 14 was 1.5 g / mm. When an appropriate amount of an ultraviolet curing liquid is applied using a centering device having a conventional configuration to produce several tens of cemented lenses, the applied volume of the ultraviolet curing liquid is set to about 10 mm 3 which sufficiently spreads over the entire bonding surface. In the case of joining under these conditions, the second lens body 2 shifts to a stable state around the center of gravity, that is, an oblique state when measuring the amount of eccentricity. In some cases, the eccentricity varies and the alignment accuracy is poor, and in some cases, the calculated coordinates cannot be aligned even though the feedback control is performed.

【0042】一方、本実施の形態で説明した調芯装置に
おける接着硬化液の塗布量を接合面の塗布体積から導き
出すと、接合面の形状は曲率半径r=5.5mm、接合
面の円弧角度θ≒79°、接着層厚みt=0.05mm
とすると、塗布体積Vは前述した式よりV=4.17m
3となる。なお、塗布体積ではなく、塗布重量で調整
したい場合は接着硬化液の比重を考慮すれば簡単に算出
可能である。
On the other hand, when the application amount of the adhesive curing liquid in the centering device described in this embodiment is derived from the application volume of the joint surface, the joint surface has a radius of curvature r = 5.5 mm, an arc angle of the joint surface θ ≒ 79 °, adhesive layer thickness t = 0.05 mm
Then, the coating volume V is calculated as V = 4.17 m from the above equation.
m 3 . When it is desired to adjust not the application volume but the application weight, it can be easily calculated by considering the specific gravity of the adhesive curing liquid.

【0043】このように、心取り加工を行わないレンズ
の接合に際しても、上記したように上部レンズが斜めに
曲がらない程度の適正な接着効果液量を予め計算してお
くことにより、上下レンズの高精度な接合が可能となっ
た。
As described above, when joining lenses that are not centered, an appropriate amount of the adhesive effect liquid is calculated in advance so that the upper lens does not bend obliquely, as described above. High-precision joining has become possible.

【0044】さらに、この際における補助レンズ7は平
凸レンズ、つまり、一方側のレンズ面が平面でありなが
らも他方側レンズ面の曲率半径が8mmとされた平凸レ
ンズであり、また、接合レンズの最小有効光線径が6.
4mmとなるから、レンズホルダー6の内直径と補助レ
ンズ7の有効光線径とは予め6.4mm以上となるよう
に調整されている。
In this case, the auxiliary lens 7 is a plano-convex lens, that is, a plano-convex lens in which the lens surface on one side is flat and the radius of curvature of the lens surface on the other side is 8 mm. The minimum effective beam diameter is 6.
Since it is 4 mm, the inner diameter of the lens holder 6 and the effective beam diameter of the auxiliary lens 7 are adjusted in advance to be 6.4 mm or more.

【0045】その結果、本実施の形態にかかる調芯装置
であれば、第2レンズ体2は第1レンズ体の接合面上で
回転しようとする滑り力が一定に保たれるため、第2レ
ンズ体2において重心位置が光軸上にないレンズでも水
平な状態で安定な姿勢で保つことが可能となり、さらに
調芯時に要する作業時間が偏芯量の測定に3秒、調芯に
1秒であるに過ぎないばかりか、いずれの接合レンズに
おける調芯精度も30秒以内に収まっており、高い調芯
精度を確保し得ることが確認された。したがって、本実
施の形態にかかる調芯装置を使用する限りは、レンズの
重心位置が光軸上にないような接合レンズの調芯であっ
ても、高精度な調芯が可能であることが理解される。
As a result, in the centering device according to the present embodiment, the second lens body 2 maintains a constant sliding force to rotate on the joint surface of the first lens body. Even if the center of gravity of the lens body 2 is not on the optical axis, it can be maintained in a stable state in a horizontal state, and the work time required for alignment is 3 seconds for measuring the amount of eccentricity and 1 second for alignment. Not only that, but the alignment accuracy of each cemented lens was within 30 seconds, and it was confirmed that high alignment accuracy could be secured. Therefore, as long as the centering device according to the present embodiment is used, even if the center of gravity of the cemented lens is such that the center of gravity of the lens is not on the optical axis, high-precision centering may be possible. Understood.

【0046】なお、請求項3に記載した内容について
は、第1レンズ体1と第2レンズ体2の偏芯量測定時に
第2レンズ体2が斜めに傾いた場合、接着硬化液の粘度
を変えることによって抑えただけで、基本的な動作は実
施の形態1とほぼ同じであるため、具体的な説明は省略
する。
In the case of the third aspect, when the second lens body 2 is inclined obliquely when the eccentricity of the first lens body 1 and the second lens body 2 is measured, the viscosity of the adhesive curing liquid is changed. The basic operation is almost the same as that of the first embodiment except for the suppression by changing, and thus the detailed description is omitted.

【0047】(実施の形態2)図4は、本願発明の実施
の形態2にかかる調芯装置が備えてなる摺動手段を示す
断面図であり、図5は接合レンズの曲率半径別における
弾性部材に与える加圧力Fと接着硬化液の厚みtの相関
図である。なお、本実施の形態にかかる調芯装置の全体
構成は実施の形態1と同様、つまり、図1で示した通り
であるから、ここでの調芯装置そのものの説明は省略す
ることとし、図4及び図5において、図1と互いに同一
となる部材、部分については同一の符号を付している。
(Embodiment 2) FIG. 4 is a sectional view showing a sliding means provided in a centering device according to Embodiment 2 of the present invention, and FIG. 5 is an elasticity of the cemented lens according to a radius of curvature. FIG. 6 is a correlation diagram of a pressing force F applied to a member and a thickness t of an adhesive curing liquid. Note that the overall configuration of the alignment device according to the present embodiment is the same as that of the first embodiment, that is, as shown in FIG. 1, so that the description of the alignment device itself is omitted here. 4 and 5, the same members and portions as those in FIG. 1 are denoted by the same reference numerals.

【0048】本実施の形態にかかる調芯装置が備える摺
動手段は、レンズ面同士が対面する状態で第1レンズ体
1上に載置された第2レンズ体2を必要に応じて摺動さ
せる際に第2レンズ体2を保持する環状の保持部材13
と、この保持部材13を介して第2レンズ体2を第1レ
ンズ体1へと押し付ける弾性部材である板バネ部材14
とから構成されており、板バネ部材14は、水平方向及
び垂直方向に沿って動作し得るよう、摺動手段である第
2のXYZ軸ステージ18に対して固定端部が連結されて
いるとともに、その自由端部には保持部材13が取り付
けられたものとなっている。
The sliding means provided in the centering device according to the present embodiment slides the second lens body 2 placed on the first lens body 1 with the lens surfaces facing each other as necessary. An annular holding member 13 that holds the second lens body 2 when the
And a leaf spring member 14 which is an elastic member for pressing the second lens body 2 against the first lens body 1 via the holding member 13.
The leaf spring member 14 has a fixed end connected to a second XYZ axis stage 18 which is a sliding means so that the leaf spring member 14 can operate in the horizontal and vertical directions. The holding member 13 is attached to the free end.

【0049】そして、弾性部材である板バネ部材14
は、第1レンズ体1と第2レンズ体2の接合面の曲率半
径毎にバネ定数の異なる部材に取り換える必要がある。
つまり、第2レンズ体2を第1レンズ体1側に加える押
圧力を変更することになる。この押圧力は、保持部材1
3を移動させると接着硬化液の厚みを調整することが可
能で、それによって、重心位置と光軸がずれている第2
レンズ体2があっても、偏芯量測定時に起こる斜めに傾
く現象を止めることが出来る。
The leaf spring member 14 is an elastic member.
Needs to be replaced with a member having a different spring constant for each radius of curvature of the joint surface between the first lens body 1 and the second lens body 2.
That is, the pressing force applied from the second lens body 2 to the first lens body 1 is changed. This pressing force is applied to the holding member 1.
By moving 3, it is possible to adjust the thickness of the adhesive curing liquid, whereby the position of the center of gravity and the optical axis are shifted.
Even if the lens body 2 is provided, it is possible to stop the oblique inclination phenomenon that occurs when measuring the amount of eccentricity.

【0050】接着硬化液の厚みは、接合前の第1レンズ
体1と第2レンズ体2それぞれのレンズ中心厚みと、接
合後の第1レンズ体1と第2レンズ体2の中心厚みの差
で表す。なお、バネ定数の異なる板バネ部材14の形状
や材質が限定されることはなく、第2レンズ体2の押圧
力を調整し得るものでありさえすればよい。また、押圧
力の微調整は、保持部材の高さ移動距離を変えることで
対応可能である。
The thickness of the adhesive curing liquid is determined by the difference between the center thickness of each of the first lens body 1 and the second lens body 2 before joining and the center thickness of the first lens body 1 and the second lens body 2 after joining. Expressed by The shape and material of the leaf spring members 14 having different spring constants are not limited, and may be any as long as they can adjust the pressing force of the second lens body 2. Further, fine adjustment of the pressing force can be dealt with by changing the height moving distance of the holding member.

【0051】ところで、ここでもビデオカメラ用の接合
レンズを作製することとし、実施の形態にかかる調芯装
置と、図4で示した摺動手段を備えてなる実施の形態2
にかかる調芯装置において検討を実施した。検討に用い
た接合レンズは、対面するレンズ面の曲率半径が17m
mの一対のレンズ、つまり、外直径が11mmである両
凸レンズと、外直径が12mm、外周側面の厚みが1.
5mmである両凹レンズとを第1レンズ体1及び第2レ
ンズ体2として用意した。また、接着硬化液は実施の形
態1と同様、粘度が1000cpsの紫外線硬化剤を使
用し、また塗布量は接合面間からはみ出しのない、かつ
接合面間に十分に広がる量としている。
By the way, also here, a cemented lens for a video camera is manufactured, and a centering device according to the embodiment and a sliding unit shown in FIG.
A study was conducted on the alignment device according to the above. The cemented lens used for the study had a radius of curvature of 17 m on the facing lens surface.
m, that is, a biconvex lens having an outer diameter of 11 mm, an outer diameter of 12 mm, and a thickness of the outer peripheral side surface of 1.
A 5 mm biconcave lens was prepared as the first lens body 1 and the second lens body 2. Further, as in the first embodiment, an ultraviolet curing agent having a viscosity of 1000 cps is used for the adhesive curing liquid, and the application amount is set so as not to protrude from between the joining surfaces and to spread sufficiently between the joining surfaces.

【0052】なお、この際においては、保持部材13の
内直径が10.5mm、厚みが0.6mmである一方、
板バネ部材14のバネ定数が3g/mmであるとし、第
1レンズ体1上に載置された第2レンズ体2に対しては
約15gの押圧力が加わるように予め調整している。
In this case, while the inner diameter of the holding member 13 is 10.5 mm and the thickness is 0.6 mm,
The spring constant of the leaf spring member 14 is assumed to be 3 g / mm, and adjustment is made in advance so that a pressing force of about 15 g is applied to the second lens body 2 placed on the first lens body 1.

【0053】そして、まず、図1で示した調芯装置を使
用して接合レンズを作製してみたところ、接合後の偏芯
量が2〜6分のものが発生し、調芯精度が悪い接合レン
ズが作製されることが判明した。これに対して、図5で
示した接合厚みと押圧力の相関から、調芯可能範囲内の
接着層の厚みになるようバネ部材14をバネ定数3.7
g/mmで、前記したのと同じ距離だけ第2レンズ体2
側へ接着硬化剤が接合面内に広がる時間だけ強めに押圧
した後、一旦環状保持部材13を第2レンズ体2から離
し、偏芯量測定を行ったところ、第1レンズ体1及び第
2レンズ体2が回転中に斜めにずれる現象は全くなくな
り、算出した光軸に合わせて接合を実施したところ、接
合後の偏芯量は30秒以内に収まることが確認された。
さらに、曲率半径の異なる複数種類の接合レンズを作製
してみたところ、重心位置と光軸がずれている第2レン
ズ体2で、かつ接合面の曲率半径がR<50mmのもの
を接合する際に最適な押圧力Fと接合面厚みtの範囲は
限定されることがいくつかの検討の結果判明した。
First, when a cemented lens was manufactured using the alignment apparatus shown in FIG. 1, an eccentric amount after bonding of 2 to 6 minutes occurred, and the alignment accuracy was poor. It has been found that a cemented lens is produced. On the other hand, based on the correlation between the bonding thickness and the pressing force shown in FIG.
g / mm and the same distance as described above for the second lens body 2
After the adhesive hardener is strongly pressed toward the side for the time that the adhesive hardener spreads in the joint surface, the annular holding member 13 is once separated from the second lens body 2 and the eccentricity is measured. The phenomenon that the lens body 2 was obliquely shifted during rotation disappeared at all, and bonding was performed in accordance with the calculated optical axis. As a result, it was confirmed that the eccentricity after bonding was within 30 seconds.
Furthermore, when a plurality of types of cemented lenses having different radii of curvature were manufactured, when the second lens body 2 whose optical axis was shifted from the position of the center of gravity and the radius of curvature of the cemented surface was R <50 mm was joined. It has been found from some investigations that the optimum range of the pressing force F and the thickness t of the joint surface is limited.

【0054】(実施の形態3)図6は本願発明の実施の
形態3にかかる調芯装置が備えてなる摺動手段の断面図
である。なお、本実施の形態にかかる調芯装置そのもの
の全体構成は実施の形態1と同様、つまり、図1で示し
た通りであるから、ここでの詳しい説明は省略すること
とし、図6において図1と互いに同一となる部材、部分
については同一の符号を付している。
(Embodiment 3) FIG. 6 is a sectional view of a sliding means provided in a centering device according to Embodiment 3 of the present invention. The overall configuration of the alignment device itself according to the present embodiment is the same as that of the first embodiment, that is, as shown in FIG. 1, so that the detailed description is omitted here, and FIG. Members and portions that are the same as 1 are given the same reference numerals.

【0055】本実施の形態にかかる調芯装置の摺動手段
は、実施の形態1と同様、保持部材13と弾性部材14
が第2のXYZ軸ステージ18を具備したものである
が、実施の形態1と異なるのは、偏心量測定時に保持部
材13が第2レンズ体2から一定距離だけ上方に離間し
て位置規制している点である。すなわち、既に説明した
実施の形態1では、偏心量測定時の保持部材13は、退
避した位置にあるが、本実施の形態にあっては、例えば
重心位置と光軸がずれているような第2レンズ体2が接
液後の第1レンズ体1上で、第2レンズ体2が斜めに傾
いた時、第2レンズ体2の外周面の一部分が保持部材1
3の第2レンズ体面側の部材表面に当接することによ
り、それ以上傾くことを防ぐ構成を採用することによ
り、偏心量測定時における十字チャート像の焦点軌跡
を、対物レンズ15とCCDカメラ16で検出可能な範
囲内に収めることが可能となる。
The sliding means of the centering device according to the present embodiment comprises a holding member 13 and an elastic member 14 similar to the first embodiment.
Is provided with a second XYZ axis stage 18, but is different from the first embodiment in that the holding member 13 is separated from the second lens body 2 by a certain distance upward to regulate the position when the amount of eccentricity is measured. That is the point. That is, in Embodiment 1 described above, the holding member 13 at the time of measuring the amount of eccentricity is at the retracted position. However, in the present embodiment, for example, the holding member 13 whose optical axis is shifted from the position of the center of gravity is displaced. When the second lens body 2 is tilted obliquely on the first lens body 1 after the two lens bodies 2 are in contact with the liquid, a part of the outer peripheral surface of the second lens body 2
By adopting a configuration that prevents the lens from further tilting by contacting the member surface on the second lens body surface side of No. 3, the focal locus of the cross chart image at the time of measuring the amount of eccentricity can be adjusted by the objective lens 15 and the CCD camera 16. It is possible to fall within a detectable range.

【0056】ところで、外直径が4.2mmで厚みが
1.2mmの第1レンズ体1と、外直径が3.4mmで
接合面の曲率半径が3.9mmで重心位置と光軸がずれ
た第2レンズ体2とを用意したうえ、実施の形態1にか
かる調芯装置を使用して接合レンズを作製してみたとこ
ろ、以下のような不都合があることが判明した。すなわ
ち、実施の形態1にかかる摺動手段で偏心量測定を行う
際、第2レンズ体2の安定な位置である傾いた状態は傾
き量が大きいため、対物レンズ15を介してCCDカメ
ラ16に撮影される十字チャート像の焦点軌跡が検出範
囲外に出てしまい、接合レンズの光軸を算出し、調芯す
ることが不可能となってしまう。
By the way, the first lens body 1 having an outer diameter of 4.2 mm and a thickness of 1.2 mm, the outer diameter being 3.4 mm, the radius of curvature of the joint surface being 3.9 mm, and the position of the center of gravity being shifted from the optical axis. After preparing the second lens body 2 and manufacturing a cemented lens using the alignment apparatus according to the first embodiment, it was found that there were the following inconveniences. That is, when the eccentricity is measured by the sliding means according to the first embodiment, the tilted state, which is a stable position of the second lens body 2, has a large amount of inclination. The focal locus of the photographed cross chart image goes out of the detection range, so that it becomes impossible to calculate the optical axis of the cemented lens and perform the alignment.

【0057】これに対し、本実施の形態にかかる摺動手
段にあっては、図6に示すように、偏心量測定時におけ
る保持部材13の規制位置を第2レンズ体2の上方で、
約0.5mm離れたところに設置しながら偏心量測定を
行うため第1レンズ体1と第2レンズ体2を回転したと
ころ、第2レンズ体2の傾き量が大きくなった時に、保
持部材13の第2レンズ体面側表面に、突出する同レン
ズ体2の外周上面が接触するため、その傾き量より大き
く斜めに傾くことは原理的にあり得なくなり、その結果
CCDカメラ16が十字チャート焦点軌跡を検出できる
範囲内で収まり、光軸位置を算出することが可能とな
り、調芯精度の高い接合レンズを容易に作製することが
できた。
On the other hand, in the sliding means according to the present embodiment, as shown in FIG. 6, the regulating position of the holding member 13 at the time of measuring the amount of eccentricity is set above the second lens body 2.
When the first lens body 1 and the second lens body 2 are rotated to measure the amount of eccentricity while being installed at a position separated by about 0.5 mm, when the inclination amount of the second lens body 2 becomes large, the holding member 13 is rotated. Since the protruding outer peripheral upper surface of the lens body 2 comes into contact with the surface of the second lens body surface side, it is theoretically impossible to incline more than the amount of inclination. As a result, the CCD camera 16 Is within the range in which can be detected, the optical axis position can be calculated, and a cemented lens with high alignment accuracy can be easily manufactured.

【0058】(実施の形態4)本発明の実施の形態4に
かかる調芯装置は、図7に示す通り、実施の形態1で説
明した調芯装置と全体構成の相違はないものの、倍率の
異なる対物レンズが3個あり、また対物レンズが固定さ
れている回転テーブルは制御手段で自在に回転可能な検
出手段になっている。
(Embodiment 4) As shown in FIG. 7, the alignment apparatus according to Embodiment 4 of the present invention does not differ from the alignment apparatus described in Embodiment 1 in the overall configuration, but has a different magnification. There are three different objective lenses, and the rotary table on which the objective lenses are fixed serves as detection means which can be freely rotated by the control means.

【0059】対物レンズは偏心量測定時に十字チャート
像の円輪状の焦点軌跡がCCDカメラの検出範囲外に出
てしまった場合低倍率対物レンズに、また焦点軌跡がC
CDカメラの検出範囲内であるものの、焦点軌跡が小さ
すぎる場合高倍率対物レンズに変更可能で、偏心量測定
時の焦点軌跡のばらつきを対物レンズの倍率を変えるこ
とで対応することが出来る。
When the circular locus of the cross chart image goes out of the detection range of the CCD camera when measuring the amount of eccentricity, the objective lens is set to the low-magnification objective lens and the focal locus is set to C.
If the focal locus is within the detection range of the CD camera but the focal locus is too small, the objective can be changed to a high-magnification objective lens. Variations in the focal locus when measuring the amount of eccentricity can be dealt with by changing the magnification of the objective lens.

【0060】すなわち、本実施の形態にかかる調芯装置
が備える対物レンズは、例えば倍率の異なる同形状のも
ので構成され、かつパソコン17の焦点軌跡の状態を考
慮し、最適な対物レンズに自動的に変更可能な構成とな
っている。なお、ここでは、配置した対物レンズの個数
や設定倍率は例として挙げているものの、必ずしも個数
や倍率を一致させる必然性はない。
That is, the objective lens included in the centering device according to the present embodiment is made of, for example, the same shape having different magnifications, and is automatically adjusted to an optimal objective lens in consideration of the state of the focal locus of the personal computer 17. It has a configuration that can be changed dynamically. Here, although the number and the set magnification of the arranged objective lenses are given as examples, it is not always necessary to make the number and the magnification coincide.

【0061】ところで、外直径が8mmで厚みが1mm
の負メニスカス形状の第1レンズ体1と、外直径が7.
5mmで接合面の曲率半径が5.3mmで重心位置と光
軸がずれた両凸形状の第2レンズ体2を用意し、実施の
形態1にかかる調芯装置を使用して接合レンズを作製し
たところ、以下のような不都合があることが判明した。
Incidentally, the outer diameter is 8 mm and the thickness is 1 mm.
6. The first meniscus-shaped first lens body 1 having an outer diameter of 7.
A biconvex second lens body 2 having a joint surface with a radius of curvature of 5.3 mm and a center of gravity offset from the center of gravity of 5.3 mm is prepared, and a cemented lens is manufactured using the alignment device according to the first embodiment. As a result, the following inconvenience was found.

【0062】すなわち、実施の形態1にかかる摺動手段
で前記接合レンズの偏芯量測定を行ったところ、第2レ
ンズ体2の安定な位置である傾斜した状態において、2
0倍の対物レンズ13を介したCCDカメラ14では、
十字チャート像の焦点軌跡が検出範囲外に出てしまい、
接合レンズの光軸を算出することが不可能となってい
た。
That is, the eccentricity of the cemented lens was measured by the sliding means according to the first embodiment.
In the CCD camera 14 via the 0 × objective lens 13,
The focus locus of the cross chart image goes out of the detection range,
It has been impossible to calculate the optical axis of the cemented lens.

【0063】本実施の形態にかかる検出手段は、このよ
うな不都合を解消するためになされたものであり、倍率
の異なる対物レンズ31a、31b、31cがあり、か
つ同対物レンズが固定されている回転テーブル32は制
御手段で自在に回転するものが具備されている。重心位
置と光軸がずれた第2レンズ体2は第1レンズ体1に接
液させた後、例えば偏芯量測定時などに安定位置である
傾いた状態にずれる。
The detecting means according to the present embodiment is provided to solve such inconvenience, and includes objective lenses 31a, 31b and 31c having different magnifications, and the objective lenses are fixed. The turntable 32 is provided with a member that can be freely rotated by control means. After the second lens body 2 whose optical axis is shifted from the position of the center of gravity is brought into contact with the first lens body 1, the second lens body 2 shifts to an inclined state which is a stable position when measuring the amount of eccentricity, for example.

【0064】この場合、最初にセットした20倍の対物
レンズ31bを介して十字チャートの焦点軌跡を見よう
としたが、CCDカメラ16の検出範囲外であることが
分かったため、回転テーブルで10倍の対物レンズ31
cに変更して十字チャート焦点軌跡を確認したところ、
CCDカメラ範囲内に収まり、接合レンズの光軸を算出
することが可能となった。この状態で接合を行ったとこ
ろ、45秒以内の調芯精度で接合していることを確認で
きた。
In this case, an attempt was made to view the focal locus of the cross chart through the initially set 20 × objective lens 31b. However, since it was found that the locus was outside the detection range of the CCD camera 16, the turntable was 10 ×. Objective lens 31
Changed to c and checked the cross trajectory focus trajectory,
The optical axis of the cemented lens can be calculated within the range of the CCD camera. When bonding was performed in this state, it was confirmed that the bonding was performed with alignment accuracy within 45 seconds.

【0065】[0065]

【発明の効果】以上説明したように、本発明にかかる接
合レンズの調芯装置によれば、調芯すべき第2レンズ体
に心取りレスレンズのような重心位置と光軸がずれてい
るレンズ体でも適用が可能であり、簡単かつ安価な構成
で、さらにレンズの加工費削減が可能であるにも拘わら
ず、高精度の調芯を容易に実行し得るという効果が得ら
れる。
As described above, according to the apparatus for aligning a cemented lens according to the present invention, the position of the center of gravity and the optical axis of the second lens body to be aligned are shifted from those of a centerless lens. The present invention is also applicable to a lens body, and has an effect that high-precision alignment can be easily performed despite a simple and inexpensive configuration and a reduction in lens processing cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1における接合レンズの調
芯装置の全体構成を示す断面図
FIG. 1 is a cross-sectional view illustrating an overall configuration of a centering device for a cemented lens according to a first embodiment of the present invention.

【図2】本発明の実施の形態1における調芯状態を示す
接合レンズの断面と上面図
FIG. 2 is a cross-sectional view and a top view of a cemented lens showing an alignment state according to the first embodiment of the present invention.

【図3】本発明の実施の形態1における接合レンズ完成
までの工程を模式的に表したフローチャート
FIG. 3 is a flowchart schematically showing steps up to completion of a cemented lens according to the first embodiment of the present invention.

【図4】本発明の実施の形態2における第2レンズ体に
加わる押圧力と接着面の厚みを示す断面図
FIG. 4 is a cross-sectional view showing a pressing force applied to a second lens body and a thickness of an adhesive surface according to a second embodiment of the present invention.

【図5】本発明の実施の形態2における押圧力と接着面
の厚みの関係を示す相関図
FIG. 5 is a correlation diagram showing the relationship between the pressing force and the thickness of the bonding surface according to the second embodiment of the present invention.

【図6】本発明の実施の形態3における保持部材の規制
位置と第2レンズ体の傾き状態を示す断面図
FIG. 6 is a cross-sectional view illustrating a regulated position of a holding member and an inclined state of a second lens body according to Embodiment 3 of the present invention.

【図7】本発明の実施の形態4における複数個の対物レ
ンズを配置した調芯装置の全体構成を示す断面図
FIG. 7 is a cross-sectional view showing an overall configuration of a centering device in which a plurality of objective lenses are arranged according to a fourth embodiment of the present invention.

【図8】従来の形態における調芯状態を示す接合レンズ
の断面と上面図
FIG. 8 is a cross-sectional view and a top view of a cemented lens showing an alignment state in a conventional form.

【図9】従来の形態における接合レンズの調芯装置の全
体構成を示す断面図
FIG. 9 is a cross-sectional view showing the overall configuration of a conventional alignment device for a cemented lens.

【符号の説明】[Explanation of symbols]

1 第1レンズ体 2 第2レンズ体 8 回転ローラ 10 固定用V型規制板(位置規制手段) 13 保持部材 14 板バネ部材(弾性部材) 18 第2のXYZ軸ステージ(摺動手段) 17 パソコン(制御手段) 21 サーボモータ 23 接着硬化液塗布装置 24 第1のXYZ軸ステージ(接着硬化液塗布装置位置
規制手段) 25 第2レンズ体の重心位置 26 第2レンズ体の光軸
DESCRIPTION OF SYMBOLS 1 1st lens body 2 2nd lens body 8 Rotating roller 10 V-shaped regulating plate for fixing (position regulating means) 13 Holding member 14 Leaf spring member (elastic member) 18 2nd XYZ axis stage (sliding means) 17 PC (Control means) 21 Servo motor 23 Adhesive curing liquid application device 24 First XYZ axis stage (Adhesion curing liquid application device position regulating means) 25 Center of gravity position of second lens body 26 Optical axis of second lens body

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 レンズ面同士が対面させられた第1レン
ズ体及び第2レンズ体の光軸合わせを実行する接合レン
ズの調芯装置であって、 前記第1レンズ体をレンズ面の外周方向に沿って回転さ
せる回転発生手段と、前記第1レンズ体をレンズ面の外
周方向とは交差する方向から受け止めて位置規制する位
置規制手段と、レンズ面同士が対面する状態で前記第1
レンズ体上に載置された前記第二レンズ体を摺動させる
際には前記第2レンズ体を一定の圧力で保持する保持部
材と、前記保持部材を介して前記第2ンズ体を前記第1
レンズ体へと押し付ける押付部材と、前記押付部材及び
前記保持部材を介して前記第2レンズ体を摺動させる摺
動手段と、前記第1レンズ面上に適量の接着液を滴下す
る滴下塗布手段と、平行化されて前記第1レンズ体及び
前記第2レンズ体を透過する光を照射する光源と、前記
第1レンズ体及び前記第2レンズ体を透過した光の焦点
像から光軸のズレを検出する光軸検出手段と、摺動手段
を介して前記第1レンズ体及び前記第2レンズ体の光軸
が一致するまで前記第2レンズ体のレンズ面を前記第1
レンズ体のレンズ面に沿って摺動させる制御手段とを具
備していることを特徴とする接合レンズの調芯装置。
1. A centering device for a cemented lens that performs optical axis alignment of a first lens body and a second lens body whose lens surfaces face each other, wherein the first lens body is arranged in an outer circumferential direction of the lens surface. Rotation generating means for rotating the first lens body in a direction intersecting the outer peripheral direction of the lens surface, and position regulating means for regulating the position by receiving the first lens body in a direction intersecting the outer peripheral direction of the lens surface.
When the second lens body placed on the lens body is slid, a holding member for holding the second lens body at a constant pressure, and the second lens body via the holding member to move the second lens body to the second lens body. 1
A pressing member that presses against the lens body, a sliding unit that slides the second lens body via the pressing member and the holding member, and a drop applying unit that drops an appropriate amount of adhesive liquid on the first lens surface A light source that emits light that is collimated and transmitted through the first lens body and the second lens body, and a deviation of an optical axis from a focal image of the light transmitted through the first lens body and the second lens body. And a lens surface of the second lens body until the optical axes of the first lens body and the second lens body coincide with each other via a sliding means.
Control means for sliding the lens along the lens surface of the lens body.
【請求項2】 前記第1レンズ体の接合レンズ面と前記
第2レンズ体の接合レンズ面間に塗布する接着硬化液に
おいて、レンズ面形状に応じて塗布量を調整し、第1レ
ンズ体上に載置された第2レンズ体の摺動を一定の力に
保つことを特徴とする請求項1に記載の接合レンズの調
芯装置。
2. An adhesive curing liquid applied between the cemented lens surface of the first lens body and the cemented lens surface of the second lens body, the amount of application being adjusted according to the lens surface shape, and The alignment apparatus for a cemented lens according to claim 1, wherein the sliding of the second lens body placed on the lens is maintained at a constant force.
【請求項3】 前記第1レンズ体の接合レンズ面と前記
第2レンズ体の接合レンズ面間に塗布する接着硬化液に
おいて、前記接合レンズ面の形状に応じて前記硬化液の
粘度を変更し、前記第1レンズ体上に載置された前記第
2レンズ体の摺動を一定の力に保つことを特徴とした請
求項1または請求項2に記載の接合レンズの調芯装置。
3. An adhesive curing liquid applied between the cemented lens surface of the first lens body and the cemented lens surface of the second lens body, wherein the viscosity of the curing liquid is changed according to the shape of the cemented lens surface. 3. The alignment apparatus for a cemented lens according to claim 1, wherein the second lens body mounted on the first lens body keeps sliding at a constant force. 4.
【請求項4】 前記第1レンズ体の接合レンズ面と前記
第2レンズ体の接合レンズ面間に塗布する接着硬化液に
おいて、前記接着硬化液の厚みを調整出来るよう前記第
1レンズ体上に載置された前記第2レンズ体の摺動を一
定の力に保つことを特徴とした請求項1、2または3に
記載のレンズの調芯装置。
4. An adhesive curing liquid applied between the cemented lens surface of the first lens body and the cemented lens surface of the second lens body, the adhesive curing liquid being applied on the first lens body so that the thickness of the adhesive curing liquid can be adjusted. 4. The lens centering device according to claim 1, wherein the mounted second lens body is kept at a constant sliding force.
【請求項5】 光軸検出時に前記第2レンズ体を保持す
る保持部材の規制位置を弾性部材を介した摺動手段を用
いて前記第2レンズ体より任意の高さだけ離間すること
を特徴とした請求項1に記載のレンズの調芯装置。
5. The optical system according to claim 1, wherein when the optical axis is detected, the regulating position of the holding member for holding the second lens body is separated from the second lens body by an arbitrary height using sliding means via an elastic member. The lens alignment device according to claim 1, wherein:
【請求項6】 前記光軸検出手段の光学倍率を任意に変
更可能なことを特徴とした請求項1に記載のレンズの調
芯装置。
6. The lens centering device according to claim 1, wherein an optical magnification of said optical axis detecting means can be arbitrarily changed.
JP2000290369A 2000-09-25 2000-09-25 Lens aligning method and bonding device Pending JP2002098877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000290369A JP2002098877A (en) 2000-09-25 2000-09-25 Lens aligning method and bonding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000290369A JP2002098877A (en) 2000-09-25 2000-09-25 Lens aligning method and bonding device

Publications (1)

Publication Number Publication Date
JP2002098877A true JP2002098877A (en) 2002-04-05

Family

ID=18773607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000290369A Pending JP2002098877A (en) 2000-09-25 2000-09-25 Lens aligning method and bonding device

Country Status (1)

Country Link
JP (1) JP2002098877A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004042023A1 (en) * 2004-08-27 2006-03-02 Wahl Optoparts Gmbh Optical lens group for guiding laser machining system has first concavo-convex lens facing light source and second aspherical lens with cylindrical sides fitting into cylindrical recess in first lens
JP2007033556A (en) * 2005-07-22 2007-02-08 Olympus Corp Lens centering apparatus, lens centering method and lens centering program
CN100439959C (en) * 2007-04-17 2008-12-03 天津大学 Amplification imaging vision positioning device for IC package
JP2012027331A (en) * 2010-07-26 2012-02-09 Olympus Corp Alignment method of composite optical element and alignment device therefor
CN112034579A (en) * 2020-08-07 2020-12-04 北京控制工程研究所 Cylindrical mirror and coded disc glass bonding device and method based on non-coplanar marking lines

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004042023A1 (en) * 2004-08-27 2006-03-02 Wahl Optoparts Gmbh Optical lens group for guiding laser machining system has first concavo-convex lens facing light source and second aspherical lens with cylindrical sides fitting into cylindrical recess in first lens
JP2007033556A (en) * 2005-07-22 2007-02-08 Olympus Corp Lens centering apparatus, lens centering method and lens centering program
JP4524224B2 (en) * 2005-07-22 2010-08-11 オリンパス株式会社 Lens centering device, lens centering method, and lens centering program
CN100439959C (en) * 2007-04-17 2008-12-03 天津大学 Amplification imaging vision positioning device for IC package
JP2012027331A (en) * 2010-07-26 2012-02-09 Olympus Corp Alignment method of composite optical element and alignment device therefor
CN112034579A (en) * 2020-08-07 2020-12-04 北京控制工程研究所 Cylindrical mirror and coded disc glass bonding device and method based on non-coplanar marking lines

Similar Documents

Publication Publication Date Title
CN112512779B (en) Improved stereolithography techniques and related systems and methods
KR101886615B1 (en) Laser confocal sensor metrology system
US9612450B2 (en) Method for producing an optical assembly and method for designing lens for assembly
JP7033608B2 (en) Surface topography measurement system
KR20060037325A (en) Lens having at least one lens centration mark and methods of making and using same
US10054755B2 (en) Lens-fixing device, method of adjusting lens-fixing device, and lens-fixing method
JP2002098877A (en) Lens aligning method and bonding device
JP2007047131A (en) Method, device and program for measuring aspheric lens, manufacturing method of aspheric lens, and aspheric lens
WO2015093349A1 (en) Lens frame, lens assembly, and method for manufacturing lens assembly
JP2007085914A (en) Method, device, and program of measuring aspheric lens, method of manufacturing aspheric lens, and aspheric lens
JP3547647B2 (en) Alignment device for cemented lenses
JP2002148413A (en) Lens cementing apparatus and cementing method
WO2022201554A1 (en) Device for bonding optical element, and method for bonding optical element
US20220214518A1 (en) Device for mounting spherical optical components
JP5608402B2 (en) Method for manufacturing composite optical element and apparatus for manufacturing the same
JP2000171610A (en) Lens joining method
JPWO2005057264A1 (en) Lens system and assembly method thereof
JPH071602A (en) Lens connecting apparatus
JP3733226B2 (en) Lens bonding device
JP2010139722A (en) Optical component and method of manufacturing the same, and optical device and method of manufacturing the same
JP2019166780A (en) Apparatus, method, and program for manufacturing composite lens, and mold for manufacturing composite lens
EP3714305A1 (en) Lens system intended for microscopic observation and operationally associable with an imag acquisition device and a light source
JP2006250964A (en) Eccentricity adjusting assembly component, eccentricity adjusting assembly method, eccentricity adjusting assembly device and image forming apparatus
JPH08244128A (en) Manufacture of resin bonded type aspherical lens
JP2001124656A (en) Inspection and regulation device for lens