JPH04126502A - Method for recovering phosphoric acid from waste acidic solution - Google Patents

Method for recovering phosphoric acid from waste acidic solution

Info

Publication number
JPH04126502A
JPH04126502A JP2243822A JP24382290A JPH04126502A JP H04126502 A JPH04126502 A JP H04126502A JP 2243822 A JP2243822 A JP 2243822A JP 24382290 A JP24382290 A JP 24382290A JP H04126502 A JPH04126502 A JP H04126502A
Authority
JP
Japan
Prior art keywords
acid
phosphoric acid
soln
solution
waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2243822A
Other languages
Japanese (ja)
Other versions
JP2828496B2 (en
Inventor
Kenji Yoshimura
吉村 憲児
Kikuzo Kaneko
金子 菊造
Fumihiko Matsuda
文彦 松田
Masaharu Horie
堀江 正治
Takayuki Masuda
隆之 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2243822A priority Critical patent/JP2828496B2/en
Publication of JPH04126502A publication Critical patent/JPH04126502A/en
Application granted granted Critical
Publication of JP2828496B2 publication Critical patent/JP2828496B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

PURPOSE:To recover phosphoric acid as the aq. free acid soln. by loading a waste acidic soln. contg. salts and phosphoric acid on a strongly basic anion- exchange resin in the second operating cycle onward and using an inorg. strong acid firstly and water secondly as the developer. CONSTITUTION:A waste acidic soln. contg. salts and phosphoric acid is separated into the aq. salt soln. and aq. acidic soln. by the chromatographic separation technique using a strongly basic anion-exchange resin, and the process is repeated. In this case, the waste soln. is loaded on the anion-exchange resin at least in the second cycle onward, and an inorg. strong acid is used firstly and water secondly as the developer. As a result, the phosphoric acid in the waste soln. is recovered not as an aq. phosphate soln. but as the aq. free acid soln. Since phopshoric acid is recovered as expensive phosphoric acid in the form of the mixture with the inorg. strong acids such as hydrochloric acid, the process greatly contributes to the industrial world.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、金属表面処理工業、特にアルミ箔の表面箔理
工&:(電解エツチング、アルマイト加工等)において
、例えば、電解エツチング工程や酸洗浄工程等より排出
する塩及び燐酸を含む酸廃液から該燐酸を燐酸塩として
では無く、燐酸(H。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is applicable to the metal surface treatment industry, particularly in the surface foil engineering and processing of aluminum foil (electrolytic etching, alumite processing, etc.). Phosphoric acid (H) is extracted from acid waste liquid containing salt and phosphoric acid discharged from processes, etc., rather than as a phosphate salt.

PO4)と塩酸等の無機強酸との混酸として高率で回収
するクロマト分離方法に関する。
The present invention relates to a chromatographic separation method for recovering a mixed acid of PO4) and a strong inorganic acid such as hydrochloric acid at a high rate.

〔従来の技術〕[Conventional technology]

アルミ箔の表面処理工業では、燐酸を一成分とする混酸
浴液を使用して、電解エツチング法、その他の表面処理
法によりアルミ箔表面を酸処理する工程や、更には酸洗
浄する工程等が有るが、この際、アルミニウムが該浴液
中に溶解してくる。
In the aluminum foil surface treatment industry, the aluminum foil surface is acid-treated by electrolytic etching and other surface treatment methods using a mixed acid bath solution containing phosphoric acid as one component, as well as an acid cleaning process. However, at this time, aluminum dissolves into the bath liquid.

このアルミニウムの溶解が進み、該浴液中のアルミニウ
ム塩濃度が上昇してくると、該浴液の表面処理能力等が
低下してくるため、該浴液を抜き出し、遊離の酸を中和
するか又は蒸留して該遊離の酸を回収し、中和又は蒸留
後に残留する塩を別途回収し、凝集剤として利用するか
又は廃棄処分する方法が採られてきた。浴液に用いられ
る無機酸の中で燐酸は高価である等の点を考慮すると、
塩と酸を分離し、特に燐酸を回収して再利用することが
望まれている。
As the dissolution of aluminum progresses and the aluminum salt concentration in the bath liquid increases, the surface treatment ability of the bath liquid decreases, so the bath liquid is extracted and the free acid is neutralized. A method has been adopted in which the free acid is recovered by distillation or the salt remaining after neutralization or distillation is separately recovered and used as a flocculant or disposed of. Considering the fact that phosphoric acid is expensive among the inorganic acids used in bath liquids,
It is desired to separate salts and acids, and in particular to recover and reuse phosphoric acid.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

アルミニウム塩や鉄塩を含む酸水溶液は、強塩基性陰イ
オン交換樹脂を分離担体とし水を展開液とするクロマト
分離により酸水溶液と塩水溶液とに分離することができ
ることは良く知られている。
It is well known that an acid aqueous solution containing an aluminum salt or an iron salt can be separated into an acid aqueous solution and a salt aqueous solution by chromatographic separation using a strongly basic anion exchange resin as a separation carrier and water as a developing solution.

塩化アルミニウムを含む塩酸溶液を、CI形強塩基性陰
イオン交換樹脂(I型:例えば、トリメチルアミン基を
有する。樹脂粒度;直径0.4−0.6a+m)を用い
て水を展開液としてクロマト分離操作サイクルを縁り返
した場合の4ないし5サイクル時の流出量対カラム流出
液成分濃度の関係の一例を第2図に示す。第2図のグラ
フにおいて、縦軸は塩酸及び塩化アルミニウムの濃度〔
1・・・塩酸濃度(eq/i)、 2・・・塩化アルミ
ニウム濃度(eq/Il)]を表し、横軸はカラムに上
記の塩化アルミニウムを含む塩酸溶液を負荷した時点か
らの流出液の流出量(1/ II−樹脂)を表す。
A hydrochloric acid solution containing aluminum chloride is chromatographically separated using CI type strongly basic anion exchange resin (I type: for example, has a trimethylamine group.Resin particle size: diameter 0.4-0.6a+m) with water as a developing solution. FIG. 2 shows an example of the relationship between the effluent amount and the column effluent component concentration during the 4th or 5th cycle when the operation cycle is reversed. In the graph in Figure 2, the vertical axis is the concentration of hydrochloric acid and aluminum chloride [
1... Hydrochloric acid concentration (eq/i), 2... Aluminum chloride concentration (eq/Il)], and the horizontal axis represents the effluent from the time when the column was loaded with the above-mentioned hydrochloric acid solution containing aluminum chloride. Represents the flow rate (1/II-resin).

同図において、A部分を塩水溶液画分、B部分を酸水溶
液画分として回収すると、かなり高純度の酸を得ること
ができ、再利用が可能となることが理解できる。また、
A部分と81分の境界近辺のC部分(塩と酸か混ざり合
っている両分)を廃棄し、残りのAi1分とB部分をよ
り純度の高い塩水溶液及び酸水溶液として回収しても良
い。
In the figure, it can be seen that if part A is recovered as a salt aqueous solution fraction and part B is recovered as an acid aqueous solution fraction, an acid of considerably high purity can be obtained and can be reused. Also,
It is also possible to discard part A and part C near the 81 minute boundary (salt and acid mixed together), and recover the remaining Ai 1 minute and part B as a higher purity salt aqueous solution and acid aqueous solution. .

第2図で説明したクロマト分離は、燐酸か混入していな
い酸水溶液の分離の例であるか、本発明は、酸廃液中に
燐酸が混入している場合を対象とする。
The chromatographic separation described in FIG. 2 is an example of separation of an aqueous acid solution that does not contain phosphoric acid, and the present invention is directed to a case where phosphoric acid is mixed in the acid waste solution.

第3図は、塩及び燐酸を含む酸廃液(A!”: 1.2
6 eq/1. C1−: 2.44 eq/1. P
O”−: 0.32eq、′f )を上記と同様のCI
形強塩基性陰イオン交換樹脂(■型)を充填したカラム
(樹脂層高;1640 a+a+ )に廃液量として0
.51!、’Il−樹脂を負荷した後、イオン交換水1
.511/Il−樹脂で展開する操作サイクルを繰り返
した場合の4ないし5サイクル時の流出量対カラム流出
液成分濃度の関係を示したものである。第3図において
、縦軸は酸及び塩の濃度〔l・・・塩酸(eq/l) 
、2・・・塩化アルミニウム(eq/i) 、3・・・
燐酸アルミニウム(eq/Il)、4”’燐酸(eq/
Il)〕を表し、横軸はカラムに酸廃液を負荷した時点
からの流出液の流出量(1、、/ 1−樹脂)を表す。
Figure 3 shows an acid waste solution containing salt and phosphoric acid (A!”: 1.2
6 eq/1. C1-: 2.44 eq/1. P
O"-: 0.32eq,'f) using the same CI as above
A column packed with a strongly basic anion exchange resin (type ■) (resin layer height: 1640 a+a+) was filled with 0 as the amount of waste liquid.
.. 51! , 'After loading the Il-resin, ion-exchanged water 1
.. 511/Il- shows the relationship between the effluent volume and column effluent component concentration during 4th to 5th cycles when the operation cycle for development with 511/Il-resin is repeated. In Figure 3, the vertical axis is the concentration of acid and salt [l...Hydrochloric acid (eq/l)
, 2... Aluminum chloride (eq/i), 3...
Aluminum phosphate (eq/Il), 4''' phosphoric acid (eq/Il)
Il)], and the horizontal axis represents the amount of effluent (1,,/1-resin) from the time when the acid waste solution was loaded onto the column.

同図をよると、負荷した酸廃液中の燐酸の約509(が
アルミニウム塩(AIPO4)として溶出し、残りの約
50%が遊離酸として溶出してくることが分かる。
According to the figure, it can be seen that about 50% of the phosphoric acid in the loaded acid waste solution is eluted as aluminum salt (AIPO4), and the remaining 50% is eluted as free acid.

なお、このAIPO,の形で溶出してくる燐酸は、酸廃
液をカラムに負荷した抜水で展開する操作を一サイクル
とする操作サイクルの繰り返しにおいて、前のサイクル
で負荷した酸廃液中の燐酸の約50%がカラム中に残留
し、この残留燐酸と次のサイクルで負荷した酸廃液中の
アルミニウムイオンとが塩を形成して溶出してきたもの
であることが確認された。
In addition, the phosphoric acid eluted in the form of AIPO, is generated when the phosphoric acid in the acid waste solution loaded in the previous cycle is repeated in a cycle in which the acid waste solution is loaded in a column and developed by draining water. It was confirmed that approximately 50% of the phosphoric acid remained in the column, and that this residual phosphoric acid and aluminum ions in the acid waste solution loaded in the next cycle formed salts and were eluted.

このことより、酸廃液中の燐酸を、酸水溶液(HCIと
H*PO,との混酸)として回収し、アルミニウムを塩
酸塩(AICl、)として回収するためには、第3図の
場合、AlPO4の形で回収される燐酸を酸水溶液の画
分へ移行させるような展開条件を設定することが必要と
なることが理解される。
From this, in order to recover phosphoric acid in the acid waste solution as an acid aqueous solution (mixed acid of HCI and H*PO) and recover aluminum as hydrochloride (AICl), in the case of Figure 3, AlPO4 It is understood that it is necessary to set development conditions such that the phosphoric acid recovered in the form of is transferred to the fraction of the aqueous acid solution.

本発明は、上述のような展開条件設定を行うことにより
、酸廃液中の燐酸を燐酸塩水溶液としてでは無く遊離酸
水溶液として高率で回収することを可能とする燐酸のク
ロマト分離回収方法を提供することを目的とする。
The present invention provides a chromatographic separation and recovery method for phosphoric acid that makes it possible to recover phosphoric acid in an acid waste solution at a high rate not as an aqueous phosphate solution but as an aqueous free acid solution by setting the development conditions as described above. The purpose is to

〔問題を解決するための手段〕[Means to solve the problem]

上述の目的を達成するために、本発明は、塩及び燐酸を
含む酸廃液を強塩基性陰イオン交換樹脂を用いたクロマ
ト分離技術により塩水溶液と酸水溶液とに分離する操作
サイクルを繰り返す方法において、少なくとも第二回目
以降の前記操作サイクルにおいて、前記酸廃液を前記強
塩基性陰イオン交換樹脂に負荷した後、展開液として、
最初に無機強酸、次に水を使用することにより、前記燐
酸を前記無機強酸と燐酸との混酸の水溶液として回収す
ることを特徴とする酸廃液からの燐酸の回収方法を提供
するものである。
In order to achieve the above-mentioned object, the present invention provides a method of repeating an operation cycle in which an acid waste solution containing salt and phosphoric acid is separated into an aqueous salt solution and an aqueous acid solution by a chromatographic separation technique using a strongly basic anion exchange resin. , in at least the second and subsequent operation cycles, after loading the acid waste solution onto the strongly basic anion exchange resin, as a developing solution,
The present invention provides a method for recovering phosphoric acid from acid waste, characterized in that the phosphoric acid is recovered as an aqueous solution of a mixed acid of the strong inorganic acid and phosphoric acid by first using a strong inorganic acid and then water.

〔作用〕[Effect]

前述したように、AIPO,等の形で溶出してくる燐酸
は、前の操作サイクルにおいて負荷した酸廃液中の燐酸
に由来している。これは、つぎのように考えられる。操
作サイクルの最初に塩水溶液画分が流出し次いで酸水溶
液画分が流出してくる(AIと酸の混合比によって、酸
の流出時間は異なる。)ので、該サイクルの途中からカ
ラム中の酸廃液が塩酸等の無機強酸リッチの状態となり
、そのpHは例えば2以下の低いpHに下がり、そのた
め、H,PO,かイオン交換樹脂中に残存し易い実質的
な非解離分子状態となって、該前の操作サイクルでは溶
出してこない。しかし、次のサイクルで酸廃液が負荷さ
れてpH値が上昇する(AICI。
As mentioned above, the phosphoric acid eluted in the form of AIPO, etc. is derived from the phosphoric acid in the acid waste solution loaded in the previous operating cycle. This can be considered as follows. At the beginning of the operation cycle, the salt aqueous solution fraction flows out, and then the acid aqueous solution fraction flows out (the acid flow time varies depending on the mixing ratio of AI and acid), so from the middle of the cycle, the acid in the column flows out. The waste liquid becomes rich in inorganic strong acids such as hydrochloric acid, and its pH decreases to a low pH of, for example, 2 or less, resulting in a substantial non-dissociated molecular state in which H, PO, etc. tend to remain in the ion exchange resin. It does not elute in the previous operation cycle. However, in the next cycle, acid waste is loaded and the pH value increases (AICI).

と[(C1とが別れ、このAlC1,が主成分を成す両
分のpHが少し上昇する。AlC1,溶液の元来のpH
は、2.5ないし5位である。)と、前記の実質的非解
離分子状態H,PO,がAIPO,となってAlC1*
と重なって塩水溶液画分中に溶出してくると考えられる
。本発明の方法に従い、無機強酸を少なくとも第二回目
以降の各操作サイクルの最初の展開液として通液し、次
いで水を展開液として通液するようにすると、カラム中
の酸廃液のpH値を低下させることができ、前サイクル
の燐酸を実質的非解離分子状態で次サイクルの酸水溶液
画分中に押し出し、酸水溶液の一成分として溶出するこ
とかできるものと考えられる。かかる本発明の原理は、
通常のクロマト分離の場合とは大変異なっているもので
あり、本発明者等による新しい知見に基づくものである
and [(C1) are separated, and the pH of both parts, in which AlC1, is the main component, increases slightly.The original pH of the AlC1 solution
is ranked 2.5 to 5. ), the substantially non-dissociated molecular state H,PO, becomes AIPO, and AlC1*
It is thought that this overlaps and elutes into the salt aqueous solution fraction. According to the method of the present invention, by passing a strong inorganic acid as the first developing solution in at least the second and subsequent operation cycles, and then passing water as the developing solution, the pH value of the acid waste solution in the column can be adjusted. It is believed that the phosphoric acid from the previous cycle can be extruded in a substantially undissociated molecular state into the aqueous acid solution fraction of the next cycle and eluted as a component of the aqueous acid solution. The principle of the present invention is as follows:
This is very different from normal chromatographic separation and is based on new findings by the present inventors.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明の方法か適用される酸廃液としては、第3図との
51連でAI”’、Cl−1po”−を含む酸廃液を挙
げたか、このほかに、燐酸に加えて鉄イオン、亜鉛イオ
ン、ニッケルイオン等の金属イオンと硫酸イオン、硝酸
イオン等の酸根イオンを含有する酸廃液に対しても、本
発明の方法が適用できる。
As the acid waste liquid to which the method of the present invention is applied, the acid waste liquid containing AI"', Cl-1po"- is mentioned in the 51 series in Figure 3, and in addition to phosphoric acid, iron ions, zinc The method of the present invention can also be applied to acid waste liquid containing metal ions such as ions, nickel ions, and acid radical ions such as sulfate ions and nitrate ions.

強塩基性陰イオン交換樹脂としては、上記した■型のほ
かに、■型(例えば、ジメチルエタノールアミン基を有
する。)等の陰イオン交換樹脂も使用できる。強塩基性
陰イオン交換樹脂のイオン形は、第1図及び第2図との
関連ではCI形を使用したが、酸廃液に含まれる酸根イ
オンの種類に対応したイオン形を使用することができる
。このような強塩基性陰イオン交換樹脂の粒度としては
、直径で0.2ma+ないし0.7mm位の範囲内であ
ればよく、好ましくは0.3mmないし0.6a+m位
である。
As the strongly basic anion exchange resin, in addition to the above-mentioned type 2, anion exchange resins such as type 2 (for example, having a dimethylethanolamine group) can also be used. Regarding the ionic form of the strongly basic anion exchange resin, the CI type was used in connection with Figures 1 and 2, but it is possible to use an ionic form corresponding to the type of acid radical ion contained in the acid waste solution. . The particle size of such a strongly basic anion exchange resin may be within the range of about 0.2 ma+ to 0.7 mm in diameter, preferably about 0.3 mm to 0.6 a+ m.

現在、通常使用される強塩基性陰イオン交換樹脂の粒度
は、0.4ma+ないし0.6mm位である。
The particle size of strongly basic anion exchange resins commonly used at present is about 0.4 ma+ to 0.6 mm.

最初の展開液としての無機強酸としては、酸廃液中の主
たる無機強酸が塩酸の場合は、塩酸を使用すればよく、
酸廃液中の無機強酸が硫酸、硝酸等の場合は、これに対
応させて硫酸、硝酸等を最初の展開液として使用すれば
よい。酸廃液中の主たる無機強酸が複数存在する場合は
、かかる複数の無機強酸の混合物を最初の展開液として
使用しても良い。本発明の方法において、この最初の展
開液としての無機強酸は、第一回目の操作サイクルから
使用してもよいが、第一回目のサイクルにおいては展開
液として無機強酸を使用せず、水のみを使用して展開し
ても構わない。しかし、第二回目の操作サイクルからは
、必ず無機強酸を最初の展開液として使用する。
When the main inorganic strong acid in the acid waste solution is hydrochloric acid, hydrochloric acid may be used as the first developing solution.
If the inorganic strong acid in the acid waste solution is sulfuric acid, nitric acid, etc., sulfuric acid, nitric acid, etc. may be used as the initial developing solution accordingly. When a plurality of main strong inorganic acids are present in the acid waste solution, a mixture of the plurality of strong inorganic acids may be used as the initial developing solution. In the method of the present invention, the strong inorganic acid as the initial developing solution may be used from the first operation cycle, but in the first cycle, the strong inorganic acid is not used as the developing solution and only water is used. You can also use . However, from the second operating cycle onwards, a strong inorganic acid is always used as the first developing solution.

展開液としての無機強酸及び水の通液量は、強塩基性陰
イオン交換樹脂の種類及び粒度、酸廃液の組成等により
異なってくるが、−船釣には、無機強酸の通液量は、0
.11.#−樹脂ないし21、′l−樹脂の範囲で、水
の通液量も同様に0.1f 、Il−樹脂ないし2 f
 、−f−樹脂の範囲である。
The amount of inorganic strong acid and water used as the developing solution varies depending on the type and particle size of the strong basic anion exchange resin, the composition of the acid waste solution, etc.; ,0
.. 11. In the range of #-resin to 21,'l-resin, the amount of water passing is also 0.1f, Il-resin to 2f
, -f-resin range.

なお、添付図面において、各流出液中の各成分の濃度測
定法は、次の通りである。H゛イオン、中和滴定法によ
り、AI+イオンは、キレート滴定法により、 CI−
イオン及び燐酸イオンは、イオンクロマト法により、各
イオン濃度の測定を行い、塩酸、塩化アルミニウム、燐
酸アルミニウム及び燐酸の各濃度を算出した。なお、酸
廃液にFeイオン、so、 2+イオン、NO□−イオ
ン等が含まれている場合、これらのイオン濃度は、比色
法やイオンクロマト法等により測定することができる。
In addition, in the attached drawings, the concentration measurement method of each component in each effluent is as follows. H' ion, by neutralization titration method, AI+ ion, by chelate titration method, CI-
The concentrations of each ion and phosphate ion were measured by ion chromatography, and the concentrations of hydrochloric acid, aluminum chloride, aluminum phosphate, and phosphoric acid were calculated. In addition, when the acid waste liquid contains Fe ions, SO, 2+ ions, NO□- ions, etc., the concentration of these ions can be measured by a colorimetric method, an ion chromatography method, or the like.

〔実施例〕〔Example〕

以下、実施例により本発明の詳細な説明するが、本発明
が実施例に限定されるもので無いことは言うまでも無い
Hereinafter, the present invention will be explained in detail with reference to Examples, but it goes without saying that the present invention is not limited to the Examples.

実施例1 第3図の場合と同じ条件で、同じ量(0,511−樹脂
)の酸廃液を負荷した後、最初にIN塩酸1.OA’ 
l’−樹脂、次にイオン交換水0.5f、!−樹脂て展
開する操作サイクルを繰り返した。
Example 1 Under the same conditions as in FIG. 3, after loading the same amount (0,511-resin) of acid waste solution, IN hydrochloric acid 1. OA'
l'-resin, then 0.5f of ion-exchanged water,! - The operating cycle of developing with resin was repeated.

第1図は、かかる実験の4ないし5回目の操作サイクル
時の流出量対カラム流出液成分濃度の関係を示したもの
である。同図において、縦軸は酸及び塩の濃度〔l・・
・塩酸(eq/f) 、2・・・塩化アルミニウム(e
q/f) 、 3・・・燐酸アルミニウム(eq/f)
 、4・・・燐酸(eq/f) )を表し、横軸はカラ
ムに酸廃液を負荷した時点からの流出液の流出量(It
 /’ It−樹脂)を表す。同図によると、負荷した
酸廃液中の燐酸の80%以上が酸水溶液の画分(同図B
部分)に溶出しており、アルミニウム塩(AlPO4)
として溶出してくる燐酸の量がイオン交換水のみで展開
した場合(第3図)と比べて大幅に減少していることが
分かる。
FIG. 1 shows the relationship between effluent volume and column effluent component concentration during the fourth to fifth operating cycles of such an experiment. In the figure, the vertical axis is the concentration of acid and salt [l...
・Hydrochloric acid (eq/f), 2...aluminum chloride (e
q/f), 3...aluminum phosphate (eq/f)
, 4... represents phosphoric acid (eq/f)), and the horizontal axis represents the amount of effluent (It
/' represents It-resin). According to the same figure, more than 80% of the phosphoric acid in the loaded acid waste liquid is in the acid aqueous solution fraction (B
aluminum salt (AlPO4)
It can be seen that the amount of phosphoric acid eluted as ion-exchanged water is significantly reduced compared to the case of development using only ion-exchanged water (Fig. 3).

これは、展開液の一つとして塩酸を用いることにより、
燐酸の解離状態が実質的な非解離分子状態・\と変化し
前サイクルにおいてカラムに残留していた燐酸か、I(
CIにより丁度酸水溶液画分中に押し出され、塩水溶液
画分中の残留量か減少したものと考えられる。
This is achieved by using hydrochloric acid as one of the developing solutions.
The dissociated state of phosphoric acid changes to a substantial non-dissociated molecular state, and the phosphoric acid remaining in the column in the previous cycle or I(
It is thought that the CI simply pushed it out into the acid aqueous solution fraction, and the amount remaining in the salt aqueous solution fraction decreased.

上述の分離操作で得られた塩水溶液画分(A部分)は、
濃縮して凝集剤としての用途か有り、酸水溶液画分は混
酸として表面処理工程(IE解エツチング等)で再利用
することが可能である。
The aqueous salt solution fraction (part A) obtained in the above separation operation is
It can be concentrated and used as a flocculant, and the acid aqueous solution fraction can be reused as a mixed acid in surface treatment processes (IE etching, etc.).

展開液として用いる塩酸の濃度を、0.1規定から2規
定程度の範囲で変え、上述と同様の分離操作を行ったが
、燐酸の溶出挙動に殆ど変化は見られなかった(第1図
の燐酸のカーブと同様の燐酸カーブを描く。)。従って
、実装置において展開液としての塩酸をできるだけ使用
したく無い場合は、0.1規定程度の薄い塩酸を用いれ
ばよく、塩酸の利用に問題が無い場合は、任意に塩酸濃
度を高めることができる。
The concentration of hydrochloric acid used as a developing solution was varied from 0.1N to 2N, and the same separation procedure as described above was performed, but almost no change was observed in the elution behavior of phosphoric acid (see Figure 1). Draw a phosphoric acid curve similar to the phosphoric acid curve.) Therefore, if you want to minimize the use of hydrochloric acid as a developing solution in an actual device, you can use dilute hydrochloric acid of about 0.1N, and if there is no problem with using hydrochloric acid, you can increase the concentration of hydrochloric acid arbitrarily. can.

被処理酸廃液中の燐酸と共に含まれる酸(塩の形のもの
も含めて)としては、特に塩酸に限定されることは無く
、硫酸、硝酸等の場合でも上述と同様の効果が認められ
た。従って、酸廃液中の酸成分としては、塩酸、硫酸、
硝酸等の単独の無機強酸と燐酸との組み合わせとしての
混酸、上記のような無機強酸の混合物と燐酸との組み合
わせとしての混酸等を挙げることができる。
The acids (including those in the form of salts) contained together with phosphoric acid in the acid waste liquid to be treated are not particularly limited to hydrochloric acid, and the same effects as described above were observed in the case of sulfuric acid, nitric acid, etc. . Therefore, the acid components in acid waste liquid include hydrochloric acid, sulfuric acid,
Examples include a mixed acid as a combination of a single strong inorganic acid such as nitric acid and phosphoric acid, and a mixed acid as a combination of a mixture of the above-mentioned strong inorganic acids and phosphoric acid.

〔効果〕〔effect〕

以上説明してきたように、本発明の方法によれば、従来
安価な凝集剤として回収するか廃棄していた塩と燐酸を
含む酸廃液を、塩水溶液と酸水溶液として分離・回収し
、再利用することができる。特に、燐酸を高価な遊離燐
酸の形で塩酸等の無機強酸との混酸の形で回収すること
が可能なことから、産業界に寄与するところが大きい。
As explained above, according to the method of the present invention, the acid waste solution containing salt and phosphoric acid, which was conventionally collected as an inexpensive flocculant or discarded, can be separated and recovered as a salt aqueous solution and an acid aqueous solution, and reused. can do. In particular, since it is possible to recover phosphoric acid in the form of expensive free phosphoric acid in the form of a mixed acid with a strong inorganic acid such as hydrochloric acid, it will greatly contribute to the industrial world.

また、本発明の方法は、クロマト分離方法としての回分
法、移動層法、擾似移動層法等の各種方法に適用するこ
とができるものである。
Furthermore, the method of the present invention can be applied to various chromatographic separation methods such as a batch method, a moving bed method, and a stirred moving bed method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、下記第3図の場合と同じ酸廃液を、第3図の
場合と同じカラムに0.5117It−樹脂の量で負荷
した後に、最初に1.01!、y′l−樹脂の量のIN
塩酸、次に0.51.’l−樹脂の量のイオン交換水を
用いて展開する操作サイクルを繰り返した際の4ないし
5サイクル時の流出液の組成変化を示すグラフ図である
。 第2図は、塩酸と塩化アルミニウムの混合溶液をCI形
強塩基性陰イオン交換樹脂(■型)を充填したカラムに
0.51XIl−樹脂の量で負荷した後に、1.01!
、’i!−樹脂の量のイオン交換水で展開する操作サイ
クルを繰り返した際の4ないし5サイクル時の流出液の
組成変化を示すグラフ図である。 第3図は、燐酸、塩酸、塩化アルミニウム及び燐酸アル
ミニウムを含む酸廃液を、CI形強塩基性陰イオン交換
樹脂(■型)を充填したカラムに0.511./It−
樹脂の量で負荷した後に、1.57/l−樹脂の量のイ
オン交換水で展開する操作サイクルを纒り返した際の4
ないし5サイクル時の流出液の組成変化を示すグラフ図
である。 l・・・塩酸濃度 2・・・塩化アルミニウム濃度 3・・・燐酸アルミニウム濃度 4・・・燐酸濃度
FIG. 1 shows that after loading the same acid waste solution as in FIG. 3 below into the same column as in FIG. , y'l - IN of the amount of resin
Hydrochloric acid, then 0.51. FIG. 2 is a graph showing changes in the composition of the effluent during 4th to 5th cycles of repeated operation cycles developed using ion-exchanged water in an amount of 'l-resin. Figure 2 shows that after loading a mixed solution of hydrochloric acid and aluminum chloride into a column filled with CI type strongly basic anion exchange resin (■ type) in an amount of 0.51XIl-resin, 1.01!
,'i! - is a graph showing the change in the composition of the effluent after 4 to 5 cycles of repeated operation cycles developed with ion-exchanged water in the amount of resin. FIG. 3 shows an acid waste solution containing phosphoric acid, hydrochloric acid, aluminum chloride, and aluminum phosphate placed in a column filled with CI type strongly basic anion exchange resin (■ type) with a 0.511. /It-
4 when repeating the operating cycle of loading with the amount of resin and then developing with deionized water at the amount of 1.57/l-resin.
FIG. 5 is a graph showing changes in the composition of the effluent during 5 to 5 cycles. l... Hydrochloric acid concentration 2... Aluminum chloride concentration 3... Aluminum phosphate concentration 4... Phosphoric acid concentration

Claims (1)

【特許請求の範囲】[Claims] (1)塩及び燐酸を含む酸廃液を強塩基性陰イオン交換
樹脂を用いたクロマト分離技術により塩水溶液と酸水溶
液とに分離する操作サイクルを繰り返す方法において、
少なくとも第二回目以降の前記操作サイクルにおいて、
前記酸廃液を前記強塩基性陰イオン交換樹脂に負荷した
後、展開液として、最初に無機強酸、次に水を使用する
ことにより、前記燐酸を前記無機強酸と燐酸との混酸の
水溶液として回収することを特徴とする酸廃液からの燐
酸の回収方法。
(1) In a method in which an operation cycle is repeated in which an acid waste solution containing salt and phosphoric acid is separated into a salt aqueous solution and an acid aqueous solution by chromatographic separation technology using a strongly basic anion exchange resin,
In at least the second and subsequent operation cycles,
After loading the acid waste solution onto the strong basic anion exchange resin, first using a strong inorganic acid and then water as a developing solution, the phosphoric acid is recovered as an aqueous solution of a mixed acid of the strong inorganic acid and phosphoric acid. A method for recovering phosphoric acid from acid waste liquid, characterized by:
JP2243822A 1990-09-17 1990-09-17 Method for recovering phosphoric acid from acid waste liquid Expired - Fee Related JP2828496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2243822A JP2828496B2 (en) 1990-09-17 1990-09-17 Method for recovering phosphoric acid from acid waste liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2243822A JP2828496B2 (en) 1990-09-17 1990-09-17 Method for recovering phosphoric acid from acid waste liquid

Publications (2)

Publication Number Publication Date
JPH04126502A true JPH04126502A (en) 1992-04-27
JP2828496B2 JP2828496B2 (en) 1998-11-25

Family

ID=17109445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2243822A Expired - Fee Related JP2828496B2 (en) 1990-09-17 1990-09-17 Method for recovering phosphoric acid from acid waste liquid

Country Status (1)

Country Link
JP (1) JP2828496B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006131982A (en) * 2004-11-09 2006-05-25 Jfe Steel Kk Treatment method for pickling waste solution and treatment device for pickling waste solution
JP2007237057A (en) * 2006-03-07 2007-09-20 Mitsubishi Chemicals Corp Method for purifying aqueous solution
JP2009233607A (en) * 2008-03-27 2009-10-15 Kurita Water Ind Ltd Method and apparatus for recovering phosphoric acid from phosphoric acid-containing water
CN114751385A (en) * 2022-04-21 2022-07-15 盛隆资源再生(无锡)有限公司 Regeneration method of sulfuric acid micro-etching waste liquid

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100389075C (en) * 2004-08-10 2008-05-21 株式会社神钢环境舒立净 Drainage disposal method and device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006131982A (en) * 2004-11-09 2006-05-25 Jfe Steel Kk Treatment method for pickling waste solution and treatment device for pickling waste solution
JP4544970B2 (en) * 2004-11-09 2010-09-15 Jfeスチール株式会社 Processing method for pickling waste liquid and processing equipment for pickling waste liquid
JP2007237057A (en) * 2006-03-07 2007-09-20 Mitsubishi Chemicals Corp Method for purifying aqueous solution
JP2009233607A (en) * 2008-03-27 2009-10-15 Kurita Water Ind Ltd Method and apparatus for recovering phosphoric acid from phosphoric acid-containing water
CN114751385A (en) * 2022-04-21 2022-07-15 盛隆资源再生(无锡)有限公司 Regeneration method of sulfuric acid micro-etching waste liquid
CN114751385B (en) * 2022-04-21 2024-02-06 盛隆资源再生(无锡)有限公司 Regeneration method of sulfuric acid microetching waste liquid

Also Published As

Publication number Publication date
JP2828496B2 (en) 1998-11-25

Similar Documents

Publication Publication Date Title
Chiarizia et al. Uptake of metal ions by a new chelating ion-exchange resin. Part 4: kinetics
JPH05212382A (en) Method for removing heavy metal ion from waste liquid stream
JPH01153509A (en) Production of high-purity hydrogen peroxide
EP0132902A2 (en) Recovery of uranium from wet process phosphoric acid by liquid-solid ion exchange
US5945170A (en) Process for separating multivalent metal Ions from autodeposition compositions and process for regenerating ion exchange resins useful therewith
PL310004A1 (en) Method of maintaining stability of autodepositing bath mixture by periodical separation of individual metal ions from that mixture
JPS56114831A (en) Recovery of tantalum from scrap containing tantalum
JPH04126502A (en) Method for recovering phosphoric acid from waste acidic solution
US3656893A (en) Ion exchange removal of cyanide values
JPH07232915A (en) Method for recovering fluorine in waste water
US2863717A (en) Recovery of uranium values from copper-bearing solutions
JPH11507700A (en) Regeneration method of metal ammonia solution
AU702474B2 (en) Process for separating multivalent metal ions from autodeposition compositions
JPH03186393A (en) Treatment of waste water containing fluorine
US3692670A (en) Treatment of cation and anion exchange resins with sodium sulfite
JP3907937B2 (en) Method for treating boron-containing eluent containing alkali
SU1105515A1 (en) Method of recovering acids from fluorine-containing pickles
JP2001212455A (en) Treating device for discharge water containing boron and treating method therefor
EP0355966A1 (en) An improved method of ion exchange and apparatus for carrying out said method
JPS61161500A (en) Electrolytic decontamination waste liquor treating method
JP2784213B2 (en) Treatment of wastewater containing high concentration iron
JPH0716563A (en) Separation of phosphate ion from phosphate ion-containing aqueous solution
Werschulz New membrane technology in the metal finishing industry
Lortie et al. Recovery of metals in an industrial effluent: an example waste reuse as well as pollution reduction
JPH0777617B2 (en) Elution method of heavy metals adsorbed on chelating agents

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080918

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees