JP2007237038A - Complex substrate with internal space - Google Patents

Complex substrate with internal space Download PDF

Info

Publication number
JP2007237038A
JP2007237038A JP2006060867A JP2006060867A JP2007237038A JP 2007237038 A JP2007237038 A JP 2007237038A JP 2006060867 A JP2006060867 A JP 2006060867A JP 2006060867 A JP2006060867 A JP 2006060867A JP 2007237038 A JP2007237038 A JP 2007237038A
Authority
JP
Japan
Prior art keywords
substrate
internal space
wiring
recess
metal wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006060867A
Other languages
Japanese (ja)
Other versions
JP4623518B2 (en
Inventor
Masahito Amanaka
将人 甘中
Takayuki Hirano
貴之 平野
Nobuyuki Kawakami
信之 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2006060867A priority Critical patent/JP4623518B2/en
Publication of JP2007237038A publication Critical patent/JP2007237038A/en
Application granted granted Critical
Publication of JP4623518B2 publication Critical patent/JP4623518B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a complex substrate in which a sensor circuit and an outer electrode, which are arranged in the internal space of the complex substrate obtained by directly connecting a pair of substrates each other, are easily connected by a metal wiring, are also excellent in the sealing property of the internal space and are easy in production. <P>SOLUTION: A concave part 2 for the internal space has a first substrate 1 finely processed on the surface and a second substrate 11 which is directly connected to the surface of the first substrate 1 so that the concave part 2 for the internal space is sealed to form the internal space 5. On the surface of the second substrate 11, the metal wiring 13 for electrically connecting the sensor circuit arranged in the internal space and the outer electrode 14 arranged at the outer part of the sensor circuit and the first substrate 1, is laminatedly formed. A wiring concave part 7 containing the metal wiring 13 is formed on the first substrate 1 and the wiring concave part 7, where the metal wiring 13 has been contained, is sealed by a cured resin R. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、凹部が微細加工された一方の基板と、前記凹部を封止して内部空間を形成するように前記基板に直接接合された他方の基板とを有する複合基板に関し、測定用セルやマイクロリアクターデバイスに利用される。   The present invention relates to a composite substrate having one substrate in which a recess is microfabricated and the other substrate directly bonded to the substrate so as to seal the recess and form an internal space. Used for microreactor devices.

第1の基板の表面に数十μm 乃至数百μm 程度の凹部を微細加工により形成し、前記基板の凹部側表面に第2の基板を接合して、前記凹部を内部空間とした複合基板を備えたデバイスが知られている。例えば、特開2001−56286号公報(特許文献1)には、2枚の基板を酸化ケイ素膜を用いて接合し、一方の基板に形成した凹部を閉塞して内部空間とし、これに液体試料を導入するための試料導入口と液体試料を排出する排出口を設け、前記内部空間の一部の領域を測定室とした測定用セルが記載されている。また、特開2005−186033号公報(特許文献2)には、一方の基板に微小流路を形成し、この流路を封止するように他方の基板を前記基板の流路形成面に接合したマイクロリアクターチップが記載されている。   A composite substrate having a recess of about several tens to several hundreds of μm formed on the surface of the first substrate by microfabrication, a second substrate bonded to the surface of the recess of the substrate, and the recess serving as an internal space. Devices equipped are known. For example, in Japanese Patent Application Laid-Open No. 2001-56286 (Patent Document 1), two substrates are bonded using a silicon oxide film, a recess formed in one substrate is closed to form an internal space, and a liquid sample is added thereto. Describes a measurement cell in which a sample introduction port for introducing liquid and a discharge port for discharging a liquid sample are provided, and a partial region of the internal space is used as a measurement chamber. Japanese Patent Laying-Open No. 2005-186033 (Patent Document 2) forms a micro flow path on one substrate and bonds the other substrate to the flow path forming surface of the substrate so as to seal the flow path. A microreactor chip is described.

前記基板同士の接合は、陽極接合やフッ酸接合など、基板自体の接合力によって接合する直接接合が適用されている。これは、接着剤による接合では、以下の問題があり、微細な内部空間を備えたデバイス構造における基板接合法として適さないからである。すなわち、接着剤により基板を接合すると、封止された内部空間に接着剤が広範囲にはみ出し、空間の均一性を損なわれたり、著しい場合は内部空間の一部が接着剤で埋められるという問題がある。また、接合面に比較的厚い接着剤層が形成され、これが基板の側端にて外部に露呈するため、耐薬品性の面でも問題がある。このため、石英やガラス、シリコンなどの基板を用いて接合する場合、多くは陽極接合やフッ酸接合などの直接接合法が用いられる。直接接合によると、平坦面同士の接合に対して良好な接合強度を得ることができ、接着剤による接合のような問題も生じない。
特開2001−56286号公報 特開2005−186033号公報
As the bonding between the substrates, direct bonding, such as anodic bonding or hydrofluoric acid bonding, which is bonded by the bonding force of the substrates themselves is applied. This is because bonding with an adhesive has the following problems and is not suitable as a substrate bonding method in a device structure having a fine internal space. In other words, when the substrates are bonded with an adhesive, the adhesive protrudes over a wide range into the sealed internal space, and the uniformity of the space is lost, or in some cases, a part of the internal space is filled with the adhesive. is there. In addition, since a relatively thick adhesive layer is formed on the joint surface and exposed to the outside at the side edge of the substrate, there is a problem in terms of chemical resistance. For this reason, when bonding is performed using a substrate such as quartz, glass, or silicon, a direct bonding method such as anodic bonding or hydrofluoric acid bonding is often used. With direct bonding, good bonding strength can be obtained for bonding between flat surfaces, and problems such as bonding with an adhesive do not occur.
JP 2001-56286 A Japanese Patent Laid-Open No. 2005-186033

デバイスには、内部空間内に、例えば検出機能を備えた配線構造などのセンサー回路を設けることが必要となるものがある。この様なデバイスでは、内部空間内に設けられたセンサー回路を外部電極に金属配線によって引き出す必要がある。   Some devices require a sensor circuit such as a wiring structure having a detection function in an internal space. In such a device, it is necessary to draw out a sensor circuit provided in the internal space to the external electrode by metal wiring.

この金属配線の引き出し方法として、内部空間に連通する貫通孔を基板に設け、この貫通孔に埋設した導電部材を介して内部空間内に設置したセンサー回路を外部電極につなぐ方法が考えられる。実際、このような接続方法は、貫通孔の末端開口が内部空間内に収まるような十分な大きさの空間を備えたものでは実施されている。   As a method for drawing out the metal wiring, a method is conceivable in which a through hole communicating with the internal space is provided in the substrate, and a sensor circuit installed in the internal space is connected to the external electrode through a conductive member embedded in the through hole. In fact, such a connection method is implemented in a case having a sufficiently large space so that the end opening of the through hole can be accommodated in the internal space.

しかし、マイクロチャネルなどの幅数十〜数百μm 程度の微細空間に対して、配線引き出し用の貫通穴を開け、金属配線を設けることは、寸法的に実施困難である。すなわち、貫通孔はデバイス内の内部空間に直接開口するように設ける必要があるが、貫通孔を機械的加工によって形成した場合、内部構造に与える影響が大きく、孔の周囲の微細構造が損傷するおそれが高い。また、基板を形成するシリコン等をフッ酸により溶解して貫通穴を形成するとしても、長大なエッチング時間を要し、やはりエッチングによる孔周囲の微細構造への影響が避けられない。また、貫通孔の壁面に金属メッキを施すことで金属配線を形成することができるが、配線形成後、貫通孔自体を埋め合わせるというような面倒な工程が必要となり、工程が煩雑になる上、この微細孔を気密に塞ぐことは容易ではない。
本発明はかかる問題に鑑みなされたものであり、一対の基板同士が直接接合された複合基板の内部空間内に設けられたセンサー回路と外部電極とが金属配線によって容易に接続され、しかも内部空間の封止性に優れ、製作が容易な複合基板を提供することを目的とする。
However, it is difficult to carry out dimensionally to provide a metal wiring by opening a through hole for drawing out a wiring in a minute space having a width of several tens to several hundreds μm such as a microchannel. That is, it is necessary to provide the through hole so as to open directly into the internal space in the device. However, when the through hole is formed by mechanical processing, the internal structure is greatly affected, and the fine structure around the hole is damaged. There is a high risk. Further, even if silicon or the like forming the substrate is dissolved in hydrofluoric acid to form the through hole, a long etching time is required, and the influence on the fine structure around the hole due to the etching is unavoidable. In addition, metal wiring can be formed by applying metal plating to the wall surface of the through hole. It is not easy to hermetically close the micropores.
The present invention has been made in view of such a problem, and a sensor circuit provided in an internal space of a composite substrate in which a pair of substrates are directly bonded to each other and an external electrode are easily connected by metal wiring, and the internal space. An object of the present invention is to provide a composite substrate that is excellent in sealing performance and easy to manufacture.

本発明に係る第1の複合基板は、内部空間用凹部が表面に微細加工された第1基板と、前記内部空間用凹部を封止して内部空間を形成するように前記第1基板の表面に直接接合された第2基板とを有し、前記第2基板の表面には、前記内部空間内に配置されたセンサー回路と、当該センサー回路と外部に配置された外部電極とを電気的に接続する金属配線が積層形成され、前記第1基板と第2基板の接合面の間に前記金属配線が挟持され、これによって生じた前記金属配線の幅方向端の隙間が硬化樹脂によって封止されたものである。   The first composite substrate according to the present invention includes a first substrate having a recess for an internal space finely processed on the surface, and a surface of the first substrate so as to form the internal space by sealing the recess for the internal space. A second substrate directly bonded to the sensor, and a sensor circuit disposed in the internal space, and the sensor circuit and an external electrode disposed outside are electrically connected to the surface of the second substrate. The metal wiring to be connected is formed in a laminated manner, the metal wiring is sandwiched between the joint surfaces of the first substrate and the second substrate, and the gap in the width direction end of the metal wiring generated thereby is sealed with a cured resin. It is a thing.

この複合基板によれば、第2基板の表面にセンサー回路と共に金属配線が形成されるので、ごく薄い金属配線自体の形成が極めて容易である。さらに、金属配線がごく薄いものであれば、第1、第2基板は前記金属配線を挟持しつつ変形し、金属配線及びその近傍を除く領域において直接接合することができる。このため、基板同士の直接接合を妨げることなく、金属配線の配置、形成が極めて容易である。しかも、金属配線を挟持することによって幅方向端に生じる隙間は硬化樹脂によって封止されるので、前記隙間による内部空間と外部との連通も容易に遮断され、内部空間の封止性に優れる。   According to this composite substrate, since the metal wiring is formed together with the sensor circuit on the surface of the second substrate, it is very easy to form a very thin metal wiring itself. Furthermore, if the metal wiring is extremely thin, the first and second substrates can be deformed while sandwiching the metal wiring, and can be directly joined in the region excluding the metal wiring and the vicinity thereof. For this reason, it is very easy to arrange and form the metal wiring without hindering direct bonding between the substrates. In addition, since the gap generated at the end in the width direction by sandwiching the metal wiring is sealed with the cured resin, the communication between the internal space and the outside by the gap is easily blocked, and the internal space is excellent in sealing performance.

上記複合基板において、前記第1基板に、前記硬化樹脂の硬化前の未硬化樹脂を前記隙間の供給する樹脂供給孔を設けることができる。
この樹脂供給孔を設け、第1基板と第2基板とを接合した後、ここに未硬化樹脂を供給することにより、金属配線の幅方向端に形成された隙間に未硬化樹脂を容易に充填形成することができ、これを硬化させることで、前記隙間を容易に封止することができる。
In the composite substrate, a resin supply hole for supplying the uncured resin before curing of the cured resin to the gap can be provided in the first substrate.
By providing this resin supply hole and bonding the first substrate and the second substrate and then supplying the uncured resin here, the uncured resin can be easily filled in the gap formed at the end in the width direction of the metal wiring The gap can be easily sealed by curing the gap.

また、本発明の第2の複合基板は、内部空間用凹部が表面に微細加工された第1基板と、前記内部空間用凹部を封止して内部空間を形成するように前記第1基板の表面に直接接合された第2基板とを有し、前記第2基板の表面には、前記内部空間内に配置されたセンサー回路と、当該センサー回路と外部に配置された外部電極とを電気的に接続する金属配線が積層形成され、前記第1基板又は前記第2基板には前記金属配線を収容する配線凹部が形成され、前記金属配線が収容された前記配線凹部が硬化樹脂により封止されたものである。   Further, the second composite substrate of the present invention includes a first substrate having a concave portion for internal space finely processed on a surface thereof, and the first substrate so as to form the internal space by sealing the concave portion for internal space. A second substrate directly bonded to the surface, and a sensor circuit disposed in the internal space, and the sensor circuit and an external electrode disposed outside are electrically connected to the surface of the second substrate. A metal wiring to be connected to the wiring is formed on the first substrate or the second substrate, and a wiring concave portion for accommodating the metal wiring is formed on the first substrate or the second substrate, and the wiring concave portion for accommodating the metal wiring is sealed with a cured resin. It is a thing.

前記第1の複合基板のように、前記配線凹部を設けることなく、基板の間に金属配線を挟持すると、基板に応力が生じた状態で基板同士を直接接合することになる。また、金属配線の幅方向両端に形成される隙間は、金属配線の端から隙間間隔が漸次狭くなり、基板同士が密着するに至る。このため、金属配線の幅方向端に形成される隙間の未接合領域が確定せず、また比較的広範囲に及ぶ。これに対し、この第2の複合基板によると、金属配線は基板に形成された配線凹部に収容され、その状態で配線凹部が硬化樹脂により封止されるため、基板に応力が加わらず、また未接合領域が配線凹部の幅に制限されるため、硬化樹脂による配線凹部の封止がより容易になる。   When the metal wiring is sandwiched between the substrates without providing the wiring recess as in the first composite substrate, the substrates are directly bonded to each other in a state where stress is generated on the substrates. Further, the gap formed at both ends in the width direction of the metal wiring is gradually narrowed from the end of the metal wiring, and the substrates come into close contact with each other. For this reason, the unjoined region of the gap formed at the end in the width direction of the metal wiring is not fixed and covers a relatively wide range. On the other hand, according to the second composite substrate, the metal wiring is accommodated in the wiring recess formed in the substrate, and the wiring recess is sealed with the cured resin in that state, so that no stress is applied to the substrate. Since the unbonded region is limited to the width of the wiring recess, sealing of the wiring recess with the cured resin becomes easier.

この第2の複合基板においても、前記第1の複合基板と同様、前記硬化樹脂の硬化前の未硬化樹脂を前記配線凹部に供給する樹脂供給孔を設けることで、基板接合後における未硬化樹脂の配線凹部への供給、充填を容易に行うことができる。   Also in the second composite substrate, similarly to the first composite substrate, an uncured resin after bonding the substrates is provided by providing a resin supply hole for supplying uncured resin before curing of the cured resin to the wiring recess. Can be easily supplied to and filled in the wiring recesses.

また、上記第2の複合基板では、前記配線凹部が前記内部空間に開口する前記配線凹部の開口端において、前記配線凹部の内周面と前記内部空間用凹部の内周面とが屈曲した形状とすることができる。
前記内部空間に開口する配線凹部の開口端を屈曲形状とすることで、配線凹部に供給された未硬化樹脂は、配線凹部の開口端まで浸透すると、流路の屈曲により接触角が急変するため、ここで一定時間停止する。その間に未硬化樹脂を硬化させることにより、配線凹部の開口端にて硬化樹脂による封止を行うことができる。このため、配線凹部の開口から内部空間用凹部内面に硬化樹脂が流出して、開口端で硬化樹脂が膨出状に硬化したり、未硬化樹脂の浸透が開口端の手前で止まり、そこで硬化することにより開口端が凹んだ状態となるのを防止することができ、ひいては内部空間用凹部内面の面一性、内面品質を向上させることができる。
In the second composite substrate, the inner circumferential surface of the wiring recess and the inner circumferential surface of the inner space recess are bent at the opening end of the wiring recess where the wiring recess opens into the inner space. It can be.
Since the opening end of the wiring recess opening in the internal space is bent, when the uncured resin supplied to the wiring recess penetrates to the opening end of the wiring recess, the contact angle changes suddenly due to the bending of the flow path. Stop here for a certain time. By curing the uncured resin in the meantime, sealing with the cured resin can be performed at the opening end of the wiring recess. For this reason, the cured resin flows out from the opening of the wiring recess to the inner surface of the recess for the internal space, and the cured resin hardens in a bulging shape at the opening end, or the penetration of the uncured resin stops before the opening end and cures there. By doing so, it is possible to prevent the opening end from being recessed, and as a result, it is possible to improve the surface uniformity and the inner surface quality of the inner surface of the inner space recess.

また、第2の複合基板において、前記配線凹部が前記内部空間に開口する配線凹部の開口端近傍内周面に前記硬化樹脂の元になる未硬化樹脂と配線凹部の内面との接触角を増大させる濡れ性低下膜を形成することができる。
このような濡れ性低下膜を配線凹部の開口端近傍内周面に形成することによって、未硬化樹脂の浸透が配線凹部の開口端にて停止し、その状態で硬化させることで、内部空間用凹部の内周面の面一性を向上させることができ、複合基板の品質を向上させることができる。上記配線凹部の開口端を屈曲形状とするとともに濡れ性硬化層を形成することで、配線凹部の開口端における面一性をより確実なものとすることができる。
Further, in the second composite substrate, the contact angle between the uncured resin that is the origin of the cured resin and the inner surface of the wiring recess is increased on the inner peripheral surface near the opening end of the wiring recess in which the wiring recess opens into the internal space. A wettability-reducing film can be formed.
By forming such a wettability-reducing film on the inner peripheral surface in the vicinity of the opening end of the wiring recess, the penetration of the uncured resin stops at the opening end of the wiring recess and is cured in that state. The uniformity of the inner peripheral surface of the recess can be improved, and the quality of the composite substrate can be improved. By making the opening end of the wiring recess into a bent shape and forming a wettable hardened layer, the surface uniformity at the opening end of the wiring recess can be made more reliable.

本発明の複合基板によれば、内部空間内に配置されるセンサー回路と外部電極とを接続する金属配線が、第1基板と第2基板とに挟持され、その幅方向端に形成された隙間が硬化樹脂で封止され、あるいは第1基板又は第2基板に配線凹部が形成され、金属配線を収容した配線凹部が硬化樹脂で封止されているので、金属配線の配置、内部空間の封止が容易で、しかも複合基板の製作も容易である。   According to the composite substrate of the present invention, the metal wiring that connects the sensor circuit disposed in the internal space and the external electrode is sandwiched between the first substrate and the second substrate, and the gap formed at the end in the width direction Is sealed with a curable resin, or a wiring recess is formed in the first substrate or the second substrate, and the wiring recess containing the metal wiring is sealed with a curable resin. It is easy to stop and the composite substrate can be easily manufactured.

以下、本発明の実施形態にかかる複合基板を図面を参照してその製造方法と共に説明する。
図1から図3は、第1実施形態にかかる複合基板を示しており、石英で形成され、内部空間用凹部2が表面に微細加工された第1基板1と、シリコンで形成され、前記内部空間用凹部2を封止して内部空間5を形成するように前記第1基板1の表面に直接接合された第2基板11とを備えている。
Hereinafter, a composite substrate according to an embodiment of the present invention will be described together with a manufacturing method thereof with reference to the drawings.
FIGS. 1 to 3 show a composite substrate according to the first embodiment. The composite substrate is made of quartz, and a first substrate 1 in which a recess 2 for internal space is finely processed on the surface, silicon is used, and the internal And a second substrate 11 directly bonded to the surface of the first substrate 1 so as to seal the space recess 2 to form an internal space 5.

前記第2基板11は、表面に熱酸化SiO2 膜を有しており、その上にセンサー回路12と、外周部に配置された外部電極14と、前記センサー回路12と外部電極14とをつなぐ金属配線13がフォトリソグラフィーなどの手法によって積層形成されている。前記センサー回路12は前記内部空間5内に配置されるように配置される。前記金属配線13は、例えば50〜200μm 程度の幅に形成され、またその厚さは10nm〜1μm 、好ましくは10〜100nm程度とごく薄く形成される。 The second substrate 11 has a thermally oxidized SiO 2 film on its surface, and connects the sensor circuit 12, the external electrode 14 disposed on the outer periphery, and the sensor circuit 12 and the external electrode 14. The metal wiring 13 is laminated by a technique such as photolithography. The sensor circuit 12 is disposed so as to be disposed in the internal space 5. The metal wiring 13 is formed to have a width of, for example, about 50 to 200 μm, and the thickness thereof is extremely thin, for example, about 10 nm to 1 μm, preferably about 10 to 100 nm.

一方、前記第1基板1には、前記内部空間用凹部2が形成されるほか、その両端部に前記凹部内に貫通する試料供給孔4A、試料排出孔4Bが形成される。前記内部空間用凹部2のサイズは、用途にもよるが、例えば幅500〜1000μm 、深さ200μm 程度の寸法とされる。
また、前記第1基板1には、第1基板1が第2基板11に接合された状態で、前記金属配線13の一部およびその幅方向両端に形成される隙間6を含むように開口する、口径1mm程度の樹脂供給孔3が機械加工により貫通形成されている。樹脂供給孔3の加工に際しては、接合面に損傷を与えないように、接合面を樹脂シートで保護した上で接合面側から加工することが好ましい。
On the other hand, the first substrate 1 is provided with the recess 2 for internal space, and the sample supply hole 4A and the sample discharge hole 4B penetrating into the recess are formed at both ends thereof. The size of the recess 2 for the internal space depends on the application, but for example, the width is about 500 to 1000 μm and the depth is about 200 μm.
The first substrate 1 is opened so as to include a part of the metal wiring 13 and a gap 6 formed at both ends in the width direction in a state where the first substrate 1 is bonded to the second substrate 11. A resin supply hole 3 having a diameter of about 1 mm is formed by machining. When the resin supply hole 3 is processed, it is preferable to process the bonding surface from the bonding surface side after protecting the bonding surface with a resin sheet so as not to damage the bonding surface.

前記第1基板1は、その内部空間用凹部2の開口が前記第2基板11に積層されたセンサー回路12に被さるように、また前記金属配線13を挟持するように前記第2基板11に重ね合わされて、フッ酸接合や陽極接合などの方法により直接接合されている。例えば、フッ酸接合は、上記二枚の基板の接合面をフッ酸0.1%で表面処理し、位置合わせして3kP程度の圧力で24hr程度保持することによって行われる。   The first substrate 1 is overlapped with the second substrate 11 so that the opening of the recess 2 for the internal space covers the sensor circuit 12 laminated on the second substrate 11 and sandwiches the metal wiring 13. In addition, direct bonding is performed by a method such as hydrofluoric acid bonding or anodic bonding. For example, hydrofluoric acid bonding is performed by surface-treating the bonding surfaces of the two substrates with 0.1% hydrofluoric acid, aligning them, and holding them at a pressure of about 3 kP for about 24 hours.

前記第1基板1と第2基板11とが接合された結果、前記内部空間用凹部2は内部空間5となり、また金属配線13が挟持された基板部分では、図3に示すように、第1基板1が変形し、金属配線13の幅方向両端には幅方向に漸次間隔が狭くなった隙間6が金属配線13に沿って形成される。前記隙間6は、金属配線の厚さを20nm程度とした場合、幅方向の長さは50μm 程度である。なお、前記センサー回路12から引き出す金属配線13は、内部空間用凹部2の内周面に開口する隙間6の影響を軽減するため、センサー回路12に影響がない程度にこれから離れた位置に配置することが好ましい。   As a result of joining the first substrate 1 and the second substrate 11, the recess 2 for the internal space becomes an internal space 5, and in the substrate portion where the metal wiring 13 is sandwiched, as shown in FIG. The substrate 1 is deformed, and a gap 6 is formed along the metal wiring 13 at both ends of the metal wiring 13 in the width direction, the gap 6 being gradually narrowed in the width direction. The gap 6 has a length in the width direction of about 50 μm when the thickness of the metal wiring is about 20 nm. The metal wiring 13 drawn out from the sensor circuit 12 is disposed at a position away from the sensor circuit 12 so as not to affect the sensor circuit 12 in order to reduce the influence of the gap 6 opened in the inner peripheral surface of the inner space recess 2. It is preferable.

前記樹脂供給孔3及びその金属配線側の下面開口を中心として金属配線13及びその両端の隙間6に硬化樹脂Rが充填され、隙間6は封止されている。この硬化樹脂Rは、第1基板1と第2基板11とを直接接合した後、前記樹脂供給孔3から未硬化樹脂を供給し、未硬化樹脂が前記金属配線13の幅方向両端に生じた隙間6に沿って、これを充填するように浸透し、硬化されたものである。未硬化樹脂を浸透させる前には、前記隙間6は前記内部空間5と外部とを連通する連通空間を構成するが、未硬化樹脂の浸透、充填およびその硬化処理により、連通空間の連通が遮断され、内部空間5は封止される。なお、金属配線13の上面は第1基板1によって挟持され、通常、隙間は生じないが、僅かな隙間が生じたとしても、未硬化樹脂が金属配線の上面に浸透して、金属配線の上面も第1基板の接合面に接合される。   The metal wiring 13 and the gap 6 at both ends thereof are filled with the cured resin R around the resin supply hole 3 and the lower opening on the metal wiring side, and the gap 6 is sealed. The cured resin R was supplied directly from the resin supply hole 3 after the first substrate 1 and the second substrate 11 were directly joined, and the uncured resin was generated at both ends in the width direction of the metal wiring 13. It has penetrated and filled in the gap 6 so as to fill it. Before the uncured resin is infiltrated, the gap 6 forms a communication space that communicates the internal space 5 with the outside. However, the communication of the communication space is blocked by the infiltration, filling, and curing treatment of the uncured resin. The internal space 5 is sealed. Note that the upper surface of the metal wiring 13 is sandwiched between the first substrates 1 and normally no gap is formed. However, even if a slight gap is generated, the uncured resin penetrates into the upper surface of the metal wiring and the upper surface of the metal wiring. Are also bonded to the bonding surface of the first substrate.

前記硬化樹脂の充填による封止領域としては、基板に挟持された金属配線13の全区間で行われている必要はなく、その区間の一部でよいが、図2に示すように、内部空間5側については、隙間6が内部空間5に開口する境界まで充填されることが好ましい。内部空間5の開口する部分では、隙間6を形成する基板1の接合面と内部空間用凹部2の内面とが屈曲した状態となるので、未硬化樹脂は内部空間5内に流出し難く、その部分で停止する。このため、その状態で未硬化樹脂を硬化させることで、開口境界まで硬化樹脂を容易に充填することができる。これにより、内部空間5の外周面(内部空間用凹部2の内面)は面一になり、流体試料の測定精度が向上する。もっとも、隙間6の断面はごく小さいものであるので、内部空間5に隙間6が開口してもその影響はわずかであり、金属配線13の長さ方向の中途部において、隙間6が硬化樹脂により封止されるだけでもよい。   The sealing region by filling the curable resin does not have to be performed in the entire section of the metal wiring 13 sandwiched between the substrates, and may be a part of the section. However, as shown in FIG. About the 5 side, it is preferable to fill to the boundary which the clearance gap 6 opens to the internal space 5. FIG. Since the joint surface of the substrate 1 forming the gap 6 and the inner surface of the inner space recess 2 are bent at the opening portion of the inner space 5, the uncured resin hardly flows into the inner space 5, Stop at the part. For this reason, the cured resin can be easily filled up to the opening boundary by curing the uncured resin in that state. As a result, the outer peripheral surface of the internal space 5 (the inner surface of the internal space recess 2) is flush, and the measurement accuracy of the fluid sample is improved. However, since the cross section of the gap 6 is very small, even if the gap 6 is opened in the internal space 5, the influence is slight. In the middle portion of the metal wiring 13 in the length direction, the gap 6 is made of cured resin. It may only be sealed.

前記硬化樹脂Rとしては、PDMS(ポリジメチルシロキサン)を硬化(固化)したもの、紫外線硬化樹脂に紫外線を照射して硬化したもの、シリコーンオイルをUV硬化結合させたもの等を用いることができる。使用する硬化樹脂の種類は、硬化前の未硬化樹脂液と基板との濡れ性が良いものが好ましい。例えば、この実施形態のように、基板材料がガラス、石英、シリコンなどの場合は、紫外線硬化樹脂などの親水性の未硬化樹脂が馴染みやすく、PDMSや樹脂系の基板を用いる場合は疎水性の硬化樹脂が馴染みやすい。   Examples of the cured resin R include those obtained by curing (solidifying) PDMS (polydimethylsiloxane), those obtained by irradiating an ultraviolet curable resin with ultraviolet rays, and those obtained by UV-bonding silicone oil. The kind of curable resin to be used is preferably one having good wettability between the uncured resin liquid before curing and the substrate. For example, as in this embodiment, when the substrate material is glass, quartz, silicon or the like, a hydrophilic uncured resin such as an ultraviolet curable resin is easily adapted, and when PDMS or a resin-based substrate is used, it is hydrophobic. Hardened resin is easy to get used to.

さらに、前記未硬化樹脂の隙間6への浸透を促進するには、未硬化樹脂が浸透する基板表面に、予め未硬化樹脂液と基板との濡れ性を向上させるように、基板の浸透部表面に親水性あるいは疎水性処理を施すとよい。例えば、親水性の紫外線硬化樹脂を用いる場合、基板の未硬化樹脂の浸透面に事前にUVを照射し、表面の有機分子を分解除去しておくことで親水度が増し、未硬化樹脂液の隙間への浸入が起こり易くなる。   Further, in order to promote the penetration of the uncured resin into the gap 6, the surface of the infiltrating portion of the substrate is improved so as to improve the wettability between the uncured resin liquid and the substrate in advance on the surface of the substrate through which the uncured resin penetrates. It is advisable to apply hydrophilic or hydrophobic treatment to the surface. For example, when a hydrophilic UV curable resin is used, the hydrophilicity is increased by irradiating the surface of the uncured resin of the substrate with UV in advance and decomposing and removing organic molecules on the surface. Intrusion into the gap is likely to occur.

上記実施形態では、第1基板1は内部空間用凹部2に連通する試料供給孔4A,試料排出孔4Bを設けたが、試料を内部空間5に封じ込める場合など、測定態様によってはこれらの供給、排出孔を設ける必要がない場合がある。また、上記実施態様では、内部空間5に設置されるセンサー回路12は一つであり、また樹脂供給孔3も1本の金属配線13につき一つの例を示したが、これらの設置数は任意であり、例えば図4に示すように樹脂供給孔3を複数個(図例では2個)設けてもよく、また図5に示すようにセンサー回路12を複数個(図例では3個)設けてもよい。   In the above embodiment, the first substrate 1 is provided with the sample supply hole 4A and the sample discharge hole 4B communicating with the inner space recess 2. However, depending on the measurement mode, such as when the sample is contained in the inner space 5, There may be no need to provide a discharge hole. Moreover, in the said embodiment, although the sensor circuit 12 installed in the internal space 5 is one, and the resin supply hole 3 showed one example per one metal wiring 13, these installation numbers are arbitrary. For example, a plurality of resin supply holes 3 (two in the illustrated example) may be provided as shown in FIG. 4, and a plurality of sensor circuits 12 (three in the illustrated example) are provided as shown in FIG. May be.

次に、本発明の第2実施形態にかかる複合基板を図6〜8を参照して説明する。なお、第1実施形態と同部材は同符号を付してその説明を省略する。
第2実施形態の複合基板は、第1基板1には、第2基板11にセンサー回路12と共に形成された金属配線13を収容する配線凹部7が形成されている。この配線凹部7に金属配線13を収容することで、第1基板1には、金属配線13を挟持することに起因した変形、応力が生じず、また横幅が比較的広く、かつ未確定な隙間6の発生を防止することができる。このため、樹脂供給孔3からの未硬化樹脂の供給、浸透がこの配線凹部13だけとなり、効率のよい封止が可能となる。
Next, a composite substrate according to a second embodiment of the present invention will be described with reference to FIGS. In addition, the same member as 1st Embodiment attaches | subjects the same code | symbol, and abbreviate | omits the description.
In the composite substrate of the second embodiment, the first substrate 1 is formed with a wiring recess 7 that accommodates the metal wiring 13 formed on the second substrate 11 together with the sensor circuit 12. By accommodating the metal wiring 13 in the wiring recess 7, the first substrate 1 is not deformed or stressed due to sandwiching the metal wiring 13, and has a relatively wide lateral width and an undefined gap. 6 can be prevented. For this reason, the supply and penetration of the uncured resin from the resin supply hole 3 are limited to the wiring recess 13, and efficient sealing is possible.

前記配線凹部7は、金属配線13が収容可能な寸法、形状とすればよいが、製作の容易さも考慮して、例えば金属配線13を幅200μm 、厚さ20nm程度に形成する場合、幅260〜300μm 程度、深さ50〜600nm程度とすればよい。もっとも、これらのサイズは、未硬化樹脂が適度に浸透するように決めることが好ましく、この際、未硬化樹脂液と浸透面との濡れ性、未硬化樹脂液の粘性や表面張力が考慮される。   The wiring recess 7 may be sized and shaped so that the metal wiring 13 can be accommodated. However, considering the ease of manufacture, for example, when the metal wiring 13 is formed with a width of about 200 μm and a thickness of about 20 nm, the width of 260 to 260 is used. The depth may be about 300 μm and the depth is about 50 to 600 nm. However, these sizes are preferably determined so that the uncured resin can permeate appropriately. In this case, the wettability between the uncured resin liquid and the permeation surface, the viscosity and surface tension of the uncured resin liquid are taken into consideration. .

前記配線凹部13は、第1基板1の接合面に金属配線13のパターンに対応した部分をエッチングすることにより加工される。その後、樹脂供給孔3が加工され、フッ酸等による接合処理を行い、第2基板1に形成された金属配線13を前記配線凹部7に収容するように、第2基板11に第1基板1が重ね合わせれて直接接合され、その後、樹脂供給孔3から未硬化樹脂を供給し、金属配線13が収容された配線凹部7に浸透、充填させ、硬化処理を施すことにより、前記配線凹部7に硬化樹脂が充填され、内部空間5と外部とをつなぐ配線凹部によって形成された連通路は遮断され、内部空間5は封止される。   The wiring recess 13 is processed by etching a portion corresponding to the pattern of the metal wiring 13 on the bonding surface of the first substrate 1. Thereafter, the resin supply hole 3 is processed, and a bonding process using hydrofluoric acid or the like is performed, so that the metal wiring 13 formed on the second substrate 1 is accommodated in the wiring recess 7 so that the second substrate 11 has the first substrate 1. Are overlapped and joined directly, and thereafter, an uncured resin is supplied from the resin supply hole 3, and penetrated and filled into the wiring recess 7 in which the metal wiring 13 is accommodated, and subjected to a curing process, whereby the wiring recess 7 is formed. The communication path formed by the wiring recess filled with the cured resin and connecting the internal space 5 and the outside is blocked, and the internal space 5 is sealed.

前記配線凹部7に硬化樹脂Rを充填するに際しては、第1実施形態と同様、前記配線凹部7が前記内部空間5に開口する前記配線凹部7の開口端まで未硬化樹脂を浸透、充填し、これを硬化させることが好ましい。この実施形態においても、前記配線凹部7の開口端では、前記配線凹部7の内周面と前記内部空間用凹部2の内周面とが屈曲した状態となるので、未硬化樹脂の浸透はここで停止し易く、その状態で硬化させることで容易に硬化樹脂Rを配線凹部7の開口端まで充填することができ、内部空間用凹部2の内面を面一にすることができる。   When filling the wiring recess 7 with the cured resin R, as in the first embodiment, the wiring recess 7 penetrates and fills the open end of the wiring recess 7 that opens into the internal space 5, It is preferable to cure this. Also in this embodiment, at the opening end of the wiring recess 7, the inner peripheral surface of the wiring recess 7 and the inner peripheral surface of the inner space recess 2 are bent. The cured resin R can be easily filled up to the opening end of the wiring recess 7 by being cured in this state, and the inner surface of the inner space recess 2 can be made flush.

さらに、配線凹部7の開口端にて未硬化樹脂を確実に停止させるには、第1基板1と第2基板11とを直接接合する前に、図9に示すように、第1基板1の配線凹部7が内部空間用凹部2内面に開口する、開口端近傍内周面に未硬化樹脂と配線凹部7の内面との接触角を増大させる濡れ性低下膜9を形成するとよい。例えば、未硬化樹脂として親水性の紫外線硬化樹脂によって配線凹部7を封孔する場合、濡れ性低下膜9として撥水性を有するカーボン膜を形成すればよい。このカーボン膜は、配線凹部7を含む、第1基板1の接合側表面にCVDなどにより厚さ100〜300nm程度のアモルファスカーボン膜を成膜した後、前記開口端近傍内周面にマスクを施して、UV照射を行う。これにより、マスクを掛けた領域以外のアモルファスカーボンを分解除去し、マスクを除去することにより、配線凹部7の開口端近傍内周面のみにカーボン膜を形成することができる。   Furthermore, in order to reliably stop the uncured resin at the opening end of the wiring recess 7, as shown in FIG. 9, before the first substrate 1 and the second substrate 11 are directly bonded, The wettability reducing film 9 that increases the contact angle between the uncured resin and the inner surface of the wiring recess 7 may be formed on the inner peripheral surface near the opening end where the wiring recess 7 opens to the inner surface of the inner space recess 2. For example, when the wiring recess 7 is sealed with a hydrophilic ultraviolet curable resin as an uncured resin, a carbon film having water repellency may be formed as the wettability reducing film 9. This carbon film is formed by depositing an amorphous carbon film having a thickness of about 100 to 300 nm on the bonding side surface of the first substrate 1 including the wiring recess 7 by CVD or the like, and then masking the inner peripheral surface near the opening end. Then, UV irradiation is performed. Thereby, the carbon film can be formed only on the inner peripheral surface in the vicinity of the opening end of the wiring recess 7 by decomposing and removing the amorphous carbon other than the region covered with the mask and removing the mask.

また、第2実施形態、第1実施形態において、未硬化樹脂として紫外線硬化樹脂やシリコンオイルを用いる場合、内部空間5を遮蔽する領域に事前にマスクをかけた状態で、隙間6や配線凹部7に未硬化樹脂を浸透充填し、硬化光線(紫外線)を照射することにより、内部空間5内の未硬化樹脂の硬化を抑制し、隙間6や配線凹部7に存在する未硬化樹脂のみを選択的に硬化させ、その後、内部空間5内の未硬化樹脂を除去することで、隙間6や配線凹部7の内部空間開口部に凹凸が生じないようにすることができる。   In the second embodiment and the first embodiment, when an ultraviolet curable resin or silicon oil is used as the uncured resin, the gap 6 or the wiring recess 7 is applied in a state where a mask is applied in advance to a region that shields the internal space 5. The uncured resin is permeated and filled and irradiated with curing light (ultraviolet light) to suppress the curing of the uncured resin in the internal space 5 and to selectively select only the uncured resin present in the gap 6 and the wiring recess 7. Then, by removing the uncured resin in the internal space 5, it is possible to prevent unevenness from occurring in the internal space openings of the gap 6 and the wiring recess 7.

上記第2実施形態では、第1基板1の接合面をエッチングすることにより配線凹部7を形成したが、図10(A)に示すように、第1基板1の金属配線13に対応するパターン外の表面部にSiO2 膜21を成膜することで、配線用凹部7を容易に形成することができる。また、図10(B)に示すように、第2基板11の接合面に金属配線パターン外の表面部に例えばCVDによってSiO2 膜22を成膜することで、金属配線を含むように配線凹部7を形成することができる。
また、第2実施形態においても、用途によっては試料供給口4A、試料排出口4Bを設ける必要はなく、またセンサー回路12や樹脂供給孔3を複数個(図例では2個)設けることができる。
In the second embodiment, the wiring recess 7 is formed by etching the bonding surface of the first substrate 1. However, as shown in FIG. 10A, the pattern outside the pattern corresponding to the metal wiring 13 of the first substrate 1 is formed. By forming the SiO 2 film 21 on the surface portion, the wiring recess 7 can be easily formed. Further, as shown in FIG. 10B, by forming a SiO 2 film 22 on the surface portion outside the metal wiring pattern on the bonding surface of the second substrate 11 by, for example, CVD, a wiring recess is formed so as to include the metal wiring. 7 can be formed.
Also in the second embodiment, it is not necessary to provide the sample supply port 4A and the sample discharge port 4B depending on the application, and a plurality of sensor circuits 12 and resin supply holes 3 (two in the illustrated example) can be provided. .

第1実施形態に係る複合基板の一部切り欠き平面図である。It is a partially cutaway plan view of the composite substrate according to the first embodiment. 図1のA線断面図である。It is A sectional view taken on the line A of FIG. 図1のB線断面図である。FIG. 2 is a sectional view taken along line B in FIG. 1. 複数の樹脂供給孔を備えた複合基板の、金属配線に沿った縦断面図である。It is a longitudinal cross-sectional view along the metal wiring of the composite substrate provided with the some resin supply hole. 複数のセンサー回路を備えた複合基板の一部切り欠き平面図である。It is a partially cutaway top view of a composite substrate provided with a plurality of sensor circuits. 第2実施形態に係る複合基板の一部切り欠き平面図である。It is a partially notched top view of the composite substrate which concerns on 2nd Embodiment. 図6のA線断面図である。FIG. 7 is a sectional view taken along line A in FIG. 6. 図6のB線断面図である。FIG. 7 is a sectional view taken along line B of FIG. 配線凹部の開口端近傍内周面に濡れ性低下膜が形成された第1基板の配線凹部に沿った縦断面図である。It is a longitudinal cross-sectional view along the wiring recessed part of the 1st board | substrate with which the wettability reduction film was formed in the internal peripheral surface of the opening edge vicinity of a wiring recessed part. 配線凹部が形成された基板の要部断面図である。It is principal part sectional drawing of the board | substrate with which the wiring recessed part was formed.

符号の説明Explanation of symbols

1 第1基板 2 内部空間用凹部
3 樹脂供給孔 5 内部空間
6 隙間 7 配線凹部
9 濡れ性低下膜 11 第2基板
12 センサー回路 13 金属配線
14 外部電極
DESCRIPTION OF SYMBOLS 1 1st board | substrate 2 Inner space recessed part 3 Resin supply hole 5 Inner space 6 Crevice 7 Wiring recessed part 9 Wettability reduction film 11 2nd board | substrate 12 Sensor circuit 13 Metal wiring 14 External electrode

Claims (6)

内部空間用凹部が表面に微細加工された第1基板と、前記内部空間用凹部を封止して内部空間を形成するように前記第1基板の表面に直接接合された第2基板とを有し、
前記第2基板の表面には、前記内部空間内に配置されたセンサー回路と、当該センサー回路と外部に配置された外部電極とを電気的に接続する金属配線が積層形成され、
前記第1基板と第2基板の接合面の間に前記金属配線が挟持され、これによって生じた前記金属配線の幅方向端の隙間が硬化樹脂により封止された、複合基板。
A first substrate having a concave portion for internal space microfabricated on the surface; and a second substrate directly bonded to the surface of the first substrate so as to seal the concave portion for internal space and form an internal space. And
On the surface of the second substrate, a metal circuit for electrically connecting the sensor circuit disposed in the internal space and the sensor circuit and an external electrode disposed outside is laminated,
A composite substrate in which the metal wiring is sandwiched between bonding surfaces of the first substrate and the second substrate, and a gap at a width direction end of the metal wiring generated thereby is sealed with a cured resin.
前記第1基板には、前記硬化樹脂の硬化前の未硬化樹脂を前記隙間の供給する樹脂供給孔が設けられた、請求項1に記載した複合基板。   2. The composite substrate according to claim 1, wherein the first substrate is provided with a resin supply hole for supplying the uncured resin before curing of the cured resin through the gap. 内部空間用凹部が表面に微細加工された第1基板と、前記内部空間用凹部を封止して内部空間を形成するように前記第1基板の表面に直接接合された第2基板とを有し、
前記第2基板の表面には、前記内部空間内に配置されたセンサー回路と、当該センサー回路と外部に配置された外部電極とを電気的に接続する金属配線が積層形成され、
前記第1基板又は前記第2基板には前記金属配線を収容する配線凹部が形成され、前記金属配線が収容された前記配線凹部が硬化樹脂により封止された、複合基板。
A first substrate having a concave portion for internal space microfabricated on the surface; and a second substrate directly bonded to the surface of the first substrate so as to seal the concave portion for internal space and form an internal space. And
On the surface of the second substrate, a metal circuit for electrically connecting the sensor circuit disposed in the internal space and the sensor circuit and an external electrode disposed outside is laminated,
A composite substrate, wherein the first substrate or the second substrate is formed with a wiring concave portion that accommodates the metal wiring, and the wiring concave portion that accommodates the metal wiring is sealed with a cured resin.
前記第1基板には、前記硬化樹脂の硬化前の未硬化樹脂を前記配線凹部に供給する樹脂供給孔が設けられた、請求項3に記載した複合基板。   The composite substrate according to claim 3, wherein the first substrate is provided with a resin supply hole that supplies uncured resin before curing of the cured resin to the wiring recess. 前記配線凹部が前記内部空間に開口する前記配線凹部の開口端において、前記配線凹部の内周面と前記内部空間用凹部の内周面とが屈曲した、請求項3又は4に記載した複合基板。   5. The composite substrate according to claim 3, wherein an inner peripheral surface of the wiring recess and an inner peripheral surface of the inner space recess are bent at an opening end of the wiring recess in which the wiring recess opens into the inner space. . 前記配線凹部が前記内部空間に開口する配線凹部の開口端近傍内周面に前記硬化樹脂の硬化前の未硬化樹脂と配線凹部の内面との接触角を増大させる濡れ性低下膜が形成された、請求項3から5のいずれか1項に記載した複合基板。
A wettability-reducing film that increases the contact angle between the uncured resin before curing of the cured resin and the inner surface of the wiring recess is formed on the inner peripheral surface near the opening end of the wiring recess where the wiring recess opens into the internal space. The composite substrate according to any one of claims 3 to 5.
JP2006060867A 2006-03-07 2006-03-07 Composite board with internal space Expired - Fee Related JP4623518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006060867A JP4623518B2 (en) 2006-03-07 2006-03-07 Composite board with internal space

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006060867A JP4623518B2 (en) 2006-03-07 2006-03-07 Composite board with internal space

Publications (2)

Publication Number Publication Date
JP2007237038A true JP2007237038A (en) 2007-09-20
JP4623518B2 JP4623518B2 (en) 2011-02-02

Family

ID=38583110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006060867A Expired - Fee Related JP4623518B2 (en) 2006-03-07 2006-03-07 Composite board with internal space

Country Status (1)

Country Link
JP (1) JP4623518B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01253627A (en) * 1988-04-01 1989-10-09 Res Dev Corp Of Japan Pressure sensor and manufacture thereof
JPH0897438A (en) * 1994-09-27 1996-04-12 Shimadzu Corp Semiconductor sensor and its manufacture
JPH09120976A (en) * 1995-10-24 1997-05-06 Seiko Epson Corp Mounting method for semiconductor chip
JPH1183784A (en) * 1997-09-03 1999-03-26 Nippon Telegr & Teleph Corp <Ntt> Microquantity online biosensor and manufacture thereof
JPH11230369A (en) * 1998-02-13 1999-08-27 Hitachi Ltd Fluid equipment
JP2006224015A (en) * 2005-02-18 2006-08-31 Yokogawa Electric Corp Micro-flowing passage device
JP2006224014A (en) * 2005-02-18 2006-08-31 Yokogawa Electric Corp Micro-flowing passage device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01253627A (en) * 1988-04-01 1989-10-09 Res Dev Corp Of Japan Pressure sensor and manufacture thereof
JPH0897438A (en) * 1994-09-27 1996-04-12 Shimadzu Corp Semiconductor sensor and its manufacture
JPH09120976A (en) * 1995-10-24 1997-05-06 Seiko Epson Corp Mounting method for semiconductor chip
JPH1183784A (en) * 1997-09-03 1999-03-26 Nippon Telegr & Teleph Corp <Ntt> Microquantity online biosensor and manufacture thereof
JPH11230369A (en) * 1998-02-13 1999-08-27 Hitachi Ltd Fluid equipment
JP2006224015A (en) * 2005-02-18 2006-08-31 Yokogawa Electric Corp Micro-flowing passage device
JP2006224014A (en) * 2005-02-18 2006-08-31 Yokogawa Electric Corp Micro-flowing passage device

Also Published As

Publication number Publication date
JP4623518B2 (en) 2011-02-02

Similar Documents

Publication Publication Date Title
Flachsbart et al. Design and fabrication of a multilayered polymer microfluidic chip with nanofluidic interconnects via adhesive contact printing
EP1950569A1 (en) Flow cell and process for producing the same
Schlautmann et al. Fabrication of a microfluidic chip by UV bonding at room temperature for integration of temperature-sensitive layers
US7445027B2 (en) Multilayer microfluidic-nanofluidic device
US8211751B2 (en) Semiconductor device and method of manufacturing the same
JP5229215B2 (en) Microchip manufacturing method
US20120248062A1 (en) Microchip for forming emulsion and method for manufacturing the same
US10576469B2 (en) Microfluidic structures fabricating method
WO2011089892A1 (en) Method for bonding hardened silicone resin, method for joining substrate having fine structure, and method for manufacturing micro fluid device using the method for joining.
US20150110688A1 (en) Channel device and method for fabricating the same
JP2009518599A (en) Thin wire joining and / or sealing system and method
JP2007136292A (en) Manufacturing method of microchannel structure, microchannel structure, and microreactor
JP2010043928A (en) Manufacturing method of biochip, and the biochip
US8851120B2 (en) Fluid handling apparatus and fluid handling system
JP4383446B2 (en) Method for bonding microstructured substrates
Temiz et al. ‘Chip-olate’and dry-film resists for efficient fabrication, singulation and sealing of microfluidic chips
JP2007075950A (en) Micro fluid device and process of manufacture thereof
JP4623518B2 (en) Composite board with internal space
Knapkiewicz et al. Anodic bonding of glass-to-glass through magnetron spattered nanometric silicon layer
JP5516954B2 (en) Method for bonding substrates having fine structure and method for manufacturing microfluidic device using the bonding method
FR2813073A1 (en) Device for biological, chemical, pharmaceutical and medical uses, comprises channels and a reception area for guiding and positioning capillaries to connect to a micro-fluidic component
JP4700427B2 (en) Semiconductor sensor having liquid contact portion and method for manufacturing the same
JP4992123B2 (en) Microchip substrate bonding method and microchip
US11040345B2 (en) Microfluidic device
JP2008014802A (en) Cell electrophysiological sensor and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101027

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees