JP4815146B2 - Magnetron - Google Patents

Magnetron Download PDF

Info

Publication number
JP4815146B2
JP4815146B2 JP2005126237A JP2005126237A JP4815146B2 JP 4815146 B2 JP4815146 B2 JP 4815146B2 JP 2005126237 A JP2005126237 A JP 2005126237A JP 2005126237 A JP2005126237 A JP 2005126237A JP 4815146 B2 JP4815146 B2 JP 4815146B2
Authority
JP
Japan
Prior art keywords
magnetron
plate
vacuum tube
ghz
anode cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005126237A
Other languages
Japanese (ja)
Other versions
JP2006302808A (en
Inventor
貴典 半田
なぎさ 桑原
正幸 相賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2005126237A priority Critical patent/JP4815146B2/en
Publication of JP2006302808A publication Critical patent/JP2006302808A/en
Application granted granted Critical
Publication of JP4815146B2 publication Critical patent/JP4815146B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、発振周波数が5.8GHz帯であるマグネトロンに関する。   The present invention relates to a magnetron whose oscillation frequency is in the 5.8 GHz band.

一般に、マグネトロンは、その中心部に配置される真空管部と、真空管部の外周に配設される複数枚の放熱用フィンと、真空管部と同軸に配設される一対の環状磁石と、環状磁石を磁気的に継ぐ枠状継鉄と、フィルタ回路部とにより構成されている。   In general, a magnetron includes a vacuum tube portion disposed in the center thereof, a plurality of heat radiation fins disposed on the outer periphery of the vacuum tube portion, a pair of annular magnets disposed coaxially with the vacuum tube portion, and an annular magnet It is comprised by the frame-shaped yoke which connects the magnetically, and the filter circuit part.

真空管部は、図5に示すように、円筒状の陽極筒体26と、陽極筒体と同軸上に配置される陰極27と、陽極筒体の中心軸の周りに放射状に配置される複数の板状ベイン28と、これらを1枚おきに電気的に接続する4個の均圧環29と、板状ベイン28のいずれか1枚に一端が接続されるアンテナ30と、磁極31とを有する構成となっている。   As shown in FIG. 5, the vacuum tube portion includes a cylindrical anode cylinder 26, a cathode 27 arranged coaxially with the anode cylinder, and a plurality of radially arranged around the central axis of the anode cylinder. A configuration having a plate-shaped vane 28, four equalizing rings 29 for electrically connecting every other one of them, an antenna 30 having one end connected to any one of the plate-shaped vanes 28, and a magnetic pole 31 It has become.

これまで、市場においては、ISMバンドである2.45GHzまたは915MHz帯を発振周波数とするマグネトロンが主流であった。   Until now, the magnetron having an oscillation frequency in the 2.45 GHz or 915 MHz band which is an ISM band has been the mainstream in the market.

従来、主として比較的低周波のノイズを抑制することを目的として、例えば、ベイン幅Laが9.5mm、両磁極31の平坦部対向間隔Lpが12.7mm、磁極の高さhが7.0mmとして設計された2.45GHzの基本周波数で動作するマグネトロンが提案されている(特許文献1)。   Conventionally, for the purpose of mainly suppressing relatively low frequency noise, for example, a vane width La is 9.5 mm, a flat portion facing distance Lp between both magnetic poles 31 is 12.7 mm, and a magnetic pole height h is 7.0 mm. A magnetron that operates at a fundamental frequency of 2.45 GHz designed as is proposed (Patent Document 1).

一方、近年、マグネトロンを用いた機器の分野では、新たな応用機器の開発および市場の拡大を進めるにあたって、機器の小型化の要請がある。   On the other hand, in recent years, in the field of equipment using magnetrons, there is a demand for downsizing of equipment in order to develop new applied equipment and expand the market.

機器を小型化する際は、その最小寸法がマグネトロンの発振周波数を遮断しないように構成しなければならない。   When miniaturizing equipment, it must be constructed so that its minimum dimensions do not block the magnetron oscillation frequency.

例えば、一般に、マグネトロンを使用する電気機器の代表例である電子レンジは、マイクロ波を伝搬する導波管部とマイクロ波が共振するキャビティ部とを備えるが、それらの寸法は、一定値以下になると基本周波数が遮断されてしまう。   For example, in general, a microwave oven, which is a representative example of an electric device using a magnetron, includes a waveguide portion that propagates microwaves and a cavity portion that resonates microwaves, and the dimensions thereof are below a certain value. Then, the fundamental frequency is cut off.

このように、導波管やキャビティ等の周辺機器はマグネトロンの発振周波数によりその構造が制限されるため、その寸法を大幅に変更することはできない。   Thus, since the structure of peripheral devices such as waveguides and cavities is limited by the oscillation frequency of the magnetron, the dimensions cannot be changed greatly.

そこで、工業用に使用できる周波数(ISMバンド)として2.45GHzの次に割り当てられている5.8GHzを発振周波数とするマグネトロンの開発が求められた。   Therefore, development of a magnetron having an oscillation frequency of 5.8 GHz, which is allocated next to 2.45 GHz as a frequency (ISM band) that can be used for industrial use, has been demanded.

この理由は、5.8GHzを発振周波数とするマグネトロンでは、従来の2.45GHzのマグネトロンに比べて発振周波数の波長が約半分となるので、導波管等の周辺機器の寸法が約半分で済み、機器を大幅に小型化することが可能となるからである。
特開昭63−91932号公報
The reason for this is that, with a magnetron with an oscillation frequency of 5.8 GHz, the wavelength of the oscillation frequency is about half that of a conventional 2.45 GHz magnetron. This is because the device can be greatly downsized.
JP-A-63-91932

しかしながら、5.8GHzを発振周波数とするマグネトロンの開発にあたり、特許文献1に記載されるような2.45GHzマグネトロンの設計思想を、5.8GHzを発振周波数とするマグネトロンに適用して設計したとき、共振空洞と周囲導体(磁極等)との間で容量成分や誘導成分による高周波結合が発生して共振周波数が変動するため、安定した発振周波数を得ることができないということが判った。   However, in developing a magnetron with an oscillation frequency of 5.8 GHz, when the design concept of the 2.45 GHz magnetron described in Patent Document 1 is applied to a magnetron with an oscillation frequency of 5.8 GHz, It has been found that a stable oscillation frequency cannot be obtained because high-frequency coupling due to a capacitive component or an inductive component occurs between the resonant cavity and the surrounding conductor (such as a magnetic pole) and the resonant frequency fluctuates.

本発明は、5.8GHzにあっても安定した発振周波数を有し、応用機器の小型化に好適となるマグネトロンを提供することを目的とする。   An object of the present invention is to provide a magnetron that has a stable oscillation frequency even at 5.8 GHz and is suitable for downsizing of applied equipment.

本発明のマグネトロンは、円筒状の陽極筒体と、前記陽極筒体の内壁面に一端部が固着されると共に、該一端部と対向する先端部が前記陽極筒体の中心に向かって放射状に延びた複数枚の陽極ベインと、これらの陽極ベインを1枚おきに電気的に接続する複数個の均圧環と、前記陽極筒体の中心部に設けられる陰極と、前記陽極筒体の軸方向の両開口端に配設される一対の漏斗状の磁極とを備えたマグネトロンにおいて、前記陽極筒体と前記陽極ベインと前記均圧環とからなる共振空洞で発生させるマイクロ波の共振周波数を5.8GHz帯とし、かつ前記陽極ベインの側端縁と前記磁極との最小近接距離を2.2mm以上、5.0mm以下の範囲に設定したことを特徴としている。   The magnetron of the present invention has a cylindrical anode cylinder and one end fixed to the inner wall surface of the anode cylinder, and a tip opposite to the one end radially toward the center of the anode cylinder. A plurality of extended anode vanes, a plurality of pressure equalizing rings electrically connecting every other anode vane, a cathode provided at the center of the anode cylinder, and an axial direction of the anode cylinder 4. A magnetron having a pair of funnel-shaped magnetic poles disposed at both opening ends of the first and second resonance frequencies of microwaves generated in a resonance cavity composed of the anode cylinder, the anode vane, and the pressure equalizing ring. It is an 8 GHz band, and the minimum proximity distance between the side edge of the anode vane and the magnetic pole is set in a range of 2.2 mm or more and 5.0 mm or less.

この構成によれば、陽極ベインの側端縁と磁極との最小近接距離を少なくとも2.2mm以上確保することで、共振空洞と周囲導体(磁極等)との間で容量成分や誘導成分による高周波結合を防いで、共振周波数の安定化を図ることができる。   According to this configuration, the minimum proximity distance between the side edge of the anode vane and the magnetic pole is ensured to be at least 2.2 mm, so that a high frequency due to a capacitive component or an inductive component is generated between the resonant cavity and the surrounding conductor (magnetic pole, etc.). The coupling can be prevented and the resonance frequency can be stabilized.

また、本発明のマイクロ波応用機器は、前記マグネトロンを備えることを特徴とする。   Moreover, the microwave application apparatus of this invention is provided with the said magnetron.

この構成により、従来の2.45GHzのマグネトロンに比べて発振周波数の波長が約半分となるので、導波管等の周辺機器の寸法が約半分で済み、マイクロ波応用機器を小型化することができる。   With this configuration, the wavelength of the oscillation frequency is about half that of the conventional 2.45 GHz magnetron, so the size of peripheral devices such as waveguides can be reduced to about half, and the microwave application equipment can be downsized. it can.

本発明のマグネトロンによれば、5.8GHzにあっても安定した発振周波数を得ることができ、また、応用機器を小型化することができる。   According to the magnetron of the present invention, a stable oscillation frequency can be obtained even at 5.8 GHz, and the applied equipment can be downsized.

以下、本発明に係るマグネトロンの実施の形態について図面を参照して詳細に説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a magnetron according to the present invention will be described in detail with reference to the drawings.

(実施の形態1)
図1は、本実施の形態1のマグネトロンの縦方向の要部断面図である。図2は、図1おけるA部の拡大図である。図3は、最小近接距離Dと共振周波数との関係を示すグラフである。
(Embodiment 1)
FIG. 1 is a cross-sectional view of the main part in the longitudinal direction of the magnetron of the first embodiment. FIG. 2 is an enlarged view of a portion A in FIG. FIG. 3 is a graph showing the relationship between the minimum proximity distance D and the resonance frequency.

実施の形態1のマグネトロンは、図示は省略するが、その中心部に配置される真空管部と、真空管部の外周に配設される複数枚の放熱用フィンと、真空管部と同軸に配設される一対の環状磁石と、環状磁石を磁気的に継ぐ枠状継鉄と、フィルタ回路部とを備えて構成されている。   Although not shown, the magnetron of the first embodiment is disposed coaxially with the vacuum tube portion disposed at the center thereof, the plurality of heat radiation fins disposed on the outer periphery of the vacuum tube portion, and the vacuum tube portion. A pair of annular magnets, a frame yoke that magnetically connects the annular magnets, and a filter circuit unit.

真空管部は、図1に示すように、円筒状の陽極筒体6と、陽極筒体6と同軸上に配置される陰極部7と、陽極筒体6の中心軸の周りに放射状に配置される板状ベイン8と、板状ベイン8を1枚おきに電気的に接続する4個の均圧環9と、板状ベイン8のいずれか1枚に一端が接続されるアンテナ10と、すり鉢形状をした磁極11と備える。   As shown in FIG. 1, the vacuum tube portion is arranged radially around a cylindrical anode cylinder 6, a cathode portion 7 arranged coaxially with the anode cylinder 6, and a central axis of the anode cylinder 6. A plate-shaped vane 8, four equalizing rings 9 for electrically connecting every other plate-shaped vane 8, an antenna 10 having one end connected to any one of the plate-shaped vanes 8, and a mortar shape The magnetic pole 11 is provided.

アンテナ10は、マイクロ波をマグネトロンの外部へ放射する役割を果たす。磁気11は、陽極筒体6の開口端部に磁気回路を形成して有効に磁気を導くためにすり鉢形状をしている。   The antenna 10 serves to radiate microwaves to the outside of the magnetron. The magnetism 11 has a mortar shape in order to effectively induce magnetism by forming a magnetic circuit at the opening end of the anode cylinder 6.

また、真空管部1内には、陽極筒体6と板状ベイン8および均圧環9の概包絡線により共振空洞が形成される。この共振空洞と磁極11との隙間をエンドスペース14という。   In the vacuum tube portion 1, a resonance cavity is formed by the general envelope of the anode cylinder 6, the plate-shaped vane 8, and the pressure equalizing ring 9. A gap between the resonance cavity and the magnetic pole 11 is referred to as an end space 14.

ここで、エンドスペース14の最小高さ、すなわち、板状ベイン8と磁極11との最小近接距離をDとする。図2に、板状ベイン8と磁極11付近の拡大図を示す。   Here, D is the minimum height of the end space 14, that is, the minimum proximity distance between the plate-shaped vane 8 and the magnetic pole 11. FIG. 2 shows an enlarged view of the vicinity of the plate-shaped vane 8 and the magnetic pole 11.

本実施の形態1のマグネトロンは、ベイン幅Laを8.5mm、両磁極11の平坦部対向間隔Lpを13.5mm、磁極の高さh1を6.6mm、h2を6.6mmとしてLp+h1+h2の寸法を従来構造の寸法と同様としているが、しかし、最小近接距離Dは、従来1.8mmであったものを2.5mmに設定してある。   The magnetron of the first embodiment has a dimension of Lp + h1 + h2 with a vane width La of 8.5 mm, a flat portion facing distance Lp between both magnetic poles 11 of 13.5 mm, a magnetic pole height h1 of 6.6 mm, and h2 of 6.6 mm. However, the minimum proximity distance D is set to 2.5 mm, which is 1.8 mm.

次に、本実施の形態1のマグネトロンの動作について説明する。   Next, the operation of the magnetron according to the first embodiment will be described.

まず、本実施の形態1のマグネトロンは、陽極筒体6と板状ベイン8と均圧環9とから成る陽極部と、陰極部7との間に直流電界が加えられると、磁極11によって形成される磁界の影響を受けて、陰極部7より放出された電子はサイクロイド運動をしながら陰極部7の周りを周回運動する。   First, the magnetron according to the first embodiment is formed by the magnetic pole 11 when a DC electric field is applied between the anode portion composed of the anode cylinder 6, the plate-shaped vane 8, and the pressure equalizing ring 9, and the cathode portion 7. Under the influence of the magnetic field, electrons emitted from the cathode part 7 circulate around the cathode part 7 while performing a cycloid motion.

一方、陽極部は空洞共振回路になっており、板状ベイン8間に共振器の固有振動による高周波電界が生ずる。この高周波電界と陰極部7の周りの電子周回運動が同期すると、電子は高周波電界の作用を受けて回転電子極を作り、これによって空洞共振回路に誘導電流が流れ発振する。   On the other hand, the anode part is a cavity resonance circuit, and a high-frequency electric field is generated between the plate-like vanes 8 due to the natural vibration of the resonator. When the high-frequency electric field and the electron circular motion around the cathode portion 7 are synchronized, the electrons are subjected to the action of the high-frequency electric field to form a rotating electron electrode, whereby an induced current flows and oscillates in the cavity resonance circuit.

ところで、課題において述べたように、5.8GHzを発振周波数とするマグネトロンの開発にあたり、2.45GHzマグネトロンの設計思想を適用して設計したとき、安定した発振周波数が得られなかった。   By the way, as described in the problem, in developing a magnetron having an oscillation frequency of 5.8 GHz, a stable oscillation frequency could not be obtained when the design concept of the 2.45 GHz magnetron was applied.

本発明者は、この原因が、記述したとおり、5.8GHzの波長は約52mmで、2.45GHzの波長約122mmと比べて半分以下になることから、共振空洞と磁極11との間で容量成分や誘導成分が生じて高周波結合し易く、そのため共振周波数が変化してしまうことを見出した。   As described above, the present inventor explained that the wavelength of 5.8 GHz is about 52 mm, which is half or less than the wavelength of about 122 mm of 2.45 GHz. It has been found that a component and an inductive component are generated and high-frequency coupling is likely to occur, so that the resonance frequency changes.

そこで、板状ベインと磁極との最小近接距離Dと、共振周波数との関係を調べた。また、マグネトロンの出力と磁気回路効率の観点から、最小近接距離Dと磁界強度との関係も同様に調べた。これらの関係を図3に示す。   Therefore, the relationship between the minimum proximity distance D between the plate-shaped vane and the magnetic pole and the resonance frequency was examined. Further, from the viewpoint of the output of the magnetron and the magnetic circuit efficiency, the relationship between the minimum proximity distance D and the magnetic field strength was similarly examined. These relationships are shown in FIG.

図3に示したグラフを参照すると、最小近接距離Dが2.2mmより小さくなると共振周波数が激しく変動することが分かる。これは、共振空洞と磁極11との間で容量成分や誘導成分により高周波結合していることが原因である。   Referring to the graph shown in FIG. 3, it can be seen that the resonance frequency fluctuates drastically when the minimum proximity distance D is smaller than 2.2 mm. This is because the resonant cavity and the magnetic pole 11 are high-frequency coupled by a capacitive component or an inductive component.

そこで、このグラフから、5.8GHzを発振周波数とするマグネトロンにおいて、板状ベイン8と磁極11との最小近接距離Dを少なくとも2.2mm以上にすれば、共振空洞と磁極11との間に生じる容量成分の影響が十分無視できる程度となることが確認できた。   Therefore, from this graph, in a magnetron having an oscillation frequency of 5.8 GHz, if the minimum proximity distance D between the plate-shaped vane 8 and the magnetic pole 11 is at least 2.2 mm, it is generated between the resonant cavity and the magnetic pole 11. It was confirmed that the influence of the capacitive component was sufficiently negligible.

また、最小近接距離Dを少なくとも2.2mm以上にすることで、熱膨張や組立て誤差などで共振空洞と磁極11との間の寸法が変化しても、その影響が十分無視できる程度になることが分かった。   In addition, by setting the minimum proximity distance D to at least 2.2 mm or more, even if the dimension between the resonant cavity and the magnetic pole 11 changes due to thermal expansion or assembly error, the effect can be sufficiently ignored. I understood.

そこで、本実施の形態1では共振周波数の安定性と磁気回路効率とを勘案して、最小近接距離Dを2.5mmとした。   Therefore, in the first embodiment, the minimum proximity distance D is set to 2.5 mm in consideration of the stability of the resonance frequency and the magnetic circuit efficiency.

以上のような発振動作の際、本実施の形態1のマグネトロンは、板状ベイン8と磁極11との最小近接距離Dが2.5mm確保されているので、共振空洞と磁極11との間に生じる容量成分の影響を十分無視することができ、共振周波数を安定して保つことができる。   In the oscillation operation as described above, the magnetron of the first embodiment has a minimum proximity distance D of 2.5 mm between the plate-shaped vane 8 and the magnetic pole 11, so that the gap between the resonance cavity and the magnetic pole 11 is secured. The effect of the generated capacitance component can be sufficiently ignored, and the resonance frequency can be kept stable.

なお、本実施の形態1のマグネトロンでは、基本共振周波数は、5.85GHz±0.075GHzとなっている。   In the magnetron of the first embodiment, the basic resonance frequency is 5.85 GHz ± 0.075 GHz.

次に、本実施の形態1のマグネトロンを電子機器に応用した応用例について説明する。図4(a)に、従来の2.45GHzマグネトロンを使用した応用例を示す。図4(b)に5.8GHzマグネトロンを使用した応用例を示す。   Next, an application example in which the magnetron of the first embodiment is applied to an electronic device will be described. FIG. 4A shows an application example using a conventional 2.45 GHz magnetron. FIG. 4B shows an application example using a 5.8 GHz magnetron.

一般に、導波管には遮断波長が存在する。その長さ以上の波長の電磁波は伝搬できない。例えば、2.45GHzのマイクロ波、すなわち波長が約122mmであるマイクロ波を伝搬するには、導波管の長辺は最低61mm以上は必要となる。   In general, there is a cutoff wavelength in a waveguide. An electromagnetic wave having a wavelength longer than that length cannot propagate. For example, to propagate a 2.45 GHz microwave, that is, a microwave having a wavelength of about 122 mm, the long side of the waveguide needs to be at least 61 mm.

実際には、導波管の遮断波長と伝搬する電磁波との波長が近いと、導波管の伝搬損失が大きいため、導波管はやや余裕をもって設計されている。図4(a)に示すように、例えば、2.45GHz用の導波管15の寸法は、横幅a1が95.3mm、縦幅b1が54.6mm程度となる。   Actually, if the cutoff wavelength of the waveguide is close to the wavelength of the propagating electromagnetic wave, the propagation loss of the waveguide is large, so that the waveguide is designed with a slight margin. As shown in FIG. 4A, for example, the dimensions of the 2.45 GHz waveguide 15 are such that the width a1 is about 95.3 mm and the length b1 is about 54.6 mm.

一方、5.8GHzのマイクロ波の波長は約52mmであるため、導波管の横幅は26mm以上あれば5.8GHzのマイクロ波を伝搬することができる。図4(b)に示すように、例えば、5.8GHz用の導波管16は、その寸法について横幅a2を40mm、縦幅b2を20mmとすることができる。   On the other hand, since the wavelength of the microwave of 5.8 GHz is about 52 mm, if the horizontal width of the waveguide is 26 mm or more, the microwave of 5.8 GHz can be propagated. As shown in FIG. 4B, for example, the waveguide 5.8 for 5.8 GHz can have a width a2 of 40 mm and a length b2 of 20 mm.

このように、マグネトロンが発振する周波数が2.45GHzから5.8GHzに代わると波長が短くなるため、波長によってその構造が制限されていた導波管またはキャビティなど周辺機器は、大幅に小型化することができる。よって、マグネトロンの応用機器、例えば、電子レンジやマイクロ波陶芸窯、電力伝送アンテナ等を小型化することが可能となる。   As described above, when the frequency at which the magnetron oscillates is changed from 2.45 GHz to 5.8 GHz, the wavelength is shortened. Therefore, peripheral devices such as a waveguide or a cavity whose structure is limited by the wavelength are greatly reduced in size. be able to. Therefore, it is possible to reduce the size of magnetron application devices such as a microwave oven, a microwave ceramic kiln, and a power transmission antenna.

本発明のマグネトロンは、5.8GHzにあっても安定した発振周波数を得ることができ、また、応用機器を小型化するのに好適である。   The magnetron of the present invention can obtain a stable oscillation frequency even at 5.8 GHz, and is suitable for downsizing application equipment.

本実施の形態1のマグネトロンの縦方向の要部断面図Sectional drawing of the principal part of the magnetron of this Embodiment 1 in the vertical direction 図1おけるA部の拡大図Enlarged view of part A in Fig. 1 最小近接距離と共振周波数との関係を示すグラフGraph showing the relationship between minimum proximity distance and resonance frequency (a)2.45GHzマグネトロンを使用した電子機器の一例を示す図 (b)5.8GHzマグネトロンを使用した電子機器の一例を示す図(A) The figure which shows an example of the electronic device which uses a 2.45 GHz magnetron (b) The figure which shows an example of the electronic device which uses a 5.8 GHz magnetron 従来のマグネトロンの縦方向の要部断面図Sectional view of the main part of a conventional magnetron in the vertical direction

符号の説明Explanation of symbols

6 陽極筒体
7 陰極部
8 板状ベイン
9 均圧環
10 アンテナ
11 磁極
14 エンドスペース
15、16 導波管
D 板状ベインと磁極との最小近接距離
6 Anode cylinder 7 Cathode part 8 Plate-shaped vane 9 Pressure equalizing ring 10 Antenna 11 Magnetic pole 14 End space 15, 16 Waveguide D Minimum proximity distance between plate-shaped vane and magnetic pole

Claims (2)

中心部に配置された真空管部と、この真空管部の外周に配設される複数枚の放熱フィンと、前記真空管部と同軸に配設された一対の環状磁石と、この環状磁石を磁気的に継ぐ枠状継鉄と、フィルタ回路部と、を備えた発振周波数が5.8GHz帯のマグネトロンにおいて、
前記真空管部は、前記陽極筒体と、この陽極筒体と同軸上に配置された陰極部と、前記陽極筒体内でかつ前記陽極筒体の中心軸の周りに放射状に複数枚配置された板状ベインと、前記板状ベインを1枚おきに電気的に接続する複数の均圧環と、前記板状ベインのいずれか1枚に一端が接続されマイクロ波を外部へ放射するアンテナと、前記陽極筒体の軸方向と平行な断面がすり鉢形状である磁極と、を有し、
板状ベインの側端縁と前記磁極との最小近接距離2.2mm以上、5.0mm以下の範囲に設定されたことを特徴とするマグネトロン。
A vacuum tube portion disposed in the center portion, a plurality of radiating fins disposed on the outer periphery of the vacuum tube portion, a pair of annular magnets disposed coaxially with the vacuum tube portion, and the annular magnet magnetically In a magnetron having an oscillation frequency of 5.8 GHz band including a frame-shaped yoke to be joined and a filter circuit unit ,
The vacuum tube section includes the anode cylinder body , a cathode section coaxially arranged with the anode cylinder body, and a plurality of plates arranged radially in the anode cylinder body and around the central axis of the anode cylinder body A plate-shaped vane, a plurality of pressure equalizing rings that electrically connect every other plate-shaped vane, an antenna that has one end connected to any one of the plate-shaped vanes and radiates microwaves to the outside, and the anode A magnetic pole whose cross section parallel to the axial direction of the cylindrical body is a mortar shape,
Before SL and side edges of the plate-like vanes the pole and minimum proximity distance is 2.2mm or more, the magnetron, characterized in that set in the range 5.0 mm.
請求項1に記載のマグネトロンを備えたことを特徴とするマイクロ波応用機器。   A microwave application apparatus comprising the magnetron according to claim 1.
JP2005126237A 2005-04-25 2005-04-25 Magnetron Active JP4815146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005126237A JP4815146B2 (en) 2005-04-25 2005-04-25 Magnetron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005126237A JP4815146B2 (en) 2005-04-25 2005-04-25 Magnetron

Publications (2)

Publication Number Publication Date
JP2006302808A JP2006302808A (en) 2006-11-02
JP4815146B2 true JP4815146B2 (en) 2011-11-16

Family

ID=37470846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005126237A Active JP4815146B2 (en) 2005-04-25 2005-04-25 Magnetron

Country Status (1)

Country Link
JP (1) JP4815146B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4503639B2 (en) 2007-09-11 2010-07-14 東芝ホクト電子株式会社 Magnetron for microwave oven
CN101847556A (en) * 2010-05-19 2010-09-29 美的集团有限公司 Magnetron
CN102339710B (en) * 2011-08-03 2014-12-03 广东威特真空电子制造有限公司 Magnetron

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5236966A (en) * 1975-09-19 1977-03-22 Hitachi Ltd Magnetron
JP2003331744A (en) * 2002-05-15 2003-11-21 Matsushita Electric Ind Co Ltd Magnetron
JP4016715B2 (en) * 2002-05-21 2007-12-05 松下電器産業株式会社 Magnetron
JP4252274B2 (en) * 2002-09-26 2009-04-08 新日本無線株式会社 Magnetron

Also Published As

Publication number Publication date
JP2006302808A (en) 2006-11-02

Similar Documents

Publication Publication Date Title
JP2004055510A (en) Magnetron
JP2006278311A (en) Magnetron
JP2007335351A (en) Magnetron
JP4815146B2 (en) Magnetron
JP4006980B2 (en) Magnetron device
TW200303121A (en) Phased array source of electromagnetic radiation
US9000670B2 (en) Harmonic mode magnetron
CN109587925A (en) A kind of microwave plasma device
JP6171162B2 (en) Microwave equipment
JP2006100066A (en) Variable frequency magnetron
KR100539815B1 (en) Gasket ring structure of magnetron
JP4684524B2 (en) Magnetron
KR100451235B1 (en) Input part sealing structure for magnetron
JP2006318804A (en) Microwave tube
KR100266604B1 (en) Structure for preventing harmonic wave leakage in magnetron
JP4774181B2 (en) Magnetron
KR20110006237A (en) Magnetron
JP4301958B2 (en) Magnetron
JP2004119169A (en) Magnetron
JPH11149879A (en) Magnetron for microwave oven
JP2004071531A (en) Magnetron for electronic range
JP2004103497A (en) Magnetron
KR20190059516A (en) High Power Magnetron having Magnetic Field Variable Apparatus
CN109802217A (en) A kind of microwave dielectric resonator coaxially coupled
CN109786922A (en) A kind of microwave coaxial transmission coupled resonator

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071113

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071120

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110829

R150 Certificate of patent or registration of utility model

Ref document number: 4815146

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3