JP2007237696A - Microcapsule for pressure-sensitive recording material, its manufacturing method and pressure-sensitive recording material using it - Google Patents

Microcapsule for pressure-sensitive recording material, its manufacturing method and pressure-sensitive recording material using it Download PDF

Info

Publication number
JP2007237696A
JP2007237696A JP2006066720A JP2006066720A JP2007237696A JP 2007237696 A JP2007237696 A JP 2007237696A JP 2006066720 A JP2006066720 A JP 2006066720A JP 2006066720 A JP2006066720 A JP 2006066720A JP 2007237696 A JP2007237696 A JP 2007237696A
Authority
JP
Japan
Prior art keywords
pressure
color former
recording material
microcapsule
sensitive recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006066720A
Other languages
Japanese (ja)
Other versions
JP4739995B2 (en
Inventor
Takao Togami
恭男 戸上
Akira Takagi
彰 高木
Teruzo Hayashi
照三 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP2006066720A priority Critical patent/JP4739995B2/en
Publication of JP2007237696A publication Critical patent/JP2007237696A/en
Application granted granted Critical
Publication of JP4739995B2 publication Critical patent/JP4739995B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Color Printing (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a microcapsule for pressure-sensitive copy sheets using straight chain alkylbenzene as a solvent for dissolving an electron-donating color-developing agent equipped with an adequate color-developing property, its manufacturing method and a pressure-sensitive recording material obtained using the method and the microcapsule. <P>SOLUTION: The microcapsule for pressure-sensitive copy sheets contains a color-developing solution formed by dissolving an electron-donating color-developing agent in straight chain alkylbenzene represented by a formula C<SB>6</SB>H<SB>5</SB>C<SB>n</SB>H<SB>2n+1</SB>(n=9-14) wherein the diaphragm is formed of a polyurea film having an allophanate group. After the electron-donating color-developing agent dissolved in a mixture of polyisocyanate having the straight chain alkylbenzene and the allophanate group is emulsified and dispersed in an aqueous solution containing a polyvinyl alcohol dispersing agent, a polyurea film is formed in the emulsified particulate interface by undergoing a polymerization reaction with the addition of polyamine. The pressure-sensitive recording material is formed of the microcapsule and the electron-donating developer. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、感圧記録材料用マイクロカプセルとその製造方法及びそれを用いた感圧記録材料に関する。   The present invention relates to a microcapsule for pressure-sensitive recording material, a method for producing the same, and a pressure-sensitive recording material using the same.

従来、無色あるいは淡色の電子供与性発色剤(以下「発色剤」という)を溶液の状態でマイクロカプセル皮膜内に内蔵させて紙の一面に塗布し、他の紙の一面に前記発色剤と反応して発色させる性質を有する酸性の無機材料、高分子材料あるいは芳香族カルボン酸などの電子受容性物質(以下「顕色剤」という)を塗布し、使用の際にこれらの各面を対向させて重ね合わせ、圧力を加えることにより複写記録を得る形式の記録材料、すなわち感圧記録材料が知られている。この種の記録材料の複写記録機構は、筆圧、タイプ圧等の圧力によりマイクロカプセル皮膜を破壊し、発色剤溶液を放出させ、対向して配置された紙の表面に塗布した顕色剤と接触させて発色させるものである。また、このような発色機能を有する各塗布材料を、1枚の紙の片面に塗布した記録材料も知られている。   Conventionally, a colorless or light-colored electron-donating color former (hereinafter referred to as “color former”) is incorporated in a microcapsule film in the form of a solution and applied to one side of the paper, and reacts with the color former on the other side of the paper. Apply an acid accepting material (hereinafter referred to as “developer”) such as an acidic inorganic material, polymer material, or aromatic carboxylic acid that has the property of developing a color, and face each other during use. A recording material of a type in which a copy record is obtained by overlapping and applying pressure, that is, a pressure-sensitive recording material is known. This type of recording material copying and recording mechanism uses a developer applied to the oppositely disposed paper surface to break the microcapsule film by pressure such as writing pressure, type pressure, etc., to release the color developer solution. The color is developed by contact. Also known is a recording material in which each coating material having such a coloring function is coated on one side of a sheet of paper.

前記マイクロカプセルの製造方法としては、発色剤を疎水性溶剤に溶解させた発色剤溶液を乳化分散剤水溶液に乳化分散させ、得られた乳化分散液にメラミン−ホルムアルデヒド初期縮合物を加えて加熱し、重縮合させることにより樹脂膜を形成させるIn−situ重合法が知られている(特許文献1)。また、発色剤を溶解させる疎水性溶剤として天然油又は合成油(具体的にはジイソプロピルナフタレンや1−フェニル−1−キシリルエタン)などを使用し、アロファネート基を含有するポリイソシアネートと水又は多価アミンなどの活性水素物質を反応させて壁膜を形成させる界面重合法によるマイクロカプセルも提案されている(特許文献2)。   As a method for producing the microcapsules, a color former solution in which a color former is dissolved in a hydrophobic solvent is emulsified and dispersed in an aqueous emulsifying dispersant solution, and a melamine-formaldehyde initial condensate is added to the obtained emulsified dispersion and heated. In-situ polymerization method in which a resin film is formed by polycondensation is known (Patent Document 1). Also, natural or synthetic oil (specifically diisopropylnaphthalene or 1-phenyl-1-xylylethane) is used as a hydrophobic solvent for dissolving the color former, and polyisocyanate containing allophanate group and water or polyvalent amine. There has also been proposed a microcapsule based on an interfacial polymerization method in which an active hydrogen substance such as is reacted to form a wall film (Patent Document 2).

前記発色剤を溶解させる溶剤としては、主に多環芳香族溶剤が用いられており、具体的にはフェニルキシリルエタン、フェニルエチルフェニルエタン、ブチルジフェニルエタンなどのジアリールアルカン;ジイソプロピルナフタレンなどのアルキルナフタレン;モノイソプロピルビフェニルなどのアルキルビフェニルなどが例示される。その他、希釈溶剤または補助溶剤としてノルマルパラフィン、イソパラフィンなどの脂肪族炭化水素系溶剤、ナフテン環を有する脂環族系炭化水素溶剤、アルキルベンゼンなども用いられている。また近年、より環境に配慮した高生分解性溶剤への要求があり、植物油などの天然油を用いることが提案されているが、天然油の性状が不安定であることから、マイクロカプセルの製造工程や発色性能などの点で問題がある。一方、合成油のなかでも特に生分解性が高い直鎖アルキルベンゼンは、発色剤の溶解性が低いため単独で用いられることはなく、前記の多環芳香族溶剤と併用するにとどまっている(特許文献3、特許文献4)。
特開昭56−155636号公報 特開平8−52939号公報 特開平2−47085号公報 特公昭60−232991号公報
As the solvent for dissolving the color former, polycyclic aromatic solvents are mainly used. Specifically, diarylalkanes such as phenylxylylethane, phenylethylphenylethane and butyldiphenylethane; alkyls such as diisopropylnaphthalene. Examples include naphthalene; alkyl biphenyl such as monoisopropyl biphenyl. In addition, aliphatic hydrocarbon solvents such as normal paraffin and isoparaffin, alicyclic hydrocarbon solvents having a naphthene ring, alkylbenzene, and the like are also used as a diluting solvent or auxiliary solvent. In recent years, there has been a demand for highly biodegradable solvents that are more environmentally friendly, and it has been proposed to use natural oils such as vegetable oils. There are problems in terms of color development performance. On the other hand, linear alkylbenzene, which is particularly biodegradable among synthetic oils, is not used alone because of low solubility of the color former, but is only used in combination with the above polycyclic aromatic solvent (patent) Document 3 and Patent document 4).
JP-A-56-155636 Japanese Patent Laid-Open No. 8-52939 JP-A-2-47085 Japanese Patent Publication No. 60-232991

本発明の目的は、生分解性が高いにもかかわらず、発色剤の溶解性が低いため単独で用いられることはなく、前記の多環芳香族溶剤と併用するにとどまっていた直鎖アルキルベンゼンを電子供与性発色剤を溶解するための主溶剤として使用して、十分な発色性能を有する感圧記録材料用マイクロカプセルとその製造方法、およびそれを用いた感圧記録材料を提供することにある。   The object of the present invention is to use a linear alkylbenzene that has been used only in combination with the above polycyclic aromatic solvent because it has a low biodegradability but low solubility of the color former. It is an object to provide a microcapsule for pressure-sensitive recording material having sufficient color development performance by using it as a main solvent for dissolving an electron-donating color former, a production method thereof, and a pressure-sensitive recording material using the same. .

本発明の第1は、電子供与性発色剤をCH・CH2n+1(n=9〜14)で表される直鎖アルキルベンゼンに溶解してなる発色剤溶液を内包し、壁膜がアロファネート基を有するポリウレアからなる感圧記録材料用マイクロカプセルに関するものである。 In the first aspect of the present invention, a wall film is formed by encapsulating a color former solution obtained by dissolving an electron donating color former in a linear alkylbenzene represented by C 6 H 5 .C n H 2n + 1 (n = 9 to 14). Relates to a microcapsule for pressure-sensitive recording material comprising polyurea having an allophanate group.

本発明の第2は、電子供与性発色剤をCH・CH2n+1(n=9〜14)で表される直鎖アルキルベンゼンとアロファネート基を有するポリイソシアネートの混合物に溶解させて発色剤溶液を調製し、該発色剤溶液を分散剤水溶液中に乳化分散し、該分散液に多価アミンを添加して重合反応させ該発色剤溶液の乳化粒子を内包するポリウレア壁膜を形成させることを特徴とする感圧記録材料用マイクロカプセルの製造方法に関するものである。 In the second aspect of the present invention, an electron-donating color former is dissolved in a mixture of a linear alkylbenzene represented by C 6 H 5 .C n H 2n + 1 (n = 9 to 14) and a polyisocyanate having an allophanate group, thereby forming a color. A colorant solution is prepared, the colorant solution is emulsified and dispersed in an aqueous dispersant solution, a polyamine is added to the dispersion, and a polymerization reaction is performed to form a polyurea wall film including the emulsified particles of the colorant solution. The present invention relates to a method for producing a microcapsule for a pressure-sensitive recording material.

本発明の第3は、本発明の第2において、前記乳化分散および前記重合反応を、それぞれ70〜120℃で行うことを特徴とする感圧記録材料用マイクロカプセルの製造方法に関するものである。   A third aspect of the present invention relates to a method for producing a microcapsule for pressure sensitive recording material according to the second aspect of the present invention, wherein the emulsification dispersion and the polymerization reaction are each performed at 70 to 120 ° C.

本発明の第4は、本発明の第1のマイクロカプセルと電子受容性顕色剤とからなる感圧記録材料に関するものである。   The fourth aspect of the present invention relates to a pressure-sensitive recording material comprising the first microcapsule of the present invention and an electron-accepting developer.

アロファネート基を有するポリウレアからなる膜材と、発色剤の溶剤としての直鎖アルキルベンゼンとを組み合わせることにより、生分解性が高いにもかかわらず従来は補助的にしか使用できなかった直鎖アルキルベンゼンを発色剤の主溶剤として使用できるようになった。本発明のマイクロカプセルを用いた感圧複写材料は、発色性能に優れている。また、アロファネート基を有するポリウレアからなる膜材と、主溶剤として従来広く使用されていた多環芳香族炭化水素系溶剤とを用いたマイクロカプセルを用いた感圧記録材料と比較して発色かぶり(ブルーイング)が低減されている。   By combining a film material made of polyurea having an allophanate group and linear alkylbenzene as a solvent for the color former, linear alkylbenzene, which has been used only as an auxiliary, although it is highly biodegradable, is colored. It can be used as the main solvent of the agent. The pressure-sensitive copying material using the microcapsules of the present invention is excellent in color development performance. Compared with pressure-sensitive recording materials using microcapsules using a polyurea film material composed of polyurea having an allophanate group and a polycyclic aromatic hydrocarbon solvent that has been widely used as a main solvent, Blueing) has been reduced.

以下、さらに本発明を詳細に説明する。
本発明の感圧記録材料用マイクロカプセルは、直鎖アルキルベンゼンに発色剤が溶解した発色剤溶液をアロファネート基を有するポリウレアからなる膜壁で内包したものである。
Hereinafter, the present invention will be further described in detail.
The microcapsules for pressure-sensitive recording material of the present invention are obtained by encapsulating a color former solution in which a color former is dissolved in linear alkylbenzene with a film wall made of polyurea having an allophanate group.

直鎖アルキルベンゼンとしては、CH・CH2n+1(n=9〜14)で表されるモノ直鎖アルキルベンゼンを用いる。アルキル基の炭素数が8以下では、沸点が低く臭気が強いので好ましくなく、15以上になると発色剤の溶解性が低下するとともに、粘度が高くなり発色が低下するので好ましくない。溶剤として、該直鎖アルキルベンゼンのみを使用することが好ましいが、それ以外の、前記した各種溶剤あるいは希釈剤、補助溶剤を本発明の効果に悪影響を及ぼさない程度で適宜混合して使用することもできる。一般に発色剤用溶剤として広く使用されている多環芳香族炭化水素系溶剤は、アロファネネート基を含有したポリイソシアネートとの相溶性が良く、形成されたカプセル壁膜が膨潤するため、カプセルの外に発色剤溶液が流出し発色への寄与率が低下するので極力使用しない方が好ましい。 As the linear alkyl benzene, a mono linear alkyl benzene represented by C 6 H 5 · C n H 2n + 1 (n = 9 to 14) is used. If the alkyl group has 8 or less carbon atoms, it is not preferable because the boiling point is low and the odor is strong, and if it is 15 or more, the solubility of the color former is lowered and the viscosity is increased and the color development is lowered. As the solvent, it is preferable to use only the linear alkylbenzene, but other various solvents, diluents, and auxiliary solvents may be appropriately mixed and used to the extent that the effect of the present invention is not adversely affected. it can. In general, polycyclic aromatic hydrocarbon solvents widely used as color former solvents have good compatibility with polyisocyanates containing allophanate groups, and the formed capsule wall film swells. Since the color former solution flows out and the contribution to color development is reduced, it is preferable not to use it as much as possible.

本発明で使用される発色剤は感圧記録材料に使用できるものであれば特に限定されず、青色系発色剤や黒色系発色剤など各色の公知のものを用いることできる。例えばトリフェニルメタンフタリド系化合物、フルオラン系化合物、フェノチアジン系化合物、フェノキシジン系化合物、インドリルフタリド系化合物、ローダミンラクタム系化合物、ジフェニルメタン系化合物、トリフェニルメタン系化合物、スピロラン系化合物およびキサンテン系化合物などの発色剤を併用することができる。具体的にはクリスタルバイオレットラクトン、ペンゾイルロイコメチレンブルー、フルオラン系化合物およびインドリルフタリド系化合物などが好ましい。これらは適宜混合してもよい。   The color former used in the present invention is not particularly limited as long as it can be used for a pressure-sensitive recording material, and known ones of various colors such as a blue color former and a black color former can be used. For example, triphenylmethane phthalide compounds, fluorane compounds, phenothiazine compounds, phenoxidine compounds, indolyl phthalide compounds, rhodamine lactam compounds, diphenylmethane compounds, triphenylmethane compounds, spirolane compounds and xanthene compounds Color formers such as compounds can be used in combination. Specifically, crystal violet lactone, benzoyl leucomethylene blue, a fluoran compound, an indolyl phthalide compound, and the like are preferable. These may be mixed as appropriate.

発色剤溶液中の発色剤の濃度は特に制限されないが、通常は直鎖アルキルベンゼンに対して0.01〜20質量%であり、好ましくは1〜10質量%、である。濃度が低いと十分な発色が得られ難くなり、また濃度が高いと溶剤への溶解が困難になるので好ましくない。   The concentration of the color former in the color former solution is not particularly limited, but is usually 0.01 to 20% by mass, preferably 1 to 10% by mass with respect to the linear alkylbenzene. If the concentration is low, it is difficult to obtain sufficient color development, and if the concentration is high, dissolution in a solvent becomes difficult, which is not preferable.

マイクロカプセルの壁膜であるアロファネート基を有するポリウレア膜は、アロファネート基を有するポリイソシアネートと多価アミンを反応させることにより形成される。
アロファネート基を有するポリイソシアネートとしては、マイクロカプセル製造工程において直鎖アルキルベンゼンに溶解するものであれば特に限定されず、市販のものを使用することができる。
A polyurea film having an allophanate group, which is a wall film of a microcapsule, is formed by reacting a polyisocyanate having an allophanate group with a polyvalent amine.
As polyisocyanate which has an allophanate group, if it melt | dissolves in a linear alkylbenzene in a microcapsule manufacturing process, it will not specifically limit, A commercially available thing can be used.

本発明に使用されるアロファネート基を有するポリイソシアネートは、従来公知のいずれの方法で製造してもよいが、単量体イソシアネート化合物と水酸基含有化合物とをウレタン化反応させて、ポリイソシアネートを製造し、次いでアロファネート化触媒を用いてアロファネート化することにより得られる。   The polyisocyanate having an allophanate group used in the present invention may be produced by any conventionally known method, but a polyisocyanate is produced by urethanizing a monomeric isocyanate compound and a hydroxyl group-containing compound. And then allophanatized with an allophanatization catalyst.

イソシアネート化合物単量体としては、例えばn−ヘキシルイソシアネート,シクロヘキシルイソシアネート,フェニルイソシアネート,イソシアナトメタクリレート等の飽和、不飽和の脂肪族、脂環族、芳香族モノイソシアネート化合物単量体、ヘキサメチレンジイソシアネート等の脂肪族ジイソシアネート化合物単量体、シクロヘキサンジイソシアネート等の脂環族ジイソシアネート化合物単量体、フェニレンジイソシアネート、ジフェニルジイソシアネート、ナフタレンジイソシアネート等の芳香族ジイソシアネート化合物単量体、その他に、脂肪族ポリイソシアネート化合物単量体,脂環族ポリイソシアネート化合物単量体,芳香族ポリイソシアネート化合物単量体、また、ダイマー、ビュレット及びイソシアネート化合物と低分子量ポリオールとの付加体等のイソシアネート化合物誘導体を挙げることができる。これらイソシアネート化合物単量体は単独又は併用して用いてもよい。壁膜強度や疎水性液体に対する相溶性の観点から、脂肪族ジイソシアネート化合物単量体、芳香族ジイソシアネート化合物単量体が好ましく、脂肪族ジイソシアネート化合物単量体としてヘキサメチレンジイソシアネートが好適に用いられる。   Examples of the isocyanate compound monomer include saturated and unsaturated aliphatic, alicyclic, and aromatic monoisocyanate compound monomers such as n-hexyl isocyanate, cyclohexyl isocyanate, phenyl isocyanate, and isocyanato methacrylate, and hexamethylene diisocyanate. Aliphatic diisocyanate compound monomers, cycloaliphatic diisocyanate and other alicyclic diisocyanate compound monomers, phenylene diisocyanate, diphenyl diisocyanate, naphthalene diisocyanate and other aromatic diisocyanate compound monomers, and other aliphatic polyisocyanate compound monomers Body, alicyclic polyisocyanate compound monomer, aromatic polyisocyanate compound monomer, dimer, burette and isocyanate compound and low molecular weight And an isocyanate compound derivative, an adduct of a polyol. These isocyanate compound monomers may be used alone or in combination. From the viewpoint of wall film strength and compatibility with hydrophobic liquids, aliphatic diisocyanate compound monomers and aromatic diisocyanate compound monomers are preferred, and hexamethylene diisocyanate is suitably used as the aliphatic diisocyanate compound monomer.

イソシアネート化合物単量体のウレタン化に用いられる水酸基含有化合物としては、例えばヘキサノール等の脂肪族モノアルコール、ヘキサンジオール、グリセリン等の二価もしくは三価又はそれ以上の多価アルコールを挙げることができる。これら水酸基含有化合物は、単独または併用して用いてもよい。ポリイソシアネートは、上記のポリイソシアネート化合物単量体と水酸基含有化合物を当量比(NCO基/OH基)2〜100、反応温度約20〜160℃、反応時間約0.5〜10時間でウレタン化反応させて製造することができる。この反応においては、従来公知のウレタン化触媒等を用いてもよい。反応の進行は反応液のNCO%測定や屈折率測定等で追跡することができる。   Examples of the hydroxyl group-containing compound used for urethanization of the isocyanate compound monomer include aliphatic monoalcohols such as hexanol, and divalent or trivalent or higher polyhydric alcohols such as hexanediol and glycerin. These hydroxyl group-containing compounds may be used alone or in combination. Polyisocyanate is a urethanization of the above polyisocyanate compound monomer and hydroxyl group-containing compound in an equivalent ratio (NCO group / OH group) of 2 to 100, a reaction temperature of about 20 to 160 ° C., and a reaction time of about 0.5 to 10 hours. It can be made to react. In this reaction, a conventionally known urethanization catalyst or the like may be used. The progress of the reaction can be followed by NCO% measurement or refractive index measurement of the reaction solution.

次にポリイソシアネートをアロファネート化触媒の存在下、アロファネート化反応に供する。アロファネート化触媒としては、従来公知のいずれのものでもよく、例えば、テトラメチルアンモニウム、テトラエチルアンモニウム、テトラブチルアンモニウム、トリメチルベンジルアンモニウム等のテトラアルキルアンモニウムのハイドロオキサイドや有機弱酸塩、トリメチルヒドロキシプロピルアンモニウム、トリメチルヒドロキシエチルアンモニウム、トリエチルヒドロキシプロピルアンモニウム、トリエチルヒドロキシエチルアンモニウム等のトリアルキルヒドロキシアルキルアンモニウムのハイドロオキサイドや有機弱酸塩、酢酸、カプロン酸、オクチル酸、ミリスチン酸等のアルキルカルボン酸のアルカリ金属塩、上記アルキルカルボン酸のスズ、亜鉛、鉛等の金属塩、ヘキサメチルシラザン等のアミノシリル基含有化合物、トリエチルアミン,トリブチルアミン,トリエチレンジアミン等の3級アミン、2−ジメチルアミノメチルフェノール、2,4,6−トリス(ジメチルアミノメチル)フェノール等のマンニッヒ塩基、アルミニウムアセチルアセトン、リチウムアセチルアセトン等のようなβ−ジケトンの金属キレート化合物、塩化アルミニウム、三フッ化ホウ素等のフリーデル・クラフツ触媒、チタンテトラブチレート、トリブチルアンチモン酸化物等、種々の有機金属化合物を挙げることができる。   The polyisocyanate is then subjected to an allophanatization reaction in the presence of an allophanatization catalyst. The allophanatization catalyst may be any conventionally known catalyst, for example, tetraalkylammonium hydroxides such as tetramethylammonium, tetraethylammonium, tetrabutylammonium, trimethylbenzylammonium, weak organic acid salts, trimethylhydroxypropylammonium, trimethyl. Hydroxyl ammonium of trialkylhydroxyalkylammonium such as hydroxyethylammonium, triethylhydroxypropylammonium, triethylhydroxyethylammonium and the like, organic weak acid salts, alkali metal salts of alkylcarboxylic acids such as acetic acid, caproic acid, octylic acid, myristic acid, the above alkyl Metal salts such as tin, zinc and lead of carboxylic acid, aminosilyl group-containing compounds such as hexamethylsilazane, Tertiary amines such as reethylamine, tributylamine and triethylenediamine, Mannich bases such as 2-dimethylaminomethylphenol, 2,4,6-tris (dimethylaminomethyl) phenol, β-like such as aluminum acetylacetone and lithium acetylacetone Examples include various metalorganic compounds such as diketone metal chelate compounds, Friedel-Crafts catalysts such as aluminum chloride and boron trifluoride, titanium tetrabutyrate, and tributylantimony oxide.

触媒の使用量は、触媒の種類等により異なるが、通常は、ポリイソシアネート化合物単量体に対して0.0001〜1質量%、好ましくは0.001〜0.1質量%の範囲である。アロファネート化反応は、通常、反応温度約0〜160℃,反応時間約0.5〜20時間で行われる。反応が所望のアロファネート基含量に達した時、例えばリン酸等のアロファネート化触媒失活剤を反応系中に添加してアロファネート化反応を停止させる。所望のアロファネート基含量としては、通常、0.1〜10mmol/gの範囲が適当である。反応溶媒として、トルエンやキシレン等の芳香族炭化水素類や酢酸エチル、酢酸ブチル等のエステル類を用いることができる。   The amount of the catalyst used varies depending on the type of catalyst and the like, but is usually in the range of 0.0001 to 1% by mass, preferably 0.001 to 0.1% by mass with respect to the polyisocyanate compound monomer. The allophanatization reaction is usually performed at a reaction temperature of about 0 to 160 ° C. and a reaction time of about 0.5 to 20 hours. When the reaction reaches the desired allophanate group content, for example, an allophanate catalyst deactivator such as phosphoric acid is added to the reaction system to stop the allophanate reaction. The desired allophanate group content is usually in the range of 0.1 to 10 mmol / g. As the reaction solvent, aromatic hydrocarbons such as toluene and xylene and esters such as ethyl acetate and butyl acetate can be used.

反応停止後、得られたポリイソシアネートはそのまま使用してもよいが、必要により失活触媒を除去し、さらに、例えば薄膜蒸留法や溶剤抽出法等の公知の手法により未反応のポリイソシアネート化合物単量体を除去することが好ましい。
このようにして得られたアロファネート基を有するポリイソシアネートは、通常、イソシアネート基含量が1〜50%であり、また、粘度は500〜50万mPas(25℃)の範囲である。また、必要に応じ、ヒンダードフェノール類,ヒンダードアミン類,有機亜リン酸エステル類等の酸化防止剤,ベンゾトリアゾール類等の紫外線吸収剤等を添加してもよい。マイクロカプセルの製造に際しては、これらアロファネート基を有するポリイソシアネートを単独又は併用して、あるいは他の公知のポリイソシアネートとともに用いることができる。
After stopping the reaction, the obtained polyisocyanate may be used as it is. However, if necessary, the deactivated catalyst is removed, and the unreacted polyisocyanate compound is further removed by a known method such as a thin film distillation method or a solvent extraction method. It is preferable to remove the monomer.
The polyisocyanate having an allophanate group thus obtained usually has an isocyanate group content of 1 to 50% and a viscosity in the range of 500 to 500,000 mPas (25 ° C.). Moreover, you may add antioxidants, such as hindered phenols, hindered amines, and organic phosphites, ultraviolet absorbers, such as benzotriazole, as needed. In the production of microcapsules, these polyisocyanates having allophanate groups can be used alone or in combination, or together with other known polyisocyanates.

多価アミンとしては、分子中に2個以上のNH基、もしくはNH基を有し、乳化分散工程において分散剤水溶液に可溶なものであれば使用可能である。具体的には、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミンなどの脂肪族多価アミン、フェニレンジアミン、キシリレンジアミンなどの芳香族多価アミンおよびトリメチロール化メラミンなどが挙げられる。
多価アミンの使用量は、アロファネート基を有するポリイソシアネートの種類、量により適宜決定されるが、イソシアネート官能基当量/アミン官能基当量の比が0.3以上かつ3以下が適当であり、より好ましくは0.5以上かつ2以下である。0.3より少ない場合にはイソシアネート基と水の反応による発泡現象が顕著になるため好ましくない。また、3を超えると残留するアミン類に起因する着色、および発色後の退色が顕著になるので好ましくない。
Any polyvalent amine can be used as long as it has two or more NH groups or NH 2 groups in the molecule and is soluble in an aqueous dispersion agent solution in the emulsification dispersion step. Specific examples include aliphatic polyamines such as hexamethylenediamine, diethylenetriamine, triethylenetetramine, and tetraethylenepentamine, aromatic polyamines such as phenylenediamine and xylylenediamine, and trimethylolated melamine.
The amount of polyvalent amine used is appropriately determined depending on the type and amount of polyisocyanate having an allophanate group, and the ratio of isocyanate functional group equivalent / amine functional group equivalent is preferably 0.3 or more and 3 or less. Preferably it is 0.5 or more and 2 or less. When it is less than 0.3, the foaming phenomenon due to the reaction of the isocyanate group and water becomes remarkable, which is not preferable. On the other hand, if it exceeds 3, coloring due to the remaining amines and fading after coloring become remarkable, which is not preferable.

本発明のマイクロカプセルは、発色剤溶液の調製工程、発色剤溶液を分散剤水溶液に乳化分散する工程、カプセル化工程により調製される。発色剤溶液は、アロファネート基を有するポリイソシアネートを直鎖アルキルベンゼンに溶解させた混合溶液に発色剤を溶解させて調製することが好ましい。アロファネート基を有するポリイソシアネートの直鎖アルキルベンゼンに対する溶解量は、通常0.5〜50質量%、好ましくは2〜30質量%である。2質量%より低いと、形成される壁膜(ポリウレア膜)の強度が小さくカプセルが破壊され易くなり、30質量%より高いと、壁膜の強度が大きくなりすぎて発色の低下につながるため好ましくない。アロファネート基を有するポリイソシアネートを直鎖アルキルベンゼンに溶解させた混合溶液に溶解させる方法により、直鎖アルキルベンゼンのみを使用した場合に比べて、溶解性の低い発色剤を用いた場合でも十分な濃度で溶解することが可能であり、十分な発色を得ることができる。すなわち、発色剤の溶解量は、アロファネート基を有するポリイソシアネートを直鎖アルキルベンゼンに溶解させた混合溶液に溶解させる場合と、直鎖アルキルベンゼンに直接溶解させる場合とでは、前者の方が多い。   The microcapsules of the present invention are prepared by a step of preparing a color former solution, a step of emulsifying and dispersing the color former solution in a dispersant aqueous solution, and an encapsulation step. The color former solution is preferably prepared by dissolving the color former in a mixed solution in which polyisocyanate having an allophanate group is dissolved in linear alkylbenzene. The dissolution amount of the polyisocyanate having an allophanate group in the linear alkylbenzene is usually 0.5 to 50% by mass, preferably 2 to 30% by mass. When the content is lower than 2% by mass, the strength of the formed wall film (polyurea film) is small and the capsule is likely to be broken. When the content is higher than 30% by mass, the strength of the wall film is excessively increased, leading to a decrease in color development. Absent. Dissolves polyisocyanate having allophanate groups in a mixed solution in which linear alkylbenzene is dissolved. Even when using a coloring agent that has low solubility compared to the case of using only linear alkylbenzene, it dissolves at a sufficient concentration. And sufficient color development can be obtained. That is, the amount of the color former to be dissolved is greater in the former when the polyisocyanate having an allophanate group is dissolved in a mixed solution in which it is dissolved in linear alkylbenzene and when it is directly dissolved in linear alkylbenzene.

乳化分散に用いる乳化分散剤としては例えばゼラチン、アラビアゴム、カゼイン、でんぷん等の天然親水性高分子物質、カルボキシメチルセルロース等の半合成親水性高分子物質、ポリビニルアルコール等の合成親水性高分子物質等が挙げられる。これらと共に、界面活性剤を適宜使用できる。これらの内で、ポリビニルアルコールが好ましい。ポリビニルアルコールとしては、平均重合度が通常は300〜2400の範囲であり、好ましくは1000〜1700である。平均重合度が300より小さいと乳化が困難になり、また2400より大きいと乳化分散時の粘度が高くなり目標の乳化粒子を得難くなるので好ましくない。
乳化分散剤は、あらかじめ水に溶解させて分散剤水溶液とする。分散剤水溶液の濃度は、通常1〜20質量%であり、さらには2〜10質量%の範囲が好ましい。濃度が1質量%より低いと乳化分散に時間を要して生産効率が低下し、得られたカプセル粒子の凝集が起こり易くなるので好ましくない。20質量%より高いと分散剤水溶液の粘度が高く、粒径をコントロールすることが困難になり、かつ粒度分布が広くなることで発色の低下が顕著になるので好ましくない。
Examples of the emulsifying dispersant used for emulsifying dispersion include natural hydrophilic polymer materials such as gelatin, gum arabic, casein, and starch, semi-synthetic hydrophilic polymer materials such as carboxymethyl cellulose, and synthetic hydrophilic polymer materials such as polyvinyl alcohol. Is mentioned. Along with these, surfactants can be used as appropriate. Of these, polyvinyl alcohol is preferred. As the polyvinyl alcohol, the average degree of polymerization is usually in the range of 300 to 2400, preferably 1000 to 1700. If the average degree of polymerization is less than 300, it is difficult to emulsify, and if it is more than 2400, the viscosity during emulsification dispersion becomes high and it becomes difficult to obtain the target emulsified particles.
The emulsifying dispersant is preliminarily dissolved in water to form a dispersant aqueous solution. The density | concentration of dispersing agent aqueous solution is 1-20 mass% normally, Furthermore, the range of 2-10 mass% is preferable. When the concentration is lower than 1% by mass, it is not preferable because it takes time for emulsification and dispersion, the production efficiency is lowered, and aggregation of the obtained capsule particles easily occurs. When the content is higher than 20% by mass, the viscosity of the aqueous dispersant solution is high, it becomes difficult to control the particle size, and the particle size distribution becomes wide, so that the decrease in color development becomes remarkable.

乳化分散は、発色剤溶液と分散剤水溶液を攪拌混合することにより行われる。両液の混合割合は、発色剤溶液と乳化分散剤の固形分量との質量比として、通常は40:1〜5:1であり、さらには20:1〜10:1の範囲であることが好ましい。
発色剤溶液の量が、前記比40:1よりも大きいと乳化分散に時間を要して乳化分散液の安定性が低下し、前記比5:1よりも小さいと乳化力が大きくなりすぎて粒径のコントロールが困難になり、また乳化機の規模が大きくコストも増大するので好ましくない。
乳化分散時の温度は、70〜120℃の範囲が好ましく、70℃未満の場合は、発色剤溶液中の発色剤の析出が発生しやすくなり、120℃より高い場合は、直鎖アルキルベンゼンに溶解したイソシアネートが水と反応し易い状態となり、壁膜反応が開始されて粒子の凝集を起こしやすくなるので好ましくない。水の沸騰点以上の場合は、オートクレーブなどの密閉容器内で乳化分散する必要があり、次のカプセル化においても同様である。
乳化分散工程における攪拌混合機としては、公知のホモジナイザー、超音波ホモジナイザー、ホモミキサー、インラインミキサーなどを用いることができるが、この中でもホモジナイザーの取扱いが容易であり好ましい。攪拌速度は10000〜15000rpmの範囲で、乳化時間は5〜15分内で行うことが好ましい。
The emulsification dispersion is performed by stirring and mixing the color former solution and the aqueous dispersant solution. The mixing ratio of the two liquids is usually 40: 1 to 5: 1 as a mass ratio between the color former solution and the solid content of the emulsifying dispersant, and more preferably in the range of 20: 1 to 10: 1. preferable.
If the amount of the color former solution is larger than the ratio 40: 1, it takes time to emulsify and disperse, and the stability of the emulsified dispersion decreases. If the ratio is less than 5: 1, the emulsifying power becomes too large. It is not preferable because it is difficult to control the particle size, and the scale of the emulsifier is large and the cost increases.
The temperature during emulsification dispersion is preferably in the range of 70 to 120 ° C. When the temperature is less than 70 ° C, the color former is likely to be precipitated in the color former solution, and when it is higher than 120 ° C, it is dissolved in linear alkylbenzene. This is not preferable because the isocyanate thus easily reacts with water, and the wall film reaction is initiated to easily cause aggregation of particles. When the boiling point is higher than the boiling point of water, it is necessary to emulsify and disperse in an airtight container such as an autoclave.
A known homogenizer, ultrasonic homogenizer, homomixer, in-line mixer, or the like can be used as the agitator / mixer in the emulsification dispersion step. Among them, the homogenizer is easy to handle and is preferable. The stirring speed is preferably in the range of 10,000 to 15,000 rpm, and the emulsification time is preferably within 5 to 15 minutes.

カプセル化は、得られた乳化分散液へ多価アミンを添加して行われる。多価アミンは、通常、前記したイソシアネート官能基当量/アミン官能基当量比になるような好適量を水で希釈し、例えば10%になるように希釈するのが好ましい。多価アミンは、徐々に添加するのが好ましい。カプセル化の反応は、通常3〜6時間反応させることにより行われる。発色剤溶液中のアロファネート基を有するポリイソシアネートと多価アミンが重合反応することにより、発色剤溶液の乳化分散粒子界面にアロファネート基を有するポリウレア膜が形成される。カプセル化は乳化分散液を70〜120℃に保持して行うのが好ましい。反応温度70℃未満では製膜中に発色剤の析出が発生しやすくなり、120℃より高いとカプセルの凝集が発生しやすくなるので好ましくない。   Encapsulation is performed by adding a polyvalent amine to the obtained emulsified dispersion. In general, the polyvalent amine is preferably diluted with water at a suitable amount such that the above-mentioned isocyanate functional group equivalent ratio / amine functional group equivalent ratio is diluted to 10%, for example. The polyvalent amine is preferably added gradually. The encapsulation reaction is usually performed by reacting for 3 to 6 hours. A polyurea film having an allophanate group is formed on the emulsified dispersion particle interface of the color former solution by a polymerization reaction between the polyisocyanate having an allophanate group and the polyvalent amine in the color former solution. Encapsulation is preferably carried out while maintaining the emulsified dispersion at 70 to 120 ° C. When the reaction temperature is less than 70 ° C., the color former is likely to be precipitated during film formation, and when it is higher than 120 ° C., capsule aggregation tends to occur, which is not preferable.

以上のようにして、感圧複写紙用マイクロカプセルが分散液として得られる。
マイクロカプセルの体積平均粒径は1μm以上かつ10μm以下であることが好ましい。より好ましい範囲は3μm以上かつ8μm以下である。本発明の製造方法によれば、所望のマイクロカプセルを得ることができる。マイクロカプセルの体積平均粒径が1μm未満の場合は、記録材料の発色が低下し、10μmを超える場合は、記録材料の汚れが発生しやすくなるので好ましくない。
As described above, pressure-sensitive copying paper microcapsules are obtained as a dispersion.
The volume average particle size of the microcapsules is preferably 1 μm or more and 10 μm or less. A more preferable range is 3 μm or more and 8 μm or less. According to the production method of the present invention, desired microcapsules can be obtained. When the volume average particle diameter of the microcapsules is less than 1 μm, the color development of the recording material is lowered, and when the volume average particle diameter exceeds 10 μm, the recording material is likely to be stained, which is not preferable.

得られたマイクロカプセル分散液に、常法によりバインダー、保護剤などを適宜に添加し、感圧複写紙の原紙に塗布し乾燥することにより、発色剤溶液を内包するマイクロカプセルを塗工した感圧複写紙を製造することができる。
バインダーとしてスチレンーブタジエン共重合体ラテックス、澱粉、カルボキシメチルセルロースなどの水溶性バインダーを使用することができ、カプセル保護剤として澱粉粒子、セルロース粉末、タルクなどが使用できる。
The resulting microcapsule dispersion is appropriately added with a binder, a protective agent, etc. by a conventional method, applied to the base paper of pressure-sensitive copying paper, and dried to give a microcapsule containing a color former solution. Pressure copy paper can be manufactured.
A water-soluble binder such as styrene-butadiene copolymer latex, starch, or carboxymethylcellulose can be used as the binder, and starch particles, cellulose powder, talc, or the like can be used as the capsule protective agent.

さらに、発色剤と接触して発色させる電子受容性顕色剤と組み合わせることにより、感圧記録材料とすることができる。
顕色剤として活性白土、酸性白土、カオリン、ゼオライト、ベントナイトなど粘土物質のほか、芳香族カルボン酸、その重合体、それらの金属塩、あるいは多価金属化カルボキシ変性テルペンフェノール樹脂もしくはその誘導体、ならびにこれらの混合物からなる群から選択されるいずれか一つの顕色剤を用いることができる。
Furthermore, a pressure-sensitive recording material can be obtained by combining with an electron-accepting developer that develops color by contact with a color former.
In addition to clay, such as activated clay, acidic clay, kaolin, zeolite, bentonite as a developer, aromatic carboxylic acids, polymers thereof, metal salts thereof, or polyvalent metallized carboxy-modified terpene phenol resins or derivatives thereof, and Any one developer selected from the group consisting of these mixtures can be used.

ここで芳香族カルボン酸とは芳香族環(単環、多環のどれでもよい)に直接カルボキシル基が結合した化合物であって、このような芳香族カルボン酸の例としては、3,5−ジ(α−メチルベンジル)サリチル酸、3−(α−メチルベンジル)−5−(α,α′−ジメチルベンジル)サリチル酸、3−(4′−α,α′ジメチルベンジルフェニル−5−(α,α′−ジメチルベンジル)−サリチル酸、3,5−ジ−tert−ブチルサリチル酸、3,5−ジ−tert−オクチルサリチル酸、3−シクロヘキシル−5−(α,α′−ジメチルベンジル)サリチル酸、3−フェニル−5−(α,α′−ジメチルベンジル)サリチル酸、3、5−ジ(α,α′−ジメチルベンジル)サリチル酸などが例示される。さらにスチレン類を付加させた芳香族カルボン酸、例えばスチレン化サリチル酸なども含まれる。特に好ましい芳香族カルボン酸は、総炭素数が15以上の芳香族カルボン酸である。ただし次に記載の共縮合または共重合モノマーとして使用する時は特に炭素数は限定されない。また、芳香族カルボン酸、特にサリチル酸を縮合モノマーとする縮合または共縮合樹脂も本発明の顕色剤として使用できる。このような共縮合樹脂としては、例えばサリチル酸とジアルコキシキシレンとの共縮合樹脂、サリチル酸とアルデヒドとの縮重合体などが例示される。これらにはさらにトリアルキルベンゼンなどを共縮合モノマーとして加えることができる。またこれら芳香族カルボン酸またはその重合体の金属塩も使用できる。金属塩としては、例えば亜鉛、アルミニウム、バリウム、錫、鉄、カルシウム、鉛、などの多価金属の塩などが挙げられる。   Here, the aromatic carboxylic acid is a compound in which a carboxyl group is directly bonded to an aromatic ring (which may be monocyclic or polycyclic), and examples of such aromatic carboxylic acid include 3,5- Di (α-methylbenzyl) salicylic acid, 3- (α-methylbenzyl) -5- (α, α′-dimethylbenzyl) salicylic acid, 3- (4′-α, α′dimethylbenzylphenyl-5- (α, α'-dimethylbenzyl) -salicylic acid, 3,5-di-tert-butylsalicylic acid, 3,5-di-tert-octylsalicylic acid, 3-cyclohexyl-5- (α, α'-dimethylbenzyl) salicylic acid, 3- Illustrative examples include phenyl-5- (α, α'-dimethylbenzyl) salicylic acid, 3,5-di (α, α'-dimethylbenzyl) salicylic acid, etc. Further, an aromatic carbo to which styrenes are added. Acids such as styrenated salicylic acid are also included, and particularly preferred aromatic carboxylic acids are aromatic carboxylic acids having a total carbon number of 15 or more when used as a co-condensation or copolymerization monomer described below. The number of carbon atoms is not particularly limited, and a condensation or cocondensation resin using an aromatic carboxylic acid, particularly salicylic acid as a condensation monomer, can also be used as the color developer of the present invention. Examples thereof include co-condensation resins with alkoxyxylene, condensation polymers of salicylic acid and aldehydes, etc. Trialkylbenzene can be further added as a co-condensation monomer, and aromatic carboxylic acids or polymers thereof can be added. Metal salts can also be used, such as zinc, aluminum, barium, tin, iron, calcium, etc. Umm, lead, and the like polyvalent metal salts, such as.

また多価金属化カルボキシ変性テルペンフェノール樹脂またはその誘導体としては、環状モノテルペン類とフェノール類を酸性触媒存在下に縮合し、これにカルボキシル基を常法に従い導入した生成物を多価金属化して得られる多価金属化カルボキシ変性テルペンフェノール樹脂などを例示することができる。環状モノテルペン類としては、ピネン、リモネン、テルピネン、メンタジエン、ガムテレピン油、ジペンテンなど、フェノール類としては石炭酸(フェノール)、アルキルフェノール、アルコキシフェノール、ハロゲン化フェノールなどのモノフェノール類またはレゾルシン、カテコールなどの多価フェノール類などである。例えば、フェノール類としてのフェノールと環状モノテルペン類としてのα−ピネンとを三フツ化ほう素触媒などの酸性触媒により縮合し、金属ナトリウムなどのアルカリ金属化合物存在下で炭酸ガスを吹き込みカルボキシル基を導することにより得られたカルボキシル化テルペンフェノール樹脂を、次いで塩化亜鉛などの多価金属またはその塩により公知の方法により多価金属化し多価金属化カルボキシル変性テルペンフェノール樹脂が製造される。
顕色剤としての芳香族カルボン酸、その重合体、それらの金属塩と多価金属化カルボキシル変性テルペンフェノール樹脂とは混合して用いることもできる。この混合は溶剤中、あるいは分散媒中で行うかあるいは溶融混合して行うことができる。
次に、本発明の実施の形態を実施例により説明する。
In addition, polyvalent metallized carboxy-modified terpene phenol resin or derivatives thereof are obtained by condensing cyclic monoterpenes and phenols in the presence of an acidic catalyst, and then converting the product into which carboxyl groups are introduced according to a conventional method to polyvalent metallization. The resulting polyvalent metallized carboxy-modified terpene phenol resin can be exemplified. Examples of cyclic monoterpenes include pinene, limonene, terpinene, mentadiene, gum turpentine oil, and dipentene. Examples of phenols include monophenols such as carboxylic acid (phenol), alkylphenols, alkoxyphenols, and halogenated phenols. Such as polyhydric phenols. For example, phenol as a phenol and α-pinene as a cyclic monoterpene are condensed by an acidic catalyst such as a boron trifluoride catalyst, and carbon dioxide is blown in the presence of an alkali metal compound such as sodium metal to form a carboxyl group. The carboxylated terpene phenol resin obtained by conducting is then polyvalent metalized with a polyvalent metal such as zinc chloride or a salt thereof by a known method to produce a polyvalent metallized carboxyl-modified terpene phenol resin.
Aromatic carboxylic acid as a developer, a polymer thereof, a metal salt thereof and a polyvalent metallized carboxyl-modified terpene phenol resin can also be used as a mixture. This mixing can be performed in a solvent, a dispersion medium, or by melt mixing.
Next, embodiments of the present invention will be described by way of examples.

直鎖アルキルベンゼン(新日本石油化学株式会社製、商品名:「アルケンL」、アルキル基の炭素数10〜14)85質量部とアロファネート基を含有するポリイソシアネート(旭化成ケミカルズ株式会社製、商品名「デュラネートTSA−100」(NCO含有量=20.7質量%、粘度=451mPa.s/25℃)10質量部とを混合したものに、発色剤としてクリスタルバイオレットラクトン2質量部を130℃で溶解して発色剤溶液(A液)を調製した。次に、水190質量部にポリビニルアルコール(株式会社クラレ製、商品名:「PVA−217EE」)10質量部を95℃で溶解して分散剤水溶液(B液)を調整した。80℃恒温されたB液にホモジナイザー(特殊機化工業株式会社製、商品名「TKホモミキサーMarkII」)をセットし、80℃に恒温されたA液を徐々に加え乳化分散を行った。得られた乳化分散液は300rpmで攪拌され、その中にヘキサメチレンジアミン2.9質量部を水20質量部に溶解した液を、80℃に恒温した状態で徐々に添加してカプセル化(重合反応)を行った。反応は80℃で6時間行った。マイクロカプセルの平均粒径は、コールターカウンター(コールター社製、機器名「マルチサイザーII」)で測定したところ5.2μmであり、また、マイクロカプセル分散液中の固形分は34.4質量%であった。得られたマイクロカプセル分散液100質量部に対し、カルボキシメチルセルロースの5質量%水溶液27質量部、SBRラテックスの50質量%水溶液2.7質量部、不溶性澱粉(平均粒径15μm)13.5質量部を混合した。また塗布量を調整するため、水を1100質量部添加して、40g/mの原紙上にマイヤーバーコーターを用いて塗布し、乾燥質量5.0g/mの感圧複写紙(上用紙)を得た。 Polyisocyanate containing 85 parts by mass of linear alkylbenzene (manufactured by Shin Nippon Petrochemical Co., Ltd., trade name: “alkene L”, alkyl group having 10 to 14 carbon atoms) and allophanate group (trade name “made by Asahi Kasei Chemicals Corporation” 2 parts by mass of crystal violet lactone as a color former were dissolved at 130 ° C. in a mixture of 10 parts by mass of “Duranate TSA-100” (NCO content = 20.7 mass%, viscosity = 451 mPa.s / 25 ° C.). Next, 10 parts by weight of polyvinyl alcohol (manufactured by Kuraray Co., Ltd., trade name: “PVA-217EE”) in 190 parts by weight of water was dissolved at 95 ° C. to obtain a dispersant aqueous solution. (Solution B) Set a homogenizer (trade name “TK Homomixer Mark II” manufactured by Tokushu Kika Kogyo Co., Ltd.) to the B solution maintained at 80 ° C. The liquid A was gradually added and emulsified and dispersed at 80 ° C. The obtained emulsified dispersion was stirred at 300 rpm, and 2.9 parts by mass of hexamethylenediamine was added to 20 parts by mass of water. The dissolved liquid was gradually added in a state of constant temperature at 80 ° C. to perform encapsulation (polymerization reaction), and the reaction was performed for 6 hours at 80 ° C. The average particle size of the microcapsules was measured by Coulter Counter (Coulter Co., Ltd.). Product, product name “Multisizer II”) was 5.2 μm, and the solid content in the microcapsule dispersion was 34.4% by mass. On the other hand, 27 parts by mass of a 5% by mass aqueous solution of carboxymethyl cellulose, 2.7 parts by mass of a 50% by mass aqueous solution of SBR latex, and 13.5 parts by mass of insoluble starch (average particle size 15 μm) were mixed. . Further, in order to adjust the coating amount, water was added 1100 parts by mass, it was applied using a Mayer bar coater on the 40 g / m 2 base paper, pressure-sensitive dry weight 5.0 g / m 2 copy paper (top Paper).

アロファネート基を含有するポリイソシアネートとして、デュラネートTSR−100(NCO含有量=20.4質量%、粘度=322mPa.s/25℃)(旭化成ケミカルズ株式会社製)を用いた以外は、実施例1と同様である。得られたマイクロカプセルの平均粒径は、4.9μmであり、また固形分は34.3質量%であった。塗布紙として乾燥質量5.0g/mの感圧複写紙(上用紙)を得た。 Example 1 except that Duranate TSR-100 (NCO content = 20.4 mass%, viscosity = 322 mPa.s / 25 ° C.) (manufactured by Asahi Kasei Chemicals Corporation) was used as the polyisocyanate containing allophanate groups. It is the same. The average particle diameter of the obtained microcapsules was 4.9 μm, and the solid content was 34.3 mass%. A pressure-sensitive copying paper (upper paper) having a dry mass of 5.0 g / m 2 was obtained as a coated paper.

アロファネート基を含有するポリイソシアネートとして、デュラネートTSS−100(NCO含有量=17.8質量%、粘度=387mPa.s/25℃)(旭化成ケミカルズ株式会社製)を用いた以外は、実施例1と同様である。得られたマイクロカプセルの平均粒径は、5.1μmであり、また固形分は34.5質量%であった。塗布紙として乾燥質量5.0g/mの感圧複写紙(上用紙)を得た。 Example 1 except that Duranate TSS-100 (NCO content = 17.8 mass%, viscosity = 387 mPa.s / 25 ° C.) (manufactured by Asahi Kasei Chemicals Corporation) was used as the polyisocyanate containing allophanate groups. It is the same. The average particle size of the obtained microcapsules was 5.1 μm, and the solid content was 34.5% by mass. A pressure-sensitive copying paper (upper paper) having a dry mass of 5.0 g / m 2 was obtained as a coated paper.

発色剤であるクリスタルバイオレットラクトンの代わりに、黒染料として3−イソブチルエチルアミノ−6−メチル−7−アニリノフルオラン6質量部(日本曹達株式会社製、商品名「PSD−184」)を用いた以外は、実施例1と同様である。得られたマイクロカプセルは平均粒径5.2μmであり、また固形分は36.0質量%であった。塗布紙として乾燥質量6.0g/mの感圧複写紙(上用紙)を得た。 Instead of crystal violet lactone as a color former, 6 parts by mass of 3-isobutylethylamino-6-methyl-7-anilinofluorane (trade name “PSD-184” manufactured by Nippon Soda Co., Ltd.) is used as a black dye. Example 1 is the same as in Example 1. The obtained microcapsules had an average particle size of 5.2 μm and a solid content of 36.0% by mass. A pressure-sensitive copying paper (upper paper) having a dry mass of 6.0 g / m 2 was obtained as a coated paper.

[比較例1]
発色剤としてクリスタルバイオレットラクトン2質量部を直鎖アルキルベンゼン(新日本石油化学株式会社製、商品名:「アルケンL」)85質量部に130℃で溶解し、80℃に恒温してA液を調整した。次に、分散剤水溶液として水155.4質量部にメチルビニルエーテル−無水マレイン酸共重合体の22.4質量%水溶液(日昇興業株式会社製、商品名「MICRON8020」)44.6質量部を溶解し、80℃に恒温してB液を調整した。80℃恒温されたB液にホモジナイザー(特殊機化工業株式会社製、商品名「TKホモミキサーMarkII」)をセットし、80℃に恒温されたA液を加え乳化分散を行った。この乳化分散液に水23.5質量部にエーテル化トリメチロールメラミン樹脂80質量%水溶液(住友化学工業製、商品名「スミテックスレジンM3」)23.5質量部を溶解したものを添加した。反応は80℃で6時間保ち重合を完結させた。反応終了後にカプセルスラリーを偏光顕微鏡で観察した結果、発色剤の結晶が多量に存在していることを確認した。
[Comparative Example 1]
2 parts by weight of crystal violet lactone as a color former is dissolved in 85 parts by weight of linear alkylbenzene (trade name: “Alken L”, manufactured by Nippon Petrochemical Co., Ltd.) at 130 ° C., and is kept at 80 ° C. to prepare solution A. did. Next, 44.6 parts by mass of a 22.4 mass% aqueous solution of methyl vinyl ether-maleic anhydride copolymer (manufactured by Nissho Kogyo Co., Ltd., trade name “MICRON 8020”) is added to 155.4 parts by mass of water as a dispersant aqueous solution. It melt | dissolved and the B liquid was adjusted by making constant temperature at 80 degreeC. A homogenizer (trade name “TK Homomixer Mark II” manufactured by Tokushu Kika Kogyo Co., Ltd.) was set in the liquid B kept at 80 ° C., and the liquid A kept at 80 ° C. was added and emulsified and dispersed. To this emulsified dispersion, 23.5 parts by mass of water and 23.5 parts by mass of an etherified trimethylolmelamine resin 80% by mass aqueous solution (manufactured by Sumitomo Chemical Co., Ltd., trade name “Smitex Resin M3”) were added. The reaction was held at 80 ° C. for 6 hours to complete the polymerization. As a result of observing the capsule slurry with a polarizing microscope after completion of the reaction, it was confirmed that a large amount of crystals of the color former were present.

[比較例2]
直鎖アルキルベンゼン(新日本石油化学株式会社製、商品名:「アルケンL」)の代わりに、フェニルキシリルエタン(新日本石油化学株式会社製、商品名:「SAS−296」)100質量部を用いた以外は実施例1と同様に行った。
[Comparative Example 2]
Instead of linear alkylbenzene (manufactured by Shin Nippon Petrochemical Co., Ltd., trade name: “Alken L”), 100 parts by mass of phenylxylylethane (manufactured by Shin Nippon Petrochemical Co., Ltd., trade name: “SAS-296”) The same procedure as in Example 1 was performed except that it was used.

[比較例3]
アロファネート基を含有するポリイソシアネートの代わりに、ヘキサメチレンイソシアネートのビウレット体ポリイソシアネート(住友バイエルウレタン株式会社製、商品名「デスモジュールN3200」)を使用した以外は、実施例1と同様に行った。
[Comparative Example 3]
It carried out similarly to Example 1 except having used the biuret-type polyisocyanate (Sumitomo Bayer Urethane Co., Ltd. make, brand name "Desmodur N3200") of hexamethylene isocyanate instead of the polyisocyanate containing an allophanate group.

[比較例4]
アロファネート基を含有するポリイソシアネートの代わりに、ヘキサメチレンイソシアネートのイソシアネレート体ポリイソシアネート(住友バイエルウレタン株式会社製、商品名「デスモジュールN3300」)を使用した以外は、実施例1と同様に行った。
[Comparative Example 4]
Except for using polyisocyanate containing allophanate group, the same procedure as in Example 1 was performed except that hexamethylene isocyanate isocyanate polyisocyanate (manufactured by Sumitomo Bayer Urethane Co., Ltd., trade name “Desmodur N3300”) was used. It was.

[比較例5]
直鎖アルキルベンゼン(新日本石油化学株式会社製、商品名:「アルケンL」)の代わりに、1−フェニルヘプタン(ALDRICH社製、純度98%品)100質量部を用いた以外は実施例1と同様に行った。得られたマイクロカプセルの平均粒径は、5.0μmであり、また固形分は34.3質量%であった。
[Comparative Example 5]
Example 1 is used except that 100 parts by mass of 1-phenylheptane (ALDRICH, purity 98%) is used instead of linear alkylbenzene (trade name: “Alken L”, manufactured by Nippon Petrochemical Co., Ltd.). The same was done. The average particle diameter of the obtained microcapsules was 5.0 μm, and the solid content was 34.3 mass%.

[比較例6]
直鎖アルキルベンゼン(新日本石油化学製、商品名:「アルケンL」)の代わりに、1−フェニルペンタデカン(Fluka製、純度97%品)100質量部を用いた以外は実施例1と同様に行った。得られたマイクロカプセルの平均粒径は、5.1μmであり、また固形分は34.6質量%であった。塗布紙は乾燥質量5.0g/mの感圧複写紙(上用紙)を得た。
[Comparative Example 6]
The same procedure as in Example 1 was carried out except that 100 parts by mass of 1-phenylpentadecane (manufactured by Fluka, purity 97%) was used instead of linear alkylbenzene (manufactured by Nippon Petrochemical, trade name: “Alken L”). It was. The average particle size of the obtained microcapsules was 5.1 μm, and the solid content was 34.6% by mass. As the coated paper, a pressure-sensitive copying paper (upper paper) having a dry mass of 5.0 g / m 2 was obtained.

以下に、各実施例および比較例の評価結果を表−1に示す。
1) ポリイソシアネートの溶解性
疎水性液体へのポリイソシアネート溶解の有無を目視で評価した。
○:ほとんど溶けている
△:一部溶けていない
×:ほとんど溶けていない
2) 発色剤再結晶
マイクロカプセルの外側に放出した、発色剤再結晶の有無を偏光顕微鏡で評価した。
○:ほとんど存在しない
△:一部存在する
×:多量に存在する
3) ブルーイング試験
マイクロカプセル分散液に水を加え、固形分濃度が20質量%になるように調整し、マイヤーバーコーターNO.14を用いて、3,5−ジ(α−メチルベンジル)サリチル酸亜鉛塩を塗布した下用紙の塗布面に塗布し、乾燥後の塗布面の発色状態を目視で評価した。
○:ほとんど発色してない
△:薄く発色している
×:濃く発色している
4)発色性
得られた上用紙と3,5−ジ(α−メチルベンジル)サリチル酸亜鉛塩を塗布した下用紙の塗布面を対向するように重ね合わせ、衝撃式印刷機を用いて発色させた。発色後60分後の下用紙の反射率を反射率計NDY−1D(日本電色工業社製)で測定し、式−1で発色強度(%)を求めて比較した。数値が高いほど発色が良好なことを示す。
発色強度(%)=(I−I)×100/I (式−1)
(I:発色前の下用紙の反射率、I:発色後の下用紙の反射率を示す。)
5)臭気
上用紙に塗布されているカプセルを破壊させ、溶剤の臭気を6人のパネラーの臭覚により判定した。
○:臭気なし
△:微臭あり
×:臭気あり
The evaluation results of each example and comparative example are shown in Table 1 below.
1) Solubility of polyisocyanate The presence or absence of polyisocyanate dissolution in a hydrophobic liquid was visually evaluated.
◯: Almost dissolved Δ: Partially undissolved ×: Almost undissolved 2) Color former recrystallization The presence or absence of color former recrystallization released to the outside of the microcapsules was evaluated with a polarizing microscope.
○: Almost absent Δ: Partially present ×: Existent in large quantities 3) Blueing test Water was added to the microcapsule dispersion to adjust the solid content concentration to 20% by mass. 14 was applied to the coated surface of the lower paper coated with 3,5-di (α-methylbenzyl) salicylic acid zinc salt, and the colored state of the coated surface after drying was visually evaluated.
○: Almost not colored Δ: Lightly colored ×: Darkly colored 4) Color development The obtained upper paper and the lower paper coated with 3,5-di (α-methylbenzyl) salicylic acid zinc salt The coated surfaces were overlapped so as to face each other, and color was developed using an impact printing machine. The reflectance of the lower paper 60 minutes after the color development was measured with a reflectometer NDY-1D (manufactured by Nippon Denshoku Industries Co., Ltd.), and the color development intensity (%) was determined and compared using Formula-1. The higher the value, the better the color development.
Color intensity (%) = (I 0 −I) × 100 / I 0 (Formula-1)
(I 0 : Reflectance of the lower paper before color development, I: Reflectance of the lower paper after color development)
5) Odor The capsule applied to the upper paper was broken, and the odor of the solvent was judged by the odor of the six panelists.
○: No odor △: Slight odor ×: Odor

Figure 2007237696
Figure 2007237696

Claims (4)

電子供与性発色剤をCH・CH2n+1(n=9〜14)で表される直鎖アルキルベンゼンに溶解してなる発色剤溶液を内包し、壁膜がアロファネート基を有するポリウレアからなる感圧記録材料用マイクロカプセル。 From a polyurea containing an allophanate group, including a color former solution in which an electron donating color former is dissolved in a linear alkylbenzene represented by C 6 H 5 · C n H 2n + 1 (n = 9 to 14) A microcapsule for pressure-sensitive recording material. 電子供与性発色剤をCH・CH2n+1(n=9〜14)で表される直鎖アルキルベンゼンとアロファネート基を有するポリイソシアネートの混合物に溶解させて発色剤溶液を調製し、該発色剤溶液を分散剤水溶液中に乳化分散し、該分散液に多価アミンを添加して重合反応させ該発色剤溶液の乳化粒子を内包するポリウレア壁膜を形成させることを特徴とする感圧記録材料用マイクロカプセルの製造方法。 A color former solution is prepared by dissolving an electron donating color former in a mixture of a linear alkylbenzene represented by C 6 H 5 .C n H 2n + 1 (n = 9 to 14) and a polyisocyanate having an allophanate group, Pressure sensitive, characterized in that a color former solution is emulsified and dispersed in a dispersant aqueous solution, and a polyurea wall film containing emulsified particles of the color former solution is formed by adding a polyvalent amine to the dispersion and performing a polymerization reaction. A method for producing microcapsules for recording materials. 前記乳化分散および前記重合反応を、それぞれ70〜120℃で行うことを特徴とする請求項2記載の感圧記録材料用マイクロカプセルの製造方法。   The method for producing microcapsules for pressure-sensitive recording material according to claim 2, wherein the emulsification dispersion and the polymerization reaction are each carried out at 70 to 120 ° C. 請求項1に記載のマイクロカプセルと電子受容性顕色剤とからなる感圧記録材料。   A pressure-sensitive recording material comprising the microcapsule according to claim 1 and an electron-accepting developer.
JP2006066720A 2006-03-10 2006-03-10 Microcapsule for pressure-sensitive recording material, method for producing the same, and pressure-sensitive recording material using the same Active JP4739995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006066720A JP4739995B2 (en) 2006-03-10 2006-03-10 Microcapsule for pressure-sensitive recording material, method for producing the same, and pressure-sensitive recording material using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006066720A JP4739995B2 (en) 2006-03-10 2006-03-10 Microcapsule for pressure-sensitive recording material, method for producing the same, and pressure-sensitive recording material using the same

Publications (2)

Publication Number Publication Date
JP2007237696A true JP2007237696A (en) 2007-09-20
JP4739995B2 JP4739995B2 (en) 2011-08-03

Family

ID=38583673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006066720A Active JP4739995B2 (en) 2006-03-10 2006-03-10 Microcapsule for pressure-sensitive recording material, method for producing the same, and pressure-sensitive recording material using the same

Country Status (1)

Country Link
JP (1) JP4739995B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012196382A (en) * 2011-03-23 2012-10-18 Nippon Paper Industries Co Ltd Microcapsule and sanitary paper to which the microcapsule is adhered
CN115968390A (en) * 2020-08-31 2023-04-14 富士胶片株式会社 Coating liquid for forming pressure measurement layer, method for producing pressure measurement layer, and non-planar part-containing article with pressure measurement layer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0247085A (en) * 1988-08-09 1990-02-16 Nippon Petrochem Co Ltd Pressure sensitive copy material
JPH0852939A (en) * 1994-08-11 1996-02-27 Takeda Chem Ind Ltd Polyisocyanate for microcapsule and microcapsule using the same
JPH10137578A (en) * 1996-11-08 1998-05-26 Bayer Ag Microcapsule using iminooxadiazine dion polyisocyanate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0247085A (en) * 1988-08-09 1990-02-16 Nippon Petrochem Co Ltd Pressure sensitive copy material
JPH0852939A (en) * 1994-08-11 1996-02-27 Takeda Chem Ind Ltd Polyisocyanate for microcapsule and microcapsule using the same
JPH10137578A (en) * 1996-11-08 1998-05-26 Bayer Ag Microcapsule using iminooxadiazine dion polyisocyanate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012196382A (en) * 2011-03-23 2012-10-18 Nippon Paper Industries Co Ltd Microcapsule and sanitary paper to which the microcapsule is adhered
CN115968390A (en) * 2020-08-31 2023-04-14 富士胶片株式会社 Coating liquid for forming pressure measurement layer, method for producing pressure measurement layer, and non-planar part-containing article with pressure measurement layer

Also Published As

Publication number Publication date
JP4739995B2 (en) 2011-08-03

Similar Documents

Publication Publication Date Title
US6586107B2 (en) Microcapsules having polyurea walls
TW200906642A (en) Material for pressure measurement
JPH04266974A (en) Water-base self-contained printing ink having high solid content
JPS5829239B2 (en) pressure sensitive recording unit
US4269893A (en) Recording material containing a novel color developer
JP4739995B2 (en) Microcapsule for pressure-sensitive recording material, method for producing the same, and pressure-sensitive recording material using the same
US4688060A (en) Pressure sensitive manifold paper
IE48723B1 (en) Pigment having a chromogenic material absorbed thereon and record receiving sheet having a coating thereof
JPH0550397B2 (en)
JP3644700B2 (en) Microcapsules and manufacturing method thereof
JPS6050155B2 (en) Microcapsules for carbon-free copy paper
JP3573517B2 (en) Developer composition for pressure-sensitive recording and pressure-sensitive recording sheet
JPS63262281A (en) Microcapsule sheet for pressure-sensitive copying
JP3320534B2 (en) Developer composition and pressure-sensitive recording sheet
JPS6236738B2 (en)
JP3403440B2 (en) Manufacturing method of microcapsules
JP2946232B2 (en) Pressure-sensitive copying material
JP3580588B2 (en) Developer composition for pressure-sensitive recording and pressure-sensitive recording sheet
JPS647597B2 (en)
JP2607925B2 (en) Pressure-sensitive copying material
JP3844882B2 (en) Pressure sensitive recording material
JP3580587B2 (en) Developer composition for pressure-sensitive recording and pressure-sensitive recording sheet
JPH115026A (en) Color developer containing microcapsule and recording material using the same
JP3573513B2 (en) Developer composition for pressure-sensitive recording and pressure-sensitive recording sheet
JP2002036729A (en) Composition for recording image and sheet for recording image using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110428

R150 Certificate of patent or registration of utility model

Ref document number: 4739995

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250