JP2007234249A - Platinum modified electrode and its manufacturing method - Google Patents

Platinum modified electrode and its manufacturing method Download PDF

Info

Publication number
JP2007234249A
JP2007234249A JP2006050995A JP2006050995A JP2007234249A JP 2007234249 A JP2007234249 A JP 2007234249A JP 2006050995 A JP2006050995 A JP 2006050995A JP 2006050995 A JP2006050995 A JP 2006050995A JP 2007234249 A JP2007234249 A JP 2007234249A
Authority
JP
Japan
Prior art keywords
platinum
electrode
modified electrode
acid
modified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006050995A
Other languages
Japanese (ja)
Other versions
JP4872078B2 (en
Inventor
Masayuki Yagi
政行 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niigata University NUC
Original Assignee
Niigata University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niigata University NUC filed Critical Niigata University NUC
Priority to JP2006050995A priority Critical patent/JP4872078B2/en
Publication of JP2007234249A publication Critical patent/JP2007234249A/en
Application granted granted Critical
Publication of JP4872078B2 publication Critical patent/JP4872078B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a platinum modified electrode that shows a very high proton reduction catalytic activity with a small amount of platinum, and to provide its manufacturing method. <P>SOLUTION: An electrode substrate is immersed in a platinum colloidal solution protected by organic acids so as to accumulate platinum colloid on the electrode substrate. The platinum colloidal solution protected by organic acids is prepared by adding the organic acids while heating an aqueous solution of platinic acids. It is preferable that any one of an chloroplatinic acid, chloroplatinic acid hydrate, and chloroplatinate is used as the platinic acids. It is preferable that any one of a citric acid, citric acid hydrate, and citrate is used as the organic acids. It is preferable that an ITO electrode is used as the electrode substrate. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、白金修飾電極及びその製造方法に関する。   The present invention relates to a platinum-modified electrode and a method for producing the same.

水素は化石燃料に代わるクリーンなエネルギー源として、今後の主要なエネルギーになるものとして注目を集めている。   Hydrogen is attracting attention as a clean energy source that will replace fossil fuels and will become a major energy source in the future.

水素の製造方法としては、現在、天然ガス中のメタンと水蒸気の接触反応によって水素を生成する方法が一般的である。しかし、水素を将来の化石燃料の代替エネルギーとして広く利用するためには、上記の化石燃料を用いた製造法には問題がある。そこで、これからの水素の製造方法としては、プロトン還元により水から水素を生成する方法が有望視されている。   As a method for producing hydrogen, a method of generating hydrogen by a catalytic reaction of methane and water vapor in natural gas is generally used. However, in order to widely use hydrogen as an alternative energy for future fossil fuels, there is a problem with the above production method using fossil fuels. Therefore, as a method for producing hydrogen in the future, a method of generating hydrogen from water by proton reduction is considered promising.

水から効率よく水素を得るためには、水素発生触媒として高活性かつ安定なプロトン還元触媒の開発が重要である。従来の代表的な高活性かつ安定なプロトン還元触媒は白金であり、水素発生用の電極として白金修飾電極が用いられている。しかし、白金は高価であり、このため、少量の白金を有効に機能させることが課題であった。   In order to efficiently obtain hydrogen from water, it is important to develop a highly active and stable proton reduction catalyst as a hydrogen generation catalyst. A typical typical highly active and stable proton reduction catalyst is platinum, and a platinum-modified electrode is used as an electrode for hydrogen generation. However, platinum is expensive, and for this reason, it has been a problem to make a small amount of platinum function effectively.

また、近年、色素増感太陽電池が注目を集めている。   In recent years, dye-sensitized solar cells have attracted attention.

この色素増感太陽電池の分野では、電池の低コスト化、高性能化が課題となっている。色素増感太陽電池の対極には白金をスパッタリングにより修飾した白金修飾電極が通常使用されるが、この電極の製造には大型装置が必要であり、その製造法の特性上、使用する白金の無駄が多くなり、その結果、製造コストが高くなる問題があった。   In the field of this dye-sensitized solar cell, there are issues of cost reduction and high performance of the battery. A platinum-modified electrode in which platinum is modified by sputtering is usually used as the counter electrode of the dye-sensitized solar cell. However, a large-scale device is required for the production of this electrode, and the use of platinum to be used is wasted due to the characteristics of the production method. As a result, there is a problem that the manufacturing cost increases.

なお、塩化白金酸の熱分解により基板に白金を析出させる方法も簡便な対極の製造法として利用されている(特許文献1)が、電極の性能が課題であった。
特開2001−250595号公報
A method of depositing platinum on a substrate by thermal decomposition of chloroplatinic acid is also used as a simple counter electrode manufacturing method (Patent Document 1), but the electrode performance has been a problem.
JP 2001-250595 A

そこで、本発明は上記問題点に鑑み、少量の白金で非常に高いプロトン還元触媒活性を示す白金修飾電極及びその製造方法を提供することをその目的とする。   In view of the above problems, an object of the present invention is to provide a platinum-modified electrode exhibiting a very high proton reduction catalytic activity with a small amount of platinum and a method for producing the same.

本発明の請求項1記載の白金修飾電極の製造方法は、有機酸類で保護した白金コロイド溶液に電極基板を浸漬し、電極基板上に白金コロイドを集積させることを特徴とする。   The method for producing a platinum-modified electrode according to claim 1 of the present invention is characterized in that the electrode substrate is immersed in a platinum colloid solution protected with an organic acid, and the platinum colloid is accumulated on the electrode substrate.

本発明の請求項2記載の白金修飾電極の製造方法は、請求項1において、白金酸類の水溶液を加熱しながら有機酸類を添加することによって、有機酸類で保護した白金コロイド溶液を調製することを特徴とする。   The method for producing a platinum-modified electrode according to claim 2 of the present invention is that in claim 1, a platinum colloid solution protected with an organic acid is prepared by adding an organic acid while heating an aqueous solution of the platinum acid. Features.

本発明の請求項3記載の白金修飾電極の製造方法は、請求項2において、白金酸類が、塩化白金酸、塩化白金酸水和物、塩化白金酸塩のいずれかであることを特徴とする。   The method for producing a platinum-modified electrode according to claim 3 of the present invention is characterized in that, in claim 2, the platinum acid is any one of chloroplatinic acid, chloroplatinic acid hydrate, and chloroplatinate. .

本発明の請求項4記載の白金修飾電極の製造方法は、請求項2又は3において、有機酸類が、クエン酸、クエン酸水和物、クエン酸塩のいずれかであることを特徴とする。   The method for producing a platinum-modified electrode according to claim 4 of the present invention is characterized in that, in claim 2 or 3, the organic acid is any one of citric acid, citric acid hydrate, and citrate.

本発明の請求項5記載の白金修飾電極の製造方法は、請求項1〜4のいずれか1項において、電極基板が、ITO電極であることを特徴とする。   The method for producing a platinum-modified electrode according to claim 5 of the present invention is characterized in that, in any one of claims 1 to 4, the electrode substrate is an ITO electrode.

本発明の請求項6記載の白金修飾電極は、請求項1〜5記載の白金修飾電極の製造方法によって得られたことを特徴とする。   A platinum-modified electrode according to a sixth aspect of the present invention is obtained by the method for producing a platinum-modified electrode according to the first to fifth aspects.

本発明の請求項7記載の水素製造装置は、請求項6記載の白金修飾電極を水素発生用電極として備えたことを特徴とする。   A hydrogen production apparatus according to claim 7 of the present invention is characterized in that the platinum modified electrode according to claim 6 is provided as an electrode for hydrogen generation.

本発明の請求項8記載の色素増感太陽電池は、請求項6記載の白金修飾電極を対極として備えたことを特徴とする。   According to an eighth aspect of the present invention, there is provided a dye-sensitized solar cell comprising the platinum-modified electrode according to the sixth aspect as a counter electrode.

本発明の請求項9記載の燃料電池は、請求項6記載の白金修飾電極を酸素還元用電極として備えたことを特徴とする。   A fuel cell according to claim 9 of the present invention is characterized in that the platinum modified electrode according to claim 6 is provided as an oxygen reduction electrode.

本発明によれば、少量の白金で非常に高いプロトン還元触媒活性を示すとともに、電荷移動抵抗が小さい白金修飾電極及びその製造方法を提供することができ、その結果、低コストで高性能の水素製造装置、色素増感太陽電池及び燃料電池を提供することができる。   According to the present invention, it is possible to provide a platinum-modified electrode having a very high proton reduction catalytic activity with a small amount of platinum and having a small charge transfer resistance, and a method for producing the same. A manufacturing apparatus, a dye-sensitized solar cell, and a fuel cell can be provided.

本発明の白金修飾電極の製造方法は、有機酸類で保護した白金コロイド溶液に電極基板を浸漬し、電極基板上に白金コロイドを集積させるものである。   In the method for producing a platinum-modified electrode of the present invention, an electrode substrate is immersed in a platinum colloid solution protected with organic acids, and the platinum colloid is accumulated on the electrode substrate.

有機酸類で保護した白金コロイド溶液は、白金酸類の水溶液を加熱しながら有機酸類を添加することによって調製することができる。   The colloidal platinum solution protected with organic acids can be prepared by adding organic acids while heating an aqueous solution of platinum acids.

ここで、白金酸類としては、白金コロイド溶液を調製できるものであれば、特定のものに限定されないが、コストや入手のしやすさなどから、塩化白金酸、塩化白金酸水和物、塩化白金酸塩が好適に用いられる。例えば、ヘキサクロロ白金酸、ヘキサクロロ白金酸六水和物、ヘキサクロロ白金酸カリウム、ヘキサクロロ白金酸ナトリウム、ヘキサクロロ白金酸アンモニウムが挙げられる。   Here, the platinum acids are not limited to specific ones as long as a platinum colloid solution can be prepared. However, chloroplatinic acid, chloroplatinic acid hydrate, platinum chloride are available from the viewpoint of cost and availability. Acid salts are preferably used. For example, hexachloroplatinic acid, hexachloroplatinic acid hexahydrate, potassium hexachloroplatinate, sodium hexachloroplatinate, ammonium hexachloroplatinate.

また、有機酸類としては、カルボキシル基を1個もつギ酸、酢酸、プロピオン酸、酪酸、カルボキシル基と水酸基を持つ乳酸、リンゴ酸、酒石酸、クエン酸、二重結合を持つソルビン酸、フマル酸、及びこれらの水和物や塩などを用いることができるが、白金コロイド溶液の安定性や電極基板上への集積性から、クエン酸、クエン酸水和物、クエン酸塩が好適に用いられる。   Organic acids include formic acid having one carboxyl group, acetic acid, propionic acid, butyric acid, lactic acid having a carboxyl group and a hydroxyl group, malic acid, tartaric acid, citric acid, sorbic acid having a double bond, fumaric acid, and Although these hydrates and salts can be used, citric acid, citric acid hydrate, and citrate are preferably used in view of the stability of the colloidal platinum solution and the accumulation on the electrode substrate.

また、電極基板としては、導電性を有するものであれば、特定のものに限定されず、ガラス基板上にITO、SnO、ZnOなどの薄膜を形成したものや、金属からなるものなどを用いることができるが、白金修飾電極の性能から、ITO電極が好適に用いられる。 Further, the electrode substrate is not limited to a specific one as long as it has conductivity, and a substrate in which a thin film such as ITO, SnO 2 or ZnO is formed on a glass substrate, or a substrate made of metal is used. However, an ITO electrode is preferably used because of the performance of the platinum-modified electrode.

そして、有機酸類で保護した白金コロイド溶液に電極基板を浸漬するだけで、簡便に白金コロイドが電極基板の表面上に集積できる。また、有機酸のカルボキシル基と、電極基板の水酸基との間にエステル結合が形成されることで白金コロイドが電極基板に吸着されるため、本発明の白金修飾電極は、極めて安定である。   Then, by simply immersing the electrode substrate in a platinum colloid solution protected with organic acids, the platinum colloid can be easily accumulated on the surface of the electrode substrate. In addition, since the platinum colloid is adsorbed to the electrode substrate by forming an ester bond between the carboxyl group of the organic acid and the hydroxyl group of the electrode substrate, the platinum-modified electrode of the present invention is extremely stable.

また、従来の白金スパッタリング電極と比べ、本発明の白金修飾電極の製造には特に大型設備を必要とせず、使用した白金すべてを電極に修飾できるため、低コストで白金修飾電極を提供することができる。   In addition, compared to conventional platinum sputtering electrodes, the production of the platinum-modified electrode of the present invention does not require a particularly large facility, and all the platinum used can be modified into an electrode, so that a platinum-modified electrode can be provided at a low cost. it can.

本発明の白金修飾電極は、上述した製造方法によって得られたものであり、安定した著しく高いプロトン還元触媒活性を有する。したがって、水素製造装置の水素発生用電極とすることで、高性能の水素製造装置を提供することができる。また、本発明の白金修飾電極は、少量の白金を効果的に修飾したものであるため、高性能の水素製造装置を低コストで提供することができる。   The platinum-modified electrode of the present invention is obtained by the production method described above, and has a stable and extremely high proton reduction catalytic activity. Therefore, a high-performance hydrogen production apparatus can be provided by using the hydrogen generation electrode of the hydrogen production apparatus. In addition, since the platinum-modified electrode of the present invention is obtained by effectively modifying a small amount of platinum, a high-performance hydrogen production apparatus can be provided at a low cost.

そして、本発明の白金修飾電極は、電荷移動抵抗が小さいので、色素増感太陽電池の対極とすることで、高性能の色素増感太陽電池を提供することができる。また、本発明の白金修飾電極は、少量の白金を効果的に修飾したものであるため、高性能の色素増感太陽電池を低コストで提供することができる。   And since the platinum modified electrode of this invention has small charge transfer resistance, it can provide a high-performance dye-sensitized solar cell by making it a counter electrode of a dye-sensitized solar cell. In addition, since the platinum-modified electrode of the present invention is obtained by effectively modifying a small amount of platinum, a high-performance dye-sensitized solar cell can be provided at a low cost.

さらに、本発明の白金修飾電極は、高い酸素還元触媒活性を有するので、燃料電池の酸素還元用電極とすることで、高性能の燃料電池を提供することができる。また、本発明の白金修飾電極は、少量の白金を効果的に修飾したものであるため、高性能の燃料電池を低コストで提供することができる。   Furthermore, since the platinum-modified electrode of the present invention has high oxygen reduction catalytic activity, a high-performance fuel cell can be provided by using it as an oxygen reduction electrode for a fuel cell. Further, since the platinum-modified electrode of the present invention is obtained by effectively modifying a small amount of platinum, a high-performance fuel cell can be provided at a low cost.

なお、本発明は上記実施形態に限定されるものではなく、本発明の思想を逸脱しない範囲で種々の変形実施が可能である。   The present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.

以下、より具体的に、本発明の水素発生触媒、水素発生電極及びこれらの製造方法について説明する。   Hereinafter, the hydrogen generation catalyst, the hydrogen generation electrode, and the production methods thereof of the present invention will be described more specifically.

有機酸類としてクエン酸ナトリウム、白金酸類としてヘキサクロロ白金酸六水和物、電極基板としてITO電極を用いて、白金修飾電極を作成した。   Platinum modified electrodes were prepared using sodium citrate as the organic acid, hexachloroplatinic acid hexahydrate as the platinum acid, and ITO electrode as the electrode substrate.

まず、三口フラスコ内でヘキサクロロ白金酸六水和物(HPtCl・6HO)7.8mg(1.5×10−5mol)を蒸留水45.0mLに溶かした。煮沸後、加熱を続けながらこの溶液に4.2×10−3Mのクエン酸ナトリウム水溶液5.0mLを加え、さらに60分間還流することにより、クエン酸で保護した白金コロイド溶液を得た。なお、このコロイド溶液は冷暗所で数ヶ月間は安定である。 First, it dissolved hexachloroplatinic acid hexahydrate and (H 2 PtCl 6 · 6H 2 O) 7.8mg (1.5 × 10 -5 mol) in distilled water 45.0mL in a three-necked flask. After boiling, 5.0 mL of 4.2 × 10 −3 M sodium citrate aqueous solution was added to this solution while continuing heating, and the mixture was further refluxed for 60 minutes to obtain a platinum colloid solution protected with citric acid. This colloidal solution is stable for several months in a cool and dark place.

つぎに、1.5×10−5〜3.0×10−4Mの濃度に調製したクエン酸で保護した白金コロイド溶液を、1Mの硝酸を用いて、pH=4.0に調節した。そして、25℃の恒温槽内でこの溶液1mLにITO電極を3時間浸漬し、白金コロイドを電極表面に集積させた。 Next, a platinum colloid solution protected with citric acid prepared to a concentration of 1.5 × 10 −5 to 3.0 × 10 −4 M was adjusted to pH = 4.0 using 1M nitric acid. And the ITO electrode was immersed in 1 mL of this solution for 3 hours in a 25 degreeC thermostat, and the platinum colloid was integrated | stacked on the electrode surface.

図1に、実施例1で得られた白金修飾電極の0.1Mの硝酸カリウム水溶液(pH=1.2)中におけるサイクリックボルタモグラム(a)と、その比較のために、白金を修飾していないITO電極のサイクリックボルタモグラム(b)を示す。   FIG. 1 shows a cyclic voltammogram (a) of a platinum-modified electrode obtained in Example 1 in a 0.1 M potassium nitrate aqueous solution (pH = 1.2), and platinum is not modified for comparison. The cyclic voltammogram (b) of an ITO electrode is shown.

0.5〜−1.0Vまでの掃引で、ITO電極(a)ではプロトン還元に基づくカソード電流は約−4mA・cm−2であったが、実施例1で得られた白金修飾電極(b)では、約−28mA・cm−2のカソード電流が流れた。また、このとき、実施例1で得られた白金修飾電極(b)では、水素の気泡の発生が確認された。 In the ITO electrode (a), the cathode current based on proton reduction was about −4 mA · cm −2 by sweeping from 0.5 to −1.0 V, but the platinum modified electrode (b) obtained in Example 1 (b) ), A cathode current of about −28 mA · cm −2 flowed. At this time, generation of hydrogen bubbles was confirmed in the platinum-modified electrode (b) obtained in Example 1.

したがって、本発明の白金修飾電極は、高いプロトン還元触媒活性を有し、水素製造装置の水素発生用電極として好適に用いることができることが確認された。   Therefore, it was confirmed that the platinum modified electrode of the present invention has high proton reduction catalytic activity and can be suitably used as an electrode for hydrogen generation in a hydrogen production apparatus.

図2に、実施例1で得られた白金修飾電極を用いて−1.0V、pH=5.6で電気触媒化学的プロトン還元を行ったときの時間−電流曲線(a)を示す。また、その比較のために、白金黒の電析により作成した白金黒修飾電極(b)、特許文献1に記載の塩化白金酸の熱処理により作成した白金修飾電極(c)、ITO電極(d)の時間−電流曲線を示す。なお、いずれの電極も、白金の被覆量は5.0×10−9mol・cm−2である。 FIG. 2 shows a time-current curve (a) when electrocatalytic chemical proton reduction is performed at −1.0 V and pH = 5.6 using the platinum-modified electrode obtained in Example 1. Further, for comparison, a platinum black modified electrode (b) prepared by electrodeposition of platinum black, a platinum modified electrode (c) prepared by heat treatment of chloroplatinic acid described in Patent Document 1, and an ITO electrode (d) The time-current curve of is shown. In any of the electrodes, the coating amount of platinum is 5.0 × 10 −9 mol · cm −2 .

実施例1で得られた白金修飾電極(a)は、安定なカソード電極が少なくとも1時間持続し、電極の安定性が示された。また、定常的なカソード電流は、白金黒の電析による白金黒修飾電極(b)、塩化白金酸の熱分解による白金修飾電極(c)に比べて著しく大きかった。   The platinum-modified electrode (a) obtained in Example 1 had a stable cathode electrode that lasted for at least 1 hour, indicating the stability of the electrode. In addition, the steady cathode current was remarkably larger than the platinum black modified electrode (b) formed by platinum black electrodeposition and the platinum modified electrode (c) formed by thermal decomposition of chloroplatinic acid.

したがって、本発明の白金修飾電極は、従来の白金修飾電極よりも高いプロトン還元触媒活性を示すことが確認された。   Therefore, it was confirmed that the platinum modified electrode of the present invention exhibits higher proton reduction catalytic activity than the conventional platinum modified electrode.

表1に、実施例1で得られた白金修飾電極を色素増感太陽電池の対極に応用したときの電池特性を示す。また、その比較のために、特許文献1に記載の塩化白金酸の熱分解による白金析出電極、白金黒の電析による白金黒修飾電極の電池特性を示す。   Table 1 shows battery characteristics when the platinum-modified electrode obtained in Example 1 was applied to the counter electrode of the dye-sensitized solar cell. For comparison, the battery characteristics of a platinum deposition electrode by pyrolysis of chloroplatinic acid described in Patent Document 1 and a platinum black modified electrode by platinum black electrodeposition are shown.

Figure 2007234249
Figure 2007234249

実施例1で得られた白金修飾電極は、開放電圧(VOC)、短絡電流(ISC)、形状因子(ff)及びエネルギー変換効率(η)のいずれも、ほかの白金修飾電極よりも高い値を示し、また、内部抵抗(R)も小さかった。 The platinum modified electrode obtained in Example 1 has higher open circuit voltage (V OC ), short circuit current (I SC ), form factor (ff) and energy conversion efficiency (η) than other platinum modified electrodes. In addition, the internal resistance (R) was small.

したがって、本発明の白金修飾電極は、色素増感太陽電池の対極として好適に用いることができることが確認された。   Therefore, it was confirmed that the platinum modified electrode of this invention can be used suitably as a counter electrode of a dye-sensitized solar cell.

ここで、図3に、色素増感太陽電池の模式図を示す。1は透明電極であって、透明電極1上には、二酸化チタン薄膜2が形成されている。また、二酸化チタン薄膜2には増感色素3が吸着している。4は対極であって、二酸化チタン薄膜2と対極4の隙間には、ヨウ素イオンを含む電解質溶液5が充填されている。   Here, the schematic diagram of a dye-sensitized solar cell is shown in FIG. Reference numeral 1 denotes a transparent electrode, and a titanium dioxide thin film 2 is formed on the transparent electrode 1. Further, the sensitizing dye 3 is adsorbed on the titanium dioxide thin film 2. Reference numeral 4 denotes a counter electrode, and a gap between the titanium dioxide thin film 2 and the counter electrode 4 is filled with an electrolyte solution 5 containing iodine ions.

光6により増感色素3が励起されると、励起された増感色素3の電子は二酸化チタン薄膜を経由して透明電極1へ移動する。増感色素3に残ったホールは電解質溶液5のヨウ素イオン(I)を酸化し、酸化されたヨウ素イオン(I )は対極4で電子を受けて還元される。 When the sensitizing dye 3 is excited by the light 6, the excited electrons of the sensitizing dye 3 move to the transparent electrode 1 through the titanium dioxide thin film. The holes remaining in the sensitizing dye 3 oxidize iodine ions (I ) in the electrolyte solution 5, and the oxidized iodine ions (I 3 ) receive electrons at the counter electrode 4 and are reduced.

本発明の白金修飾電極は、この図3に示す色素増感太陽電池の対極4として用いられ、本発明の白金修飾電極を色素増感太陽電池の対極とすることで、高性能の色素増感太陽電池を提供することができる。   The platinum-modified electrode of the present invention is used as the counter electrode 4 of the dye-sensitized solar cell shown in FIG. 3. By using the platinum-modified electrode of the present invention as the counter electrode of the dye-sensitized solar cell, high-performance dye-sensitized A solar cell can be provided.

図4に、実施例1で得られた白金修飾電極の0.5Mの硫酸中におけるサイクリックボルタモグラムを示す。なお、掃引速度は50mV・s−1とした。 FIG. 4 shows a cyclic voltammogram of the platinum-modified electrode obtained in Example 1 in 0.5 M sulfuric acid. The sweep speed was 50 mV · s −1 .

0.7〜0.0Vまでの掃引で、アルゴンガスで脱気した場合(a)は電流密度にほとんど変化が見られなかったが、空気で飽和させた場合(b)では、酸素還元に基づく電流密度は約−0.10A・cm−2、また、酸素で飽和させた場合(c)では約−0.28A・cm−2であった。 When sweeping from 0.7 to 0.0 V and degassing with argon gas, (a) showed almost no change in current density, but when saturated with air (b), it was based on oxygen reduction. The current density was about −0.10 A · cm −2 , and when it was saturated with oxygen (c), it was about −0.28 A · cm −2 .

したがって、本発明の白金修飾電極は、高い酸素還元触媒活性を有し、燃料電池の酸素還元電極として好適に用いることができることが確認された。   Therefore, it was confirmed that the platinum modified electrode of the present invention has high oxygen reduction catalytic activity and can be suitably used as an oxygen reduction electrode of a fuel cell.

実施例1で得られた白金修飾電極(a)、ITO電極(b)の硝酸カリウム水溶液中のサイクリックボルタモグラムである。It is a cyclic voltammogram in the potassium nitrate aqueous solution of the platinum modified electrode (a) and ITO electrode (b) obtained in Example 1. 実施例1で得られた白金修飾電極(a)、白金黒の電析により作成した白金黒修飾電極(b)、塩化白金酸の熱処理により作成した白金修飾電極(c)、ITO電極(d)を用いて電気触媒化学的プロトン還元を行ったときの時間−電流曲線である。Platinum modified electrode (a) obtained in Example 1, platinum black modified electrode (b) prepared by electrodeposition of platinum black, platinum modified electrode (c) prepared by heat treatment of chloroplatinic acid, ITO electrode (d) It is a time-current curve when performing electrocatalytic chemical proton reduction using. 色素増感太陽電池の模式図である。It is a schematic diagram of a dye-sensitized solar cell. 実施例1で得られた白金修飾電極の硫酸中のサイクリックボルタモグラムである。2 is a cyclic voltammogram in sulfuric acid of the platinum modified electrode obtained in Example 1. FIG.

Claims (9)

有機酸類で保護した白金コロイド溶液に電極基板を浸漬し、電極基板上に白金コロイドを集積させることを特徴とする白金修飾電極の製造方法。 A method for producing a platinum-modified electrode, comprising immersing an electrode substrate in a colloidal platinum solution protected with an organic acid and accumulating the colloidal platinum on the electrode substrate. 白金酸類の水溶液を加熱しながら有機酸類を添加することによって、有機酸類で保護した白金コロイド溶液を調製することを特徴とする請求項1記載の白金修飾電極の製造方法。 The method for producing a platinum-modified electrode according to claim 1, wherein a platinum colloid solution protected with an organic acid is prepared by adding an organic acid while heating an aqueous solution of the platinum acid. 白金酸類が、塩化白金酸、塩化白金酸水和物、塩化白金酸塩のいずれかであることを特徴とする請求項2記載の白金修飾電極の製造方法。 The method for producing a platinum-modified electrode according to claim 2, wherein the platinum acid is any one of chloroplatinic acid, chloroplatinic acid hydrate, and chloroplatinate. 有機酸類が、クエン酸、クエン酸水和物、クエン酸塩のいずれかであることを特徴とする請求項2又は3記載の白金修飾電極の製造方法。 The method for producing a platinum-modified electrode according to claim 2 or 3, wherein the organic acid is any one of citric acid, citric acid hydrate, and citrate. 電極基板が、ITO電極であることを特徴とする請求項1〜4のいずれか1項記載の白金修飾電極の製造方法。 The method for producing a platinum-modified electrode according to any one of claims 1 to 4, wherein the electrode substrate is an ITO electrode. 請求項1〜5記載の白金修飾電極の製造方法によって得られたことを特徴とする白金修飾電極。 A platinum-modified electrode obtained by the method for producing a platinum-modified electrode according to claim 1. 請求項6記載の白金修飾電極を水素発生用電極として備えたことを特徴とする水素製造装置。 A hydrogen production apparatus comprising the platinum-modified electrode according to claim 6 as an electrode for hydrogen generation. 請求項6記載の白金修飾電極を対極として備えたことを特徴とする色素増感太陽電池。 A dye-sensitized solar cell comprising the platinum-modified electrode according to claim 6 as a counter electrode. 請求項6記載の白金修飾電極を酸素還元用電極として備えたことを特徴とする燃料電池。 A fuel cell comprising the platinum-modified electrode according to claim 6 as an oxygen reduction electrode.
JP2006050995A 2006-02-27 2006-02-27 Method for producing platinum modified electrode Active JP4872078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006050995A JP4872078B2 (en) 2006-02-27 2006-02-27 Method for producing platinum modified electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006050995A JP4872078B2 (en) 2006-02-27 2006-02-27 Method for producing platinum modified electrode

Publications (2)

Publication Number Publication Date
JP2007234249A true JP2007234249A (en) 2007-09-13
JP4872078B2 JP4872078B2 (en) 2012-02-08

Family

ID=38554657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006050995A Active JP4872078B2 (en) 2006-02-27 2006-02-27 Method for producing platinum modified electrode

Country Status (1)

Country Link
JP (1) JP4872078B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2671641A1 (en) * 2012-06-07 2013-12-11 Univerza V Ljubljani A method of deposition of Pt or Pd catalysts using gaseous reducing agents
JP2014175186A (en) * 2013-03-08 2014-09-22 Ibio Epoch:Kk Electrode on which platinum nanoparticles are carried and process of manufacturing the same
CN113130952A (en) * 2019-12-30 2021-07-16 大连大学 PdNPs/NiNPs/ITO electrode and method for constructing ethanol fuel cell by electrocatalytic oxidation of ethanol solution

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001224968A (en) * 2000-02-17 2001-08-21 Mitsubishi Heavy Ind Ltd Method for preparing deposited metallic catalyst and method for manufacturing solid high-polymer type fuel battery
JP2004100040A (en) * 2002-07-16 2004-04-02 Nippon Sheet Glass Co Ltd Production method for colloidal solution, and support having colloidal particle fixed on surface thereof
JP2004185994A (en) * 2002-12-03 2004-07-02 Nippon Sheet Glass Co Ltd Fuel cell cathode, its manufacturing method and fuel cell
JP2005166313A (en) * 2003-11-28 2005-06-23 Ngk Spark Plug Co Ltd Dye-sensitized solar cell
JP2005169333A (en) * 2003-12-15 2005-06-30 Nippon Sheet Glass Co Ltd Metal nano-colloid liquid, carrier material, manufacturing method for metal carrier and metal carrier
JP2006049082A (en) * 2004-08-04 2006-02-16 Sharp Corp Photoelectrode, dye-sensitized solar cell using the same and dye-sensitized solar cell module
JP2006073487A (en) * 2004-09-06 2006-03-16 Erekuseru Kk Counterelectrode for dye-sensitized solar cell, manufacturing method thereof, and dye-sensitized solar cell
JP2006222017A (en) * 2005-02-14 2006-08-24 Sumitomo Osaka Cement Co Ltd Method of manufacturing dye-sensitized photoelectric conversion element and paint for the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001224968A (en) * 2000-02-17 2001-08-21 Mitsubishi Heavy Ind Ltd Method for preparing deposited metallic catalyst and method for manufacturing solid high-polymer type fuel battery
JP2004100040A (en) * 2002-07-16 2004-04-02 Nippon Sheet Glass Co Ltd Production method for colloidal solution, and support having colloidal particle fixed on surface thereof
JP2004185994A (en) * 2002-12-03 2004-07-02 Nippon Sheet Glass Co Ltd Fuel cell cathode, its manufacturing method and fuel cell
JP2005166313A (en) * 2003-11-28 2005-06-23 Ngk Spark Plug Co Ltd Dye-sensitized solar cell
JP2005169333A (en) * 2003-12-15 2005-06-30 Nippon Sheet Glass Co Ltd Metal nano-colloid liquid, carrier material, manufacturing method for metal carrier and metal carrier
JP2006049082A (en) * 2004-08-04 2006-02-16 Sharp Corp Photoelectrode, dye-sensitized solar cell using the same and dye-sensitized solar cell module
JP2006073487A (en) * 2004-09-06 2006-03-16 Erekuseru Kk Counterelectrode for dye-sensitized solar cell, manufacturing method thereof, and dye-sensitized solar cell
JP2006222017A (en) * 2005-02-14 2006-08-24 Sumitomo Osaka Cement Co Ltd Method of manufacturing dye-sensitized photoelectric conversion element and paint for the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2671641A1 (en) * 2012-06-07 2013-12-11 Univerza V Ljubljani A method of deposition of Pt or Pd catalysts using gaseous reducing agents
JP2014175186A (en) * 2013-03-08 2014-09-22 Ibio Epoch:Kk Electrode on which platinum nanoparticles are carried and process of manufacturing the same
CN113130952A (en) * 2019-12-30 2021-07-16 大连大学 PdNPs/NiNPs/ITO electrode and method for constructing ethanol fuel cell by electrocatalytic oxidation of ethanol solution

Also Published As

Publication number Publication date
JP4872078B2 (en) 2012-02-08

Similar Documents

Publication Publication Date Title
Andrei et al. Scalable triple cation mixed halide perovskite–bivo4 tandems for bias‐free water splitting
Chen et al. Tandem photoelectrochemical cells for solar water splitting
Pirrone et al. Solar H 2 production systems: current status and prospective applications
Kim et al. BiVO4-based heterostructured photocatalysts for solar water splitting: a review
Soo Kang et al. Reactively sputtered nickel nitride as electrocatalytic counter electrode for dye-and quantum dot-sensitized solar cells
Peng et al. Solution-processed, antimony-doped tin oxide colloid films enable high-performance TiO2 photoanodes for water splitting
TW200810167A (en) Dye-sensitized solar cell and the method of fabricating thereof
CN102806093B (en) Preparation method of high-efficiency low-platinum catalyst for direct methanol fuel cell
Li et al. Highly efficient NiFe nanoparticle decorated Si photoanode for photoelectrochemical water oxidation
CN102610392A (en) Metal selenide counter-electrode for dye-sensitized solar cell and preparation method of metal selenide counter-electrode
Antoniadou et al. Photoelectrochemical oxidation of organic substances over nanocrystalline titania: Optimization of the photoelectrochemical cell
TW200534330A (en) Method for electrolyzing water using organic photocatalyst
Bogdanoff et al. Artificial Leaf for Water Splitting Based on a Triple‐Junction Thin‐Film Silicon Solar Cell and a PEDOT: PSS/Catalyst Blend
Yamane et al. Efficient solar water splitting with a composite “n-Si/p-CuI/nip a-Si/np GaP/RuO2” semiconductor electrode
Oh et al. Black silicon photoanodes entirely prepared with abundant materials by low-cost wet methods
Eftekharinia et al. Unassisted water splitting using standard silicon solar cells stabilized with copper and bifunctional NiFe electrocatalysts
Zafeiropoulos et al. Solar hydrogen generation from ambient humidity using functionalized porous photoanodes
JP4872078B2 (en) Method for producing platinum modified electrode
JP4966525B2 (en) Dye-sensitized solar cell, its photoelectrode substrate, and method for producing the photoelectrode substrate
Jennifer et al. A quaternary nanocomposite as an efficient counter electrode for Pt-free Dye-sensitized solar cells (DSSC)
Wu et al. Metal oxide based photoelectrodes in photoelectrocatalysis: advances and challenges
Park et al. Hybrid Perovskite‐Based Wireless Integrated Device Exceeding a Solar to Hydrogen Conversion Efficiency of 11%
CN103400700B (en) DSSC based on the low platinum alloy of binary to electrode and its preparation method and application
JP2008243754A (en) Photoelectric conversion electrode, manufacturing method of the same, and dye-sensitized solar cell
CN103219565B (en) Inverse photoelectrochemicalcell cell

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100831

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110727

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111024

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150