JP2007234507A - Manufacturing method of negative electrode paste for lead-acid battery - Google Patents
Manufacturing method of negative electrode paste for lead-acid battery Download PDFInfo
- Publication number
- JP2007234507A JP2007234507A JP2006057489A JP2006057489A JP2007234507A JP 2007234507 A JP2007234507 A JP 2007234507A JP 2006057489 A JP2006057489 A JP 2006057489A JP 2006057489 A JP2006057489 A JP 2006057489A JP 2007234507 A JP2007234507 A JP 2007234507A
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- barium sulfate
- powder
- suspension
- aqueous solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、鉛蓄電池用負極ペーストの製造法に関する。 The present invention relates to a method for producing a negative electrode paste for a lead storage battery.
従来、鉛蓄電池用負極ペーストの製造法には、その電池特性を向上させるため、核化剤や防縮剤として硫酸バリウム粉末、防縮剤としてリグニン、リグニンスルホン酸塩やその誘導体粉末、導電剤としてカーボンブラック、グラファイトなどの炭素粉末を負極活物質に添加し水及び希硫酸と共に混練して負極ペーストを製造し、これを鉛又は鉛合金の集電体に充填して負極を作製している。
しかし乍ら、これらの添加剤粉末は、保管時或いは輸送時において凝集塊を形成する。例えば、硫酸バリウム粉末の凝集塊の粒径は数μmから数百μmの大きさで、ペースト混練中でも崩れ難いため、均一に分散させることは極めて困難である。従って、これをそのまま負極活物質に添加混練して製造した負極用ペースト中で硫酸バリウム粉末は不均一な状態で存在することになり、その結果として、負極板の収縮効果や還元され難い硫酸鉛の生成を抑制する効果が充分に得られなかった。また、カーボンブラックなどの炭素粉末についても同様で、保管時或いは輸送時において凝集塊を形成し易く、これをそのまま負極活物質に添加、混練した場合も、負極用ペースト中で不均一な状態で存在する。その結果として負極板の導電剤としての効果が充分に得られなかった。
Conventionally, a method for producing a negative electrode paste for a lead-acid battery includes a barium sulfate powder as a nucleating agent and an anti-shrink agent, lignin, lignin sulfonate and its derivative powder as an anti-shrink agent, and carbon as a conductive agent to improve the battery characteristics. A carbon powder such as black or graphite is added to the negative electrode active material and kneaded with water and dilute sulfuric acid to produce a negative electrode paste, which is filled in a lead or lead alloy current collector to produce a negative electrode.
However, these additive powders form agglomerates during storage or transportation. For example, the particle size of the agglomerate of barium sulfate powder is several μm to several hundred μm, and it is difficult to disperse even during paste kneading, so it is extremely difficult to disperse uniformly. Accordingly, the barium sulfate powder is present in a non-uniform state in the negative electrode paste produced by adding and kneading it as it is to the negative electrode active material. As a result, the lead sulfate which is difficult to reduce and the shrinkage effect of the negative electrode plate. The effect of suppressing the formation of was not sufficiently obtained. The same applies to carbon powder such as carbon black, and it is easy to form agglomerates during storage or transportation, and when this is added to the negative electrode active material as it is and kneaded, it is in a non-uniform state in the negative electrode paste. Exists. As a result, the effect of the negative electrode plate as a conductive agent was not sufficiently obtained.
近年、電池の充放電サイクル寿命の向上や負極の収縮を低減するため、負極ペーストの製造法として、防縮剤として硫酸バリウムやリグニンスルホン酸塩の粒子などを負極活物質中に均一に混練する負極ペーストの製造法が、例えば、特開平7-169464号公報、特開平8-236119号公報に提案されている。
即ち、特開平7-169464号公報は、硫酸バリウムとリグニンスルホン酸塩を主成分とする添加剤粉末を水中に分散させる工程と、前記の添加剤粉末を分散させた水と希硫酸とを負極活物質に加え、これらを練合してペーストを得る鉛蓄電池用負極ペーストの製造法により、該添加剤をその夫々の負極ペースト中に偏在することがなく均一に分布することができ、鉛蓄電池の負極ペーストとして用いた充放電サイクル寿命特性を向上することができるという発明を提案したものである。
また、特開平8-236119号公報は、粒子径1.0μm以下の一次粒子を重量で80%以上含有する硫酸バリウムを製造し、これを負極活物質に対して重量比で0.5〜2.0%添加して製造した負極ペーストを鉛蓄電池の負極として用いることにより、充放電サイクルの繰り返しによる負極活物質の防縮効果が均一となり、収縮量のバラツキを低減し、鉛蓄電池の充放電サイクル寿命の高位平準化を可能とした鉛蓄電池の発明を提案したものである。
In recent years, in order to improve the charge / discharge cycle life of the battery and reduce the shrinkage of the negative electrode, the negative electrode paste can be uniformly kneaded with barium sulfate or lignin sulfonate particles as an anti-shrink agent in the negative electrode active material. A paste manufacturing method is proposed in, for example, Japanese Patent Application Laid-Open Nos. 7-19464 and 8-236119.
That is, Japanese Patent Application Laid-Open No. 7-194664 discloses a step of dispersing an additive powder mainly composed of barium sulfate and lignin sulfonate in water, and water in which the additive powder is dispersed and dilute sulfuric acid as a negative electrode. In addition to the active material, the additive can be uniformly distributed without being unevenly distributed in each negative electrode paste by the manufacturing method of the negative electrode paste for a lead storage battery to obtain a paste by kneading them. This invention proposes an invention that can improve the charge / discharge cycle life characteristics used as the negative electrode paste.
Japanese Patent Laid-Open No. 8-236119 produces barium sulfate containing 80% or more by weight of primary particles having a particle size of 1.0 μm or less, and this is added in an amount of 0.5 to 2.0% by weight with respect to the negative electrode active material. By using the negative electrode paste produced in this way as the negative electrode of a lead storage battery, the shrinkage effect of the negative electrode active material is uniform due to repeated charge and discharge cycles, reducing variations in the amount of shrinkage, and leveling the charge / discharge cycle life of the lead storage battery The present invention proposes an invention of a lead-acid battery that makes it possible.
しかし乍ら、上記特開平7-169464号公報に提案の上記発明は、硫酸バリウム粉末とリグニンスルホン酸粉末の混合粉末を水又は希硫酸に分散させて成る懸濁液を負極活物質に添加混練したものを負極ペーストとしたものであるが、その懸濁液を作製する過程において、硫酸バリウム粉末に最初に表面張力の大きい水が接触するので、硫酸バリウム粉末は、硬い凝集塊となってしまう。その結果、その懸濁液は、硫酸バリウム粉末の凝集塊とリグニンスルホン酸塩粉末粒子との懸濁液となり、負極活物質と混練したとき、硫酸バリウムの凝集塊の状態で負極活物質に混ざるため、負極の充放電サイクル寿命、防縮効果が充分に得られず、充放電サイクル寿命の向上に困難をもたらす不都合がある。
また、上記特開平8-236119号公報に提案の負極ペーストの製造は、上記の特定の硫酸バリウム粉末を得るためには、重晶石よりバリウムイオン塩として溶出した後、硫酸イオンを添加し、硫酸バリウムを析出させ、特定の一次粒子径に結晶成長させる特殊な煩わしい製造を要し、而もその後の洗浄、乾燥などに手間が非常にかかり且つ煩雑で、且つ歩溜りが低く、従って、コスト高となって実用性にかける不都合がある。
However, the above-mentioned invention proposed in the above-mentioned JP-A-7-19464 is a kneading method in which a suspension obtained by dispersing a mixed powder of barium sulfate powder and ligninsulfonic acid powder in water or dilute sulfuric acid is added to the negative electrode active material. In the process of making the suspension, the barium sulfate powder first comes into contact with water with a large surface tension, so the barium sulfate powder becomes a hard agglomerate. . As a result, the suspension becomes a suspension of barium sulfate powder agglomerates and lignin sulfonate powder particles, and when kneaded with the negative electrode active material, it is mixed with the negative electrode active material in the form of barium sulfate agglomerates. For this reason, the charge / discharge cycle life and the shrinkage preventing effect of the negative electrode cannot be sufficiently obtained, and there is an inconvenience that causes difficulty in improving the charge / discharge cycle life.
Further, in the production of the negative electrode paste proposed in the above-mentioned JP-A-8-236119, in order to obtain the specific barium sulfate powder, after eluting as barium ion salt from barite, sulfate ions are added, It requires special and cumbersome manufacturing to deposit barium sulfate and grow crystals to a specific primary particle size, which is very time consuming and cumbersome for subsequent washing and drying, and has a low yield. There is an inconvenience in terms of practicality due to high.
これら上記の公報に提案の発明の課題を解決するため、出願人は、特開2003-257432号公報において下記の発明を提案した。
即ち、その発明は、硫酸バリウムの凝集粉末を界面活性剤配合の水溶液中又は水溶性有機溶剤中で解砕し、かくして、細かく粉砕された硫酸バリウムの懸濁液を得た後、この懸濁液を負極活物質に添加混練して製造した鉛蓄電池用負極ペーストの製造法に係り、該負極ペーストを鉛蓄電池に用いるときは、充放電サイクルの向上した而も収縮が少なく形状変化のない負極板をもたらす効果を奏するという発明を提案したものである。
That is, the invention is that the barium sulfate agglomerated powder is crushed in an aqueous solution containing a surfactant or in a water-soluble organic solvent to obtain a finely pulverized barium sulfate suspension. The present invention relates to a method for producing a negative electrode paste for a lead storage battery manufactured by adding and kneading a liquid to a negative electrode active material. When the negative electrode paste is used for a lead storage battery, the negative electrode has an improved charge / discharge cycle, less shrinkage, and no shape change. The invention of proposing the effect of providing a plate is proposed.
しかし乍ら、出願人が提案した上記の特許文献3に提案の発明は、前記の特許文献1,2に提案の発明も同様であるが、硫酸バリウム粉末とリグニンスルホン酸塩以外に、負極活物質に添加されるカーボンブラック粉末などの導電剤粉末、リグニン粉末、その他の添加剤粉末について負極ペーストにも均一に分散させる配慮に欠けている。即ち、これらの添加剤粉末は、負極活物質に添加し、そのまま添加混練されているので、この負極ペーストを使用した鉛蓄電池の負極の防縮性や導電性の効果は、従来のままであり、向上しない。
かゝる観点に立ち、本願の発明は、上記特許文献3に開示の発明の改良に係り、負極活物質に添加される硫酸バリウム粉末の解砕に当たり、硫酸バリウム粉末の分散媒として界面活性剤の水溶液に限定されることなく、而も、更に鉛蓄電池の充放電サイクル寿命の向上をもたらす負極ペーストの製造法を提案することを目的とする。
However, the invention proposed in the above-mentioned Patent Document 3 proposed by the applicant is the same as that proposed in Patent Documents 1 and 2, except for the barium sulfate powder and the lignin sulfonate. The conductive agent powder such as carbon black powder added to the substance, lignin powder, and other additive powders are not considered to be uniformly dispersed in the negative electrode paste. That is, since these additive powders are added to the negative electrode active material and added and kneaded as they are, the anti-shrinkage and conductive effects of the negative electrode of the lead storage battery using this negative electrode paste remain as before, Does not improve.
In view of this, the invention of the present application relates to the improvement of the invention disclosed in Patent Document 3, and in the crushing of the barium sulfate powder added to the negative electrode active material, a surfactant as a dispersion medium of the barium sulfate powder. The purpose of the present invention is to propose a method for producing a negative electrode paste that further improves the charge / discharge cycle life of a lead-acid battery.
本発明は、請求項1に記載のように、(a)硫酸バリウムの粉末を界面活性剤又は有機溶剤の水溶液に投入し、その凝集塊を解砕して第1次懸濁液を調製すること、(b)次いで、該第1次懸濁液に、硫酸バリウム以外の少なくとも1種の添加剤の粉末を投入し、その凝集塊を解砕して第2次懸濁液を調製すること、(c)次いで、該第2次懸濁液を負極活物質と混練することを特徴とする鉛蓄電池用負極ペーストの製造法に存する。
更に本発明は、請求項2に記載の通り、硫酸バリウムの粉末を界面活性剤又は水溶性有機溶剤の水溶液に投入し、その凝集塊を解砕して破砕硫酸バリウム懸濁液を調製する一方、硫酸バリウム以外の少なくとも1種の添加剤の粉末を界面活性剤又は有機溶剤の水溶液に投入し、解砕して破砕添加剤の懸濁液を調製し、次いで、両懸濁液を負極活物質と混練することを特徴とする鉛蓄電池用負極ペーストの製造法に存する。
更に本発明は、上記の発明において、請求項3に記載の通り、界面活性剤は、水溶性リグニンスルホン酸塩である。
更に本発明は、請求項4に記載の通り、該水溶性リグニンスルホン酸塩はリグニンスルホン酸ナトリウムである。
更に本発明は、請求項5に記載の通り、該解砕は、ボールミル、ビーズミル、ディスパーミルなど所望の粉砕装置により行うことを特徴とする。
According to the present invention, as described in claim 1, (a) a barium sulfate powder is put into an aqueous solution of a surfactant or an organic solvent, and the aggregate is crushed to prepare a primary suspension. (B) Next, powder of at least one additive other than barium sulfate is added to the primary suspension, and the aggregate is crushed to prepare a secondary suspension. (C) Then, the second suspension is kneaded with a negative electrode active material, which is a method for producing a negative electrode paste for a lead storage battery.
Further, according to the present invention, as described in claim 2, the barium sulfate powder is put into an aqueous solution of a surfactant or a water-soluble organic solvent, and the aggregate is crushed to prepare a crushed barium sulfate suspension. Then, powder of at least one additive other than barium sulfate is put into an aqueous solution of a surfactant or an organic solvent, and crushed to prepare a suspension of crushed additive. It exists in the manufacturing method of the negative electrode paste for lead acid batteries characterized by kneading | mixing with a substance.
Furthermore, in the present invention according to the present invention, the surfactant is a water-soluble lignin sulfonate as described in claim 3.
Further, according to the present invention, the water-soluble lignin sulfonate is sodium lignin sulfonate as described in claim 4.
Further, according to the present invention, as described in claim 5, the pulverization is performed by a desired pulverizing apparatus such as a ball mill, a bead mill, a disper mill or the like.
上記の請求項1に係る発明によれば、その第1工程として、硫酸バリウム粉末の分散媒として、界面活性剤の水溶液に限定されることなく、水溶性有機溶剤の水溶液でも、表面張力の小さい水溶液が得られるので、そのいずれの水溶液でも、この表面張力の小さい水溶液に硫酸バリウム粉末を接触させることにより、該水溶液は、該硫酸バリウムの硬い凝集塊中に浸透して粉砕し易い弛緩した状態となる。この弛緩した状態の凝集塊は、ミルなどの磨砕機や破砕機により容易に解砕できる。即ち、細かく解きほぐした状態に粉砕できる。かくして、水溶液中に硫酸バリウムの微細な粒子が分散した状態の第1次懸濁液が得られる。この第1工程は、特許文献1の発明の効果と変わりはないが、本発明は、次に、該第1次懸濁液に核化剤としての硫酸バリウム以外の添加剤として、導電剤としての炭素粉末や防縮剤としての非水溶性のリグニンスルホン酸塩粉末など所望の少なくとも1種の添加剤の粉末を添加するときは、第1工程と同様にこれら粉末の硬い凝集塊に前記の水溶液が容易に浸透し、弛緩した状態の凝集塊となるので、前記と同様にミルなどの破砕機により解砕処理することができる。このとき、同時に該水溶液に該硫酸バリウムの微粒子は更に解砕処理される。かくして、硫酸バリウム及び他の添加剤の微細粒が分散した第2懸濁液が得られるので、次いで、この第2懸濁液を負極活物質と混練することにより、上記の夫々の添加剤の無数の微細粒が該負極活物質全体に均一に分散した状態の負極ペーストが得られる。この負極ペーストを集電体に充填塗着、乾燥して負極とし、これを鉛蓄電池に用いるときは、後記に明らかにするように、負極板の収縮度が小さく而も高い放電容量を長期に亘り維持し、電池の充放電サイクル寿命を延長できる効果をもたらす。
また、本発明において、第1工程と第2工程の2段階に処理する理由は、界面活性剤や水溶性有機溶剤に対し非常に強い吸着性を有する炭素粉末を第1工程で添加するときは、炭素剤粉末が界面活性剤や有機溶剤を吸着してしまい、表面張力の小さい水溶液が維持されないため、解砕することが困難となることを知見したからである。従って、第1工程と第2工程に分けることにより、導電性が向上し、充放電サイクル寿命の向上した負極ペーストを円滑に得られる効果をもたらす。
上記の請求項2に係る発明によれば、硫酸バリウムの凝集塊の解砕による懸濁液の調製と導電剤としての炭素剤粉末その他の添加剤粉の凝集塊の解砕による懸濁液の調製を各別に行うので、請求項1に係る発明と同じ上記の効果をもたらす。
According to the first aspect of the present invention, the first step is not limited to a surfactant aqueous solution as a dispersion medium of barium sulfate powder, and even a water-soluble organic solvent aqueous solution has a low surface tension. Since any aqueous solution can be obtained, by bringing the barium sulfate powder into contact with the aqueous solution having a low surface tension, the aqueous solution penetrates into the hard agglomerates of the barium sulfate and is in a relaxed state that is easily pulverized. It becomes. The relaxed agglomerates can be easily crushed by a grinding machine such as a mill or a crusher. That is, it can be pulverized into a finely unraveled state. Thus, a primary suspension in which fine particles of barium sulfate are dispersed in the aqueous solution is obtained. This first step is not different from the effect of the invention of Patent Document 1, but the present invention is next used as a conductive agent as an additive other than barium sulfate as a nucleating agent in the primary suspension. When adding a powder of at least one desired additive such as a carbon powder or a water-insoluble lignin sulfonate powder as a shrink-preventing agent, the aqueous solution is added to the hard agglomerates of these powders as in the first step. Easily penetrates into a relaxed agglomerate and can be crushed by a crusher such as a mill as described above. At the same time, the fine particles of barium sulfate are further crushed in the aqueous solution. Thus, a second suspension in which fine particles of barium sulfate and other additives are dispersed is obtained. Then, by kneading the second suspension with the negative electrode active material, each of the above additives is added. A negative electrode paste in which countless fine particles are uniformly dispersed throughout the negative electrode active material is obtained. When this negative electrode paste is filled and applied to a current collector and dried to form a negative electrode for use in a lead-acid battery, as will be clarified later, the negative electrode plate has a low degree of contraction and a high discharge capacity over a long period of time. This is effective for extending the charge / discharge cycle life of the battery.
In the present invention, the reason for processing in the first step and the second step is that when adding carbon powder having very strong adsorptivity to the surfactant or water-soluble organic solvent in the first step. This is because it was found that the carbon agent powder adsorbs the surfactant and the organic solvent, and the aqueous solution having a small surface tension is not maintained, so that it becomes difficult to disintegrate. Therefore, by dividing into the first step and the second step, there is an effect that the conductivity is improved and the negative electrode paste having an improved charge / discharge cycle life can be obtained smoothly.
According to the invention according to claim 2 above, the suspension is prepared by crushing the aggregate of barium sulfate agglomerates and the agglomerate of carbon agent powder or other additive powder as a conductive agent. Since the preparation is performed separately, the same effects as those of the invention according to claim 1 are brought about.
次に、本発明の実施の形態例を説明する。
鉛蓄電池用負極活物質ペーストの製造において、負極活物質に核化剤や防縮剤として添加される硫酸バリウム粉末は、一般に市販されているが、一般に強く凝集した状態となっている。この凝集粉末を水や希硫酸水溶液に分散させた場合は、表面張力が大きい水が該凝集塊への浸入が困難となり、その硬い凝集塊は解砕し難い。このことに鑑み、本発明によれば、先ず第1工程として、硫酸バリウム粉末の分散媒として、水に、水の表面張力を低下させる作用のある界面活性剤又は水溶性有機溶媒を配合して、表面張力の低下した界面活性剤の水溶液又は有機溶剤の水溶液を調製し、そのいずれかの水溶液を用いて、その水溶液中に、硫酸バリウム粉末を投入し、しばらく放置する。然るときは、その水溶液は表面張力が小さいから、その硬い凝集塊中に容易に浸入し、水溶液を含んだ弛緩した凝集塊となる。かゝる凝集塊にミル装置により解砕処理を行うときは、硫酸バリウムの微粒子が分散した第1次懸濁液が調製される。
Next, embodiments of the present invention will be described.
In the production of a negative electrode active material paste for a lead-acid battery, barium sulfate powder added to the negative electrode active material as a nucleating agent or a shrinking agent is generally commercially available, but is generally strongly agglomerated. When this agglomerated powder is dispersed in water or dilute sulfuric acid aqueous solution, it is difficult for water having a large surface tension to enter the agglomerated mass, and the hard agglomerated mass is difficult to disintegrate. In view of this, according to the present invention, as the first step, as a dispersion medium of barium sulfate powder, first, a surfactant or a water-soluble organic solvent having an action of reducing the surface tension of water is blended in water. Then, an aqueous solution of a surfactant or an organic solvent having a reduced surface tension is prepared, and barium sulfate powder is put into the aqueous solution using any of the aqueous solutions, and left for a while. In that case, since the aqueous solution has a small surface tension, it easily penetrates into the hard agglomerate and becomes a relaxed agglomerate containing the aqueous solution. When such agglomerates are crushed by a mill apparatus, a primary suspension in which fine particles of barium sulfate are dispersed is prepared.
茲で、水に配合する界面活性剤としては、電池の負極特性に悪影響を及ぼさないアニオン系では、アルファオレフィンスルホン酸塩、水溶性リグニンスルホン酸塩、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩・ホルムアルデヒド縮合体、ポリスチレンスルホン酸塩、アルキル硫酸エステル塩、あるきるエーテル硫酸塩等の界面活性剤が選択できる。ノニオン系では、高級アルコール、ポリオキシアルキレングリコール等の界面活性剤が好適である。また、水に対する界面活性剤の濃度は0.05〜10%が好ましい。10%を超えると泡立ち不適である。
また、水溶性の有機溶剤としては、電池の負極特性に悪影響を与えないメタノール、エタノール、(n-、i-)プロパノール、ブタノール等のアルコール類、アセトン、MIBK等のケトン類が適している。また、水に対する水溶性有機溶剤の濃度は0.05〜10%が好ましい。10%を超えると、爾後の工程で完全に除去するのに時間がかゝり、非能率であり、また、製造コストの増大などの不利益をもたらす。
In addition, as surfactants to be added to water, alpha olefin sulfonate, water-soluble lignin sulfonate, alkyl benzene sulfonate, alkyl naphthalene sulfonate, Surfactants such as formaldehyde condensates, polystyrene sulfonates, alkyl sulfates, and certain ether sulfates can be selected. Nonionic surfactants such as higher alcohols and polyoxyalkylene glycols are suitable. Further, the concentration of the surfactant with respect to water is preferably 0.05 to 10%. If it exceeds 10%, foaming is not suitable.
As the water-soluble organic solvent, alcohols such as methanol, ethanol, (n-, i-) propanol, butanol and the like, and ketones such as acetone and MIBK that do not adversely affect the negative electrode characteristics of the battery are suitable. The concentration of the water-soluble organic solvent with respect to water is preferably 0.05 to 10%. If it exceeds 10%, it takes a long time to be completely removed in a subsequent process, resulting in inefficiency and disadvantages such as an increase in production cost.
本発明は、上記の第1工程の第1次懸濁液を調製した後、第2工程として、該第1次懸濁液中に該硫酸バリウム以外の防縮剤又は導電剤などとして作用する所望の添加剤の少なくとも1種の粉末を投入し、しばらく放置し、その界面活性の水溶液又は有機溶剤の水溶液をその凝集塊に浸透させ、水溶液が含浸した弛緩状態の凝集塊を所望の破砕機、磨砕機などにより解砕し、無数の微粒子にほぐす。このとき、同時に、第1工程で解砕された硫酸バリウムの微粒子も更に解砕処理を受ける。かくして硫酸バリウムと他の添加剤の無数の微粒子が分散した状態の第2次懸濁液が調製される。
この第2工程で添加される添加剤としては、導電剤としてのカーボンブラック、グラファイトなどの炭素粉末、防縮剤としてのリグニン粉末、パルプハウダー粉末などであり、所望により、2種類以上の添加剤粉末を上記のように解砕するようにしてもよい。
また、上記の解砕処理には、ボールミル、ビーズミル、乳鉢、擂解機、ディスパーミルなどの高速粉砕機など所望の粉砕装置から選択使用できる。
The present invention, after preparing the first suspension of the first step described above, as a second step, it is desirable to act as a shrink-proofing agent or a conductive agent other than the barium sulfate in the first suspension At least one powder of the additive of the above is charged, left for a while, the surface-active aqueous solution or an aqueous solution of organic solvent is infiltrated into the agglomerate, the desired agglomerate in the relaxed state impregnated with the aqueous solution, Crush it with a grinder, etc. and loosen it into countless fine particles. At the same time, the barium sulfate fine particles crushed in the first step are further subjected to pulverization. Thus, a secondary suspension is prepared in a state where countless fine particles of barium sulfate and other additives are dispersed.
Additives added in the second step include carbon black as a conductive agent, carbon powder such as graphite, lignin powder as a non-shrinkage agent, pulp howder powder, and the like. If desired, two or more kinds of additive powders may be used. You may make it crush as mentioned above.
In addition, for the above-mentioned pulverization treatment, a desired pulverization apparatus such as a high-speed pulverizer such as a ball mill, a bead mill, a mortar, a pulverizer, or a disper mill can be selected and used.
尚、上記のように、第1工程において硫酸バリウム粉末の水溶液中での解砕と第2工程において硫酸バリウム以外の添加剤の凝集粉末の解砕とに分けて行う理由は、上記したように、仮に、その第1工程において該界面活性剤又は有機溶媒の水溶液に硫酸バリウムと、例えば、界面活性剤や有機溶媒吸着性を有するカーボンブラックなどの炭素粉末とを投入した場合には、炭素粉末が界面活性剤や有機溶剤を吸着し、水溶液の表面張力が充分に小さくならず、結果として硫酸バリウムの凝集塊内部まで水溶液が充分に侵入できず、従って、ミルによる該凝集塊を充分にほぐすことができない嫌いがある。また、この吸着分を考慮して界面活性剤や有機溶剤を過剰に加える10%を超える高濃度とすることは電池特性に悪影響を及ぼすこととなるからである。 In addition, as described above, the reason for performing the pulverization of the barium sulfate powder in an aqueous solution in the first step and the pulverization of the aggregated powder of additives other than barium sulfate in the second step is as described above. If, in the first step, the surfactant or organic solvent aqueous solution is charged with barium sulfate and a carbon powder such as a surfactant or an organic solvent adsorbing carbon black, the carbon powder Adsorbs surfactants and organic solvents, and the surface tension of the aqueous solution is not sufficiently reduced. As a result, the aqueous solution cannot sufficiently penetrate into the inside of the barium sulfate agglomerate. I hate that I can't. In addition, considering the adsorbed content, the addition of an excessive amount of surfactant or organic solvent to a high concentration exceeding 10% adversely affects battery characteristics.
本発明は、次いで第3工程として、このようにして得られた第2次懸濁液を負極活物質(鉛粉)と混練して負極ペーストの製造を完了する。然るときは、硫酸バリウムの微細な粒子ばかりでなく、その他の少なくとも1種の添加剤の無数の微細な粒子が均一に分散混在した負極ペーストが得られる。この負極ペーストを常法により集電体に充填塗着することにより、後記に明らかにするような電池特性の優れた鉛蓄電池が得られる。
尚、第2次懸濁液を負極活物質(鉛粉)と混練する場合、負極活物質に適当の水を添加し水練りしたペースト状の負極活物質(ペースト状の鉛)に混練するようにしても良く、また、負極ペーストとするに必要な水量が第2次懸濁液の水量が足りない場合は、その不足分の水量を第2次懸濁液に加えた後、これを粉状の負極活物質(鉛粉)と混連して負極ペーストを作製してもよい。
尚又、前記の負極ペーストの製造に当たり、粉状の或いは水練りした負極活物質に補強材としてプラスチック繊維、ガラス繊維などの負極活物質の脱落防止や負極板自体の強度を上げることを目的とする補強材を添加混練して成る補強された負極ペーストを製造するようにしてもよい。この補強材は、解砕すべき添加剤と共に添加し解砕するときは、損傷を受けてその役割が低下するので、負極活物質に直接添加することが好ましい。
In the third step of the present invention, the secondary suspension thus obtained is kneaded with the negative electrode active material (lead powder) to complete the production of the negative electrode paste. In this case, a negative electrode paste is obtained in which not only fine particles of barium sulfate but also countless fine particles of at least one other additive are uniformly dispersed and mixed. By filling and applying this negative electrode paste to the current collector by a conventional method, a lead storage battery having excellent battery characteristics as will be described later can be obtained.
In addition, when the secondary suspension is kneaded with the negative electrode active material (lead powder), it should be kneaded into a paste-like negative electrode active material (paste-like lead) that is added to the negative electrode active material and kneaded with water. If the amount of water required to make the negative electrode paste is not enough for the secondary suspension, add the insufficient amount of water to the secondary suspension, A negative electrode paste may be prepared by mixing with a negative electrode active material (lead powder).
Further, in the production of the negative electrode paste, it is intended to prevent the negative electrode active material such as plastic fiber and glass fiber from falling off as a reinforcing material in the powdered or water-kneaded negative electrode active material and to increase the strength of the negative electrode plate itself. You may make it manufacture the reinforced negative electrode paste which adds and knead | mixes the reinforcing material to do. When this reinforcing material is added together with the additive to be crushed and crushed, it is damaged and its role is reduced, so it is preferable to add it directly to the negative electrode active material.
上記の負極ペーストの製造法に代え、硫酸バリウム粉末を上記の水溶液中で解砕して懸濁液と硫酸バリウム以外のカーボンブラックなどの添加剤粉末を上記の水溶液中で解砕して懸濁液とを各別に調製し、その両懸濁液を負極活物質に添加混練して負極ペーストを製造するようにしても良い。しかし乍ら、負極ペーストの製造の手間や設備コストの観点からみると、前者の発明、即ち、1台のミルで第1工程で第1次懸濁液を調製し、その第1次懸濁液を利用し、これに追加の添加剤粉を投入し解砕し、第2次懸濁液を調製し、これを負極活物質と混練し、硫酸バリウムの破砕粒及びその他の添加剤の破砕粒を均一に分散した負極ペーストを一挙に製造することが合理的である。 Instead of the negative electrode paste manufacturing method, the barium sulfate powder is crushed in the above aqueous solution, and the additive powder such as carbon black other than the suspension and barium sulfate is crushed and suspended in the above aqueous solution. The liquid may be prepared separately, and both suspensions may be added and kneaded to the negative electrode active material to produce the negative electrode paste. However, from the viewpoint of the labor and equipment cost of manufacturing the negative electrode paste, the former invention, that is, the first suspension is prepared in the first step with one mill, and the first suspension. Using this liquid, additional additive powder is added and pulverized to prepare a secondary suspension, which is kneaded with the negative electrode active material, and crushed barium sulfate particles and other additives. It is reasonable to produce a negative electrode paste in which grains are uniformly dispersed at once.
次に本発明の具体的な実施例を説明する。
実施例1
処理容器内に収容した水溶性有機溶剤として、エタノールの5%水溶液100mlに、市販の硫酸バリウム粉末(凝集塊平均粒径:23.6μm)9gを投入し、10分程度放置し、硫酸バリウムの凝集塊にエタノール水溶液を充分に浸透せしめた後、ビーズミルで15分間凝集塊を解砕処理し、硫酸バリウム微細粒から成る第1次懸濁液を調製した。次いで、この第1次懸濁液に添加剤としてカーボンブラック粉末0.9gとリグニンスルホン酸ナトリウム粉末1.8gを投入し、ビーズミルで15分間凝集塊を解砕処理してカーボンブラック微細粒から成る第2次懸濁液を調製した。
次に、オックスマスタータイプの混練機に負極活物質として、ボールミル式鉛粉900g、補強材としてポリエチレンテレフタレート(PET)繊維0.72gを投入して乾式混合し、この混合物に前記の第2次懸濁液100mlを撹拌し乍ら注入して混練し、最後に、比重1.360の希硫酸を撹拌し乍ら70cc注入して混練し、負極用ペーストを製造した。
実施例2
処理容器内に収容したリグニンスルホン酸ナトリウムの2%水溶液100mlに、市販の硫酸バリウム凝集粉末(凝集塊平均粒径:23.6μm)9gを投入し、10分程度放置し、硫酸バリウムの凝集塊に水溶液を充分に浸透せしめた後、ビーズミルで15分間凝集塊を解砕処理し、硫酸バリウムの微細粒から成る第1次懸濁液を調製した。次いで、この懸濁液に補強材としてカーボンブラック0.9gを投入し、ビーズミルで15分間解砕処理してカーボンブラックの微細粒から成る第2次懸濁液を調製した。
次に、オックスマスタータイプの混練機に負極活物質として、ボールミル式鉛粉900g、補強材としてPET繊維0.72gを投入して乾式混合し、この混合物に前記の第2次懸濁液100mlを撹拌し乍ら注入して混練し、最後に、比重1.360の希硫酸を撹拌し乍ら70cc注入して混練し、負極用ペーストを製造した。
Next, specific examples of the present invention will be described.
Example 1
As a water-soluble organic solvent contained in a processing vessel, 9 g of commercially available barium sulfate powder (aggregate average particle size: 23.6 μm) is added to 100 ml of 5% aqueous solution of ethanol, and left for about 10 minutes to aggregate barium sulfate. After the ethanol aqueous solution was sufficiently infiltrated into the lump, the agglomerate was crushed for 15 minutes with a bead mill to prepare a primary suspension composed of barium sulfate fine particles. Next, 0.9 g of carbon black powder and 1.8 g of sodium lignin sulfonate powder are added to the primary suspension as additives, and the aggregate is crushed for 15 minutes by a bead mill, and the second suspension comprising fine carbon black particles. The next suspension was prepared.
Next, 900 g of ball mill type lead powder as a negative electrode active material and 0.72 g of polyethylene terephthalate (PET) fiber as a reinforcing material are charged into an oxmaster type kneader and dry-mixed, and the secondary suspension is added to this mixture. 100 ml of the liquid was stirred and poured and kneaded. Finally, 70 cc of diluted sulfuric acid having a specific gravity of 1.360 was stirred and poured to knead to prepare a negative electrode paste.
Example 2
To 100 ml of 2% aqueous solution of sodium lignin sulfonate contained in the processing container, 9 g of commercially available barium sulfate aggregated powder (aggregate average particle size: 23.6 μm) is added and left for about 10 minutes to form barium sulfate aggregate. After sufficiently infiltrating the aqueous solution, the agglomerates were crushed by a bead mill for 15 minutes to prepare a primary suspension composed of fine barium sulfate particles. Next, 0.9 g of carbon black was added to the suspension as a reinforcing material, and the suspension was pulverized for 15 minutes by a bead mill to prepare a secondary suspension composed of fine carbon black particles.
Next, 900 g of ball mill type lead powder as a negative electrode active material and 0.72 g of PET fiber as a reinforcing material are put into an oxmaster type kneader and dry mixed, and 100 ml of the second suspension is stirred into this mixture. Then, the mixture was poured and kneaded, and finally, 70 cc of diluted sulfuric acid having a specific gravity of 1.360 was stirred and injected and kneaded to produce a negative electrode paste.
次に、本発明の上記実施例との比較例を下記に示す。
比較例1
処理容器内に収容したリグニンスルホン酸ナトリウム粉末の2%水溶液100mlに、市販の硫酸バリウム粉末(凝集塊平均粒径:23.6μm)9gを投入し、10分程度放置し、硫酸バリウムの凝集塊に該水溶液を充分に浸透せしめた後、ビーズミルで30分間解砕処理し、硫酸バリウムの微細粒から成る懸濁液を調製した。
次に、オックスマスタータイプの混練機にボールミル式鉛粉900g、カーボンブラック0.9g及びPET繊維0.72gを投入して乾式混合し、この混合物に前記の懸濁液を撹拌し乍ら注入して混練し、最後に、比重1.360の希硫酸を撹拌し乍ら70cc注入して混練し、負極用ペーストを製造した。
比較例2
処理容器内に市販の硫酸バリウム粉末(凝集塊平均粒径:23.6μm)9gとリグニンスルホン酸ナトリウム粉末1.8gを投入したものに水100mlを加えた後、特開平7-169464号公報で用いたと同じ形式の回転羽式撹拌機で30分間撹拌して懸濁液100mlを調製した。
次に、オックスマスタータイプの混練機にボールミル式鉛粉900g、カーボンブラック0.9g及びPET繊維0.72gを投入して乾式混合し、この混合物に前記の懸濁液100mlを撹拌し乍ら注入して混練し、最後に、比重1.360の希硫酸を撹拌し乍ら70cc注入して混練し、負極用ペーストを製造した。
比較例3
オックスマスタータイプの混練機にボールミル式鉛粉900g、市販の硫酸バリウム粉末(凝集塊平均粒径:23.6μm)9g、リグニンスルホン酸ナトリウム粉末1.8g、カーボンブラック0.9g及びPET繊維0.72gを投入して乾式混合し、この混合物に水を撹拌し乍ら100cc注入して混練し、最後に、比重1.360の希硫酸を撹拌し乍ら70cc注入して混練し、負極用ペーストを製造した。
Next, a comparative example with the above-described embodiment of the present invention is shown below.
Comparative Example 1
To 100 ml of 2% aqueous solution of sodium lignin sulfonate powder contained in the processing container, 9 g of commercially available barium sulfate powder (aggregate average particle size: 23.6 μm) is added and left for about 10 minutes to form barium sulfate agglomerates. The aqueous solution was sufficiently infiltrated and then crushed by a bead mill for 30 minutes to prepare a suspension composed of fine barium sulfate particles.
Next, 900 g of ball mill type lead powder, 0.9 g of carbon black and 0.72 g of PET fibers are put into an oxmaster type kneader and dry-mixed, and the suspension is poured into the mixture while being poured and kneaded. Finally, 70 cc of dilute sulfuric acid having a specific gravity of 1.360 was stirred and poured to knead to produce a negative electrode paste.
Comparative Example 2
After adding 100 ml of water to 9 g of commercially available barium sulfate powder (aggregate average particle size: 23.6 μm) and 1.8 g of sodium lignin sulfonate powder in the treatment container, and used in JP-A-7-16644 A suspension of 100 ml was prepared by stirring for 30 minutes with a rotating blade stirrer of the same type.
Next, 900 g of ball mill type lead powder, 0.9 g of carbon black and 0.72 g of PET fiber are put into an oxmaster type kneader and dry mixed, and 100 ml of the above suspension is stirred and poured into this mixture. Finally, 70 cc of dilute sulfuric acid having a specific gravity of 1.360 was stirred and poured to knead to produce a negative electrode paste.
Comparative Example 3
Oxmaster type kneader is charged with 900 g of ball mill type lead powder, 9 g of commercially available barium sulfate powder (aggregate average particle size: 23.6 μm), 1.8 g of sodium lignin sulfonate powder, 0.9 g of carbon black and 0.72 g of PET fiber. The mixture was dry-mixed, and 100 cc was poured into the mixture while kneading and kneaded. Finally, 70 cc of dilute sulfuric acid having a specific gravity of 1.360 was added and kneaded to prepare a negative electrode paste.
次に、上記の実施例1、実施例2、比較例1、比較例2及び比較例3で製造した各負極用ペーストについて、Pb-Sn-Ca系合金の電極基板に充填し、温度35℃、湿度95%で24時間熟成して負極板を夫々作製した。その各負極板と常法により製作した正極板とをセパレータを介して組み合わせ、該負極板が容量支配で且つ5時間率放電で2Ahの容量となる鉛蓄電池を製造し、その電池に水銀/硫酸第一水銀参照電極を取り付けて負極電位の変化を測定した。
負極板の特性評価として、0.4Aで7.5時間の充電と、0.4Aで負極電位が水銀/硫酸第一水銀参照電極に対して-0.8Vに達するまでの充放電を60℃の恒温水槽中で繰り返し行い、その間の容量変化を測定した。そのときの測定結果を図1に示す。
Next, each of the negative electrode pastes produced in Example 1, Example 2, Comparative Example 1, Comparative Example 2, and Comparative Example 3 was filled in an electrode substrate of a Pb—Sn—Ca alloy, and the temperature was 35 ° C. Each of the negative plates was aged for 24 hours at a humidity of 95%. Each negative electrode plate and a positive electrode plate manufactured by a conventional method are combined through a separator to produce a lead-acid battery in which the negative electrode plate is capacity-controlled and has a capacity of 2 Ah with a 5-hour rate discharge. A change in negative electrode potential was measured by attaching a first mercury reference electrode.
As characteristics evaluation of the negative electrode plate, charging at 0.4 A for 7.5 hours and charging and discharging until the negative electrode potential reaches -0.8 V with respect to the mercury / mercuric sulfate reference electrode at 0.4 A in a constant temperature water bath at 60 ° C. Repeatedly, the capacity change during that time was measured. The measurement results at that time are shown in FIG.
図1から明らかなように、実施例1及び実施例2で製造した負極ペーストを用いた各電池は、比較例1,2及び3で製造した夫々の負極ペーストを用いた電池に比し、同じ充放電サイクル数において、常に著しく高い放電容量を維持し、充放電サイクル寿命の向上をもたらすことが判る。
このことは、本発明のように、硫酸バリウム粉末ばかりでなく、追加の添加剤であるカーボンブラック粉末についても界面活性剤又は有機溶剤の水溶液、即ち、表面張力の低下した水溶液中でその凝集塊を解砕して微細粒から成る懸濁液としたため、負極活物質内に硫酸バリウムばかりでなくカーボンブラックの分散性が高まり且つ均一に分散した状態が得られたからであると考えられる。
解砕された硫酸バリウムの高分散により放電時に生じる硫酸鉛の結晶核として効果的に作用してサイクル中のPb2+の拡散を抑制すると共にその防縮作用により負極活物質の形態変化が抑えられ、防縮効果を拡大する一方、解砕されたカーボンブラックの高分散により導電効果が高まり、サイクル中の充放電反応を促進したと推測される。その結果として充放電サイクル寿命が向上したものと考えられる。
これに対して、比較例1で製造した負極ペーストは、硫酸バリウム粉末は実施例1,2と同様に充分に解砕された状態で負極活物質中に均一に分散しているものの、カーボンブラックについては解砕されず凝集塊のままであるため、その効果が充分に発揮されなかったため、充放電サイクルにおいて高い放電容量を維持することができなかったと考えられる。
比較例2で製造した負極ペーストは、凝集した硫酸バリウム粉末にリグニンスルホン酸ナトリウム粉末を乾式混合してから水を注入するため、また、比較例3で製造した負極ペーストは、配合する全ての材料を乾式混合するため、リグニンスルホン酸ナトリウム粉末が水溶液となってその界面活性効果を発揮する前に、硫酸バリウム粉末が水に触れる。その結果、硫酸バリウム粉末は強固な凝集塊となるため、充分に粉砕できなかったため、充放電サイクルにおける高い放電容量を維持することができないと考えられる。
As is clear from FIG. 1, each battery using the negative electrode paste manufactured in Example 1 and Example 2 is the same as the battery using each negative electrode paste manufactured in Comparative Examples 1, 2, and 3. It can be seen that, in the number of charge / discharge cycles, a remarkably high discharge capacity is always maintained and the charge / discharge cycle life is improved.
This is because, as in the present invention, not only barium sulfate powder but also carbon black powder, which is an additional additive, is agglomerated in an aqueous solution of a surfactant or an organic solvent, that is, in an aqueous solution with reduced surface tension. This is considered to be because the dispersion of not only barium sulfate but also carbon black was enhanced and uniformly dispersed in the negative electrode active material because the suspension was crushed into a suspension composed of fine particles.
The high dispersion of the crushed barium sulfate effectively acts as a lead sulfate crystal nucleus during discharge to suppress the diffusion of Pb2 + during the cycle and suppresses the change in the shape of the negative electrode active material due to its shrinkage effect. On the other hand, it is presumed that the conductive effect was enhanced by the high dispersion of the crushed carbon black and the charge / discharge reaction during the cycle was promoted while expanding the shrinkage prevention effect. As a result, the charge / discharge cycle life is considered to be improved.
On the other hand, the negative electrode paste produced in Comparative Example 1 is a carbon black, although the barium sulfate powder is uniformly dispersed in the negative electrode active material in a sufficiently crushed state as in Examples 1 and 2. It is considered that the high discharge capacity could not be maintained in the charge / discharge cycle because the effect was not sufficiently exhibited because the material was not crushed and remained agglomerated.
The negative electrode paste manufactured in Comparative Example 2 is prepared by dry-mixing sodium lignin sulfonate powder into the agglomerated barium sulfate powder and then injecting water. In addition, the negative electrode paste manufactured in Comparative Example 3 contains all the materials to be blended. In order to dry-mix, the barium sulfate powder comes into contact with water before the sodium lignin sulfonate powder becomes an aqueous solution and exhibits its surface-active effect. As a result, since the barium sulfate powder becomes a strong agglomerate and cannot be sufficiently pulverized, it is considered that a high discharge capacity in the charge / discharge cycle cannot be maintained.
次に、上記の充放電試験後、上記の実施例1,2及び比較例1,2,3で製造した負極ペーストに対応する負極板を用いた鉛蓄電池から夫々の負極板を取り出し、当初の負極板に対する収縮状態を検査した。また、各負極板に分散している硫酸バリウムを、EPMAによるBaマッピング像から画像処理を行い、その凝集塊の平均粒径を測定した。その結果を下記表1に示す。 Next, after the above charge and discharge test, each negative electrode plate was taken out from the lead storage battery using the negative electrode plate corresponding to the negative electrode paste manufactured in Examples 1 and 2 and Comparative Examples 1, 2, and 3, and the original The contraction state with respect to the negative electrode plate was inspected. Further, barium sulfate dispersed in each negative electrode plate was subjected to image processing from a Ba mapping image by EPMA, and the average particle size of the aggregate was measured. The results are shown in Table 1 below.
上記表1から明らかなように、硫酸バリウム凝集塊の平均粒径を小さくすることにより防縮効果が大きいことが分かる。また、この表1から、比較例2の負極ペーストの製造法では、硫酸バリウム粉末の凝集塊の細分化及びこれによる防縮効果は充分でなく、比較例3の負極ペーストの製造法では、硫酸バリウム粉末の凝集塊の細分化作用はなく、もとの大きさのままであり、従って、その防縮効果は得られないことが分かる。 As is apparent from Table 1 above, it can be seen that the shrinkage-preventing effect is large by reducing the average particle size of the barium sulfate aggregate. Further, from this Table 1, in the method for producing the negative electrode paste of Comparative Example 2, the fragmentation of the agglomerates of the barium sulfate powder and the shrinkage preventing effect thereof are not sufficient. It can be seen that there is no fragmentation of the powder agglomerates and they remain in their original size, and therefore their shrink-proof effect cannot be obtained.
比較例4
比較例1におけるリグニンスルホン酸ナトリウムの2%水溶液を使用する代わりに、水溶性有機溶剤としてエタノールの5%水溶液を用いた以外は、比較例1と同様にして負極ペーストを製造し、これを用い上記段落0015に記載と同様の条件で負極板を作製し、これを具備した電池を製造し、更に上記と同じ条件で充放電し、負極電位を測定した。その結果は、実施例1及び2に比し放電容量維持の低い図1示の比較例1と殆ど同じ特性曲線が得られた。
Comparative Example 4
Instead of using a 2% aqueous solution of sodium lignin sulfonate in Comparative Example 1, a negative electrode paste was produced in the same manner as in Comparative Example 1 except that a 5% aqueous solution of ethanol was used as the water-soluble organic solvent. A negative electrode plate was produced under the same conditions as described in the above paragraph 0015, a battery including the same was produced, and further charged and discharged under the same conditions as described above, and the negative electrode potential was measured. As a result, a characteristic curve almost the same as that of Comparative Example 1 shown in FIG. 1 having a lower discharge capacity than that of Examples 1 and 2 was obtained.
実施例3
処理容器内にメタノールの5%水溶液50mlに、市販の硫酸バリウム粉末(凝集塊平均粒径:23.6μm)9gを投入し、10分程度放置し、硫酸バリウムの凝集塊にメタノール水溶液が充分に浸透せしめた後、ボールミルで30分間解砕処理を行い、硫酸バリウムの無数の微細粒から成る懸濁液を調製した。一方、別の処理容器内にメタノールの5%水溶液50mlに、硫酸バリウム以外の添加剤粉としてカーボンブラック粉末1gを投入し、10分程度放置した後、ボールミルで30分間解砕処理を行い、カーボンブラックの無数の微細粒から成る懸濁液を調製した。次に、オックスマスタータイプの混練機にボールミル式鉛粉900g、PET繊維0.72gを投入して乾式混合し、この混合物に前記の硫酸バリウム懸濁液50ml及び前記のカーボンブラック懸濁液50mlを撹拌し乍ら注入して混練し、最後に、比重1.360の希硫酸を撹拌し乍ら70cc注入して混練し、負極用ペーストを製造した。
この負極ペーストについて、前記の段落0015に記載したと同じ要領で鉛蓄電池を製造し、同じ条件の充放電サイクル試験を行った、その結果は、実施例1で製造した負極ペーストに対応する電池と同じ図1に示す高い放電容量を維持する充放電サイクル特性曲線と殆ど同じ優れた特性曲線を示した。一方、その充放電サイクル試験後、該電池を分解し、その負極板の収縮状態を検査すると共に、硫酸バリウムの凝集塊平均粒径を測定したところ、2.5μmであった。
Example 3
9g of commercially available barium sulfate powder (aggregate average particle size: 23.6μm) is put into 50ml of 5% aqueous solution of methanol in the treatment vessel and left for about 10 minutes, so that the aqueous methanol solution fully penetrates into the barium sulfate agglomerates. After the caulking, pulverization was performed for 30 minutes by a ball mill to prepare a suspension composed of countless fine particles of barium sulfate. On the other hand, 1 g of carbon black powder was added as an additive powder other than barium sulfate to 50 ml of a 5% aqueous solution of methanol in a separate processing container, left for about 10 minutes, and then pulverized for 30 minutes with a ball mill. A suspension consisting of countless fine grains of black was prepared. Next, 900 g of ball mill type lead powder and 0.72 g of PET fiber are put into an oxmaster type kneader and dry mixed, and 50 ml of the barium sulfate suspension and 50 ml of the carbon black suspension are stirred into this mixture. Then, the mixture was poured and kneaded, and finally, 70 cc of diluted sulfuric acid having a specific gravity of 1.360 was stirred and injected and kneaded to produce a negative electrode paste.
About this negative electrode paste, a lead storage battery was manufactured in the same manner as described in the above paragraph 0015, and a charge / discharge cycle test under the same conditions was performed. The result was a battery corresponding to the negative electrode paste manufactured in Example 1. The same excellent characteristic curve as the charge / discharge cycle characteristic curve maintaining the high discharge capacity shown in FIG. On the other hand, after the charge / discharge cycle test, the battery was disassembled, the shrinkage state of the negative electrode plate was inspected, and the average particle size of the agglomerates of barium sulfate was measured to be 2.5 μm.
上記の実施例1〜3において、界面活性剤としてリグニンスルホン酸ナトリウムを使用し、水溶性有機溶剤としてエタノール、メタノールを使用し、硫酸バリウム以外の添加剤粉末として、カーボンブラック粉末を使用したが、上記の段落0010に列挙した界面活性剤及び水溶性有機溶剤でも使用でき、また、解砕、即ち、湿式粉砕をすべき硫酸バリウム以外の添加剤として、カーボンブラック以外の炭素粉末、その他の導電剤粉末、或いは防縮剤粉末として非水溶性のリグニンスルホン酸塩粉末、リグニンなどを解砕処理しても、電池特性、導電性や防縮効果の優れた負極板及び電池特性の優れた鉛蓄電池をもたらす負極ペーストを製造することができる。 In Examples 1 to 3 above, sodium lignin sulfonate was used as a surfactant, ethanol and methanol were used as a water-soluble organic solvent, and carbon black powder was used as an additive powder other than barium sulfate. The surfactants and water-soluble organic solvents listed in paragraph 0010 above can also be used, and as additives other than barium sulfate to be crushed, that is, wet pulverized, carbon powder other than carbon black, other conductive agents Even if a water-insoluble lignin sulfonate powder or lignin is pulverized as a powder or a shrink-proofing agent powder, a negative electrode plate having excellent battery characteristics, electrical conductivity and shrinking effect, and a lead storage battery having excellent battery characteristics are obtained. A negative electrode paste can be produced.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006057489A JP5148832B2 (en) | 2006-03-03 | 2006-03-03 | Manufacturing method of negative electrode paste for lead acid battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006057489A JP5148832B2 (en) | 2006-03-03 | 2006-03-03 | Manufacturing method of negative electrode paste for lead acid battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007234507A true JP2007234507A (en) | 2007-09-13 |
JP5148832B2 JP5148832B2 (en) | 2013-02-20 |
Family
ID=38554872
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006057489A Active JP5148832B2 (en) | 2006-03-03 | 2006-03-03 | Manufacturing method of negative electrode paste for lead acid battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5148832B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101969125A (en) * | 2010-09-15 | 2011-02-09 | 超威电源有限公司 | Cathode lead plaster formula |
CN102931410A (en) * | 2012-10-24 | 2013-02-13 | 超威电源有限公司 | High-capacity formation lead paste and preparation method thereof |
JP2015109171A (en) * | 2013-12-04 | 2015-06-11 | 株式会社Gsユアサ | Negative electrode plate for lead storage batteries and lead storage battery |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07169464A (en) * | 1993-12-15 | 1995-07-04 | Matsushita Electric Ind Co Ltd | Manufacture of negative electrode paste for lead-acid battery |
JP2003257432A (en) * | 2002-02-27 | 2003-09-12 | Furukawa Battery Co Ltd:The | Manufacturing method for lead-acid battery negative electrode paste |
JP2003308836A (en) * | 2002-04-15 | 2003-10-31 | Shin Kobe Electric Mach Co Ltd | Method of manufacturing pasty active material for negative electrode and lead-acid battery using it |
JP2004199949A (en) * | 2002-12-17 | 2004-07-15 | Shin Kobe Electric Mach Co Ltd | Manufacturing method of electrode plate for lead-acid storage battery |
-
2006
- 2006-03-03 JP JP2006057489A patent/JP5148832B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07169464A (en) * | 1993-12-15 | 1995-07-04 | Matsushita Electric Ind Co Ltd | Manufacture of negative electrode paste for lead-acid battery |
JP2003257432A (en) * | 2002-02-27 | 2003-09-12 | Furukawa Battery Co Ltd:The | Manufacturing method for lead-acid battery negative electrode paste |
JP2003308836A (en) * | 2002-04-15 | 2003-10-31 | Shin Kobe Electric Mach Co Ltd | Method of manufacturing pasty active material for negative electrode and lead-acid battery using it |
JP2004199949A (en) * | 2002-12-17 | 2004-07-15 | Shin Kobe Electric Mach Co Ltd | Manufacturing method of electrode plate for lead-acid storage battery |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101969125A (en) * | 2010-09-15 | 2011-02-09 | 超威电源有限公司 | Cathode lead plaster formula |
CN102931410A (en) * | 2012-10-24 | 2013-02-13 | 超威电源有限公司 | High-capacity formation lead paste and preparation method thereof |
JP2015109171A (en) * | 2013-12-04 | 2015-06-11 | 株式会社Gsユアサ | Negative electrode plate for lead storage batteries and lead storage battery |
Also Published As
Publication number | Publication date |
---|---|
JP5148832B2 (en) | 2013-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106159266B (en) | Preparation method of negative electrode slurry for reducing expansion of lithium ion battery | |
WO2018184466A1 (en) | Method for preparing lithium ion battery negative electrode slurry | |
AU2015100978A4 (en) | Dispersion method of composite conductive agent in li-ion capacitor electrode slurry | |
KR20190086008A (en) | Microcapsulated silicon-carbon composite negative electrode material, and method for its production and uses thereof | |
CN108091839A (en) | A kind of preparation method of lithium-sulphur cell positive electrode slurry | |
CN104835941B (en) | Preparation method of graphene-doped lead acid battery lead paste | |
CN104733689B (en) | Preparation method for lithium iron phosphate positive electrode of lithium ion battery | |
CN107611375A (en) | A kind of preparation method of lithium ion battery anode glue size | |
CN101882681A (en) | Positive and negative plate additive of lead-acid accumulator and preparation method thereof | |
CN110323416B (en) | Aqueous negative electrode stability slurry, preparation method thereof, negative electrode plate and lithium battery | |
CN103904303A (en) | Preparation method of high-capacity nanoscale lithium iron phosphate electrode plate with long service life | |
CN104966837A (en) | Graphene conductive liquid as well as preparation method and application thereof | |
CN110380016A (en) | Carbon nanotube aqueous slurry, carbon nanotube silicon carbon material and preparation method thereof | |
JP5148832B2 (en) | Manufacturing method of negative electrode paste for lead acid battery | |
CN111293311A (en) | Conductive agent slurry, preparation method of conductive agent slurry and battery positive electrode slurry | |
CN108899469A (en) | A kind of lithium ion battery negative material slurry and preparation method thereof | |
KR0139377B1 (en) | Manufacturing method of active material for battery | |
CN108365176A (en) | A kind of preparation method and lithium ion battery of lithium ion battery negative electrode | |
CN105742578B (en) | Preparation method of nickel-metal hydride battery cathode slurry added with carbon nano tubes | |
CN110600674A (en) | Slurry mixing process of lithium ion battery slurry | |
CN105703001A (en) | Lithium battery and manufacturing method thereof | |
JP2005220210A (en) | Method for dispersing carbon nanotube | |
CN115763813A (en) | Preparation method of graphene-based composite sizing agent | |
JP2003257432A (en) | Manufacturing method for lead-acid battery negative electrode paste | |
JP3375192B2 (en) | Manganese dry cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081024 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111026 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120403 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120516 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20120813 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121113 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121129 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5148832 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151207 Year of fee payment: 3 |