JP2014175186A - Electrode on which platinum nanoparticles are carried and process of manufacturing the same - Google Patents
Electrode on which platinum nanoparticles are carried and process of manufacturing the same Download PDFInfo
- Publication number
- JP2014175186A JP2014175186A JP2013047377A JP2013047377A JP2014175186A JP 2014175186 A JP2014175186 A JP 2014175186A JP 2013047377 A JP2013047377 A JP 2013047377A JP 2013047377 A JP2013047377 A JP 2013047377A JP 2014175186 A JP2014175186 A JP 2014175186A
- Authority
- JP
- Japan
- Prior art keywords
- platinum
- electrode
- substrate
- nanoparticle dispersion
- platinum nanoparticles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 title claims abstract description 403
- 229910052697 platinum Inorganic materials 0.000 title claims abstract description 198
- 239000002105 nanoparticle Substances 0.000 title claims abstract description 172
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 14
- 238000000034 method Methods 0.000 title abstract description 9
- 239000000758 substrate Substances 0.000 claims abstract description 98
- 239000006185 dispersion Substances 0.000 claims abstract description 63
- 238000001035 drying Methods 0.000 claims abstract description 11
- 238000007654 immersion Methods 0.000 claims description 39
- 239000002245 particle Substances 0.000 claims description 19
- 230000003197 catalytic effect Effects 0.000 abstract description 3
- 239000000243 solution Substances 0.000 description 55
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 9
- 238000009826 distribution Methods 0.000 description 9
- 229910006404 SnO 2 Inorganic materials 0.000 description 6
- 230000000844 anti-bacterial effect Effects 0.000 description 6
- 239000003054 catalyst Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000001235 sensitizing effect Effects 0.000 description 5
- 239000010408 film Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 4
- 239000004408 titanium dioxide Substances 0.000 description 4
- 238000004506 ultrasonic cleaning Methods 0.000 description 4
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 3
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 3
- 238000007598 dipping method Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 229910052740 iodine Inorganic materials 0.000 description 3
- 239000011630 iodine Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229910052707 ruthenium Inorganic materials 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- HSZCZNFXUDYRKD-UHFFFAOYSA-M lithium iodide Chemical compound [Li+].[I-] HSZCZNFXUDYRKD-UHFFFAOYSA-M 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 238000006479 redox reaction Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 210000005069 ears Anatomy 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 150000003057 platinum Chemical class 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000006057 reforming reaction Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/542—Dye sensitized solar cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Catalysts (AREA)
- Photovoltaic Devices (AREA)
- Inert Electrodes (AREA)
- Hybrid Cells (AREA)
Abstract
Description
本発明は、白金ナノ粒子を担持させた電極およびその製造方法に関する。 The present invention relates to an electrode carrying platinum nanoparticles and a method for producing the same.
貴金属である白金は、宝飾品として利用されるほか、触媒として高い活性を持ち、自動車には排気ガスの浄化触媒として多くの量が使用されており、さらにはその高い耐久性により同じく自動車の点火プラグや排気センサーなど過酷な環境に晒される部品にも多用される。その他では化学工業でも水素化反応の触媒などとして利用されるほか、燃料電池への利用も盛んに行われている(特許文献1〜3参照)。 Platinum, which is a precious metal, is used as a jewelery and has a high activity as a catalyst. A large amount of exhaust gas purification catalyst is used in automobiles. It is also frequently used for parts exposed to harsh environments such as plugs and exhaust sensors. In addition to being used as a catalyst for hydrogenation reaction in the chemical industry, it is also actively used for fuel cells (see Patent Documents 1 to 3).
また、特許文献4には、平均粒径が1〜10nmの白金粒子を含むコロイド溶液が、優れた抗菌作用を長期間発揮することが開示されている。特許文献1によれば、上記白金粒子を含むコロイド溶液からなる抗菌処理液に被処理物を浸漬した後、または、当該抗菌処理液を被処理物に塗布した後、乾燥することで、上記平均粒径の白金粒子を被処理物の表面に長期間付着させることができる。これは、白金粒子の平均粒径が1〜10nmと非常に小さいため、被処理物の表面の僅かな凹凸などを利用して強固に付着するものと考えられている。特許文献4の発明は、抗菌成分を被処理物の表面に強固に付着させることで、優れた抗菌効果を長期間発揮することが出来る抗菌製品を提供することを目的としている。 Patent Document 4 discloses that a colloidal solution containing platinum particles having an average particle diameter of 1 to 10 nm exhibits an excellent antibacterial action for a long period of time. According to Patent Document 1, after the object to be treated is immersed in an antibacterial treatment liquid composed of a colloidal solution containing the platinum particles, or after the antibacterial treatment liquid is applied to the object to be treated, the average is obtained by drying. Platinum particles having a particle size can be adhered to the surface of the object to be processed for a long time. This is thought to be due to the fact that the average particle diameter of the platinum particles is as small as 1 to 10 nm, so that it adheres firmly by utilizing slight irregularities on the surface of the object to be processed. The invention of Patent Document 4 aims to provide an antibacterial product capable of exhibiting an excellent antibacterial effect for a long period of time by firmly attaching an antibacterial component to the surface of an object to be treated.
さらに、白金は化学的に極めて安定しており酸化されにくいこと、融点が1769℃(理化学辞典)と高いことなどから、るつぼ、白金耳、度量衡原器(キログラム原器、メートル原器)や電極などに利用されている。 In addition, platinum is extremely chemically stable and difficult to oxidize, and its melting point is high at 1769 ° C (physical and chemical dictionary), so crucibles, platinum ears, metrology equipment (kilogram equipment, metric equipment) and electrodes It is used for such as.
白金電極は、一般に白金を材料にして作った電極で,白金が化学的に安定なため,電極表面や周辺で起こる化学的変化に侵されにくい長所がある。また、白金電極は、各種の酸化還元反応や改質反応などに広く使用され、触媒としても他の金属触媒と比べて優れた活性を示すことが知られている。しかし、貴金属であるため、製造コストが高い点が問題である。 A platinum electrode is generally an electrode made of platinum, and platinum is chemically stable. Therefore, the platinum electrode is not easily affected by chemical changes occurring on and around the electrode surface. In addition, platinum electrodes are widely used for various oxidation-reduction reactions, reforming reactions, and the like, and are known to exhibit superior activity as a catalyst compared to other metal catalysts. However, since it is a noble metal, the problem is that the manufacturing cost is high.
すなわち、従来は、正極には白金プレートないし白金ペーストを400℃で30分程度焼結して作るため、コストが高くなる。また、白金をスパッタリング蒸着して白金電極を作成するには、高コストの上、長時間を要していた。 That is, conventionally, a platinum plate or a platinum paste is sintered at 400 ° C. for about 30 minutes for the positive electrode, which increases the cost. Moreover, in order to produce platinum electrodes by sputtering deposition of platinum, high cost and a long time are required.
そこで、本発明は、白金ナノ粒子の固定化法を用いて電極を作製し、極めて簡単に低コストで製造可能な、優れた触媒作用を発揮する白金電極およびその製造方法を提供することを目的とする。 Accordingly, an object of the present invention is to provide a platinum electrode exhibiting excellent catalytic action, which can be manufactured very simply and at low cost, by using a method for immobilizing platinum nanoparticles, and a method for manufacturing the same. And
本発明に係る白金ナノ粒子を担持させた電極は、所定の温度に保持した白金ナノ粒子分散溶液に、洗浄した基板を所定の時間浸漬した後、該浸漬した基板を高温で乾燥させて作製する。 An electrode carrying platinum nanoparticles according to the present invention is prepared by immersing a washed substrate in a platinum nanoparticle dispersion solution maintained at a predetermined temperature for a predetermined time, and then drying the immersed substrate at a high temperature. .
本発明に係る白金ナノ粒子を担持させた電極は、前記所定の温度は室温以上であってよい。 In the electrode carrying platinum nanoparticles according to the present invention, the predetermined temperature may be room temperature or higher.
本発明に係る白金ナノ粒子を担持させた電極は、記成長溶液に浸漬して成長した白金ナノ粒子の平均粒径は40nm以下である。 In the electrode carrying platinum nanoparticles according to the present invention, the average particle diameter of platinum nanoparticles grown by immersing in the growth solution is 40 nm or less.
本発明に係る白金ナノ粒子を担持させた電極は、前記電極はFTO基板であってよい。 In the electrode carrying platinum nanoparticles according to the present invention, the electrode may be an FTO substrate.
本発明に係る白金ナノ粒子を担持させた電極は、前記洗浄したFTO基板を浸漬する所定の時間は90分以上であるのが好適である。 In the electrode carrying platinum nanoparticles according to the present invention, it is preferable that the predetermined time for immersing the washed FTO substrate is 90 minutes or more.
本発明に係る白金ナノ粒子を担持させた電極は、前記FTO基板を浸漬する前記白金ナノ粒子分散溶液を保持する所定の温度は70℃以上であるのが好適である。 The electrode on which platinum nanoparticles according to the present invention are supported preferably has a predetermined temperature of 70 ° C. or higher for holding the platinum nanoparticle dispersion in which the FTO substrate is immersed.
本発明に係る白金ナノ粒子を担持させた電極の製造方法は、洗浄した基板を準備するステップと、白金ナノ粒子を含む白金ナノ粒子分散溶液を準備するステップと、前記白金ナノ粒子分散溶液を所定の温度に保持するステップと、前記所定の温度に保持した白金ナノ粒子分散溶液に、前記洗浄した基板を所定の時間浸漬するステップと、前記白金ナノ粒子分散溶液に浸漬した基板を乾燥させるステップと、を含む。 The method for manufacturing an electrode carrying platinum nanoparticles according to the present invention includes a step of preparing a washed substrate, a step of preparing a platinum nanoparticle dispersion solution containing platinum nanoparticles, and a step of preparing the platinum nanoparticle dispersion solution. A step of immersing the washed substrate in a platinum nanoparticle dispersion solution maintained at the predetermined temperature, and a step of drying the substrate immersed in the platinum nanoparticle dispersion solution. ,including.
本発明に係る白金ナノ粒子を担持させた電極の製造方法によれば、所定の温度に保持した白金ナノ粒子分散溶液に、洗浄した基板を所定の時間浸漬するだけで、容易に白金ナノ粒子を基板表面に固定することができる。 According to the method for producing an electrode carrying platinum nanoparticles according to the present invention, the platinum nanoparticles can be easily formed by simply immersing the washed substrate in a platinum nanoparticle dispersion solution maintained at a predetermined temperature for a predetermined time. It can be fixed to the substrate surface.
所定の時間を30分と、所定の温度を50℃として得た本発明に係る白金ナノ粒子を担持させた電極表面を、10分間の超音波洗浄する前後において、超音波の照射前と照射後の白金ナノ粒子を担持させた電極を正極に用いた場合、色素増感型太陽電池(DSC)の電流・電圧特性に変化は見られない。したがって、本発明に係る白金ナノ粒子を担持させた電極の製造方法によれば、白金ナノ粒子を基板に強く固定して担持させることができる。 Before and after ultrasonic irradiation, the electrode surface carrying platinum nanoparticles according to the present invention obtained at a predetermined time of 30 minutes and a predetermined temperature of 50 ° C. was subjected to ultrasonic cleaning for 10 minutes. When the electrode carrying platinum nanoparticles is used for the positive electrode, no change is observed in the current / voltage characteristics of the dye-sensitized solar cell (DSC). Therefore, according to the method for manufacturing an electrode carrying platinum nanoparticles according to the present invention, the platinum nanoparticles can be strongly fixed and carried on the substrate.
上記基板を浸漬する白金ナノ粒子分散溶液の所定の温度は常温(25℃)でもよく、当該所定の温度を高くすれば、より高性能の本発明に係る白金ナノ粒子を担持させた電極を得ることができる。 The predetermined temperature of the platinum nanoparticle dispersion solution in which the substrate is immersed may be room temperature (25 ° C.). If the predetermined temperature is increased, a higher-performance electrode carrying the platinum nanoparticles according to the present invention is obtained. be able to.
また、上記基板を白金ナノ粒子分散溶液に浸漬する所定の時間は、最適浸漬時間はある一定の時間で飽和する傾向が見られ、このような一定の時間基板を白金ナノ粒子分散溶液に浸漬すれば、一定以上の性能を発揮する本発明に係る白金ナノ粒子を担持させた電極
を得ることができる。例えば基板をFTO基板とすると、浸漬する所定の時間は90分で略最適浸漬時間となり、90分以上浸漬した場合と比較しても、略同等の電流・電圧特性を示す本発明に係る白金ナノ粒子を担持させた電極を得ることができる。
In addition, the predetermined immersion time of the substrate in the platinum nanoparticle dispersion solution tends to saturate the optimal immersion time at a certain time, and the substrate is immersed in the platinum nanoparticle dispersion solution for such a certain time. For example, an electrode carrying platinum nanoparticles according to the present invention that exhibits a certain level of performance or more can be obtained. For example, when the substrate is an FTO substrate, the predetermined time for dipping is 90 minutes, which is a substantially optimal dipping time. An electrode carrying particles can be obtained.
このように、本発明に係る白金ナノ粒子を担持させた電極は、基板をFTO基板とした場合、白金ナノ粒子のFTO基板表面への付着は、白金ナノ粒子分散液をできるだけ高温にし、90分程度の浸漬時間(所定の時間)で完了する。最大出力は浸漬温度(所定の温度)70℃、浸漬時間90分で、1.08mW得られる。これは白金蒸着膜を用いたときの約65.5%の電力に相当する。 As described above, when the electrode carrying platinum nanoparticles according to the present invention is an FTO substrate, the platinum nanoparticles are adhered to the FTO substrate surface by bringing the platinum nanoparticle dispersion liquid as high as possible for 90 minutes. It is completed in a certain immersion time (predetermined time). The maximum output is 1.08 mW at an immersion temperature (predetermined temperature) of 70 ° C. and an immersion time of 90 minutes. This corresponds to about 65.5% electric power when a platinum vapor deposition film is used.
以下、図面を参照しながら本発明に係る白金ナノ粒子を担持させた電極の実施形態について説明する。なお、以下各図面を通して同一の構成要素には同一の符号を使用するものとする。 Hereinafter, embodiments of an electrode carrying platinum nanoparticles according to the present invention will be described with reference to the drawings. Hereinafter, the same reference numerals are used for the same components throughout the drawings.
本発明に係る白金ナノ粒子を担持させた電極は、所定の温度に保持した白金ナノ粒子分散溶液に、洗浄した基板を所定の時間浸漬した後、該浸漬した基板を高温で乾燥させて作製する。なお、以下本明細書において、白金ナノ粒子を「Ptナノ粒子」ともいう。 An electrode carrying platinum nanoparticles according to the present invention is prepared by immersing a washed substrate in a platinum nanoparticle dispersion solution maintained at a predetermined temperature for a predetermined time, and then drying the immersed substrate at a high temperature. . In the following specification, platinum nanoparticles are also referred to as “Pt nanoparticles”.
本実施形態において上記基板はFTO基板を用い、当該FTO基板の洗浄は超音波洗浄により行った。FTO基板の主成分は二酸化スズ「以下、「SnO2」ともいう。」であり、そのFTO基板表面を走査型電子顕微鏡(以下、「SEM」ともいう。)を用いて撮影すると、図11(b)のように粒径が40〜300nm程度のSnO2粒子から構成されているのが観察された。 In this embodiment, the substrate used was an FTO substrate, and the FTO substrate was cleaned by ultrasonic cleaning. The main component of the FTO substrate is also called tin dioxide “hereinafter“ SnO 2 ”. When the surface of the FTO substrate is photographed using a scanning electron microscope (hereinafter also referred to as “SEM”), it is composed of SnO 2 particles having a particle size of about 40 to 300 nm as shown in FIG. Was observed.
また、白金ナノ粒子分散溶液としてはバイオフェイス社製の「白金ナノ粒子」を使用した。当該白金ナノ粒子分散溶液に含まれる白金ナノ粒子の平均粒径は4nmである。 Further, “platinum nanoparticles” manufactured by Bioface Co., Ltd. were used as the platinum nanoparticle dispersion solution. The average particle diameter of the platinum nanoparticles contained in the platinum nanoparticle dispersion solution is 4 nm.
上記所定の温度を室温(25℃)、50℃、70℃として、この白金ナノ粒子分散溶液に上記超音波洗浄したFTO基板を浸漬すると、平均粒径が40nm以下の白金ナノ粒子がランダムに分布する本発明に係る白金ナノ粒子を担持させた電極を得た。上記超音波洗浄したFTO基板を白金ナノ粒子分散溶液に浸漬する所定の時間は90分以上が好適であり、浸漬したFTO基板の上記高温での乾燥は、乾燥機を用いて100℃で10分間行った。下記実施例で明らかとなるように、洗浄したFTO基板を浸漬する白金ナノ粒子分散溶液の所定の温度を70℃以上とすれば、高性能の本発明に係る白金ナノ粒子を担持させた電極を得ることができる。 When the ultrasonically cleaned FTO substrate is immersed in this platinum nanoparticle dispersion solution at room temperature (25 ° C.), 50 ° C., and 70 ° C., platinum nanoparticles having an average particle size of 40 nm or less are randomly distributed. An electrode carrying platinum nanoparticles according to the present invention was obtained. The predetermined time for immersing the ultrasonically cleaned FTO substrate in the platinum nanoparticle dispersion solution is preferably 90 minutes or more, and drying the immersed FTO substrate at the high temperature is performed at 100 ° C. for 10 minutes using a dryer. went. As will be apparent from the following examples, if the predetermined temperature of the platinum nanoparticle dispersion solution in which the washed FTO substrate is immersed is set to 70 ° C. or higher, a high-performance electrode carrying platinum nanoparticles according to the present invention can be obtained. Can be obtained.
図11(a)は、70℃の白金ナノ粒子分散溶液に、超音波洗浄したFTO基板を90分間浸漬し、100℃で10分間乾燥させて得た本発明に係る白金ナノ粒子を担持させた電極を、SEMを用いて撮影した画像である。同スケールの白金ナノ粒子分散溶液に浸漬前のFTO基板のSEM画像である上記図11(b)と比較すると、殆ど両者は区別がつかないことが分かる。これより、白金ナノ粒子は、SnO2粒子に比べて小径で、FTO基板上に希薄に分散されて固定されていると推定することができる。したがって、上述のように、FTO基板に固定された白金ナノ粒子の平均粒径は40nm以下であることが示唆される。 FIG. 11 (a) shows the platinum nanoparticles according to the present invention obtained by immersing an ultrasonically cleaned FTO substrate in a platinum nanoparticle dispersion solution at 70 ° C. for 90 minutes and drying at 100 ° C. for 10 minutes. It is the image which image | photographed the electrode using SEM. Compared with FIG. 11B, which is an SEM image of the FTO substrate before being immersed in the platinum nanoparticle dispersion solution of the same scale, it can be seen that the two are almost indistinguishable. From this, it can be estimated that the platinum nanoparticles are smaller in diameter than the SnO 2 particles and are diluted and fixed on the FTO substrate. Therefore, as described above, it is suggested that the average particle diameter of the platinum nanoparticles fixed to the FTO substrate is 40 nm or less.
以上のような本発明に係る白金ナノ粒子を担持させた電極の製造方法は、以下のステップを含む。
(1)超音波洗浄した基板を準備するステップ
(2)平均粒径が4nmの白金ナノ粒子を含む白金ナノ粒子分散溶液を準備するステップ
(3)上記白金ナノ粒子分散溶液を所定の温度に保持するステップ
(4)上記所定の温度に保持した白金ナノ粒子分散溶液に、上記洗浄した基板を所定の時間浸漬するステップ
(5)上記白金ナノ粒子分散溶液に浸漬した基板を乾燥させるステップ
The manufacturing method of the electrode which carry | supported the platinum nanoparticle which concerns on the present invention as mentioned above includes the following steps.
(1) Step of preparing an ultrasonically cleaned substrate (2) Step of preparing a platinum nanoparticle dispersion solution containing platinum nanoparticles having an average particle diameter of 4 nm (3) Maintaining the platinum nanoparticle dispersion solution at a predetermined temperature (4) Step of immersing the washed substrate in the platinum nanoparticle dispersion solution maintained at the predetermined temperature for a predetermined time (5) Step of drying the substrate immersed in the platinum nanoparticle dispersion solution
上述のように、上記白金ナノ粒子分散溶液を保持する所定の温度は室温であってもよいが、基板がFTO基板の場合、所定の温度を70℃以上とすればより高性能の本発明に係る白金ナノ粒子を担持させた電極を得ることができる。また、上記洗浄したFTO基板を浸漬する所定の時間は90分以上とするのが好適である。 As described above, the predetermined temperature for holding the platinum nanoparticle dispersion solution may be room temperature. However, when the substrate is an FTO substrate, if the predetermined temperature is 70 ° C. or higher, the present invention has higher performance. An electrode supporting such platinum nanoparticles can be obtained. The predetermined time for immersing the washed FTO substrate is preferably 90 minutes or more.
本実施例1では、上記白金ナノ粒子分散溶液に浸漬前のFTO基板として、面積を縦20.0[mm]×横40.0[mm]のFTO基板の表面抵抗を用い、5mm間隔で21箇所測定した。図3に表面抵抗を測定した箇所を示す。また、図4にFTO基板の表面抵抗の測定結果を示す。Ptナノ粒子を固定する前のFTOガラスの表面抵抗は一様であり、その平均値は13.4Ω/□である。 In Example 1, as the FTO substrate before being immersed in the platinum nanoparticle dispersion solution, the surface resistance of an FTO substrate having an area of 20.0 [mm] × 40.0 [mm] is used, and the surface resistance is 21 at intervals of 5 mm. The location was measured. FIG. 3 shows the locations where the surface resistance was measured. FIG. 4 shows the measurement results of the surface resistance of the FTO substrate. The surface resistance of the FTO glass before fixing the Pt nanoparticles is uniform, and the average value is 13.4Ω / □.
次に実施例2では、FTO基板の面積を縦20.0[mm]×横40.0[mm]一定にして、白金ナノ粒子分散溶液に浸漬した。白金ナノ粒子分散溶液の上記所定の温度を室温(25℃)とし、浸漬する所定の時間(浸漬時間)を0〜180分の範囲で30分刻みにして、作製した本発明に係る白金ナノ粒子を担持させた電極の表面抵抗率を測定した。表1に浸漬時間に対する表面抵抗率の値を示す。また、図5に表面抵抗率に及ぼす所定の時間(白金ナノ粒子浸漬時間)の効果を示す。 Next, in Example 2, the area of the FTO substrate was fixed to 20.0 [mm] × 40.0 [mm] in width, and immersed in the platinum nanoparticle dispersion solution. The above-mentioned predetermined temperature of the platinum nanoparticle dispersion solution is set to room temperature (25 ° C.), and the predetermined time for immersion (immersion time) is set in increments of 30 minutes in the range of 0 to 180 minutes. The surface resistivity of the electrode on which was supported was measured. Table 1 shows the values of the surface resistivity with respect to the immersion time. FIG. 5 shows the effect of a predetermined time (platinum nanoparticle immersion time) on the surface resistivity.
表1より、白金ナノ粒子固定前の表面抵抗率は13.4Ω/□であった。白金ナノ粒子の吸着後も図5より大きな変化は見られない。このように、PtをFTO基板に固定化してもあまり表面抵抗率に変化がなかったことから、白金ナノ粒子の固定化密度は小さいと考えられる(25℃)。すなわち、白金ナノ粒子はFTO基板上に希薄に分散されて固定されていると考えられる。 From Table 1, the surface resistivity before platinum nanoparticle fixation was 13.4Ω / □. Even after the adsorption of platinum nanoparticles, no greater change than in FIG. 5 is observed. Thus, since the surface resistivity did not change much even when Pt was immobilized on the FTO substrate, the immobilization density of the platinum nanoparticles is considered to be small (25 ° C.). That is, it is considered that the platinum nanoparticles are diluted and fixed on the FTO substrate.
次に、白金ナノ粒子分散溶液の温度変化による影響を調べるために、白金ナノ粒子分散溶液の温度を50℃と70℃として本発明に係る白金ナノ粒子を担持させた電極を作製し、FTO基板表面の表面抵抗率を測定した。表2に浸漬温度と浸漬時間に対する表面抵抗率を示す。図6に表面抵抗率に及ぼす白金ナノ粒子の浸漬温度の効果を示す。 Next, in order to investigate the influence of the temperature change of the platinum nanoparticle dispersion solution, the temperature of the platinum nanoparticle dispersion solution was set to 50 ° C. and 70 ° C., and an electrode carrying the platinum nanoparticles according to the present invention was prepared. The surface resistivity of the surface was measured. Table 2 shows the surface resistivity with respect to the immersion temperature and the immersion time. FIG. 6 shows the effect of the immersion temperature of platinum nanoparticles on the surface resistivity.
上記基板であるFTO基板を浸漬する白金ナノ粒子分散溶液の温度が高くなると、常温(25℃)時に比べ表面抵抗率の値が僅かに小さくなる傾向を示す。白金ナノ粒子を担持させた電極表面の表面抵抗率を最も低くする条件は、乾燥機を用いた時で、浸漬条件が50℃で180分間(13.0Ω/□)である。それでも、白金ナノ粒子固定前の表面抵抗率は13.4Ω/□に対し、13.0Ω/□で大きな変化はしない。このように、白金ナノ粒子のFTO基板への吸着は、FTO基板の表面抵抗率にほとんど影響をもたらさないことがわかる。 When the temperature of the platinum nanoparticle dispersion solution in which the FTO substrate as the substrate is immersed increases, the surface resistivity tends to be slightly smaller than that at room temperature (25 ° C.). The condition for making the surface resistivity of the electrode surface carrying the platinum nanoparticles the lowest is when a dryer is used, and the immersion condition is 50 ° C. for 180 minutes (13.0Ω / □). Even so, the surface resistivity before fixing the platinum nanoparticles is not significantly changed at 13.0Ω / □ against 13.4Ω / □. Thus, it turns out that adsorption | suction to the FTO board | substrate of a platinum nanoparticle has little influence on the surface resistivity of an FTO board | substrate.
[小括]
以上、上記実施例1〜3でのFTO基板(または本発明に係る白金ナノ粒子を担持させた電極)の評価結果をまとめると以下のようになる。
(1)市販の基板(FTO基板)の表面抵抗率は場所によってムラがなく、13.4Ω/□である。
(2)FTO基板を白金ナノ粒子分散溶液に浸漬させても表面抵抗率は大きく変化しない。
(3)白金ナノ粒子分散溶液の温度を上げてFTO基板を浸漬させると表面抵抗率が僅かに小さくなる。
(4)白金ナノ粒子分散溶液の温度を上げても、本発明に係る白金ナノ粒子を担持させた電極表面の表面抵抗率は殆ど変化しない。
[Brief Summary]
As described above, the evaluation results of the FTO substrates (or the electrodes supporting the platinum nanoparticles according to the present invention) in Examples 1 to 3 are summarized as follows.
(1) The surface resistivity of a commercially available substrate (FTO substrate) is 13.4Ω / □ with no unevenness depending on the location.
(2) Even if the FTO substrate is immersed in the platinum nanoparticle dispersion solution, the surface resistivity does not change greatly.
(3) When the temperature of the platinum nanoparticle dispersion solution is raised and the FTO substrate is immersed, the surface resistivity slightly decreases.
(4) Even if the temperature of the platinum nanoparticle dispersion solution is raised, the surface resistivity of the electrode surface supporting the platinum nanoparticles according to the present invention hardly changes.
本実施例4では、白金ナノ粒子を固定する前のFTO基板表面と、本発明に係る白金ナノ粒子を担持させた電極表面とを、走査型電子顕微鏡(SEM)を用いて撮影して得た画像、各々図2(a)、(b)と図1(a)〜(d)とを比較する。なお、図1(a)〜(d)の画像は、FTO基板を白金ナノ粒子分散溶液に浸漬する所定の時間(浸漬時間)を90分と、所定の温度(浸漬温度)を70℃として撮像したものである。 In Example 4, the surface of the FTO substrate before fixing the platinum nanoparticles and the surface of the electrode supporting the platinum nanoparticles according to the present invention were photographed using a scanning electron microscope (SEM). Images, FIGS. 2 (a) and 2 (b), and FIGS. 1 (a) to 1 (d) are compared. The images in FIGS. 1A to 1D are taken with the predetermined time (immersion time) for immersing the FTO substrate in the platinum nanoparticle dispersion solution being 90 minutes and the predetermined temperature (immersion temperature) being 70 ° C. It is a thing.
上記図11(a)と図11(b)との比較で上述したように、浸漬後の図1(a)と浸漬前の図2(a)とを比較すると、殆ど両者は区別がつかないことから、白金ナノ粒子は、SnO2粒子に比べて小径で、FTO基板上に希薄に分散されて固定されていると推定することができる。 As described above in comparison between FIG. 11 (a) and FIG. 11 (b), when FIG. 1 (a) after immersion is compared with FIG. 2 (a) before immersion, the two are almost indistinguishable. From this, it can be estimated that the platinum nanoparticles have a smaller diameter than the SnO 2 particles and are diluted and fixed on the FTO substrate in a dilute manner.
そこで、浸漬後の図1(a)と浸漬前の図2(a)とを分析し、それぞれの表面に吸着した粒子成分を解析した。図1(b)は、白金ナノ粒子分散溶液に浸漬させて得た本発明に係る白金ナノ粒子を担持させた電極表面のスズ(Sn)元素の分布の様子を、図1(c)は同表面の酸素(O)元素の分布の様子を、図1(d)は同表面の白金(Pt)元素の分布の様子を、それぞれ示す。図1(d)では見づらいが、白金元素が現に分布している一方で、図2(b)は、白金ナノ粒子分散溶液に浸漬前のFTO基板表面の白金(Pt)元素の分布を示す解析写真であり、白金元素の分布は見られなかった。 Accordingly, FIG. 1A after immersion and FIG. 2A before immersion were analyzed, and the particle components adsorbed on the respective surfaces were analyzed. FIG. 1B shows the distribution of tin (Sn) element on the surface of the electrode carrying the platinum nanoparticles according to the present invention obtained by immersing in a platinum nanoparticle dispersion solution, and FIG. FIG. 1 (d) shows the state of distribution of oxygen (O) element on the surface, and FIG. 1 (d) shows the state of distribution of platinum (Pt) element on the surface. Although it is difficult to see in FIG. 1D, platinum element is actually distributed, while FIG. 2B is an analysis showing the distribution of platinum (Pt) element on the surface of the FTO substrate before being immersed in the platinum nanoparticle dispersion solution. It is a photograph, and distribution of platinum element was not seen.
本発明に係る白金ナノ粒子を担持させた電極の性能を調べるため、FTO基板を白金ナノ粒子分散溶液に浸漬する所定の温度と当該浸漬する所定の時間を変えて、本発明の白金ナノ粒子を担持させた電極を多数のパターンで作製し、色素増感型太陽電池の正極として用いた。 In order to investigate the performance of the electrode carrying platinum nanoparticles according to the present invention, the platinum nanoparticle of the present invention is changed by changing the predetermined temperature and the predetermined time for immersing the FTO substrate in the platinum nanoparticle dispersion solution. The supported electrode was produced in a number of patterns and used as the positive electrode of a dye-sensitized solar cell.
次世代の太陽電池として注目されている色素増感型太陽電池(以下、「DSC」ともいう。)の理論効率は33%で、12%を超えるエネルギー変換効率が近年達成されている。また、安価な材料で、比較的容易に作製できることから製造にかかるコストが従来の1/3〜1/5と低いことがDSCの特長である。従来、正極には白金プレートないし白金ペーストを400℃で30分程度焼結して作るため、コストが高くなる。そこで、本実施例5では正極の製造コスト削減のため、本発明に係る白金ナノ粒子の固定化法を用いて正極を作製した。また、本発明に係る白金ナノ粒子を担持させた電極の製法により作製した正極と、増感色素にルテニウムを用いてDSCを構成し、性能評価を行った。 The theoretical efficiency of a dye-sensitized solar cell (hereinafter also referred to as “DSC”) that is attracting attention as a next-generation solar cell is 33%, and an energy conversion efficiency exceeding 12% has been achieved in recent years. In addition, since it is relatively inexpensive and can be manufactured relatively easily, the cost of manufacturing is as low as 1/3 to 1/5 of the conventional DSC. Conventionally, the positive electrode is made by sintering a platinum plate or platinum paste at 400 ° C. for about 30 minutes, which increases the cost. Therefore, in Example 5, in order to reduce the manufacturing cost of the positive electrode, the positive electrode was manufactured using the platinum nanoparticle immobilization method according to the present invention. Moreover, DSC was comprised using the positive electrode produced by the manufacturing method of the electrode which carry | supported the platinum nanoparticle which concerns on this invention, and ruthenium for a sensitizing dye, and performance evaluation was performed.
図10に示すように、色素増感型太陽電池(DSC)10は、色素の増感効果によって半導体電極1、12に電子が発生する原理を応用したものであり、その基本構造は単純で2枚の導電性ガラス電極1、12の間に、酸化物半導体である二酸化チタンの薄膜14と、増感色素、それにヨウ素を主成分とした酸化還元電解質溶液16とを順に挟み込んだサンドイッチ型である。すなわち、二酸化スズ(SnO2)をコーティングしたFTO基板12上に二酸化チタンの薄膜14を形成して増感色素を吸着させて負極とし、本発明に係る白金ナノ粒子を担持させた電極1を正極として、両電極間にヨウ素溶液16を挟持する。増感色素は可視光をできる限り多く吸収するためのもので、これに光が当たって飛び出す電子を効率よくとらえられるようにと、二酸化チタン薄膜14は多孔質にして表面積を大きくしてある。これらの三層間の光電気化学反応で光を電気に換える。 As shown in FIG. 10, the dye-sensitized solar cell (DSC) 10 applies the principle that electrons are generated in the semiconductor electrodes 1 and 12 due to the sensitizing effect of the dye, and its basic structure is simple. It is a sandwich type in which a thin film 14 of titanium dioxide, which is an oxide semiconductor, a sensitizing dye, and a redox electrolyte solution 16 mainly composed of iodine are sandwiched between conductive glass electrodes 1 and 12 in this order. . That is, a thin film 14 of titanium dioxide is formed on an FTO substrate 12 coated with tin dioxide (SnO 2 ) to adsorb a sensitizing dye to form a negative electrode, and the electrode 1 supporting platinum nanoparticles according to the present invention is used as a positive electrode. As above, the iodine solution 16 is sandwiched between both electrodes. The sensitizing dye absorbs as much visible light as possible, and the titanium dioxide thin film 14 is made porous to increase the surface area so as to efficiently capture the electrons that hit the light and jump out. Light is converted into electricity by the photoelectrochemical reaction between these three layers.
白金ナノ粒子を担持させた電極(正極)を以下手順で作製した。まず、SnO2コーティングFTO基板(ガラス)を所定の温度で白金ナノ粒子分散溶液の中に浸漬する。浸漬時間(上記所定の時間)は最大180分まで30分刻みで増やした。全部で6パターンになった。その後、低抵抗率計を用いて表面抵抗率ないし比抵抗を測定した。白金ナノ粒子分散溶液の温度パラメーター(上記所定の温度)は25℃、50℃、70℃の3つである。それぞれの温度で浸漬時間を変えていった。 An electrode (positive electrode) carrying platinum nanoparticles was prepared according to the following procedure. First, a SnO 2 coated FTO substrate (glass) is immersed in a platinum nanoparticle dispersion solution at a predetermined temperature. The immersion time (the predetermined time) was increased in increments of 30 minutes up to a maximum of 180 minutes. There are 6 patterns in total. Thereafter, the surface resistivity or the specific resistance was measured using a low resistivity meter. There are three temperature parameters (the above-mentioned predetermined temperature) of the platinum nanoparticle dispersion solution: 25 ° C., 50 ° C., and 70 ° C. The immersion time was changed at each temperature.
今回本実施例5の実験に使用したDSC10においては、上記のように、二酸化チタン薄膜14にルテニウム色素を吸着させたFTO基板12にヨウ化リチウム溶液を滴下し、負極とした。また、本発明に係る白金ナノ粒子を担持したFTO基板1を正極とした。そして、当該負極と正極とを重ねてDSC10を作製した。電流・電圧特性は室温下(25℃)で、太陽光と同様なスペクトルを有する人工太陽照明灯(1000W/m2)を照射して自動測定した。 In the DSC 10 used in the experiment of the present Example 5 this time, as described above, a lithium iodide solution was dropped on the FTO substrate 12 having the ruthenium dye adsorbed on the titanium dioxide thin film 14 to form a negative electrode. Moreover, the FTO substrate 1 carrying the platinum nanoparticles according to the present invention was used as the positive electrode. And the said negative electrode and the positive electrode were piled up, and DSC10 was produced. Current / voltage characteristics were measured automatically by irradiating an artificial solar illumination lamp (1000 W / m 2 ) having a spectrum similar to that of sunlight at room temperature (25 ° C.).
[実験結果および考察]
上述のように、室温(25℃)で、本発明に係る白金ナノ粒子を担持させた電極1の表面のシート抵抗と浸漬前のFTO基板のシート抵抗の値にほとんど差がなかった。これは白金ナノ粒子がFTO基板の表面に薄く吸着していることを示唆している。また、浸漬温度を高くしても表面抵抗率はほとんど変化しなかった。さらに、浸漬時間を長くしても表面抵抗率が大きく変化しなかった。
[Experimental results and discussion]
As described above, at room temperature (25 ° C.), there was almost no difference between the sheet resistance of the surface of the electrode 1 carrying the platinum nanoparticles according to the present invention and the sheet resistance of the FTO substrate before immersion. This suggests that the platinum nanoparticles are thinly adsorbed on the surface of the FTO substrate. Further, even when the immersion temperature was increased, the surface resistivity hardly changed. Furthermore, the surface resistivity did not change greatly even when the immersion time was increased.
図7に白金ナノ粒子分散液の温度(上記所定の温度)を50℃にしてFTO基板を浸漬する所定の時間を変化させた場合の、白金ナノ粒子を担持させた正極1を用いたDSC10の電流・電圧特性を示す。浸漬時間が増大しても開放電圧はほぼ一定であるが、短絡電流は増大する。浸漬時間が90分を超えると開放電圧、短絡電流ともにほぼ一定となる。したがって、基板を白金ナノ粒子分散溶液に浸漬する所定の時間は、最適浸漬時間はある一定の時間で飽和する傾向が見られ、このような一定の時間基板を白金ナノ粒子分散溶液に浸漬すれば、一定以上の性能を発揮する本発明に係る白金ナノ粒子を担持させた電極を得ることができると考えられる。 FIG. 7 shows the DSC 10 using the positive electrode 1 supporting platinum nanoparticles when the temperature of the platinum nanoparticle dispersion (predetermined temperature) is 50 ° C. and the predetermined time for immersing the FTO substrate is changed. Current / voltage characteristics are shown. The open-circuit voltage is almost constant as the immersion time increases, but the short-circuit current increases. When the immersion time exceeds 90 minutes, both the open circuit voltage and the short circuit current are almost constant. Therefore, the predetermined time for immersing the substrate in the platinum nanoparticle dispersion solution tends to saturate the optimum immersion time at a certain time, and if the substrate is immersed in the platinum nanoparticle dispersion solution for such a certain time, It is believed that an electrode carrying platinum nanoparticles according to the present invention that exhibits a certain level of performance can be obtained.
なお、本発明に係る白金ナノ粒子を担持させた電極に120Wの超音波を照射して、白金ナノ粒子がFTO基板に担持される固定強度を調べた。図12は、所定の時間を30分と、所定の温度を50℃として得た本発明に係る白金ナノ粒子を担持させた電極表面を、10分間の超音波洗浄する前後において電流・電圧特性を測定したグラフ図である。図12より明らかなように両者の電流・電圧特性曲線はほぼ一致し、超音波の照射前と照射後の白金ナノ粒子を担持させた電極を正極に用いた場合、DSC10の電流・電圧特性に変化は見られなかった。このことから、白金ナノ粒子はFTO基板に強く固定されて担持されていることが分かる。 In addition, 120 W ultrasonic waves were applied to the electrode carrying the platinum nanoparticles according to the present invention, and the fixing strength at which the platinum nanoparticles were carried on the FTO substrate was examined. FIG. 12 shows the current / voltage characteristics before and after ultrasonic cleaning for 10 minutes on the electrode surface supporting platinum nanoparticles according to the present invention obtained at a predetermined time of 30 minutes and a predetermined temperature of 50 ° C. It is the measured graph figure. As is apparent from FIG. 12, the current / voltage characteristic curves of the two are almost the same, and when the electrode carrying platinum nanoparticles before and after the ultrasonic irradiation is used as the positive electrode, the current / voltage characteristic of the DSC 10 is obtained. There was no change. From this, it is understood that the platinum nanoparticles are strongly fixed and supported on the FTO substrate.
図8に、FTO基板を白金ナノ粒子分散液に浸漬する所定の時間を90分にして当該浸漬する所定の温度を変化させた場合の、白金ナノ粒子を担持させた正極1を用いたDSC10の電流・電圧特性を示す。開放電圧は25℃、50℃、70℃と白金ナノ粒子分散液の温度を上げると0.52V、0.53V、0.55Vと僅かながら増大するが、短絡電流の密度は1.18mA/cm2、1.56mA/cm2、1.94mA/cm2と大きく増大する。開放電圧はルテニウム色素のバンドギャップに対応するため、溶液の温度に依存しないと考えられる。しかし、短絡電流は白金ナノ粒子のFTO基板表面への付着量に対応するため、白金ナノ粒子分散液の温度(所定の温度)と浸漬時間(所定の時間)に依存して増える。 FIG. 8 shows the DSC 10 using the positive electrode 1 supporting platinum nanoparticles when the predetermined temperature for immersing the FTO substrate in the platinum nanoparticle dispersion is changed to 90 minutes and the predetermined temperature for the immersion is changed. Current / voltage characteristics are shown. When the temperature of the platinum nanoparticle dispersion is increased to 25 ° C., 50 ° C., and 70 ° C., the open circuit voltage slightly increases to 0.52 V, 0.53 V, and 0.55 V, but the short-circuit current density is 1.18 mA / cm. 2 , 1.56 mA / cm 2 and 1.94 mA / cm 2 . Since the open circuit voltage corresponds to the band gap of the ruthenium dye, it is considered that it does not depend on the temperature of the solution. However, since the short-circuit current corresponds to the amount of platinum nanoparticles attached to the FTO substrate surface, the short-circuit current increases depending on the temperature (predetermined temperature) and the immersion time (predetermined time) of the platinum nanoparticle dispersion.
図9は、FTO基板を白金ナノ粒子分散液に浸漬する所定の温度が70℃の時に最も大きな出力が得られることを示している。因みに、FTO基板上にスパッタリング蒸着した白金蒸着膜を用いたときの出力は1.65mWになった。 FIG. 9 shows that the maximum output is obtained when the predetermined temperature at which the FTO substrate is immersed in the platinum nanoparticle dispersion is 70 ° C. Incidentally, the output when the platinum vapor deposition film sputter-deposited on the FTO substrate was 1.65 mW.
[ 小括]
白金ナノ粒子のFTO基板表面への付着は、白金ナノ粒子分散液をできるだけ高く(70℃)し、90分程度の浸漬時間で完了する。最大出力は浸漬温度70℃、浸漬時間90分で、1.08mW得られる。これは白金蒸着膜を用いたときの約65.5%の電力に相当する。
[ Brief Summary]
The adhesion of the platinum nanoparticles to the FTO substrate surface is completed with a platinum nanoparticle dispersion liquid as high as possible (70 ° C.) and an immersion time of about 90 minutes. The maximum output is 1.08 mW at an immersion temperature of 70 ° C. and an immersion time of 90 minutes. This corresponds to about 65.5% electric power when a platinum vapor deposition film is used.
以上、白金ナノ粒子分散溶液に、FTO基板を所定の時間浸漬して得た本発明に係る白金ナノ粒子を担持させた電極の性質を明らかにした。上記のように本発明に係る白金ナノ粒子を担持させた電極について、実施形態、実施例を用いて説明したが、本発明は上記実施形態等に限定されるものではない。 As described above, the properties of the electrode supporting the platinum nanoparticles according to the present invention obtained by immersing the FTO substrate in the platinum nanoparticle dispersion solution for a predetermined time have been clarified. As described above, the electrode supporting the platinum nanoparticles according to the present invention has been described using the embodiments and examples. However, the present invention is not limited to the above-described embodiments and the like.
上記実施形態等においては、白金ナノ粒子分散溶液に浸漬してFTO基板上に白金ナノ粒子を固定したが、FTO基板以外の基板、例えばITO基板上に白金ナノ粒子を固定してもよい。あるいは、燃料電池に用いる電極としてカーボンペーパーに白金ナノ粒子を固定してもよい。また、基板を浸漬する白金ナノ粒子分散溶液の所定の温度は、本実施形態及び実施例では室温(25℃)〜70℃としたが、さらに高温に白金ナノ粒子分散溶液の浸漬温度を保持することで、より高性能の本発明に係る白金ナノ粒子を担持させた電極を得ることが期待される。 In the above-described embodiment and the like, the platinum nanoparticles are fixed on the FTO substrate by dipping in the platinum nanoparticle dispersion solution. However, the platinum nanoparticles may be fixed on a substrate other than the FTO substrate, for example, an ITO substrate. Or you may fix a platinum nanoparticle to carbon paper as an electrode used for a fuel cell. Moreover, although the predetermined temperature of the platinum nanoparticle dispersion solution in which the substrate is immersed is set to room temperature (25 ° C.) to 70 ° C. in the present embodiment and examples, the immersion temperature of the platinum nanoparticle dispersion solution is maintained at a higher temperature. Thus, it is expected to obtain an electrode carrying platinum nanoparticles according to the present invention with higher performance.
その他、本発明は、その主旨を逸脱しない範囲で当業者の知識に基づき種々の改良、修正、変更を加えた態様で実施できるものである。 In addition, the present invention can be carried out in a mode in which various improvements, modifications, and changes are added based on the knowledge of those skilled in the art without departing from the spirit of the present invention.
本発明に係る白金ナノ粒子を担持させた電極は、酸化還元反応に対して安定で触媒作用を必要とするあらゆる電極として利用できる。 The electrode on which platinum nanoparticles according to the present invention are supported can be used as any electrode that is stable with respect to a redox reaction and requires a catalytic action.
1:本発明に係る白金ナノ粒子を担持させた電極
10:色素増感型太陽電池(DSC)
12:透明電極(FTO)
14:酸化チタン膜
16:ヨウ素溶液
1: Electrode 10 carrying platinum nanoparticles according to the present invention 10: Dye-sensitized solar cell (DSC)
12: Transparent electrode (FTO)
14: Titanium oxide film 16: Iodine solution
Claims (7)
白金ナノ粒子を含む白金ナノ粒子分散溶液を準備するステップと、
前記白金ナノ粒子分散溶液を所定の温度に保持するステップと、
前記所定の温度に保持した白金ナノ粒子分散溶液に、前記洗浄した基板を所定の時間浸漬するステップと、
前記白金ナノ粒子分散溶液に浸漬した基板を乾燥させるステップと、
を含む、白金ナノ粒子を担持させた電極の製造方法。
に浸漬した基板を乾燥させるステップと、
を含む、白金ナノ粒子を担持させた電極の製造方法。
Preparing a cleaned substrate; and
Preparing a platinum nanoparticle dispersion solution containing platinum nanoparticles;
Maintaining the platinum nanoparticle dispersion solution at a predetermined temperature;
Immersing the cleaned substrate in a platinum nanoparticle dispersion solution maintained at the predetermined temperature for a predetermined time;
Drying the substrate immersed in the platinum nanoparticle dispersion solution;
The manufacturing method of the electrode which carry | supported the platinum nanoparticle containing this.
Drying the substrate immersed in
The manufacturing method of the electrode which carry | supported the platinum nanoparticle containing this.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013047377A JP6252885B2 (en) | 2013-03-08 | 2013-03-08 | Method for producing electrode carrying platinum nanoparticles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013047377A JP6252885B2 (en) | 2013-03-08 | 2013-03-08 | Method for producing electrode carrying platinum nanoparticles |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014175186A true JP2014175186A (en) | 2014-09-22 |
JP6252885B2 JP6252885B2 (en) | 2017-12-27 |
Family
ID=51696207
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013047377A Active JP6252885B2 (en) | 2013-03-08 | 2013-03-08 | Method for producing electrode carrying platinum nanoparticles |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6252885B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2990482A1 (en) | 2014-08-29 | 2016-03-02 | Honda Motor Co., Ltd. | Thermostable xylanase belonging to gh family 10 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006073487A (en) * | 2004-09-06 | 2006-03-16 | Erekuseru Kk | Counterelectrode for dye-sensitized solar cell, manufacturing method thereof, and dye-sensitized solar cell |
JP2006108064A (en) * | 2004-10-06 | 2006-04-20 | Korea Inst Of Science & Technology | Highly efficient counter electrode for dye-sensitized solar cell and its manufacturing method |
JP2007107091A (en) * | 2005-09-16 | 2007-04-26 | Mitsubishi Materials Corp | Porous titanium having small contact resistance and method for producing the same |
JP2007234249A (en) * | 2006-02-27 | 2007-09-13 | Niigata Univ | Platinum modified electrode and its manufacturing method |
US20080063788A1 (en) * | 2006-09-08 | 2008-03-13 | Tzu-Chien Wei | Method for preparing an electrode comprising an electrochemical catalyst layer thereon |
JP2009174031A (en) * | 2008-01-28 | 2009-08-06 | Ib Net:Kk | Surface treatment method using metal nanoparticle, and instrument subjected to surface treatment using the surface treatment method |
JP2010108902A (en) * | 2008-10-31 | 2010-05-13 | Tripod Technology Corp | Method of forming electromechanical device |
JP2014175175A (en) * | 2013-03-08 | 2014-09-22 | Univ Of Tokyo | Electrode substrate, battery using electrode substrate and method for manufacturing electrode substrate |
-
2013
- 2013-03-08 JP JP2013047377A patent/JP6252885B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006073487A (en) * | 2004-09-06 | 2006-03-16 | Erekuseru Kk | Counterelectrode for dye-sensitized solar cell, manufacturing method thereof, and dye-sensitized solar cell |
JP2006108064A (en) * | 2004-10-06 | 2006-04-20 | Korea Inst Of Science & Technology | Highly efficient counter electrode for dye-sensitized solar cell and its manufacturing method |
JP2007107091A (en) * | 2005-09-16 | 2007-04-26 | Mitsubishi Materials Corp | Porous titanium having small contact resistance and method for producing the same |
JP2007234249A (en) * | 2006-02-27 | 2007-09-13 | Niigata Univ | Platinum modified electrode and its manufacturing method |
US20080063788A1 (en) * | 2006-09-08 | 2008-03-13 | Tzu-Chien Wei | Method for preparing an electrode comprising an electrochemical catalyst layer thereon |
JP2009174031A (en) * | 2008-01-28 | 2009-08-06 | Ib Net:Kk | Surface treatment method using metal nanoparticle, and instrument subjected to surface treatment using the surface treatment method |
JP2010108902A (en) * | 2008-10-31 | 2010-05-13 | Tripod Technology Corp | Method of forming electromechanical device |
JP2014175175A (en) * | 2013-03-08 | 2014-09-22 | Univ Of Tokyo | Electrode substrate, battery using electrode substrate and method for manufacturing electrode substrate |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2990482A1 (en) | 2014-08-29 | 2016-03-02 | Honda Motor Co., Ltd. | Thermostable xylanase belonging to gh family 10 |
Also Published As
Publication number | Publication date |
---|---|
JP6252885B2 (en) | 2017-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Xiao et al. | Dye-sensitized solar cells with high-performance polyaniline/multi-wall carbon nanotube counter electrodes electropolymerized by a pulse potentiostatic technique | |
Oekermann et al. | Electron transport and back reaction in nanocrystalline TiO2 films prepared by hydrothermal crystallization | |
Brillet et al. | Decoupling feature size and functionality in solution-processed, porous hematite electrodes for solar water splitting | |
Wang et al. | Significant enhancement of power conversion efficiency for dye sensitized solar cell using 1D/3D network nanostructures as photoanodes | |
Parida et al. | Effect of compact TiO2 layer on structural, optical, and performance characteristics of mesoporous perovskite solar cells | |
JP3671183B2 (en) | Method for producing dye-sensitized solar cell | |
TWI330409B (en) | Method for forming an electrode comprising an electrocatalyst layer thereon and electrochemical device comprising the same | |
Xu et al. | Highly flexible, transparent and conducting CuS-nanosheet networks for flexible quantum-dot solar cells | |
JPWO2007100095A1 (en) | Method for producing photoelectrode for dye-sensitized solar cell, photoelectrode for dye-sensitized solar cell, and dye-sensitized solar cell | |
Wang et al. | Fabrication of novel AgTiO2 nanobelts as a photoanode for enhanced photovoltage performance in dye sensitized solar cells | |
JP2009266798A (en) | Method of manufacturing electrochemical device | |
Chen et al. | Photoelectrochemical study of organic–inorganic hybrid thin films via electrostatic layer-by-layer assembly | |
Tiihonen et al. | Biocarbon from brewery residues as a counter electrode catalyst in dye solar cells | |
Habibi et al. | First observation on S-doped Nb 2 O 5 nanostructure thin film coated on carbon fiber paper using sol–gel dip-coating: fabrication, characterization, visible light sensitization, and electrochemical properties | |
JP2010055935A (en) | Dye-sensitized solar cell | |
Wang et al. | Enhanced electron transport through two-dimensional Ti3C2 in dye-sensitized solar cells | |
Mohapatra et al. | Effect of the Seed Layer on the Growth and Charge Transfer Behavior of Zn2SnO4 Nanorods in Photoelectrochemical Water Splitting | |
Iraj et al. | TiO 2 nanotube formation by Ti film anodization and their transport properties for dye-sensitized solar cells | |
JP2006073487A (en) | Counterelectrode for dye-sensitized solar cell, manufacturing method thereof, and dye-sensitized solar cell | |
JP6252885B2 (en) | Method for producing electrode carrying platinum nanoparticles | |
JP2010108902A (en) | Method of forming electromechanical device | |
Lee et al. | Comparative Study on the Photoanode Nanoarchitectures for Photovoltaic Application | |
JP2006073488A (en) | Dye-sensitized solar cell and manufacturing method thereof | |
Bazargan et al. | A NEW COUNTER ELECTRODE BASED ON COPPER SHEET FOR FLEXIBLE DYE SENSITIZED SOLAR CELLS. | |
Mali et al. | Hydrothermal synthesis of rutile TiO 2 bottle brush for efficient dye-sensitized solar cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160215 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20161109 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161206 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20170123 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170403 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20170405 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170531 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20170720 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170925 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20171023 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20171116 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6252885 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |