JP2007234343A - Microwave tube - Google Patents

Microwave tube Download PDF

Info

Publication number
JP2007234343A
JP2007234343A JP2006053321A JP2006053321A JP2007234343A JP 2007234343 A JP2007234343 A JP 2007234343A JP 2006053321 A JP2006053321 A JP 2006053321A JP 2006053321 A JP2006053321 A JP 2006053321A JP 2007234343 A JP2007234343 A JP 2007234343A
Authority
JP
Japan
Prior art keywords
waveguide
frequency
flat
output
standard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006053321A
Other languages
Japanese (ja)
Inventor
Setsuo Miyake
節雄 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Canon Electron Tubes and Devices Co Ltd
Original Assignee
Toshiba Corp
Toshiba Electron Tubes and Devices Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Electron Tubes and Devices Co Ltd filed Critical Toshiba Corp
Priority to JP2006053321A priority Critical patent/JP2007234343A/en
Publication of JP2007234343A publication Critical patent/JP2007234343A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Microwave Tubes (AREA)
  • Waveguide Connection Structure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a microwave tube capable of improving frequency band characteristics and VSWR (voltage standing wave ratio) without increasing the length of an output wave guide tube 44 and the electric field strength generated in a high frequency window 46. <P>SOLUTION: In the output wave guide tube 44, a flat wave guide tube 41 and the standard wave guide tube 42 connected to an output void are used, and the high frequency window 46 is arranged between the standard wave guide tube 42 and the flat wave guide tube 41. A transmission characteristics correction element 48 is arranged in the flat wave guide tube 41. A reflected wave to cancel the reflected wave of the high frequency wave from the high frequency window 46 in the transmission characteristics correction element 48 is formed, and the transmission characteristics of the high frequency wave is corrected. Without increasing the length of the output wave guide tube 44 and the electric field strength generated in the high frequency window 46, the frequency band characteristics and VSWR (voltage standing wave ratio) are improved. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、出力空胴に接続される高周波出力部を有するマイクロ波管に関する。   The present invention relates to a microwave tube having a high-frequency output connected to an output cavity.

従来、直線ビームを使用したマイクロ波管として、大電力クライストロンなどがある。このクライストロンは、電子ビームを発生する電子銃部、高周波電力を入力する入力部、電子ビームと高周波電界との相互作用により高周波電力を増幅する高周波相互作用部、高周波相互作用部から増幅された高周波電力を出力する高周波出力部、用済みの電子ビームを捕捉するコレクタ部を有するクライストロン本体と、このクライストロン本体の周囲に装着されて電子ビームを一定の径に集束する集束磁界装置とを備えている。   Conventionally, as a microwave tube using a straight beam, there is a high-power klystron. This klystron has an electron gun unit that generates an electron beam, an input unit that inputs high-frequency power, a high-frequency interaction unit that amplifies high-frequency power by the interaction between the electron beam and a high-frequency electric field, and a high-frequency amplified from the high-frequency interaction unit. A klystron body having a high-frequency output unit for outputting electric power, a collector unit for capturing a used electron beam, and a focusing magnetic field device that is mounted around the klystron body and focuses the electron beam to a certain diameter. .

入力部は、一般的に小電力であるために同軸管を用いるのが一般的であるが、高周波出力部は、出力電力が大きく周波数が700MHzを越えるような場合、径の太い同軸管は遮断周波数との関係で使用することができないため、出力空胴からは同軸管ではなく矩形導波管で高周波を取り出し、この矩形導波管の途中に接続された円形導波管内にセラミックなどの円板状の誘電体を配置して機密構造としたピルボックス型と呼ばれる高周波窓構造を採用することが多い。   Since the input unit is generally low power, a coaxial tube is generally used. However, when the output power is large and the frequency exceeds 700 MHz, the coaxial tube with a large diameter is cut off. Since it cannot be used in relation to the frequency, a high frequency is extracted from the output cavity by a rectangular waveguide instead of a coaxial tube, and a circle such as ceramic is placed in a circular waveguide connected in the middle of the rectangular waveguide. In many cases, a high-frequency window structure called a pill box type in which a plate-like dielectric is arranged to provide a secret structure is adopted.

すなわち、図9および図10は一般的なピルボックス型の高周波窓構造を用いた高周波出力部を示し、矩形で同サイズの一対の標準導波管1の途中に、円形導波管2が接続されるとともにこの円形導波管2内にセラミックなどの高周波損失の少ない円板状の誘電体3が気密に配置されて高周波窓4が形成されている。円形導波管2の両端面には標準導波管1と導電性の良い接続板5で接続されている。   9 and 10 show a high-frequency output unit using a general pillbox-type high-frequency window structure, in which a circular waveguide 2 is connected in the middle of a pair of standard waveguides 1 having the same size. At the same time, a disk-shaped dielectric 3 such as ceramic having a small high-frequency loss is hermetically disposed in the circular waveguide 2 to form a high-frequency window 4. Both ends of the circular waveguide 2 are connected to the standard waveguide 1 by a connection plate 5 having good conductivity.

ところで、高周波の周波数が低い場合には、クライストロン本体の出力空胴に大きな導波管を取り付ける必要があるが、集束磁界装置に大きな導波管が貫通するスペースを設ける必要があり、その場所では磁界を発生させる電磁石などは配置できず、その場所での軸上磁束密度が低下するという不都合がある。これを軽減させるために、出力空胴に接続する導波管は、標準サイズの標準導波管よりも高さ方向を低くした、いわゆる扁平導波管が使用されている。   By the way, when the frequency of the high frequency is low, it is necessary to attach a large waveguide to the output cavity of the klystron body, but it is necessary to provide a space through which the large waveguide penetrates in the focusing magnetic field device. There is an inconvenience that an electromagnet or the like that generates a magnetic field cannot be arranged, and the on-axis magnetic flux density at that location decreases. In order to reduce this, a so-called flat waveguide whose height direction is lower than that of a standard-sized standard waveguide is used as the waveguide connected to the output cavity.

このような扁平導波管を使用する場合には、図11に示すように、扁平導波管6からステップ導波管7で標準サイズの標準導波管1に変換した後に高周波窓4側に接続するのが一般的であり、周波数帯域特性も非常に優れている。   When such a flat waveguide is used, as shown in FIG. 11, after the flat waveguide 6 is converted to the standard waveguide 1 of the standard size by the step waveguide 7, it is moved to the high frequency window 4 side. It is common to connect, and the frequency band characteristic is also very excellent.

しかし、ステップ導波管7は、モード・パターンの乱れを発生させないためには、途中のステップ導波管7の長さだけでなく、前後の扁平導波管6および標準導波管1も、管内波長で少なくとも0.25波長以上の長さを確保する必要があり、ステップ導波管7を採用した場合には導波管部分の全長が長くなるという問題がある。   However, in order to prevent the step waveguide 7 from causing the disturbance of the mode pattern, not only the length of the step waveguide 7 in the middle, but also the flat waveguide 6 and the standard waveguide 1 before and after, It is necessary to ensure a length of at least 0.25 wavelength in the guide wavelength, and when the step waveguide 7 is employed, there is a problem that the entire length of the waveguide portion becomes long.

この問題を補おうとするのが図12に示す改良案で、扁平導波管6と標準導波管1のインピーダンスが異なるために、高周波窓4の整合を取るために誘電体3を円形導波管2の中心から扁平導波管6側に移動させたもので、誘電体3表面から扁平導波管6までの距離が反対側の誘電体3表面から標準導波管1までの距離に対して狭くなる。この場合、瞬時周波数帯域は通常の高周波窓4に対して狭くなる。この高周波窓4の問題は、瞬時周波数帯域が狭くなるという問題のほかに、円形導波管2内に設置された誘電体3と扁平導波管6の端面までの距離が短いために、誘電体3に発生する電界強度が高くなり、耐電力が小さくなることである。また、誘電体3の軸方向のずれでVSWR(電圧定在波比)の周波数特性の変化が大きいことである。   An improvement proposed in FIG. 12 is intended to compensate for this problem. Since the impedances of the flat waveguide 6 and the standard waveguide 1 are different, the dielectric 3 is guided in a circular waveguide to match the high-frequency window 4. The distance from the center of the tube 2 to the flat waveguide 6 is such that the distance from the surface of the dielectric 3 to the flat waveguide 6 is the distance from the surface of the dielectric 3 on the opposite side to the standard waveguide 1. Narrow. In this case, the instantaneous frequency band is narrower than the normal high frequency window 4. In addition to the problem that the instantaneous frequency band becomes narrow, the problem of the high-frequency window 4 is that the distance between the dielectric 3 installed in the circular waveguide 2 and the end face of the flat waveguide 6 is short. The strength of the electric field generated in the body 3 is increased, and the withstand power is reduced. Further, the change in the frequency characteristic of VSWR (voltage standing wave ratio) is large due to the axial displacement of the dielectric 3.

なお、図9および図10に示したような、矩形で同サイズの一対の標準導波管を使用する場合に、その標準導波管内に出力空胴側から高周波窓の誘電体を直接見通すことができない障壁部材を設け、この隔壁部材の内部に冷却媒体を流すようにしたものがあるが、これは、誘電体の熱損傷および導波管の温度上昇を抑制することを目的としてなされたものである(例えば、特許文献1参照。)。すなわち、標準導波管とこの標準導波管より扁平で出力空胴に接続される扁平導波管とを使用する場合、周波数帯域特性などの問題について考慮されたものではない。
特開平11−149876号公報(第2−3頁、図1−2)
When a pair of rectangular standard waveguides of the same size as shown in FIGS. 9 and 10 is used, the dielectric of the high frequency window is directly seen from the output cavity side in the standard waveguide. There is a barrier member that cannot be used, and a cooling medium is allowed to flow inside the partition member. This is intended to suppress thermal damage to the dielectric and temperature rise of the waveguide. (For example, see Patent Document 1). That is, when a standard waveguide and a flat waveguide that is flatter than the standard waveguide and connected to the output cavity are used, problems such as frequency band characteristics are not considered.
JP-A-11-149876 (page 2-3, FIG. 1-2)

上述のように、扁平導波管6と標準導波管1との間に高周波窓4を設ける場合において、ステップ導波管7を採用すれば、導波管部分の全長が長くなって、クライストロンの製造、取り扱いが面倒になり、また、高周波窓4内の誘電体3の位置を円形導波管2の中心から扁平導波管6側に移動させることで、VSWRの劣化を防止すれば、周波数帯域が狭くなるとともに、誘電体3に発生する電界強度が増加してしまい、帯電力性が低下してしまう問題がある。   As described above, in the case where the high-frequency window 4 is provided between the flat waveguide 6 and the standard waveguide 1, if the step waveguide 7 is employed, the total length of the waveguide portion becomes long, and the klystron If the position of the dielectric 3 in the high frequency window 4 is moved from the center of the circular waveguide 2 to the flat waveguide 6 side to prevent the deterioration of the VSWR, As the frequency band is narrowed, the electric field strength generated in the dielectric 3 is increased, and there is a problem that the power consumption is reduced.

本発明は、このような点に鑑みなされたもので、出力導波管の長さの増加や高周波窓に発生する電界強度を増加させることなく、周波数帯域特性やVSWR(電圧定在波比)を改善できるマイクロ波管を提供することを目的とする。   The present invention has been made in view of the above points, and without increasing the length of the output waveguide or increasing the electric field strength generated in the high-frequency window, the frequency band characteristics and VSWR (voltage standing wave ratio) are achieved. An object of the present invention is to provide a microwave tube capable of improving the above.

本発明は、出力空胴に接続される高周波出力部を有するマイクロ波管であって、前記高周波出力部は、標準導波管、この標準導波管より扁平で前記出力空胴に接続される扁平導波管、これら標準導波管と扁平導波管との間に配置される高周波窓を有する出力導波管と、前記扁平導波管内に配置され、扁平導波管内で高周波窓からの高周波の反射波を打ち消す反射波を作る伝送特性補正素子とを具備しているものである。   The present invention is a microwave tube having a high-frequency output portion connected to an output cavity, the high-frequency output portion being a standard waveguide, flatter than the standard waveguide, and connected to the output cavity. A flat waveguide, an output waveguide having a high-frequency window disposed between the standard waveguide and the flat waveguide, and disposed in the flat waveguide, and from the high-frequency window in the flat waveguide And a transmission characteristic correction element that creates a reflected wave that cancels the reflected wave of high frequency.

本発明によれば、標準導波管とこの標準導波管より扁平で出力空胴に接続される扁平導波管とを使用する出力導波管の場合でも、扁平導波管内に配置した伝送特性補正素子によって高周波窓からの高周波の反射波を打ち消す反射波を作り、高周波の伝送特性を補正するため、出力導波管の長さの増加や高周波窓に発生する電界強度を増加させることなく、周波数帯域特性やVSWR(電圧定在波比)を改善できる。   According to the present invention, even in the case of an output waveguide that uses a standard waveguide and a flat waveguide that is flatter than the standard waveguide and connected to the output cavity, the transmission arranged in the flat waveguide The characteristic correction element creates a reflected wave that cancels the high-frequency reflected wave from the high-frequency window and corrects the high-frequency transmission characteristics without increasing the length of the output waveguide or increasing the electric field strength generated in the high-frequency window. The frequency band characteristics and VSWR (voltage standing wave ratio) can be improved.

以下、本発明の実施の形態を図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1ないし図6に第1の実施の形態を示す。   1 to 6 show a first embodiment.

図3に示すように、マイクロ波管としてのクライストロン11は、クライストロン本体12および集束磁界装置13を備えている。   As shown in FIG. 3, a klystron 11 as a microwave tube includes a klystron main body 12 and a focusing magnetic field device 13.

クライストロン本体12は、電子ビームを発生する電子銃部16、電子ビームと高周波電界との相互作用により高周波電力を増幅する高周波相互作用部17、高周波相互作用部17に高周波電力を入力する入力部18、高周波相互作用部17で増幅された高周波電力を出力する高周波出力部19、高周波相互作用部17を通過した用済みの電子ビームを捕集するコレクタ部20を備えている。   The klystron body 12 includes an electron gun unit 16 that generates an electron beam, a high-frequency interaction unit 17 that amplifies high-frequency power by the interaction between the electron beam and a high-frequency electric field, and an input unit 18 that inputs high-frequency power to the high-frequency interaction unit 17 The high-frequency output unit 19 that outputs the high-frequency power amplified by the high-frequency interaction unit 17 and the collector unit 20 that collects the used electron beam that has passed through the high-frequency interaction unit 17 are provided.

高周波相互作用部17は、電子ビームが通過するドリフト管21、入力部18が接続された入力空胴22、複数の中間空胴23、高周波出力部19が接続された出力空胴24を有している。   The high-frequency interaction unit 17 includes a drift tube 21 through which an electron beam passes, an input cavity 22 to which an input unit 18 is connected, a plurality of intermediate cavities 23, and an output cavity 24 to which a high-frequency output unit 19 is connected. ing.

集束磁界装置13は、高周波相互作用部17の周囲に配置される主磁界発生部27、この主磁界発生部27の一端側において電子銃部16の周囲に配置される図示しない電子銃部側磁界発生部を備えている。主磁界発生部27は、高周波相互作用部17の周囲に配置される主コイル28と、出力空胴24より外側に配置される出力コイル29を備えている。   The focusing magnetic field device 13 includes a main magnetic field generating unit 27 disposed around the high frequency interaction unit 17, and an electron gun unit side magnetic field (not shown) disposed around the electron gun unit 16 on one end side of the main magnetic field generating unit 27. A generator is provided. The main magnetic field generation unit 27 includes a main coil 28 disposed around the high frequency interaction unit 17 and an output coil 29 disposed outside the output cavity 24.

また、図1ないし図3に示すように、高周波出力部19は、出力空胴24に接続される扁平導波管41、高周波を取り出す標準導波管42、これら扁平導波管41と標準導波管42との間に接続された円形導波管43によって出力導波管44が構成されている。   As shown in FIGS. 1 to 3, the high-frequency output unit 19 includes a flat waveguide 41 connected to the output cavity 24, a standard waveguide 42 for extracting high-frequency waves, and the flat waveguide 41 and the standard waveguide. An output waveguide 44 is constituted by a circular waveguide 43 connected between the wave tube 42.

扁平導波管41および標準導波管42は、断面矩形状で、標準導波管42が標準サイズなのに対して、扁平導波管41は標準導波管42よりも高さ方向の幅を低くした扁平サイズに形成されている。   The flat waveguide 41 and the standard waveguide 42 have a rectangular cross section, and the standard waveguide 42 has a standard size, whereas the flat waveguide 41 has a lower width in the height direction than the standard waveguide 42. It is formed in a flat size.

円形導波管43内の中央にはセラミックなどで円板状に形成された誘電体45が気密に配置されて高周波窓46が形成され、円形導波管43の両端面には扁平導波管41および標準導波管42がそれぞれ接続される導電性の良い接続板47が気密に配置されている。   In the center of the circular waveguide 43, a dielectric 45 formed in a disk shape with a ceramic or the like is hermetically arranged to form a high-frequency window 46. Flat waveguides are formed on both end faces of the circular waveguide 43. A highly conductive connection plate 47 to which 41 and the standard waveguide 42 are connected is hermetically arranged.

扁平導波管41と標準導波管42とが接続された高周波窓46ではそのインピーダンスの違いにより高周波の反射波が発生するが、扁平導波管41内には、その高周波の反射波を打ち消す反射波を作り、高周波の伝送特性を補正する伝送特性補正素子48が配置されている。伝送特性補正素子48は、導電性を有する円筒状で、扁平導波管41の扁平な面に対して垂直となる向きで、扁平導波管41の扁平な方向に対して交差する幅方向の2箇所に離間して配置されている。円筒状の伝送特性補正素子48の内部には、図示しない冷却装置によって冷却水などの冷却媒体を通して熱的に安定化させることができる冷却通路が形成されている。   The high-frequency window 46 to which the flat waveguide 41 and the standard waveguide 42 are connected generates a high-frequency reflected wave due to the difference in impedance, but the high-frequency reflected wave is canceled in the flat waveguide 41. A transmission characteristic correction element 48 that generates a reflected wave and corrects a high-frequency transmission characteristic is disposed. The transmission characteristic correction element 48 is a cylindrical shape having conductivity, and is oriented in a direction perpendicular to the flat surface of the flat waveguide 41 and in the width direction intersecting the flat direction of the flat waveguide 41. The two are spaced apart. Inside the cylindrical transmission characteristic correction element 48 is formed a cooling passage that can be thermally stabilized through a cooling medium such as cooling water by a cooling device (not shown).

そして、標準導波管42とこの標準導波管42より扁平で出力空胴24に接続される扁平導波管41とを使用する出力導波管44の場合でも、扁平導波管41内に配置した伝送特性補正素子48によって高周波窓46からの高周波の反射波を打ち消す反射波を作り、高周波の伝送特性を補正するため、周波数帯域特性やVSWR(電圧定在波比)を改善できる。   Even in the case of the output waveguide 44 using the standard waveguide 42 and the flat waveguide 41 that is flatter than the standard waveguide 42 and connected to the output cavity 24, The disposed transmission characteristic correction element 48 creates a reflected wave that cancels the high-frequency reflected wave from the high-frequency window 46, and corrects the high-frequency transmission characteristic. Therefore, the frequency band characteristic and VSWR (voltage standing wave ratio) can be improved.

図4には、VSWRと高周波の周波数との関係を測定した結果を示す。VSWR=1.2の範囲での周波数帯域は、図12に示したように誘電体3を円形導波管2内で偏心させた従来例の構成Bに対して、伝送特性補正素子48を用いた本実施の形態の構成Aの場合に、25%広くなる結果が得られた。   FIG. 4 shows the results of measuring the relationship between VSWR and high frequency. In the frequency band in the range of VSWR = 1.2, the transmission characteristic correction element 48 is used for the configuration B of the conventional example in which the dielectric 3 is eccentric in the circular waveguide 2 as shown in FIG. In the case of the configuration A of the present embodiment, a result that is 25% wider was obtained.

また、図5には、誘電体45の表面の中心からのY軸方向およびX軸方向の距離と電界強度との関係を測定した結果を示す。電界強度は、従来例の構成Bに対して、本実施の形態の構成Aの場合に、15%以上軽減できる結果が得られた。   FIG. 5 shows the result of measuring the relationship between the distance in the Y-axis direction and the X-axis direction from the center of the surface of the dielectric 45 and the electric field strength. In the case of the configuration A of the present embodiment, the electric field strength can be reduced by 15% or more compared to the configuration B of the conventional example.

また、図6には、誘電体45が円形導波管43の中央からずれた場合の中心周波数の変化を示す。中心周波数の変化は、従来例の構成Bに対して、本実施の形態の構成Aの場合に、半分程度に抑えられる結果が得られた。   FIG. 6 shows a change in the center frequency when the dielectric 45 is displaced from the center of the circular waveguide 43. The change of the center frequency was suppressed to about half in the case of the configuration A of the present embodiment compared to the configuration B of the conventional example.

したがって、標準導波管42とこの標準導波管42より扁平で出力空胴24に接続される扁平導波管41とを使用する出力導波管44の場合でも、扁平導波管41内に配置した伝送特性補正素子48によって高周波窓46からの高周波の反射波を打ち消す反射波を作り、高周波の伝送特性を補正するため、出力導波管44の長さの増加や高周波窓46の誘電体45に発生する電界強度を増加させることなく、周波数帯域特性やVSWR(電圧定在波比)を改善できる。しかも、組立時の誘電体45のずれに対する中心周波数の変化も、半分程度に抑えることができる。   Therefore, even in the case of the output waveguide 44 using the standard waveguide 42 and the flat waveguide 41 which is flatter than the standard waveguide 42 and connected to the output cavity 24, In order to correct a high-frequency transmission characteristic by creating a reflected wave that cancels a high-frequency reflected wave from the high-frequency window 46 by the arranged transmission characteristic correction element 48, the length of the output waveguide 44 is increased and the dielectric of the high-frequency window 46 The frequency band characteristics and VSWR (voltage standing wave ratio) can be improved without increasing the electric field strength generated in 45. Moreover, the change in the center frequency with respect to the shift of the dielectric 45 during assembly can be suppressed to about half.

次に、図7および図8に第2の実施の形態を示す。   Next, FIGS. 7 and 8 show a second embodiment.

扁平導波管41と標準導波管42との間に長さ寸法Lの大きい円形導波管43を設け、この円形導波管43のほぼ中央に誘電体45を配置した定在波型高周波窓構造を示す。   A standing wave type high frequency wave in which a circular waveguide 43 having a large length L is provided between the flat waveguide 41 and the standard waveguide 42, and a dielectric 45 is disposed at substantially the center of the circular waveguide 43. The window structure is shown.

この場合にも、扁平導波管41内に伝送特性補正素子48を配置することにより、第1の実施の形態と同様の作用効果が得られる。   Also in this case, the same effect as the first embodiment can be obtained by arranging the transmission characteristic correction element 48 in the flat waveguide 41.

なお、伝送特性補正素子48は、1箇所でも問題なく伝送特性を改善できる。また、この伝送特性補正素子48は、円筒状に限らず、四角形筒状でもよく、あるいは、円柱、四角柱などの多角柱でも、楕円柱でも、良導電性であれば良い。   The transmission characteristic correcting element 48 can improve the transmission characteristic without any problem even at one place. Further, the transmission characteristic correction element 48 is not limited to a cylindrical shape, and may be a rectangular tube shape, or may be a polygonal column such as a column or a quadrangular column, an elliptical column, or the like, as long as it has good conductivity.

また、マイクロ波管としては、クライストロン11に限らず、線形加速器、ジャイヤトロン、進行波管などでもよい。   Further, the microwave tube is not limited to the klystron 11, but may be a linear accelerator, a gyrator, a traveling wave tube, or the like.

本発明の第1の実施の形態を示すクライストロンの高周波出力部の斜視図である。It is a perspective view of the high frequency output part of the klystron which shows the 1st Embodiment of this invention. 同上高周波出力部の断面図である。It is sectional drawing of a high frequency output part same as the above. 同上クライストロンの断面図である。It is sectional drawing of a klystron same as the above. 同上クライストロンのVSWRと高周波の周波数との関係を示すグラフである。It is a graph which shows the relationship between VSWR of a klystron same as the above, and the frequency of a high frequency. 同上クライストロンの誘電体の表面の中心からのY軸方向およびX軸方向の距離と電界強度との関係を示すグラフである。It is a graph which shows the relationship between the distance of the Y-axis direction and the X-axis direction from the center of the surface of the dielectric material of a klystron, and electric field strength. 同上クライストロンの誘電体が円形導波管の中央からずれた場合の中心周波数の変化を示すグラフである。It is a graph which shows the change of the center frequency when the dielectric material of a klystron is shifted from the center of a circular waveguide. 本発明の第2の実施の形態を示すクライストロンの高周波出力部の斜視図である。It is a perspective view of the high frequency output part of the klystron which shows the 2nd Embodiment of this invention. 同上高周波出力部の断面図である。It is sectional drawing of a high frequency output part same as the above. 従来の高周波出力部の斜視図である。It is a perspective view of the conventional high frequency output part. 従来の高周波出力部の断面図である。It is sectional drawing of the conventional high frequency output part. 従来の他の高周波出力部の断面図である。It is sectional drawing of the other conventional high frequency output part. 従来のさらに他の高周波出力部の断面図である。It is sectional drawing of the other conventional high frequency output part.

符号の説明Explanation of symbols

11 マイクロ波管としてのクライストロン
19 高周波出力部
24 出力空胴
41 扁平導波管
42 標準導波管
44 出力導波管
46 高周波窓
48 伝送特性補正素子
11 Klystron as a microwave tube
19 High frequency output section
24 output cavity
41 Flat waveguide
42 Standard waveguide
44 Output waveguide
46 high frequency window
48 Transmission characteristic correction element

Claims (3)

出力空胴に接続される高周波出力部を有するマイクロ波管であって、
前記高周波出力部は、
標準導波管、この標準導波管より扁平で前記出力空胴に接続される扁平導波管、これら標準導波管と扁平導波管との間に配置される高周波窓を有する出力導波管と、
前記扁平導波管内に配置され、扁平導波管内で高周波窓からの高周波の反射波を打ち消す反射波を作る伝送特性補正素子とを具備している
ことを特徴とするマイクロ波管。
A microwave tube having a high frequency output connected to an output cavity,
The high-frequency output unit is
A standard waveguide, a flat waveguide that is flatter than the standard waveguide and connected to the output cavity, and an output waveguide having a high-frequency window disposed between the standard waveguide and the flat waveguide Tube,
A microwave tube, comprising: a transmission characteristic correcting element that is disposed in the flat waveguide and that generates a reflected wave that cancels a high-frequency reflected wave from a high-frequency window in the flat waveguide.
伝送特性補正素子は、扁平導波管の扁平な方向に対して交差する方向の複数箇所に配置されている
ことを特徴とする請求項1記載のマイクロ波管。
The microwave tube according to claim 1, wherein the transmission characteristic correction elements are arranged at a plurality of locations in a direction intersecting a flat direction of the flat waveguide.
伝送特性補正素子は、内部に冷却媒体が通る筒形に形成されている
ことを特徴とする請求項1または2記載のマイクロ波管。
The microwave tube according to claim 1 or 2, wherein the transmission characteristic correction element is formed in a cylindrical shape through which a cooling medium passes.
JP2006053321A 2006-02-28 2006-02-28 Microwave tube Withdrawn JP2007234343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006053321A JP2007234343A (en) 2006-02-28 2006-02-28 Microwave tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006053321A JP2007234343A (en) 2006-02-28 2006-02-28 Microwave tube

Publications (1)

Publication Number Publication Date
JP2007234343A true JP2007234343A (en) 2007-09-13

Family

ID=38554733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006053321A Withdrawn JP2007234343A (en) 2006-02-28 2006-02-28 Microwave tube

Country Status (1)

Country Link
JP (1) JP2007234343A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8570120B2 (en) 2008-12-26 2013-10-29 Kabushiki Kaisha Toshiba Heat insulating waveguides separated by an air gap and including two planar reflectors for controlling radiation power from the air gap

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8570120B2 (en) 2008-12-26 2013-10-29 Kabushiki Kaisha Toshiba Heat insulating waveguides separated by an air gap and including two planar reflectors for controlling radiation power from the air gap
US8803639B2 (en) 2008-12-26 2014-08-12 Kabushiki Kaisha Toshiba Vacuum insulating chamber including waveguides separated by an air gap and including two planar reflectors for controlling radiation power from the air gap

Similar Documents

Publication Publication Date Title
JP6470930B2 (en) Distributor and planar antenna
JP2010021828A (en) Dielectric waveguide slot antenna
WO2016024362A1 (en) Waveguide power combiner/divider
JP6341341B2 (en) Coupling window of dielectric waveguide resonator and dielectric waveguide filter using the same
US6593695B2 (en) Broadband, inverted slot mode, coupled cavity circuit
JP5885775B2 (en) Transmission line and high frequency circuit
US5534750A (en) Integral polepiece magnetic focusing system having enhanced gain and transmission
JP5705035B2 (en) Waveguide microstrip line converter
JP2007234343A (en) Microwave tube
JPH0215980B2 (en)
US20010013757A1 (en) Broadband, inverted slot mode, coupled cavity circuit
JP6613156B2 (en) Waveguide / transmission line converter and antenna device
JP2020022075A (en) Transducer
KR101713769B1 (en) Spatial power combiner based on coaxial waveguide
JP6611238B2 (en) Waveguide / transmission line converter, array antenna, and planar antenna
JP6407106B2 (en) Directional coupler
JP4815146B2 (en) Magnetron
JP2007228036A (en) Waveguide/microstrip line converter
JP2006081160A (en) Transmission path converter
JP5377070B2 (en) Waveguide / microstrip line converter
WO2016152811A1 (en) Waveguide tube/transmission line converter and antenna device
JP6721352B2 (en) Waveguide/transmission line converter and antenna device
JP2020115618A (en) Wave guide, wave guide slot array antenna and orthogonal dual-polarization wave guide slot array antenna
JP2007234344A (en) Microwave tube
JP4869306B2 (en) Transmission line structure

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090512