JP2007237057A - Method for purifying aqueous solution - Google Patents

Method for purifying aqueous solution Download PDF

Info

Publication number
JP2007237057A
JP2007237057A JP2006061602A JP2006061602A JP2007237057A JP 2007237057 A JP2007237057 A JP 2007237057A JP 2006061602 A JP2006061602 A JP 2006061602A JP 2006061602 A JP2006061602 A JP 2006061602A JP 2007237057 A JP2007237057 A JP 2007237057A
Authority
JP
Japan
Prior art keywords
aqueous solution
exchange resin
anion exchange
amberlite
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006061602A
Other languages
Japanese (ja)
Other versions
JP5028826B2 (en
Inventor
Masao Tamura
雅男 田村
Tsunehiko Kurata
恒彦 倉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2006061602A priority Critical patent/JP5028826B2/en
Publication of JP2007237057A publication Critical patent/JP2007237057A/en
Application granted granted Critical
Publication of JP5028826B2 publication Critical patent/JP5028826B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a purification method that effectively desalinates and purifies salts contained in an aqueous water with a chromatography and deteriorates no performance in desalination and purification. <P>SOLUTION: This is a purification method of an aqueous solution, wherein the aqueous solution contains cations of bivalence or more and inorganic salts separated by the chromatography with an anion exchange resin as a separating agent. Preferably, the weight mean particle diameter of the strong basic anion exchange resin is 200 μm or more and 500 μm or less. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は水溶液の精製方法に関する。詳しくは、水溶液に含まれる塩類をクロマトグラフィーにより効果的に脱塩精製しうる水溶液の精製方法に関する。   The present invention relates to a method for purifying an aqueous solution. Specifically, the present invention relates to a method for purifying an aqueous solution capable of effectively desalting and purifying salts contained in the aqueous solution by chromatography.

糖類等の水溶液を精製する場合、該水溶液に含まれる塩類を、カチオン交換樹脂を用いたクロマトグラフィーにより脱塩精製することは広く知られている(特許文献1等)。
クロマトグラフィーによる脱塩精製は、用いるイオン交換樹脂を再生する必要がないため、塩酸やNaOH等の薬剤が不要であり、薬剤廃液の排出がないことから、経済面、及び環境汚染防止の面から有効な手法である。
When purifying an aqueous solution of saccharides or the like, it is widely known to desalinate and purify salts contained in the aqueous solution by chromatography using a cation exchange resin (Patent Document 1 and the like).
Since desalting and purification by chromatography does not require regeneration of the ion exchange resin used, chemicals such as hydrochloric acid and NaOH are unnecessary, and there is no discharge of chemical waste liquid. From the aspect of economic and environmental pollution prevention. It is an effective method.

一般に脱塩精製にはNa形、又はK形カチオン交換樹脂が用いられるが、精製前の原料となる水溶液に、カルシウムイオンやマグネシウムイオン等の2価以上のカチオンが含まれていると用いるイオン交換樹脂が2価イオン形になり脱塩能力が著しく低下する。このため2価以上のカチオンが含まれている原料の場合は、原料水溶液を軟化処理又は薬剤処理することにより、2価以上のカチオンを除去した後、クロマトグラフィーによる脱塩精製を行っているのが現状である。   In general, Na-type or K-type cation exchange resins are used for desalting and purification, but ion exchange is used when divalent or higher cations such as calcium ions and magnesium ions are contained in the aqueous solution used as a raw material before purification. The resin becomes divalent ion form and the desalting ability is remarkably lowered. For this reason, in the case of raw materials containing divalent or higher cations, the salt solution is softened or treated with chemicals to remove divalent or higher cations and then desalted and purified by chromatography. Is the current situation.

なお、強塩基アニオン交換樹脂をクロマト分離に用いる技術としては、蛋白質分解液を、強塩基性陰イオン交換樹脂を分離剤としてクロマトグラフィーにより有価物含有溶液と酸水溶液とに分離する蛋白質分解液からの酸除去方法が開示されている(特許文献2)。しかしながら、この技術は水溶液の脱塩技術に関するものではなく、特に2価以上のカチオンを含む水溶液の脱塩精製を効果的に行うことの示唆もなく、本発明の技術分野に転用することは当業者において全く想到されるものではなかった。
特開昭63−251100号公報 特開平7−24209号公報
In addition, as a technique for using a strong base anion exchange resin for chromatographic separation, a protein decomposition solution is separated from a protein decomposition solution that is separated into a valuable substance-containing solution and an acid aqueous solution by chromatography using a strong base anion exchange resin as a separating agent. An acid removal method is disclosed (Patent Document 2). However, this technique is not related to a desalting technique for an aqueous solution, and there is no suggestion that the desalting and purification of an aqueous solution containing a divalent or higher cation can be effectively performed. It was not conceived at all by the contractor.
JP 63-251100 A Japanese Patent Laid-Open No. 7-24209

しかしながら、脱塩精製の前に、上記軟化処理を行う場合は、弱酸性カチオン交換樹脂の使用が、薬剤処理を行う場合は、水酸化ナトリウム、炭酸ナトリウム、水酸化カルシウム等の薬剤の使用が必要となるため、経済面、及び環境汚染防止の面からこれら前処理の省略が望まれていた。   However, when performing the above softening treatment before desalting and purification, it is necessary to use a weakly acidic cation exchange resin, and when performing chemical treatment, it is necessary to use a chemical such as sodium hydroxide, sodium carbonate, or calcium hydroxide. Therefore, it is desired to omit these pretreatments from the viewpoints of economy and environmental pollution.

本発明者等は上記課題を解決するため鋭意検討した結果、従来のカチオン交換樹脂を用いたクロマトグラフィーによる精製方法の脱塩精製能力が著しく低下する原因に着目し、本発明に至った。即ち、カチオン交換樹脂の脱塩精製能力が著しく低下するのは、原料となる水溶液に含まれるカルシウムイオンやマグネシウムイオン等の2価以上のカチオンによって該カチオン交換樹脂が2価以上のイオン形となることが原因である。そこで、本発明者等は、カルシウムイオンやマグネシウムイオン等の2価以上のカチオンを吸着しないアニオン交換樹脂を用いることを見出し、さらに、クロマトグラフィーによる脱塩精製能力に優れたアニオン交換樹脂を見出すことにより、従来のカチオン交換樹脂と同様の脱塩精製能力を有しながら、脱塩精製能力の低下がない水溶液の精製方法を発明するに至った。   As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention have focused on the cause that the desalting and purification ability of the conventional purification method using chromatography using a cation exchange resin is remarkably reduced, leading to the present invention. That is, the desalting and refining ability of the cation exchange resin is remarkably reduced because the cation exchange resin is converted into a divalent or higher ionic form by a divalent or higher cation such as calcium ion or magnesium ion contained in the aqueous solution. Is the cause. Therefore, the present inventors have found that an anion exchange resin that does not adsorb divalent or higher cation such as calcium ion or magnesium ion is used, and furthermore, finds an anion exchange resin excellent in desalting purification ability by chromatography. As a result, the inventors have invented a method for purifying an aqueous solution that has the same desalting and purification ability as that of the conventional cation exchange resin but does not have a decrease in the desalting and purification ability.

即ち、本発明の要旨は以下の通りである。
(1)水溶液の精製方法であって、該水溶液が2価以上のカチオンを含有し、且つアニオン交換樹脂を分離剤として、クロマトグラフィーにより塩類を分離することを特徴とする水溶液の精製方法。
(2)アニオン交換樹脂の重量平均粒子径が100μm以上500μm以下である前記(1)に記載の水溶液の精製方法。
(3)水溶液が、有価物を含有する前記(1)又は(2)に記載の水溶液の精製方法。
That is, the gist of the present invention is as follows.
(1) A method for purifying an aqueous solution, wherein the aqueous solution contains a divalent or higher cation, and salts are separated by chromatography using an anion exchange resin as a separating agent.
(2) The method for purifying an aqueous solution according to (1), wherein the weight average particle diameter of the anion exchange resin is 100 μm or more and 500 μm or less.
(3) The method for purifying an aqueous solution according to (1) or (2) above, wherein the aqueous solution contains a valuable material.

本発明によれば、クロマトグラフィーにより水溶液に含まれる塩類を効果的に脱塩精製し、且つ脱塩精製能力の低下がない精製方法を提供することが出来る。   According to the present invention, it is possible to provide a purification method in which salts contained in an aqueous solution are effectively desalted and purified by chromatography and the desalting and purification ability is not reduced.

以下に本発明の実施の形態を詳細に説明するが、これらは本発明の実施態様の一例であり、本発明はこれらの内容に限定されるものではない。
[1]アニオン交換樹脂
[1−1]重量平均粒子径
本発明に用いられるアニオン交換樹脂は、重量平均粒子径が、通常100μm以上、好ましくは150μm以上、更に好ましくは200μm以上、特に好ましくは220μmであり、通常500μm以下、好ましくは400μm以下、更に好ましくは360μm以下である。重量平均粒子径が小さすぎると圧力損失が増大するため流速を下げざるを得ず生産性が低下する。また、大きすぎると分離性能が低下するため十分な脱塩精製が行われない。
Embodiments of the present invention will be described in detail below, but these are examples of embodiments of the present invention, and the present invention is not limited to these contents.
[1] Anion exchange resin [1-1] Weight average particle diameter The anion exchange resin used in the present invention has a weight average particle diameter of usually 100 μm or more, preferably 150 μm or more, more preferably 200 μm or more, and particularly preferably 220 μm. It is usually 500 μm or less, preferably 400 μm or less, and more preferably 360 μm or less. If the weight average particle size is too small, the pressure loss increases, so the flow rate must be reduced, and the productivity is lowered. Moreover, since separation performance will fall when too large, sufficient desalting refinement | purification is not performed.

上記重量平均粒子径を有する本発明のアニオン交換樹脂は、例えばMA100SS(三菱化学社製が好適であるが、同等の特性を有するアニオン交換樹脂であればその効果は特に制限されるものではない。
本発明の粒径の重量平均粒子径を得るためには、重合時の攪拌速度により調整する事が出来る。又、例えば特願昭63−0116916に記載の均一粒径製造法においては、モノマー流速、分散媒中の分散安定剤の種類や濃度により調整する事が出来るので好適である。
[1−2]粒度分布
本発明に用いられるアニオン交換樹脂は、粒度分布がシャープであることが好ましく、下記算出法により示される均一係数が通常1.6以下、好ましくは1.3以下、更に好ましくは1.1以下である。
<均一係数算出法>
篩目の径が1180μm、850μm、710μm、600μm、425μm、300μmの篩を、下方になる程、篩目の径が小さくなる様に積み重ねる。この積み重ねた篩をバットの上に置き、最上段に積み重ねられた1180μmの篩の中にアニオン交換樹脂を約100mL入れる。
The anion exchange resin of the present invention having the above-mentioned weight average particle size is, for example, MA100SS (made by Mitsubishi Chemical Corporation), but the effect is not particularly limited as long as it is an anion exchange resin having equivalent characteristics.
In order to obtain the weight average particle size of the particle size of the present invention, it can be adjusted by the stirring speed at the time of polymerization. For example, the uniform particle size production method described in Japanese Patent Application No. 63-0116916 is preferable because it can be adjusted by the monomer flow rate and the type and concentration of the dispersion stabilizer in the dispersion medium.
[1-2] Particle Size Distribution The anion exchange resin used in the present invention preferably has a sharp particle size distribution, and the uniformity coefficient shown by the following calculation method is usually 1.6 or less, preferably 1.3 or less, Preferably it is 1.1 or less.
<Uniformity coefficient calculation method>
The sieves having a sieve mesh diameter of 1180 μm, 850 μm, 710 μm, 600 μm, 425 μm, and 300 μm are stacked so that the sieve mesh diameter decreases as it goes downward. The stacked sieve is placed on a vat, and about 100 mL of anion exchange resin is placed in the 1180 μm sieve stacked on the top.

水道水につないだゴム管から樹脂上にゆるやかに水を注ぎ小粒を下の方へ篩別する。1180μmの篩の中に残ったアニオン交換樹脂は、さらに以下の方法により、厳密に小粒を識別する。即ち、別のバットの1/2位の深さまで水を満たし、1180μmの篩を前記バットの中で上下及び回転運動を与えて動揺させることを繰り返し、小粒を識別する。
前記バットの中の小粒は次の850μmの篩の上へ戻し、また1180μmの篩の上に残ったアニオン交換樹脂はさらに別のバットに採取する。篩の目にアニオン交換樹脂が詰まっていれば、篩をバットに逆に置き、水道水につないだゴム管に密着させ、水を強く流して篩の目に詰まったアニオン交換樹脂を取り出す。取り出したアニオン交換樹脂は、1180μmの篩上に残ったアニオン交換樹脂を採取したバットに移し、合計をメスシリンダーで容積を測定する。この容積をa(mL)とする。1180μmの篩を通ったアニオン交換樹脂は850μm、710μm、600μm、425μm、300μmの篩についてそれぞれ同様の操作を行いメスシリンダーを用いて容積bmL、cmL、dmL、emL、fmLを求め、最後に300μmの篩を通った樹脂の容積をメスシリンダーで測定しgmLとする。
Gently pour water onto the resin from a rubber tube connected to tap water and screen the small particles downward. The anion exchange resin remaining in the 1180 μm sieve is further strictly identified as a small particle by the following method. That is, water is filled to a depth of about 1/2 of another bat, and a 1180 μm sieve is repeatedly shaken by applying up and down and rotating motion in the bat to identify small particles.
The small particles in the vat are returned to the next 850 μm sieve, and the anion exchange resin remaining on the 1180 μm sieve is collected in another vat. If the sieve is clogged with anion exchange resin, place the sieve on the vat in reverse, closely contact with a rubber tube connected to tap water, and remove the clogged anion exchange resin by strongly flowing water. The extracted anion exchange resin is transferred to a vat from which the anion exchange resin remaining on the 1180 μm sieve is collected, and the volume is measured with a graduated cylinder. Let this volume be a (mL). The anion exchange resin that passed through the 1180 μm sieve was subjected to the same operation for each of the 850 μm, 710 μm, 600 μm, 425 μm, and 300 μm sieves to obtain volumes bmL, cmL, dmL, emL, and fmL using a graduated cylinder. The volume of the resin that has passed through the sieve is measured with a graduated cylinder to give gmL.

V=a+b+c+d+e+f+gとし、a/V×100=a’(%)、b/V×100=b’(%)、c/V×100=c’(%)、d/V×100=d’(%)、e/V×100=e’(%)、f/V×100=f’(%)、g/V×100=g’(%)を算出する。
前記a’〜g’より片軸に各篩の残留分累計(%)、他の軸に篩目の径(mm)をとり、これを対数確率紙上にプロットする。残留分の多い順に3点を取り、この3点を出来るだけ満足するような線を引きこの線から残留分累計が90%に相当する篩目の径(mm)を求めこれを有効径とする。
V = a + b + c + d + e + f + g, a / V × 100 = a ′ (%), b / V × 100 = b ′ (%), c / V × 100 = c ′ (%), d / V × 100 = d ′ ( %), E / V × 100 = e ′ (%), f / V × 100 = f ′ (%), g / V × 100 = g ′ (%).
From the above a ′ to g ′, the residual amount cumulative (%) of each sieve is taken on one axis, and the diameter (mm) of the sieve mesh is taken on the other axis, and this is plotted on the logarithmic probability paper. Take 3 points in the order of the remaining amount, draw a line that satisfies these 3 points as much as possible, and obtain the diameter (mm) of the sieve mesh corresponding to 90% of the remaining amount from this line, and use this as the effective diameter. .

前記有効径と同一要領により、残留分累計40%に対応する篩目の径(mm)を求め、次式(I)によって均一係数を求める。
均一係数={残留分累計が40%に相当する篩目の径(mm)}/{有効径(mm)}・・・(I)
なお、上記均一粒係数の算出法は、例えば三菱化学株式会社イオン交換樹脂事業部発行「ダイヤイオンI基礎編」第14版(平成11年9月1日)第139〜141頁に記載される公知の算出法である。
In the same manner as the effective diameter, the diameter (mm) of the sieve mesh corresponding to the remaining cumulative 40% is obtained, and the uniformity coefficient is obtained by the following equation (I).
Uniformity coefficient = {diameter of mesh (mm)} corresponding to 40% cumulative residue / {effective diameter (mm)} (I)
In addition, the calculation method of the said uniform grain coefficient is described in Mitsubishi Chemical Corporation ion exchange resin division "Diaion I basics edition" 14th edition (September 1, 1999) pp. 139-141, for example. This is a known calculation method.

上記均一係数を有する本発明のアニオン交換樹脂は、例えば既知の分級方法により得られる。分級法としては、篩による分別、水流を用いる水篩、気流を用いる風篩などが利用できる。又、特願昭63−0116916に記載されている均一粒径製造技術によっても、上記均一係数を有する本発明のアニオン交換樹脂を得ることが出来る。
[1−3]その他物性
その他、本発明に用いられるアニオン交換樹脂は、水分含有率が、通常40重量%以上、好ましくは45重量%以上であり、通常60重量%以下、好ましくは55重量%以下である。水分含有率が少なすぎると、クロマト分離性が不十分であり、水分含有率が多すぎると樹脂の強度が低くなるため、寿命が短くなる。
[1−4]アニオン交換樹脂
本発明に用いられるアニオン交換樹脂は、通常アンモニウム基を交換基とする樹脂であり、強塩基性アニオン交換樹脂、及び弱塩基性アニオン交換樹脂のいずれのアニオン交換樹脂も使用できる。また、その交換基の種類としては、トリメチルアンモニウム基等を交換基に有するI型、及びジメチルエタノールアンモニウム基交換基を有するII型のいずれのアニオン交換樹脂も使用できる。
The anion exchange resin of the present invention having the above-mentioned uniformity coefficient can be obtained by, for example, a known classification method. As the classification method, classification using a sieve, a water sieve using a water stream, a wind sieve using an air stream, and the like can be used. The anion exchange resin of the present invention having the above-mentioned uniformity coefficient can also be obtained by the uniform particle size production technique described in Japanese Patent Application No. 63-0116916.
[1-3] Other physical properties In addition, the anion exchange resin used in the present invention has a water content of usually 40% by weight or more, preferably 45% by weight or more, and usually 60% by weight or less, preferably 55% by weight. It is as follows. If the water content is too low, the chromatographic separation is insufficient, and if the water content is too high, the strength of the resin is lowered and the life is shortened.
[1-4] Anion exchange resin The anion exchange resin used in the present invention is usually a resin having an ammonium group as an exchange group, and is any of a strong basic anion exchange resin and a weakly basic anion exchange resin. Can also be used. As the type of the exchange group, any of anion exchange resins of type I having a trimethylammonium group or the like as an exchange group and type II having a dimethylethanolammonium group exchange group can be used.

また、本発明に用いられるアニオン交換樹脂は、Cl形、SO形のいずれのイオン形のものも使用できる。この場合、アニオンの交換によるイオン排除効果を乱さないことやアニオンの転換による樹脂容積の変化を起こさない観点から、脱塩精製の対象となる水溶液中の酸根イオンの種類に対応したイオン形を使用するか、またはそのイオン形に調整して使用するのが好ましい。 Further, the anion exchange resin used in the present invention may be either an ion form of Cl form or SO 4 form. In this case, the ion form corresponding to the type of acid radical ion in the aqueous solution to be desalted and purified is used from the viewpoint of not disturbing the ion exclusion effect due to anion exchange and causing no change in resin volume due to anion conversion. Or adjusted to its ionic form for use.

また、本発明に用いられるアニオン交換樹脂は、ゲル型、ポーラス型のいずれの樹脂構造のものも使用できる。
また、本発明に用いられるアニオン交換樹脂は、樹脂骨格が種々の化学構造を有するものを使用できる。具体的には、例えばジビニルベンゼン等で架橋されたポリスチレン、及びポリアクリル酸、架橋ポリ(メタ)アクリル酸エステル、フェノール樹脂等の合成高分子や、セルロース等の天然に生産される多糖類の架橋体等が挙げられる。
In addition, the anion exchange resin used in the present invention may be either gel type or porous type resin structure.
Further, as the anion exchange resin used in the present invention, those having a resin skeleton having various chemical structures can be used. Specifically, for example, polystyrene cross-linked with divinylbenzene or the like, and synthetic polymers such as polyacrylic acid, cross-linked poly (meth) acrylic acid ester, phenol resin, and naturally-produced polysaccharides such as cellulose. Examples include the body.

また、本発明においては、原料水溶液の腐敗、雑菌繁殖等を防止することを目的として操作温度を高温にする場合は、耐熱性を有するアニオン交換樹脂を用いることが出来、このようなアニオン交換樹脂としては、例えば特開平7−42105号公報に記載の、下記一般式(I)で表される構成単位と不飽和炭化水素基含有架橋性単量体から誘導される構成単位とを含有する架橋性アニオン交換樹脂を用いることが出来る。   Further, in the present invention, when the operating temperature is increased for the purpose of preventing the aqueous solution of the raw material from decaying, miscellaneous bacteria, etc., an anion exchange resin having heat resistance can be used. For example, as described in JP-A-7-42105, a crosslink containing a structural unit represented by the following general formula (I) and a structural unit derived from an unsaturated hydrocarbon group-containing crosslinkable monomer Anionic exchange resins can be used.

Figure 2007237057
Figure 2007237057

(一般式(I)中、Aは炭素数1から4の直鎖状又は分岐状アルキレン基を表わし、Bは炭素数4から8の直鎖状のアルキレン基を表わし、R 、R 、R は同じか又は異
なっていてもよい炭素数1から4のアルキル基、或いはアルカノール基を示し、Xはアンモニウム基に配位した対イオンを示し、ベンゼン環Dは、アルキル基或いはハロゲン原子で置換されていてもよい。)
上記アニオン交換樹脂は、一般式(I)で示される構成単位を、通常5〜99.9モル%、好ましくは10〜99モル%含有する。また、不飽和炭化水素基含有架橋性単量体から誘導される構成単位を、通常0.1〜50モル%、好ましくは0.2%〜25モル%含有する。さらに必要に応じて前記構成単位とは異なる不飽和炭化水素基含有単量体を0〜50モル%、好ましくは0%〜20モル%含有する。
(In general formula (I), A represents a linear or branched alkylene group having 1 to 4 carbon atoms, B represents a linear alkylene group having 4 to 8 carbon atoms, R 1 , R 2 , R 3 represents an alkyl group having 1 to 4 carbon atoms, which may be the same or different, or an alkanol group, X represents a counter ion coordinated to an ammonium group, and benzene ring D represents an alkyl group or a halogen atom. May be substituted.)
The said anion exchange resin contains 5-99.9 mol% normally, preferably 10-99 mol% of structural units shown by general formula (I). Further, the structural unit derived from an unsaturated hydrocarbon group-containing crosslinkable monomer is usually contained in an amount of 0.1 to 50 mol%, preferably 0.2 to 25 mol%. Furthermore, 0-50 mol%, preferably 0-20 mol% of an unsaturated hydrocarbon group-containing monomer different from the structural unit is contained as necessary.

不飽和炭化水素基含有架橋性単量体は、水不溶性架橋共重合体を製造するために必要であり、例えばジビニルベンゼン、ポリビニルベンゼン、アルキルジビニルベンゼン、ジアルキルジビニルベンゼン、エチレングリコール(ポリ)(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、(ポリ)エチレンビス(メタ)アクリルアミド等が挙げられ、好ましくはジビニルベンゼンである。   An unsaturated hydrocarbon group-containing crosslinkable monomer is necessary for producing a water-insoluble cross-linked copolymer. For example, divinylbenzene, polyvinylbenzene, alkyldivinylbenzene, dialkyldivinylbenzene, ethylene glycol (poly) (meta ) Acrylate, polyethylene glycol di (meth) acrylate, (poly) ethylenebis (meth) acrylamide and the like, and divinylbenzene is preferable.

前記構成単位とは異なる不飽和炭化水素基含有単量体は、前記アニオン交換樹脂の耐熱性等の機能を低減させない範囲において用いることができ、例えばスチレン、アルキルスチレン、ポリアルキルスチレン、(メタ)アクリル酸エステル、(メタ)アクリル酸、アクリロニトリル等が挙げられる。
また、本発明に用いられるアニオン交換樹脂としては、市販のものを使用することができる。以下に、強塩基性アニオン交換樹脂の具体例を示す。
The unsaturated hydrocarbon group-containing monomer different from the structural unit can be used as long as the functions such as heat resistance of the anion exchange resin are not reduced. For example, styrene, alkyl styrene, polyalkyl styrene, (meth) Acrylic acid ester, (meth) acrylic acid, acrylonitrile, etc. are mentioned.
Moreover, as an anion exchange resin used for this invention, a commercially available thing can be used. Specific examples of the strongly basic anion exchange resin are shown below.

三菱化学社製:DIAION SA10A、DIAION SA11A、DIAION
SA12A、DIAION SA20A、DIAION SA21A、DIAION PA306、DIAION PA308、DIAION PA312、DIAION PA316、DIAION PA318、DIAION PA406、DIAION PA408、DIAION PA412、DIAION PA416、DIAION PA418、HPA25、HPA75。
Mitsubishi Chemical Corporation: DIAION SA10A, DIAION SA11A, DIAION
SA12A, DIAION SA20A, DIAION SA21A, DIAION PA306, DIAION PA308, DIAION PA312, DIAION PA316, DIAION PA318, DIAION PA406, DIAION PA408, DIAION PA412, DIAIONPA412, DIAIONPA412

ロームアンドハース社製:AMBERLITE IRA400J、AMBERLITE
IRA401、AMBERLITE IRA402J、AMBERLITE IRA402BL、AMBERLITE IRA404J、AMBERLITE IRA410J、AMBERLITE IRA411、AMBERLITE IRA458RF、AMBERLITE IRA478RF、AMBERLITE IRA900J、AMBERLITE IRA904、AMBERLITE IRA958、AMBERLITE FPA40、AMBERLITE FPA90、AMBERLITE FPA91、AMBERLITE FPA97、AMBERLITE FPA98、AMBERJET 4200、AMBERJET 4400、AMBERJET 4600。
Made by Rohm and Haas: AMBERLITE IRA400J, AMBERLITE
IRA401, AMBERLITE IRA402J, AMBERLITE IRA402BL, AMBERLITE IRA404J, AMBERLITE IRA410J, AMBERLITE IRA411, AMBERLITE IRA458RF, AMBERLITE IRA478RF, AMBERLITE IRA900J, AMBERLITE IRA904, AMBERLITE IRA958, AMBERLITE FPA40, AMBERLITE FPA90, AMBERLITE FPA91, AMBERLITE FPA97, AMBERLITE FPA98, AMBERJET 4200, AMBERJET 4400, AMBERJET 4600.

ランクセス社製:LEWATIT MonoPlus M500、LEWATIT MonoPlus M504、LEWATIT MonoPlus M600、LEWATIT MonoPlus MP500、LEWATIT MonoPlus MP500A、LEWATIT MP600、LEWATIT S6368、LEWATIT S6328A、LEWATIT S7268、LEWATIT VPOC1074、LEWATIT MonoPlus M800。   Lanxess Corporation: LEWATIT MonoPlus M500, LEWATIT MonoPlus M504, LEWATIT MonoPlus M600, LEWATIT MonoPlus MP500, LEWATIT MonoPlus MP500A, LEWATIT MP600, LEWATIT S6368, LEWATIT S6328A, LEWATIT S7268, LEWATIT VPOC1074, LEWATIT MonoPlus M800.

ダウ社製:DOWEX 22、DOWEX MARATHON A、DOWEX MARATHON A2、DOWEX MARATHON MSA、DOWEX MARATHON MSA−2、DOWEX MONOSPHERE 550A、DOWEX SBR C、DOWEX SBR−P C、DOWEX 1×2、DOWEX 1×2、DOWEX 1×4、DOWEX 1×8。   Made by Dow: DOWEX 22, DOWEX MARATHON A, DOWEX MARATHON A2, DOWEX MARATHON MSA, DOWEX MARATHON MSA-2, DOWEX MONOSPHERE 550A, DOWEX SBR C, DOWEX SBR C, DOWEX SBR C, DOWEX SBR C, DOWEX SBR C 1x4, DOWEX 1x8.

室町ケミカル社製:ムロマック 1×2、ムロマック 1×4、ムロマック 1×8
ピューロライト社製:A200、A300、A400、A420S、A500、A500P、A505、A510、A600、SGA400、SGA600、A555、A850、A860、A870。
以下に、弱塩基性アニオン交換樹脂の具体例を示す。
Muromachi Chemical Co., Ltd .: Muromac 1 × 2, Muromac 1 × 4, Muromac 1 × 8
Made by Purolite: A200, A300, A400, A420S, A500, A500P, A505, A510, A600, SGA400, SGA600, A555, A850, A860, A870.
Specific examples of weakly basic anion exchange resins are shown below.

三菱化学社製:DIAION WA10、DIAION WA11、DIAION WA20、DIAION WA21、DIAION WA30。
ロームアンドハース社製:AMBERLITE IRA67、AMBERLITE IRA 743、AMBERLITE IRA96SB、AMBERLITE FPA51、AMBERLITE FPA53、AMBERLITE FPA54、AMBERLITE FPA55、AMBERJET 4002、AMBERJET 4002、AMBERJET 4002、DUOLITE A7。
Mitsubishi Chemical Corporation: DIAION WA10, DIAION WA11, DIAION WA20, DIAION WA21, DIAION WA30.
Rohm and Haas: AMBERLITE IRA67, AMBERLITE IRA 743, AMBERLITE IRA96SB, AMBERLITE FPA51, AMBERLITE FPA53, AMBERLITE FPA54, AMBERLITE FPA55, AMBERJET 4002 AMBERJET 4002

ランクセス社製:LEWATIT MonoPlus MP 62、LEWATIT MonoPlus MP 64、LEWATIT S4228、LEWATIT S4328、LEWATIT S4428、LEWATIT S4528、LEWATIT S4268、LEWATIT VPOC1072。
ダウ社製:DOWEX 66、DOWEX MARATHON WBA、DOWEX MARATHON WBA2、DOWEX MONOSPHERE 77。
LANXESS: LEWATIT MonoPlus MP 62, LEWATIT MonoPlus MP 64, LEWATIT S4228, LEWATIT S4328, LEWATIT S4428, LEWATIT S4528, LEWATIT S4268, LEWATITV4
Dow: DOWEX 66, DOWEX MARATHON WBA, DOWEX MARATHON WBA2, DOWEX MONOSPHERE 77.

ピューロライト社製:A100、A103S、A105、A830、A835、A845。
[2]水溶液
本発明において、脱塩精製の対象となる水溶液は、有価物、塩類及びその他の夾雑物(アミノ酸、有機酸塩、タンパク質)を含有する水溶液をいい、例えば食品分野における廃糖蜜の砂糖回収、及び圧搾果汁等に含まれる糖液の精製、発酵分野における生成物の精製、バイオ分野等における酸分解物の中和液等が挙げられる。
[2−1]有価物
ここで、有価物としては、製品として取得する目的物のことをいい、例えば砂糖、果糖、ぶどう糖等の糖類、メタノール、エタノール、エチレングリコール、グリセリン、キシロース、エリスリトール等の糖アルコール類、および発酵生成物等が挙げられる。
[2−2]塩類
また、塩類は、特に2価以上のカチオンを含む無機又は有機の塩類である場合が本発明にとって有効である。
Made by Purolite: A100, A103S, A105, A830, A835, A845.
[2] Aqueous solution In the present invention, the aqueous solution to be desalted and purified refers to an aqueous solution containing valuables, salts and other contaminants (amino acids, organic acid salts, proteins). Examples include sugar recovery, purification of sugar liquid contained in pressed fruit juice, etc., purification of products in the field of fermentation, neutralization liquid of acid degradation products in the field of biotechnology and the like.
[2-1] Valuables Here, valuables refer to target products obtained as products, such as sugars such as sugar, fructose, and glucose, methanol, ethanol, ethylene glycol, glycerin, xylose, erythritol, and the like. Examples thereof include sugar alcohols and fermentation products.
[2-2] Salts Further, the salt is particularly effective for the present invention when it is an inorganic or organic salt containing a divalent or higher cation.

2価のカチオンとしては、例えばマグネシウムイオン、カルシウムイオン、鉄イオン、亜鉛イオン、銅イオン、バリウムイオン、ニッケルイオン等が挙げられる。
3価のカチオンとしては、鉄イオン、アルミニウムイオン、クロムイオン、マンガンイオン等が挙げられる。
以上のような塩類の具体例としては、無機塩類としては、例えば塩化カルシウム、水酸化カルシウム、塩化マグネシウム、硫酸マグネシウムが挙げられる。また、有機塩類としては、カルシウム及びマグネシウムのアミノ酸塩及びその他の有機酸塩等が挙げられる。[3]水溶液の精製方法
本発明の水溶液の精製方法は、上記[1]章にて詳述したアニオン交換樹脂を分離剤として、上記[2]章にて詳述した水溶液をクロマトグラフィーにより塩類及びその他の夾雑物を分離精製することを特徴とする。
Examples of the divalent cation include magnesium ion, calcium ion, iron ion, zinc ion, copper ion, barium ion, nickel ion and the like.
Examples of trivalent cations include iron ions, aluminum ions, chromium ions, and manganese ions.
Specific examples of such salts include inorganic chlorides such as calcium chloride, calcium hydroxide, magnesium chloride, and magnesium sulfate. Examples of the organic salts include calcium and magnesium amino acid salts and other organic acid salts. [3] Method for Purifying Aqueous Solution The method for purifying an aqueous solution of the present invention comprises using the anion exchange resin described in detail in the above section [1] as a separating agent and chromatographing the aqueous solution detailed in the above section [2] by chromatography. And other impurities are separated and purified.

具体的には、上記[1]章にて詳述したアニオン交換樹脂をカラムに充填し、上記[2]章にて詳述した水溶液及び展開液をカラムに通液することによりクロマト分離を行う。クロマトグラフィー展開液(溶離液)としては通常水が用いられる。
カラムへの水溶液の供給量及び展開液である水の通液量は使用する分離剤の種類及び粒度並びに水溶液の組成等によって異なるが、単カラムでバッチ操作のクロマトグラフィーを行う場合は、良好な精製液を得る観点から、水溶液供給量は通常0.05L/L樹脂以上、0.3L/L樹脂以下である。また、生産性及び分離性の観点から、水の通液速度は面積速度(SV)として通常0.5((L/時間)/L樹脂)以上、3((L/時間)/L樹脂)以下である。
Specifically, chromatographic separation is performed by filling the column with the anion exchange resin detailed in section [1] and passing the aqueous solution and developing liquid detailed in section [2] through the column. . As the chromatographic developing solution (eluent), water is usually used.
The amount of aqueous solution supplied to the column and the amount of water used as the developing solution vary depending on the type and particle size of the separating agent used, the composition of the aqueous solution, etc., but it is good when performing batch operation chromatography on a single column. From the viewpoint of obtaining a purified solution, the supply amount of the aqueous solution is usually 0.05 L / L resin or more and 0.3 L / L resin or less. From the viewpoint of productivity and separability, the water flow rate is usually 0.5 ((L / hour) / L resin) or more and 3 ((L / hour) / L resin) as the area velocity (SV). It is as follows.

操作温度は高い方が分離には好適であるが、アニオン交換樹脂の耐熱温度範囲内において適宜選択される。本発明においては、樹脂の性能安定性の観点から、通常55℃以上、好ましくは60℃以上であり、通常85℃以下、好ましくは70℃以下である。
尚、温度調整のため加温若しくは冷却する場合、カラムを恒温水槽に浸漬するか、若しくは加温又は冷却のための装置をカラムに設置する。
A higher operating temperature is suitable for the separation, but is appropriately selected within the heat resistant temperature range of the anion exchange resin. In the present invention, from the viewpoint of the performance stability of the resin, it is usually 55 ° C. or higher, preferably 60 ° C. or higher, and usually 85 ° C. or lower, preferably 70 ° C. or lower.
In addition, when heating or cooling for temperature adjustment, the column is immersed in a constant temperature water tank, or an apparatus for heating or cooling is installed in the column.

カラムとしては通常の耐圧クロマトカラムが用いられ、例えばステンレス製金属管や内面をゴムライニングした鉄管や肉厚のガラス管等が用いられる。
カラム管の太さは、内径が通常0.3m以上、好ましくは0.5m以上であり、通常5
m以下、好ましくは3m以下である。また、カラム管の長さは、通常0.5m以上、好ましくは1m以上であり、通常3m以下、好ましくは2m以下である。
As the column, a normal pressure-resistant chromatographic column is used, and for example, a stainless steel metal tube, an iron tube whose inner surface is rubber-lined, a thick glass tube, or the like is used.
The column tube has an inner diameter of usually 0.3 m or more, preferably 0.5 m or more, usually 5
m or less, preferably 3 m or less. The length of the column tube is usually 0.5 m or more, preferably 1 m or more, and usually 3 m or less, preferably 2 m or less.

本発明は所定量毎にクロマト分離を行なう回分法にも或いは連続的に大量のクロマト分離を行なう連続法(移動床法、擬似移動床法等)にも適用することができる。
図2に擬似移動床法クロマト分離に用いる装置の一例を示す。
図中、1〜8は分離塔、10は有価物含有溶液抜出し管、11〜18は有価物含有溶液抜出し弁、20は塩類水溶液抜出し管、21〜28は塩類水溶液抜出し弁、30は溶離水供給管、31〜38は溶離水供給弁、40は原料水溶液供給管、41〜48は原料水溶液供給弁、51〜58はポンプをそれぞれ示す。
The present invention can be applied to a batch method in which chromatographic separation is performed for each predetermined amount or a continuous method (moving bed method, simulated moving bed method, etc.) in which a large amount of chromatographic separation is continuously performed.
FIG. 2 shows an example of an apparatus used for simulated moving bed chromatography separation.
In the figure, 1 to 8 are separation columns, 10 is a valuable material-containing solution extraction pipe, 11 to 18 are valuable material-containing solution extraction valves, 20 is a salt aqueous solution extraction pipe, 21 to 28 are salt aqueous solution extraction valves, and 30 is elution water. Supply pipes, 31 to 38 are elution water supply valves, 40 is a raw material aqueous solution supply pipe, 41 to 48 are raw material aqueous solution supply valves, and 51 to 58 are pumps.

次に、回分法を用いた場合の本発明の作用を説明する。まず、分離剤としてのアニオン交換樹脂を充填したカラムの入口には原液供給タンクと展開液供給タンクが接続管を通して接続され、またカラムの出口には複数の溶出液取出し容器が接続される。分離剤には予め水が供給されている。
上記装置において、まず原液供給タンクより所定量の水溶液がカラム入口を通してカラム内に注入される。次に弁を切換え、供給タンクより溶離水としての水をカラム内に注入する。吸着力の差によって塩類と有価物との間において分離が行われる。この場合、吸着力の小さい塩類が先にカラム出口より溶出し、次いで有価物が遅れて溶出してくるので、それぞれの取出し容器に取出せば、分離された塩類と有価物とをそれぞれ得ることができる。
Next, the operation of the present invention when the batch method is used will be described. First, a raw solution supply tank and a developing solution supply tank are connected through a connecting pipe to an inlet of a column filled with an anion exchange resin as a separating agent, and a plurality of eluate extraction containers are connected to an outlet of the column. Water is supplied to the separating agent in advance.
In the above apparatus, first, a predetermined amount of aqueous solution is injected into the column through the column inlet from the stock solution supply tank. Next, the valve is switched, and water as eluent water is injected into the column from the supply tank. Separation takes place between salts and valuables due to the difference in adsorption power. In this case, the salt having a small adsorption power elutes first from the column outlet, and then the valuable material elutes with a delay, so that it is possible to obtain separated salts and valuable materials by taking out each of the extraction containers. it can.

このような分離操作におけるクロマトグラムとしては、例えば図1に示すようなものが
得られる。図1において横軸は溶出液量(mL)、縦軸は各成分の濃度(g/L)を表わ
す。図1において、溶出液量120mL〜165mLの区分は塩類の濃度が高い部分であるからこれらを塩類区分として分取し、また溶出液量215mL〜270mLの区分は糖類の濃度が高い部分であるからこれを糖類区分として分取する。
尚、溶出液量165mL〜215mLの区分においては塩類水溶液中にかなりの量の糖類が含有されている。そのため、上記溶出液量(165mL〜215mL)の区分で分取を行ない、この採取した溶出液を濃縮し原料水溶液に戻してもよい。
As a chromatogram in such a separation operation, for example, the one shown in FIG. 1 is obtained. In FIG. 1, the horizontal axis represents the amount of eluate (mL), and the vertical axis represents the concentration (g / L) of each component. In FIG. 1, the eluate volume of 120 mL to 165 mL is a portion where the concentration of salts is high, so these are separated as salt categories, and the eluate amount of 215 mL to 270 mL is a portion where the concentration of sugars is high. This is fractionated as a saccharide segment.
In the eluate volume of 165 mL to 215 mL, a considerable amount of saccharide is contained in the aqueous salt solution. Therefore, fractionation may be performed in the above eluate amount (165 mL to 215 mL), and the collected eluate may be concentrated and returned to the raw material aqueous solution.

以上の操作により原料水溶液区分に含有されている糖類を有効に回収でき、回収率を上昇することができる。   By the above operation, saccharides contained in the raw material aqueous solution section can be effectively recovered, and the recovery rate can be increased.

以下、本発明を実施例によりさらに詳細に説明するが、本発明はその要旨を越えない限り、以下の実施例に限定されるものではない。
参考例1(1価カチオンの分離)
食塩30.0g、及びぶどう糖70.0gを脱塩水100.0gに溶解し全固形分濃度が50wt%(食塩30%、ぶどう糖70%)の水溶液を得た。
上記の水溶液を原液とし、この原液30mLを強塩基性陰イオン交換樹脂MA01SS(三菱化学社製)の塩化物イオン形312mLを充填し(内径2cm×長さ100cm)、恒温水槽に浸漬して60℃に維持したカラムに156mL/時間の流速で注入した、次いで溶離水を注入し原液の展開分離を行った。その結果、図1に示したと同様にまずカラム内に存在した水が押し出され、次いで食塩が溶出し、最後にぶどう糖が溶出した。
溶出液量0ml〜120mlは固形分がなく、120ml〜186mlを塩類区分、186mlから270mlを糖類区分としてそれぞれ採取した。各区分における成分の濃度及び回収率を測定した結果を表1に示す。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to a following example, unless the summary is exceeded.
Reference Example 1 (Separation of monovalent cations)
30.0 g of sodium chloride and 70.0 g of glucose were dissolved in 100.0 g of demineralized water to obtain an aqueous solution having a total solid content concentration of 50 wt% (sodium chloride 30%, glucose 70%).
Using the above aqueous solution as a stock solution, 30 ml of this stock solution was filled with 312 ml of a chloride ion form of strongly basic anion exchange resin MA01SS (manufactured by Mitsubishi Chemical) (inner diameter 2 cm × length 100 cm) and immersed in a constant temperature water bath. The column maintained at ° C. was injected at a flow rate of 156 mL / hour, then elution water was injected to develop and separate the stock solution. As a result, as shown in FIG. 1, first, water present in the column was pushed out, then sodium chloride was eluted, and finally glucose was eluted.
The eluate amounts of 0 ml to 120 ml had no solid content, and 120 ml to 186 ml were collected as the salt category and 186 ml to 270 ml as the saccharide category. Table 1 shows the results of measuring the concentration and recovery rate of the components in each category.

〔表1〕
固形分濃度(wt%) 塩類含量(%) ぶどう糖含量(%) ぶどう糖回収率(%)
塩類区分 13.1 59.6 40.4 28.4
糖類区分 11.0 4.8 95.2 71.6

この結果、純度95%のぶどう糖が71.6%の回収率で得られことがわかる。
[Table 1]
Solid content (wt%) Salt content (%) Glucose content (%) Glucose recovery (%)
Salt category 13.1 59.6 40.4 28.4
Saccharide classification 11.0 4.8 95.2 71.6

As a result, it can be seen that 95% pure glucose is obtained with a recovery rate of 71.6%.

また塩類とぶどう糖の混合区分を濃縮して原料水溶液に戻す場合として、120ml〜168mlを塩類区分、168ml〜198mlを混合区分、198ml〜270mlを糖類区分としてそれぞれ採取した。
各区分における成分の濃度及び回収率を測定した結果を表2に示す。
In addition, when the mixed section of salts and glucose was concentrated and returned to the raw material aqueous solution, 120 ml to 168 ml were collected as the salt section, 168 ml to 198 ml as the mixed section, and 198 ml to 270 ml as the saccharide section.
Table 2 shows the results of measuring the concentration and recovery rate of the components in each category.

〔表2〕
固形分濃度(wt%) 塩類含量(%) ぶどう糖含量(%) ぶどう糖回収率(%)
塩類区分 8.2 83.8 16.3 5.0
混合区分 26.2 28.0 72.0 48.8
糖類区分 8.1 0.9 99.1 46.2
この場合、糖類区分はぶどう糖純度99%以上の高純度が得られた。また混合区分は原料に戻され回収されるため、実質的な回収率は95%程度になる。
実施例1
(2価カチオンの分離)
塩化カルシウム30.0g、及びぶどう糖70.0gを脱塩水100.0gに溶解し全固形分濃度が50wt%(塩化カルシウム30%、ぶどう糖70%)の水溶液を得た。
上記の水溶液を原液とし、実施例1と同様の方法で原液の展開分離を行った。その結果、まずカラム内に存在した水が押し出され、次いで塩化カルシウムが溶出し、最後にぶどう糖が溶出した。
溶出液量0ml〜120mlは固形分がなく、120ml〜207mlを塩類区分、
207mlから270mlを糖類区分としてそれぞれ採取した。
各区分における成分の濃度及び回収率を測定した結果を表3に示す。
[Table 2]
Solid content (wt%) Salt content (%) Glucose content (%) Glucose recovery (%)
Salt category 8.2 83.8 16.3 5.0
Mixed section 26.2 28.0 72.0 48.8
Saccharide classification 8.1 0.9 99.1 46.2
In this case, a high purity with a glucose purity of 99% or more was obtained in the saccharide classification. Further, since the mixed section is returned to the raw material and recovered, the substantial recovery rate is about 95%.
Example 1
(Separation of divalent cations)
30.0 g of calcium chloride and 70.0 g of glucose were dissolved in 100.0 g of demineralized water to obtain an aqueous solution having a total solid concentration of 50 wt% (calcium chloride 30%, glucose 70%).
Using the above aqueous solution as a stock solution, the stock solution was developed and separated in the same manner as in Example 1. As a result, water present in the column was first pushed out, then calcium chloride was eluted, and finally glucose was eluted.
The amount of eluate from 0 ml to 120 ml has no solid content, and 120 ml to 207 ml is divided into salts.
207 ml to 270 ml were collected as saccharide segments.
Table 3 shows the results of measuring the concentration and recovery rate of the components in each category.

〔表3〕
固形分濃度(wt%) 塩類含量(%) ぶどう糖含量(%) ぶどう糖回収率(%)
塩類区分 10.8 58.2 41.8 31.7
糖類区分 13.9 4.8 95.2 68.3
この結果、1価イオンの食塩の場合とほぼ同様に、純度95%のぶどう糖が約68%の回収率で得られことがわかった。したがって、2価のカチオンでも十分に脱塩処理が出来ることが確認された。
比較例1
2価イオンにより、脱塩性能が低下したカチオン交換樹脂を想定し、Caイオン形カチオン交換樹脂を用いた以下の実験を行った。実施例1と同じ原料水溶液を用いて、この原液30mlを強酸性カチオン交換樹脂UBK−555(三菱化学社製)のCaイオン形312mlを充填し(内径2cmx長さ100cm)、恒温水槽に浸漬して60℃に保持したカラムを用いて、実施例1と同じ条件で原液の展開分離を行った。その結果、アニオン樹脂と同様にまずカラム内に存在した水が押し出され、次いで食塩が溶出し、最後にぶどう糖が溶出した。
溶出液量0ml〜120mlは固形分がなく、120ml〜210mlを塩類区分、
210mlから270mlを糖類区分としてそれぞれ採取した。
各区分における成分の濃度及び回収率を測定した結果を表4に示す。
[Table 3]
Solid content (wt%) Salt content (%) Glucose content (%) Glucose recovery (%)
Salt category 10.8 58.2 41.8 31.7
Sugar group 13.9 4.8 95.2 68.3
As a result, it was found that about 95% pure glucose was obtained with a recovery rate of about 68%, as in the case of monovalent ion sodium chloride. Therefore, it was confirmed that even a divalent cation can be sufficiently desalted.
Comparative Example 1
The following experiment using Ca ion type cation exchange resin was conducted on the assumption of a cation exchange resin having reduced desalting performance due to divalent ions. Using the same raw material aqueous solution as in Example 1, 30 ml of this stock solution was filled with 312 ml of Ca ion form of strong acid cation exchange resin UBK-555 (manufactured by Mitsubishi Chemical Corporation) (inner diameter 2 cm × length 100 cm) and immersed in a constant temperature water bath. The stock solution was developed and separated under the same conditions as in Example 1 using a column maintained at 60 ° C. As a result, like the anion resin, the water present in the column was first pushed out, then the salt was eluted, and finally the glucose was eluted.
The eluate amount 0 ml to 120 ml has no solid content, and 120 ml to 210 ml is divided into salts.
210 ml to 270 ml were collected as saccharide segments.
Table 4 shows the results of measuring the concentration and recovery rate of the components in each category.

〔表4〕
固形分濃度(wt%) 塩類含量(%) ぶどう糖含量(%) ぶどう糖回収率(%)
塩類区分 16.4 35.5 64.5 78.9
糖類区分 4.7 4.8 95.2 21.1
この結果、純度95%のぶどう糖の回収率は21%しかなく、カチオン樹脂の場合イオンが2価イオン形になると大幅に脱塩性能が低下することが確認された。
[Table 4]
Solid content (wt%) Salt content (%) Glucose content (%) Glucose recovery (%)
Salt category 16.4 35.5 64.5 78.9
Saccharide classification 4.7 4.8 95.2 21.1
As a result, the recovery rate of 95% pure glucose was only 21%, and in the case of a cationic resin, it was confirmed that the desalting performance was greatly reduced when the ions were in the divalent ion form.

本発明によれば、クロマトグラフィーにより水溶液に含まれる塩類を効果的に脱塩精製し、且つ脱塩精製能力の低下がない精製方法を提供することが出来る。
よって、無機塩類を含む水溶液を脱塩精製する必要のある食品分野、発酵分野、バイオ分野等の各分野において、産業上の利用可能性は極めて高い。
According to the present invention, it is possible to provide a purification method in which salts contained in an aqueous solution are effectively desalted and purified by chromatography and the desalting and purification ability is not reduced.
Therefore, the industrial applicability is extremely high in each field such as the food field, fermentation field, and bio field where it is necessary to desalinate and purify an aqueous solution containing inorganic salts.

水溶液の分離操作におけるクロマトグラムの一例である。It is an example of the chromatogram in separation operation of aqueous solution. 擬似移動床法クロマト分離に用いる装置の一例である。It is an example of the apparatus used for simulated moving bed method chromatographic separation.

符号の説明Explanation of symbols

1〜8 分離塔
10 有価物含有溶液抜出し管
11〜18 有価物含有溶液抜出し弁
20 塩類水溶液抜出し管
21〜28 塩類水溶液抜出し弁
30 溶離水供給管
31〜38 溶離水供給弁
40 原料水溶液供給管
41〜48 原料水溶液供給弁
51〜58ポンプ
1 to 8 Separation tower 10 Valuable material-containing solution extraction pipe 11 to 18 Valuable material-containing solution extraction valve 20 Salt aqueous solution extraction pipe 21 to 28 Salt aqueous solution extraction valve 30 Elution water supply pipe 31 to 38 Elution water supply valve 40 Raw material aqueous solution supply pipe 41-48 Raw material aqueous solution supply valve 51-58 pump

Claims (3)

水溶液の精製方法であって、該水溶液が2価以上のカチオンを含有し、且つアニオン交換樹脂を分離剤として、クロマトグラフィーにより塩類を分離することを特徴とする水溶液の精製方法。   A method for purifying an aqueous solution, wherein the aqueous solution contains a divalent or higher cation, and salts are separated by chromatography using an anion exchange resin as a separating agent. アニオン交換樹脂の重量平均粒子径が100μm以上500μm以下である請求項1に記載の水溶液の精製方法。   The method for purifying an aqueous solution according to claim 1, wherein the weight average particle diameter of the anion exchange resin is 100 µm or more and 500 µm or less. 水溶液が、有価物を含有する請求項1又は2に記載の水溶液の精製方法。   The method for purifying an aqueous solution according to claim 1 or 2, wherein the aqueous solution contains a valuable material.
JP2006061602A 2006-03-07 2006-03-07 Purification method of aqueous solution Active JP5028826B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006061602A JP5028826B2 (en) 2006-03-07 2006-03-07 Purification method of aqueous solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006061602A JP5028826B2 (en) 2006-03-07 2006-03-07 Purification method of aqueous solution

Publications (2)

Publication Number Publication Date
JP2007237057A true JP2007237057A (en) 2007-09-20
JP5028826B2 JP5028826B2 (en) 2012-09-19

Family

ID=38583126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006061602A Active JP5028826B2 (en) 2006-03-07 2006-03-07 Purification method of aqueous solution

Country Status (1)

Country Link
JP (1) JP5028826B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010089001A (en) * 2008-10-07 2010-04-22 Japan Organo Co Ltd Chromatograph separation method
JP2012201521A (en) * 2011-03-24 2012-10-22 Taiheiyo Cement Corp Method for recovering calcium chloride
JP2013068512A (en) * 2011-09-22 2013-04-18 Mitsubishi Chemicals Corp Strong basic anion exchange resin, and demineralization method and demineralization apparatus using the same
US9126843B2 (en) 2011-05-12 2015-09-08 Rohm And Haas Company Method for separation of monovalent metals from multivalent metals
WO2021205867A1 (en) * 2020-04-08 2021-10-14 日揮グローバル株式会社 Method for recovering sugar

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101870870B1 (en) * 2016-03-17 2018-06-26 주식회사 엠비지 apparatus for manufacturing hydrogen water of high density for Atopic improvement and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63263099A (en) * 1987-03-31 1988-10-31 ザ・ダウ・ケミカル・カンパニー Improved method for desalting sugar-containing solution
JPH04126502A (en) * 1990-09-17 1992-04-27 Japan Organo Co Ltd Method for recovering phosphoric acid from waste acidic solution

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63263099A (en) * 1987-03-31 1988-10-31 ザ・ダウ・ケミカル・カンパニー Improved method for desalting sugar-containing solution
JPH04126502A (en) * 1990-09-17 1992-04-27 Japan Organo Co Ltd Method for recovering phosphoric acid from waste acidic solution

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010089001A (en) * 2008-10-07 2010-04-22 Japan Organo Co Ltd Chromatograph separation method
JP2012201521A (en) * 2011-03-24 2012-10-22 Taiheiyo Cement Corp Method for recovering calcium chloride
US9126843B2 (en) 2011-05-12 2015-09-08 Rohm And Haas Company Method for separation of monovalent metals from multivalent metals
JP2013068512A (en) * 2011-09-22 2013-04-18 Mitsubishi Chemicals Corp Strong basic anion exchange resin, and demineralization method and demineralization apparatus using the same
WO2021205867A1 (en) * 2020-04-08 2021-10-14 日揮グローバル株式会社 Method for recovering sugar

Also Published As

Publication number Publication date
JP5028826B2 (en) 2012-09-19

Similar Documents

Publication Publication Date Title
JP5028826B2 (en) Purification method of aqueous solution
US6613941B1 (en) Method for recovering fluorinated alkanoic acids from waste waters
JPH04305254A (en) Separation of weak organic acid from liquid mixture
JP7132932B2 (en) Method for producing ultrapure water
KR101806823B1 (en) METHOD FOR PRODUClNG AQUEOUS SOLUTION OF TETRAALKYL AMMONIUM SALT
US3977968A (en) Ion exchange regeneration
JP5015990B2 (en) Electric deionized water production equipment
JP2747625B2 (en) Salt water purification equipment
EP3615213B1 (en) Treatment of sugar solutions
EP1431248A2 (en) Water treatment system with low waste volume
JPH10323673A (en) Deionized water-producing method
EP0497632A1 (en) Ion exchange apparatus and process
JP2021186792A (en) Method of changing ion form of anion exchanger and method of manufacturing anion exchanger
RU2340561C2 (en) Device for sewage water purification from heavy metals by means of ionechange filters
JP2575171B2 (en) Improved method for desalting sugar-containing solutions
JP2021029189A (en) Purification method of saccharide
JPH0468981B2 (en)
US20080156732A1 (en) Ion exchange process
CN215712398U (en) Processing system for resource utilization of high-salinity wastewater in ferrous metallurgy
JP4183992B2 (en) Method for producing high-concentration boric acid aqueous solution
JPH02124895A (en) Separation of lactulose
KR102440908B1 (en) Water quality management system and operation method of water quality management system
RU2318574C1 (en) Column counter-current ion-exchange filter
CN108136277B (en) Purifying aqueous solutions
Mamchenko et al. Combined Technology of Water Softening, Desalination, and Deionization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081022

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20081022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120611

R150 Certificate of patent or registration of utility model

Ref document number: 5028826

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350